EP2426466A1 - Appareil de mesure de déviation selon le principe d'interférométrie - Google Patents

Appareil de mesure de déviation selon le principe d'interférométrie Download PDF

Info

Publication number
EP2426466A1
EP2426466A1 EP11006953A EP11006953A EP2426466A1 EP 2426466 A1 EP2426466 A1 EP 2426466A1 EP 11006953 A EP11006953 A EP 11006953A EP 11006953 A EP11006953 A EP 11006953A EP 2426466 A1 EP2426466 A1 EP 2426466A1
Authority
EP
European Patent Office
Prior art keywords
fiber
optic means
optical
radiation
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11006953A
Other languages
German (de)
English (en)
Other versions
EP2426466B1 (fr
Inventor
Henrik Krisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krohne Messtechnik GmbH and Co KG
Original Assignee
Krohne Messtechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krohne Messtechnik GmbH and Co KG filed Critical Krohne Messtechnik GmbH and Co KG
Publication of EP2426466A1 publication Critical patent/EP2426466A1/fr
Application granted granted Critical
Publication of EP2426466B1 publication Critical patent/EP2426466B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/161Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by interferometric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/325Means for detecting quantities used as proxy variables for swirl
    • G01F1/3259Means for detecting quantities used as proxy variables for swirl for detecting fluid pressure oscillations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02338Structured core, e.g. core contains more than one material, non-constant refractive index distribution in core, asymmetric or non-circular elements in core unit, multiple cores, insertions between core and clad
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/2935Mach-Zehnder configuration, i.e. comprising separate splitting and combining means
    • G02B6/29352Mach-Zehnder configuration, i.e. comprising separate splitting and combining means in a light guide

Definitions

  • the invention relates to a deflection measuring device according to the interferometric principle with a radiation source having a first optical fiber implementing first optical fiber means, with a second optical path realizing second optical fiber means, with a deflection body and with an evaluation circuit, wherein the first fiber optic means and the second fiber optic means
  • the radiation source can be acted on the input side with interference-capable radiation, at least the first fiber optic means being connected to the deflection body and the first part radiation guided in the first fiber optic means and the second part radiation guided in the second fiber optic means being brought together on the output side and supplying the interference radiation to the evaluation circuit and evaluated by the evaluation circuit.
  • Displacement measuring instruments based on the interferometry principle have been known for a long time in the prior art, and they are used wherever mechanical deflections of a displacement body need to be recorded and detected with great sensitivity. Applications are found, for example, in the field of vibration measuring devices, which are based on the recurrent or periodic deflection of a deflection body, wherein the deflection of the deflection body is either externally determined by a physical process -. As in the vortex flow measurement - or wherein a deflection of the deflection body is excited and the actual interest size, for example, in the attenuation of the excited vibration - z. B. in the viscosity measurement -. For other measuring tasks, the degree of deflection of the deflection body is of interest, as for example when measuring the deflection of a diaphragm during pressure or differential pressure measurement.
  • fiber-optic interferometry One of the advantages of fiber-optic interferometry is that very small deflections can already be detected, namely deflections which lie in the (sub-) wavelength range of the radiation used.
  • two temporally sufficiently coherent - ie interference-capable - beams are brought to overlap with an interferometer.
  • the radiation of the - coherent - radiation source is divided by a beam splitter into a first sub-beam and a second sub-beam, wherein the sub-beams are guided in the case of the considered here use of fiber optic means via these same fiber optic means.
  • the light paths of the first sub-beam and the second sub-beam realized by the fiber-optic means are also referred to as the arms of the interferometer.
  • the partial beams are brought together and brought to interference.
  • the radiation intensity at the output of the interferometer is proportional to the cosine of the phase difference of the two interfering partial beams.
  • Changes in the phase difference, z. B. caused by the smallest changes in the length of an interferometer lead to a detectable intensity change at the output of the interferometer, wherein the change in length in the present case results from the fact that one of the light paths is guided over the deflection body, so that a deflection of the deflection body directly on the Length of the light path and therefore is detectable.
  • the term "fiber-optic agent" is not to be understood here in the sense of waveguide, however, it may also be a waveguide. By a fiber optic means, for example, various cores within an optical waveguide may be meant.
  • Mach-Zehnder interferometers are used as interferometers; other interferometer types, for example the Michelson interferometer, are also conceivable in principle.
  • Semiconductor lasers are particularly suitable as the radiation source for generating the radiation used in the interferometer. Even if light paths are mentioned here, which are realized with the fiber optic means, this does not mean restrictive only visible electromagnetic radiation, rather it can be any electromagnetic radiation, as long as it is suitable for fiber optic applications in the field of interferometry ,
  • the high sensitivity of the interferometric measurement method not only has advantages, but also brings disadvantages, since due to the high sensitivity always there is the risk that unwanted spurious signals are generated, which is particularly true in the often harsh environments of process instrumentation.
  • the problem here is that the deflection body must be performed close to the process to be detected together with the first or second fiber optic means attached to it, whereas the evaluation circuit should be located as far away from the process as possible, such as in high-temperature or high-pressure applications.
  • the optical couplers used are often sensitive to thermal and mechanical stresses, the optical couplers forming the interaction regions of the first and the second fiber optic means.
  • the optical couplers have to be arranged remotely from the physical process to be detected, a very large extent of the light paths formed by the first fiber-optic means and by the second fiber-optic means is necessarily connected thereto.
  • this also means that the region which is sensitive to a deflection is not limited only to the deflection body, but also to an optionally widely extended supply region to the deflection body, which may be problematic for the reasons described above.
  • the previously derived and illustrated object is achieved in the deflection measuring device according to the Interferometriekar, from which the present invention proceeds, characterized in that the first fiber optic means and the second fiber optic means are arranged exclusively on the Auslenkungsterrorism, the first fiber optic means and / or the second fiber optic Means are the input side connected to a single optical feed fiber with the radiation source / is and the first fiber optic means and / or the second fiber optic means are connected on the output side with a single optical Ausensemaschine to the evaluation circuit.
  • the fiber optic means implementing the first and second light paths extend exclusively in the region of the deflection body and do not protrude beyond the deflection body and also no direct connection to the Radiation source and form the evaluation circuit. Rather, the connection of the first fiber optic means and / or the second optical fiber means is realized with the radiation source via a single optical feed fiber, using this no intermediate optical coupler, but connections between the optical fibers - ie between the feed fiber and the first and / or the second fiber optic means and the evaluation fiber and the first and / or the second fiber optic means - are produced by the known methods, that is, for example, by thermal splicing. This design is based on the finding that a technically usable interference effect between the partial radiations of the first fiber-optic means and the second fiber-optic means can also be realized without the usual construction with discrete optical couplers.
  • the first fiber-optic means and the second fiber-optic means are jointly formed by a - so a single - optical multicore fiber, that are realized by a plurality of optical cores within an optical fiber.
  • the light paths of the first and second optical fiber means are realized in the one multicore optical fiber, respectively, as a bundle of photoconductive cores, for example, jointly surrounded by a low-refractive material (cladding).
  • the first fiber optic means and the second fiber optic means are realized by a dual-core optical fiber, each light path being formed by a core of the dual-core fiber.
  • the multicore or dual-core fiber is realized with a light-conducting core and a core concentrically surrounding the light-conducting ring area, this symmetrical structure has the advantage of having no preferred direction which also facilitates the assembly of the concentric fiber ,
  • the first fiber optic means and / or the second fiber optic means in both the multicore and dual core variants are formed as microstructured optical fibers.
  • photonic crystal fibers as Vollkernmaschine (Solid Core PCF) as well as hollow core fiber (Holey Core PCF) into consideration.
  • optical feed fiber and the optical evaluation fiber are formed by a single-core optical fiber, wherein it is of course also possible to form only the optical feed fiber and only the optical Ausiremaschine by a single-core optical fiber.
  • single-core fibers With the single-core fibers, virtually any distances between the radiation source and the evaluation circuit, on the one hand, and the optical paths decisive for the interferometric measurement, on the other hand, can be bridged, since the single-core fibers are not sensitive to any mechanical influence. In this area between the first and the second fiber optic means and the radiation source or the evaluation circuit can be introduced virtually no interference in the measurement process.
  • a very particularly preferred embodiment of the invention is characterized in that the first fiber-optic means and the second fiber-optic means are guided so close to each other that crosstalk of the partial radiation guided in the respective one fiber-optic means to the other fiber-optic means is possible.
  • the distance between the first fiber-optic means and the second fiber-optic means is selected to be less than 10 wavelengths of the guided partial radiation, preferably the distance is chosen to be less than 5 wavelengths of the guided partial radiation, since experience shows that a sufficiently strong crosstalk the partial radiation is realized.
  • the crosstalk occurs the partial radiation between the first fiber-optic means and the second fiber-optic means by evanescent portions of the partial radiation guided outside of the first fiber-optic means and / or outside the second fiber-optic means.
  • the optical feed fiber has such a large light-conducting cross-section that the feed fiber at the input-side joint the light-conducting cross section of the first fiber optic means and at least partially covers the light-conducting cross-section of the second fiber-optic means, so that practically both fiber-optic means can be exposed to radiation from the radiation source.
  • the optical evaluation fiber has such a large light-conducting cross-section that the evaluation fiber at the output-side joint at least partially covers the light-conducting cross section of the first fiber-optic means and the light-conducting cross section of the second fiber-optic means.
  • Particularly suitable for the feed fiber and the evaluation fiber in the application example described above are multimode fibers which usually have a light-conducting core of larger cross-section than is the case with singlemode fibers.
  • the light-conducting cross section of the optical feed fiber at the input-side joint at least partially covers only the photoconductive cross section of the first fiber optic means or the photoconductive cross section of the second fiber optic means, so that in this embodiment, a direct feed only in the first fiber optic means or alternatively in the second fiber optic means is possible, which implies that the first fiber optic means and the second fiber optic means are sufficiently close together, as already stated above has been executed.
  • the light-conducting cross-section of the optical evaluation fiber at the output-side joint at least partially covers only the photoconductive cross-section of the first fiber-optic means or the photoconductive cross-section of the second fiber optic means, whereby only the direct outcoupling of one of the optical paths is ensured forming fiber optic means.
  • This also assumes that the first partial radiation in the first fiber optic means and the second partial radiation in the second fiber optic means has been able to interact interferometrically due to a sufficient approximation of the two fiber optic means.
  • a deflection measuring device known from the prior art which operates on the principle of interferometry and in the present case is used for differential pressure measurement in a vortex flowmeter.
  • the deflection measuring device 1 has a radiation source 2 and also a first optical fiber implementing a first optical fiber means 3 and a second optical path realizing second fiber optic means 4.
  • the deflection body 5 is in the present case, a flat membrane, which is surrounded by the medium passing through the flow meter, which is not shown in greater detail, flows.
  • the first fiber-optic means 3 and the second fiber-optic means 4 are acted on the input side with interference-capable radiation of the radiation source 2, wherein in the present case, the first fiber optic means 3 is connected to the deflection body 5 designed as a membrane.
  • optical couplers 7, 8 are used to transmit the radiation initially present only in the second fiber-optic means 4 partly to the first fiber-optic means 3, so as to ensure that the first partial radiation, which is later recombined into the second optical coupler 8 and second partial radiation from the first fiber optic means 3 and the second fiber optic means 4 may interfere.
  • the interference radiation which allows conclusions to be drawn about the deflection of the deflection body 5, is produced at the evaluation circuit 6 as a result.
  • the deflection body 5 designed as a membrane is readily exposed to temperatures of several 100 ° C., so that in the actual technical realization the optical couplers 7 and 8, the radiation source 2 and the evaluation circuit 6 are at the actual measuring point - namely the deflection body 5 - intentionally spaced.
  • Fig. 2 is very schematically indicated the construction of a deflection measuring device according to the invention, in which mechanical disturbances of the actually interesting measurement of the deflection of the deflection body 5 can not occur so easily.
  • the first fiber optic means 3 and the second fiber optic means 4 are arranged exclusively on the deflection body 5, namely so connected to the deflection body 5, that the deflection of the deflection body 5 automatically to a change of the first fiber optic means 3 and the second fiber optic Means 4 defined light paths comes and thus to an evaluable interference phenomenon, which is detected by the evaluation circuit 6.
  • the first fiber-optic means 3 is connected on the input side with a single optical feed fiber 9 to the radiation source 2, and the first fiber-optic means 3 is also connected to the evaluation circuit 6 on the output side with a single optical evaluation fiber 10.
  • the light paths defined by the optical feed fiber 9 and the optical evaluation fiber 10 are practically free of interference since interferences can not arise here.
  • the arrangement shown is advantageous because of the discrete use of fiber optic couplers - as in the embodiment according to Fig. 1 have been used - is completely omitted here.
  • An optical connection between the feed fiber 9 and the first fiber optic means 3 and the evaluation fiber 10 and the first fiber optic means 3 is realized here by conventional splicing techniques.
  • the first fiber optic means 3 and the second fiber optic means 4 are realized in common by a dual-core optical fiber, that is to say by a fiber in which two optical cores are embedded in a low refractive sheath 11. Also is in Fig. 3 to recognize that the optical feed fiber 9 and the optical evaluation fiber 10 are each formed by a single-core optical fiber which also each have an optically conductive core and a low refractive sheath 11.
  • the first fiber-optic means 3 and the second fiber-optic means 4 are guided so close to one another that crosstalk of the partial radiation guided in the respective one fiber-optic means 3, 4 to the respective other fiber-optic means 4, 3 is possible the distance between the first fiber optic means 3 and the second fiber optic means 4 is less than five wavelengths of the guided partial radiation.
  • the crosstalk of the partial radiation between the first fiber-optic means 3 and the second fiber-optic means 4 is effected by the evanescent portions of the partial radiation guided outside the first fiber-optic means 3 and outside the second fiber-optic means 4.
  • the dual-core fiber constituting the first fiber optic means 3 and the second fiber optic means 4 has a flat 12 and flatly abuts the flattening 12 on the deflecting body 5, taking care to make the flattening 12 relatively small the cores of the dual-core fiber is consistently oriented, in the present case, namely, the cores are arranged vertically above the flat 12 and one behind the other lying.
  • This arrangement ensures that the first fiber-optic means 3 and the second fiber-optic means 4 do not experience exactly the same deflection, ie the light paths when the deflection body is deflected 5 shortened or extended so that a resulting interference effect can be perceived.
  • FIGS. 4 to 7 schematically different embodiments of the transitions between the optical fiber 9 and the first fiber optic means 3 and the second fiber optic means 4 and the embodiment between the first fiber optic means 3 and the second fiber optic means 4 and the Ausensemaschine 10 are shown.
  • Fig. 4 is indicated that the optical feed fiber 9 has such a large photoconductive cross-section that the feed fiber 9 at the input-side joint at least partially covers the photoconductive cross section of the first optical fiber means 3 and the photoconductive cross section of the second optical fiber means 4, wherein the same is also true for the optical evaluation fiber 10 is valid, which has such a large photoconductive cross-section that it covers the photoconductive cross section of the first fiber optic means 3 and the photoconductive cross section of the second fiber optic means 4 at least partially together at the output side joint.
  • the embodiments according to the Figures 5 . 6 and 7 have in common that the photoconductive cross section of the optical feed fiber 9 at the input-side joint at least partially covers only the photoconductive cross section of the first fiber optic means 3 or the photoconductive cross section of the second fiber optic means 4.
  • the exemplary embodiments according to FIGS. 5 and 6 also have in common that the light-conducting cross-section of the optical evaluation fiber 10 at the output-side joint at least partially covers only the light-conducting cross section of the first fiber-optic means 3.
  • connection scheme provides that the optical feed fiber 9 couples radiation only in a fiber-optic means of the first fiber optic means 3 and the second fiber optic means 4 - in the present case only in the first fiber optic means 3 - and the evaluation fiber 10 only the partial radiation from the same fiber optic means 3 decoupled, in which the feed fiber 9 has coupled radiation. Due to the effect of the crosstalk in the second fiber optic means 4 leads this second fiber-optic means 4 also partial radiation, this partial radiation interfering feedback in the first fiber-optic means 3 ultimately fed back so that the transmitted via the evaluation fiber 10 interference radiation can be evaluated by the not explicitly shown evaluation circuit.
  • the optical feed fiber 9 also couples - as in the embodiment according to Fig. 5 - Only in a fiber optic means of the first optical fiber means 3 and the second fiber optic means 4 radiation - in the present case in the second fiber optic means 4 -, but the evaluation fiber 10 couples only the partial radiation from that fiber optic means of the first optical fiber means 3 and the second Fiber optic means 4, in which the feed fiber 9 does not directly inject radiation, the evaluation fiber 10 is here so connected to the first fiber optic means 3. Also in this embodiment, the possibility of crosstalk between the first fiber optic means 3 and the second fiber optic means 4 is a necessary condition for the operability of the Auslenkungsmess réelles.
  • the optical feed fiber 9 couples radiation only into a single fiber optic means of the first fiber optic means 3 and the second fiber optic means 4 radiation - in the present case in the second fiber optic means 4 - the Ausensefaser 10 coupled output side but together the partial radiation of the first fiber optic means 3 and of the second fiber-optic means 4 on the output side, wherein it is the evaluation fiber 10 in the illustrated case is a multi-mode fiber.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
EP11006953.1A 2010-09-07 2011-08-25 Appareil de mesure de déviation selon le principe d'interférométrie Not-in-force EP2426466B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010044583A DE102010044583B4 (de) 2010-09-07 2010-09-07 Auslenkungsmessgerät nach dem Interferometrieprinzip

Publications (2)

Publication Number Publication Date
EP2426466A1 true EP2426466A1 (fr) 2012-03-07
EP2426466B1 EP2426466B1 (fr) 2014-12-17

Family

ID=44508655

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11006953.1A Not-in-force EP2426466B1 (fr) 2010-09-07 2011-08-25 Appareil de mesure de déviation selon le principe d'interférométrie

Country Status (5)

Country Link
US (1) US8687199B2 (fr)
EP (1) EP2426466B1 (fr)
JP (1) JP5904733B2 (fr)
CN (1) CN102538662B (fr)
DE (1) DE102010044583B4 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103502789B (zh) * 2010-12-30 2016-12-14 Lm Wp 专利控股有限公司 用于确定风力涡轮机叶片的载荷的方法和装置
DE102011107547B4 (de) * 2011-07-11 2015-08-06 Krohne Messtechnik Gmbh Druckaufnehmer für ein Vortex-Durchflussmessgerät, Vortex-Durchflussmessgerät und Verfahren zur Herstellung eines solchen Druckaufnehmers
DE102011118921B4 (de) * 2011-11-21 2014-02-27 Krohne Messtechnik Gmbh Vortex-Durchflussmessgerät und diesbezügliche Faserdurchführung
CN104220846A (zh) * 2012-03-23 2014-12-17 住友电气工业株式会社 干涉测量装置
JP6862712B2 (ja) * 2016-08-05 2021-04-21 住友電気工業株式会社 光ファイバ評価方法及び光ファイバ評価装置
EP3399320A1 (fr) * 2017-05-02 2018-11-07 Rijksuniversiteit Groningen Élément de capteur et procédé de mesure des caractéristiques hydrodynamiques de champ proche à grande échelle
JP6887715B2 (ja) 2017-05-26 2021-06-16 パラマウントベッド株式会社 電動ベッドの手元スイッチ及び電動ベッド
CN109597219B (zh) * 2019-01-31 2023-12-19 中南民族大学 基于亚波长光栅结构的可调选频滤波器
RU2742106C1 (ru) * 2020-05-22 2021-02-02 Акционерное общество "Концерн "Центральный научно-исследовательский институт "Электроприбор" Способ измерения фазового сигнала двулучевого волоконно-оптического интерферометра
CN112363320B (zh) * 2020-09-27 2022-02-01 四川长虹电器股份有限公司 一种光纤涡旋光束发生器及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2549810A1 (fr) * 2006-06-08 2007-12-08 Institut National D'optique Capteur a fibres optiques et methode
EP1936332A1 (fr) * 2006-12-22 2008-06-25 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Débitmètre utilisant des vortices de Karman comprenant un capteur à fibre optique à réseau de Bragg ainsi qu'un procédé de mesure d'un débit d'un fluide

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4295739A (en) * 1979-08-30 1981-10-20 United Technologies Corporation Fiber optic temperature sensor
US4295738A (en) * 1979-08-30 1981-10-20 United Technologies Corporation Fiber optic strain sensor
DE3016104A1 (de) * 1980-04-25 1981-10-29 Siemens AG, 1000 Berlin und 8000 München Sensorvorrichtung mit einer als empfindliches element dienenden lichtleitfaser
US4420251A (en) * 1980-05-05 1983-12-13 Rockwell International Corporation Optical deformation sensor
JPS57101711A (en) * 1980-12-17 1982-06-24 Fujitsu Ltd Strain sensor
JPS57191798A (en) * 1981-05-19 1982-11-25 Furukawa Electric Co Ltd Detection of value to be measured employing multi-core optical fiber
JPS59113402A (ja) * 1982-12-20 1984-06-30 Fujikura Ltd 光ファイバセンサ
US4653906A (en) * 1984-08-13 1987-03-31 United Technologies Corporation Spatially resolving fiber-optic crosstalk strain sensor
GB2197946B (en) * 1986-06-19 1989-12-20 Pirelli General Plc Sensing strain and temperature
US5038618A (en) * 1986-11-11 1991-08-13 British Aerospace Public Limited Company Measurement of distortion
FR2615284B1 (fr) * 1987-05-11 1992-02-28 Photonetics Dispositif pour la detection de vibrations comportant une fibre optique multimode comme element sensible
GB8902034D0 (en) * 1989-01-31 1989-03-22 Kent Scient Ind Projects Optical displacement sensor
US5144690A (en) * 1990-12-03 1992-09-01 Corning Incorporated Optical fiber sensor with localized sensing regions
US5420688A (en) * 1992-12-14 1995-05-30 Farah; John Interferometric fiber optic displacement sensor
US5459801A (en) * 1993-10-29 1995-10-17 Rutgers University Coupler used to fabricate add-drop devices, dispersion compensators, amplifiers, oscillators, superluminescent devices, and communications systems
US5457758A (en) * 1993-10-29 1995-10-10 Rutgers University Add-drop device for a wavelength division multiple, fiber optic transmission system
JPH08114424A (ja) * 1994-10-18 1996-05-07 Tokin Corp 歪検出方法及び歪センサ
DE19514852C2 (de) * 1995-04-26 1997-07-03 Deutsche Forsch Luft Raumfahrt Verfahren und Anordnung zur Beschleunigungs- und Vibrationsmessung
JPH10170235A (ja) * 1996-12-06 1998-06-26 Mitsubishi Heavy Ind Ltd エバネセント光を利用した微小歪検出器
JP3736156B2 (ja) * 1998-11-27 2006-01-18 富士電機システムズ株式会社 ブラッググレーティング圧力センサ
TW581894B (en) * 2002-06-25 2004-04-01 Shiau-Ming Tzeng Manufacturing method of whole optical fiber device
CA2584376C (fr) * 2004-10-15 2012-10-02 Morgan Research Corporation Capteur fibre optique polarimetrique integrable et procede de surveillance de structures
JP2008256681A (ja) * 2007-03-14 2008-10-23 Toshiba Corp 原子力プラントの圧力変動監視システム
US7324714B1 (en) * 2007-04-11 2008-01-29 The United States Of America As Represented By The Secretary Of The Navy Multicore fiber curvature sensor
GB2461532A (en) * 2008-07-01 2010-01-06 Vestas Wind Sys As Sensor system and method for detecting deformation in a wind turbine component

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2549810A1 (fr) * 2006-06-08 2007-12-08 Institut National D'optique Capteur a fibres optiques et methode
EP1936332A1 (fr) * 2006-12-22 2008-06-25 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Débitmètre utilisant des vortices de Karman comprenant un capteur à fibre optique à réseau de Bragg ainsi qu'un procédé de mesure d'un débit d'un fluide

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MACPHERSON W N ET AL: "Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre", OPTICS COMMUNICATIONS, vol. 193, no. 1-6, 15 June 2001 (2001-06-15), pages 97 - 104, XP004245384, ISSN: 0030-4018, DOI: 10.1016/S0030-4018(01)01260-3 *
VILLATORO J ET AL: "Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing", APPLIED PHYSICS LETTERS, vol. 91, 27 August 2007 (2007-08-27), pages 91109 - 1, XP002462607, ISSN: 0003-6951, DOI: 10.1063/1.2775326 *

Also Published As

Publication number Publication date
US20120057169A1 (en) 2012-03-08
JP2012058241A (ja) 2012-03-22
DE102010044583B4 (de) 2012-05-10
US8687199B2 (en) 2014-04-01
CN102538662B (zh) 2016-08-24
DE102010044583A1 (de) 2012-03-08
CN102538662A (zh) 2012-07-04
EP2426466B1 (fr) 2014-12-17
JP5904733B2 (ja) 2016-04-20

Similar Documents

Publication Publication Date Title
EP2426466B1 (fr) Appareil de mesure de déviation selon le principe d'interférométrie
DE10244553B3 (de) Interferometrische Messeinrichtung
EP2108931A2 (fr) Dispositif et procédé de calibrage d'un système de mesure de température à fibres optiques
EP0038950A2 (fr) Transformateur de mesure avec un guide de lumière comme élément de mesure
DE69931270T2 (de) Optische fiberkopplungssensor und messverfahren
EP2016373A2 (fr) Procede et dispositif de mesure pour la mesure repartie dans l'espace et/ou à distance de grandeurs physiques
WO2010006764A2 (fr) Interféromètre multi-longueurs d'ondes à fibres optiques pour la mesure absolue de distances et topologies de surfaces pour de grandes distances de travail
DE60214852T2 (de) Differenzmesssystem auf der basis der benutzung von paaren von bragg-gittern
EP1546645B1 (fr) Dispositif de mesure interferometrique
WO2010136365A1 (fr) Procédé et dispositif pour déterminer l'allongement ou le refoulement d'un réseau à fibres optiques
DE102009058520B4 (de) Vorrichtung und Verfahren zur schnellen Dehnungsmessung
DE102006048316A1 (de) Optische Fasersonde und Verfahren zur Herstellung einer optischen Fasersonde
DE102017131388B4 (de) Faseroptischer Torsionswinkelsensor und Verfahren zum Erfassen eines Torsionswinkels
DE102012002408A1 (de) Messanordnung und Verfahren zur Erfassung der Kraftbeanspruchung bei einem biegeweichen Objekt
DE102014216278A1 (de) Vorrichtung zur interferometrischen Vermessung eines Objekts
DE102008038883B4 (de) Mikrofonanordnung
DE102017201523A1 (de) Faseroptische Erfassungseinrichtung sowie Verfahren zum Betreiben einer solchen faseroptischen Erfassungseinrichtung
DE112014006216B4 (de) Magnetostriktiver Sensor zur Entfernungs- bzw. Positionsmessung
DE19548158A1 (de) Vorrichtung zur Messung von Oberflächenschwingungen
DE102006014766A1 (de) Interferometrische Messvorrichtung
DE102018205722A1 (de) Abstandsmessung mittels Reflektometrie in Lichtwellenleitern
DE102010016640B4 (de) System und Verfahren zur quasi-verteilten Messung einer Meßgröße
DE3518002A1 (de) Faseroptischer fabry-perot-sensor
DE102008002206A1 (de) Faseroptischer Tastkopf und interferometrische Messanordnung
DE102015120898B4 (de) Verfahren zur kontinuierlichen Überwachung von optischen Multimodefasern sowie zugehöriges System

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120831

RIC1 Information provided on ipc code assigned before grant

Ipc: G02B 6/02 20060101ALN20140627BHEP

Ipc: G01F 1/32 20060101AFI20140627BHEP

Ipc: G01B 11/16 20060101ALI20140627BHEP

Ipc: G01D 5/353 20060101ALI20140627BHEP

Ipc: G02B 6/293 20060101ALN20140627BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140911

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 702250

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011005272

Country of ref document: DE

Effective date: 20150129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150317

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150417

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011005272

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

26N No opposition filed

Effective date: 20150918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150825

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150825

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110825

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 702250

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190822

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190821

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191022

Year of fee payment: 9

Ref country code: CH

Payment date: 20190821

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011005272

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200825