EP2422894A1 - Ermittlungsverfahren für einen Verschleiß einer Walze zum Walzen von Walzgut - Google Patents

Ermittlungsverfahren für einen Verschleiß einer Walze zum Walzen von Walzgut Download PDF

Info

Publication number
EP2422894A1
EP2422894A1 EP10174341A EP10174341A EP2422894A1 EP 2422894 A1 EP2422894 A1 EP 2422894A1 EP 10174341 A EP10174341 A EP 10174341A EP 10174341 A EP10174341 A EP 10174341A EP 2422894 A1 EP2422894 A1 EP 2422894A1
Authority
EP
European Patent Office
Prior art keywords
roller
rolling
wear
determined
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10174341A
Other languages
English (en)
French (fr)
Inventor
Johannes Dr. Dagner
Matthias Dr. Kurz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP10174341A priority Critical patent/EP2422894A1/de
Priority to PCT/EP2011/058155 priority patent/WO2012025266A1/de
Priority to EP11723400.5A priority patent/EP2595768B1/de
Priority to CN201180041458.6A priority patent/CN103097046B/zh
Publication of EP2422894A1 publication Critical patent/EP2422894A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2267/00Roll parameters
    • B21B2267/24Roll wear

Definitions

  • the present invention relates to a determination method for a wear of a roll for rolling of rolling stock.
  • the present invention further relates to a computer program which comprises machine code which can be processed directly by a computer and whose execution by the computer causes the computer to carry out such a determination method.
  • the present invention further relates to a computer adapted to carry out such a determination method.
  • the present invention further relates to a rolling mill for rolling of rolling stock, which is equipped with such a computer.
  • the extent to which wear occurs depends on various parameters. For example, the amount of wear depends on the type of rollers (work roll, backup roll,%), The type of rolling (cold rolling or hot rolling), the arrangement of the rolls in the rolling mill (first, second, third rolling stand of the rolling mill, etc.), the material of the rolling stock (steel, aluminum, copper, ...), the material of the rolls (cast iron, cast steel, high speed steel, ...) etc.
  • the wear has an impact on the quality of the rolled stock.
  • the wear must be taken into account and, if possible, compensated for by appropriate adjustments to the setting - if necessary also with regard to profile and flatness - for flat rolled stock.
  • the rollers are changed from time to time and reground.
  • a direct measurement of the roller wear is only possible if the relevant roller is removed from the rolling stand and can be measured. In the ongoing rolling process, however, a direct measurement of the roller wear is not possible. However, it is known to detect process variables of the rolling process and to account for the roll wear by means of a wear model in real time. By means of the wear model, the wear of the respective roller is determined as a function of the rolled section of the rolling stock, the course of the rolling force over this distance, etc. The wear model makes the determined wear available to other control systems, for example for the corresponding correction of the employment.
  • the process variables used in this case may be, for example, model-based expected expected quantities.
  • d is the expected wear
  • c a constant wear coefficient
  • the pressure distribution in the roll gap
  • the contact angle
  • 1 the rolled length
  • the wear coefficient c is set appropriately. It may depend on the above parameters.
  • a thermal crown When rolling, a thermal crown must also be determined as part of the determination of manipulated variables for profile and flatness actuators. This is done in the prior art, characterized in that during operation continuously a volume temperature distribution of the roller on the basis of a surface the roll occurring heat flow distribution is updated by means of a temperature model of the roller.
  • the volume temperature distribution is in this case spatially resolved at least in the axial direction and in the radial direction of the roller, the heat flow distribution in the axial direction and in the tangential direction of the roller.
  • axial direction is parallel to the axis of rotation
  • radial direction is orthogonal to the axis of rotation
  • tangential direction is at a constant distance from the axis of rotation around the axis of rotation.
  • the object of the present invention is to provide opportunities to determine the wear of the roller in a reliable model-based manner.
  • volume temperature distribution is also spatially resolved in the tangential direction of the roller. In this case, it is possible to determine the upper surface temperature only from the updated volume temperature distribution.
  • the wear preferably comprises a thermal wear component.
  • the determination of the thermal wear component can be carried out, for example, by using the upper surface temperature and at least one further surface temperature of the roller related to the surface of the roller.
  • an internal temperature distribution given inside the roll can be used.
  • the wear preferably further comprises an abrasive wear portion.
  • the determination of the abrasive wear component is preferably carried out using a surface hardness of the roller.
  • the surface hardness of the roll in this case becomes using the upper surface temperature the roller determined.
  • the determination of the abrasive wear portion can be carried out with additional use of a temperature and / or the material composition of the rolling stock.
  • the heat flow distribution is given as such.
  • the heat flow distribution is preferably determined on the basis of process variables related to the rolling of the rolling stock by the roll and an initial surface temperature distribution of the roll defined by the not yet updated volume temperature distribution.
  • the process variables are (at least partially) model-based expected expected quantities.
  • the process variables are (at least partially) actual variables which are detected during rolling of the rolling stock by the roll.
  • Also mixed forms are possible. For example, based on actual variables detected during rolling, a first wear value can be determined which is currently expected. Based on the currently expected wear value, a prognosis of the later occurring wear can then be made on the basis of future expected corresponding process variables.
  • the determination process can be performed in real time during rolling of the rolling stock by the roll. Alternatively, it may be performed by the roller before rolling the stock. An execution after rolling of the rolling stock by the roller is possible.
  • the wear is taken into account as part of the determination of manipulated variables, which influence the rolling of the rolling stock.
  • the object of the invention is further achieved by a computer program of the type mentioned.
  • the computer program is configured in this case such that the computer carries out a determination process with all steps of a determination method according to the invention.
  • the object is further achieved by a computer which is designed such that it carries out such an operating method.
  • the object is further achieved by a rolling mill for rolling flat rolling stock, which is equipped with such a computer.
  • a rolling mill for rolling the flat rolling stock 1 has a plurality of rolling stands 2.
  • the rolling stands 2 are run through by the flat rolling stock 1 in succession.
  • Each rolling stand 2 of the rolling mill has rollers 3.
  • the rollers 3 comprise at least work rolls, often also other rolls, for example support rolls or - in addition to back-up rolls - intermediate rolls.
  • the number of rolling mills 2 of the rolling mill shown is purely exemplary. Minimal is only a single stand 2 available. Furthermore, it is not mandatory that a strip running direction x, as in FIG. 1 represented, is always the same. Alternatively, a reversing rolling could take place, in particular if the rolling mill has only one single rolling stand 2 or only two rolling stands 2.
  • the flat rolled stock 1 which is rolled in the rolling mill, as shown in FIG. 1 a band.
  • it may be another flat rolled stock 1, for example a plate or a heavy plate.
  • the rolling mill is equipped with a computer 4.
  • the computer 4 is designed as a control computer that controls the rolling mill.
  • the computer 4 is therefore subsequently - at least in the rule - referred to as the control computer 4.
  • the computer 4 could be another computer which does not control the rolling mill but is otherwise connected to the rolling mill or is not connected to the rolling mill at all.
  • the control computer 4 is usually designed as a software programmable device.
  • the operation of the control computer 4 is determined by a computer program 5, which is the control computer 4 via a computer-computer connection (not shown) or a storage medium 6 is supplied.
  • the storage medium 6, the computer program 5 in machine-readable form - usually in electronic form - stored.
  • the storage medium 6 is according to FIG. 1 as a USB memory stick educated.
  • this embodiment is purely exemplary. Any other configurations of the storage medium 6 are possible, for example as a CD-ROM or as an SD memory card.
  • the control computer 4 is programmed with the computer program 5.
  • the computer program 5 includes machine code 7, which is directly executable by the control computer 4.
  • the execution of the machine code 7 determines the operation of the control computer 4.
  • the execution of the machine code 7 by the control computer 4 causes the control computer 4 to carry out a determination process, which is described below in connection with FIG FIG. 2 is explained in more detail.
  • the programming of the control computer 4 with the computer program 5 effects the corresponding design of the control computer 4.
  • the present invention is in principle applicable to all rolls 3 of the rolling stands 2. Of particular importance is the application to the work rolls of the rolling stands 2. The present invention will be further described below in connection with the upper work roll 3 of the in FIG. 1 third rolling stand 2 explained. However, this definition is purely arbitrary. The present invention is analogously applicable to any other roll 3 of each roll stand 2.
  • a step S1 the control computer 4 initially initializes a volume temperature distribution VT of the roller 3 under consideration.
  • each node of the volume temperature distribution - see, for example, in FIG FIG. 3 plotted points - the considered roller 3 initialized with an initial temperature.
  • the initial temperature may be the same for all nodes and corresponding to the ambient temperature, ie between 0 ° C and 40 ° C, for example.
  • the nodes of the volume temperature distribution VT can, as in FIG. 3 shown, may be arranged such that the volume temperature distribution VT Although in the axial direction (ie in the direction the rotational axis of the roller 3) and in the radial direction (ie, a direction which is orthogonal to the axis of rotation of the roller 3) is spatially resolved in the tangential direction (ie, at a radial distance about the axis of rotation of the roller 3 around) but not spatially resolved.
  • the volume temperature distribution VT may be spatially resolved in all three directions (axial, radial, tangential).
  • FIG. 4 shows purely by way of example a disc of such a three-dimensionally spatially resolved volume temperature distribution VT of the roller 3.
  • FIG. 4 additionally shows a support roller 8 and its modeling and the flat rolling stock 1 and its modeling.
  • the modeling of the back-up roll 8 and the flat rolled stock 1 are of minor importance in the context of the present invention. Of importance, however, are the heat fluxes j, which are essentially determined by the contact of the considered roll 3 with the flat rolled stock 1, the cooling by cooling devices 9 and, if present, the contact with the support roll 8. To a small extent, there is still a heat flow through radiation. However, this heat flow can usually be neglected.
  • the heat fluxes j in their entirety define a heat flux distribution WT, which is spatially resolved in the axial direction and the tangential direction. Even in the case of a volume temperature distribution VT not spatially resolved in the tangential direction, the heat flux distribution WT is also spatially resolved in the tangential direction. This is in FIG. 3 For example, indicated by one of the axial zones of the volume temperature distribution VT is divided on its surface in tangential direction into individual fields 10. For each individual field 10, a separate heat flow j can be specified.
  • the spatial resolution of the volume temperature distribution VT need not be uniform everywhere. For example, with respect to the radial resolution, it is possible to provide a finer resolution in the vicinity of the surface of the roller 3 than in the vicinity of the rotation axis of the roller 3. If the volume temperature distribution VT is also spatially resolved in the tangential direction, the spatial resolution in the tangential direction can be increasingly coarser in a similar way, the closer one approaches the axis of rotation of the roller 3.
  • An example: In the three outermost layers ( rings) of the volume temperature distribution VT there is a spatial resolution of 64 elements in the tangential direction. In the next three layers there is a spatial resolution in the tangential direction of 32 elements each. In the next three layers, there is a tangential spatial resolution of 16 elements, etc.
  • the said spatial resolutions and also the number of layers for which this spatial resolution applies in each case can of course be varied as required.
  • the surface temperature distribution ie. H. the temperature in the radially outermost layer of the roll 3, as a two-dimensional spatially resolved function, d. H. the respective local surface temperature is a function of both the axial position z and the tangential position ⁇ .
  • the volume temperature distribution VT is not spatially resolved in the tangential direction
  • the surface temperature distribution is a function which is only spatially resolved in the axial direction.
  • the surface temperature distribution T ' corresponds to the average surface temperature distribution T' of the roller 3 as a function of its axial position z.
  • the roller 3 is not in thermal equilibrium during rolling operation.
  • the volume temperature distribution VT must therefore be continuously updated.
  • the volume temperature distribution VT itself is needed, on the other hand, the heat flow distribution WT, which occurs at the surface of the roller 3.
  • the individual heat flows j (z, ⁇ ) are required, which are fed to the roller 3 at a specific axial position z and tangential position ⁇ or over the surface the roller 3 at this point flow out of her.
  • step S2 the control computer 4 receives process variables I.
  • the process variables I are related to the rolling of the rolling stock 1 by the roller 3.
  • the process variables I are parameters such as, for example, a width of the rolling stock 1, the "chemistry" of the rolling stock 1 (ie its material composition) and the diameter of the roll 3.
  • variables such as the temperature T of the rolling stock 1, the rolling speed v, the rolling force F, the rolling speed n, etc.
  • the control computer 4 determines the surface temperature distribution on the basis of the volume temperature distribution VT.
  • the surface temperature distribution is - depending on whether the volume temperature distribution VT is spatially resolved in the tangential direction or not - spatially resolved only in the axial direction or both in the axial direction and in the tangential direction.
  • the step S3 consists, for example, essentially of a selection of the radially outermost layer of the volume temperature distribution VT.
  • the temperature determined for the radially outermost layer corresponds, in the case where the volume temperature distribution VT is not spatially resolved in the tangential direction, to the average spatially resolved average temperature in the axial direction.
  • An example of such a temperature profile is in FIG.
  • the control computer 4 determines the heat flow distribution WT on the basis of the process variables I and the surface temperature distribution of the step S3.
  • the heat flow distribution WT is, as already mentioned, spatially resolved both in the axial direction and in the tangential direction.
  • a step S5 the control computer 4 updates the volume temperature distribution VT on the basis of the heat flow distribution WT and the volume temperature distribution VT by means of a temperature model of the roller 3. If the volume temperature distribution VT (also) is spatially resolved in the tangential direction, a release of a three-dimensional heat equation takes place in step S5. If the volume temperature distribution VT is not spatially resolved in the tangential direction, the sum of the heat flows j (z, ⁇ ) at the respective axial position z is first determined in the tangential direction for each axial zone. Then, a two-dimensional heat equation is solved. Both approaches are known and familiar to those skilled in the art.
  • the updating of the volume temperature distribution VT of the roll 3 takes place in the prior art in order to be able to determine the thermal crowning of a roll 3 for rolling flat rolled stock 1. This is also possible within the scope of the present invention and is optionally carried out in a step S6. However, the determination of the thermal crowning is not a core subject of the present invention.
  • the control computer 4 determines at least one upper surface temperature T ".
  • the control computer 4 preferably determines the upper surface temperature T" such that it is spatially resolved in the axial direction.
  • a respective upper temperature is determined for the respective axial position z, which occurs at the points of the roller 3 determined by the respective axial position z, while the respective points are in contact with the rolling stock 3.
  • the upper surface temperature T " is therefore - possibly for the respective axial position z - the maximum temperature the roller 3 at.
  • a corresponding temperature can be specified which is slightly lower.
  • control computer 4 determines the upper surface temperature distribution T "exclusively on the basis of the updated volume temperature distribution VT. This will be described later in connection with FIG FIG. 6 be explained in more detail. Alternatively, it is possible for the control computer 4 to determine the upper surface temperature distribution T "from the updated volume temperature distribution VT and the heat flow distribution WT FIG. 7 be explained in more detail.
  • step S8 the control computer 5 determines a wear d of the roller 3 by means of a wear model 11.
  • the control computer 4 determines the wear d in the course of step S8 taking into account the upper surface temperature distribution T "determined in step S7.
  • the control computer 4 takes further measures.
  • the control computer 4 can output the determined wear d to an operator 12 of the rolling mill.
  • the control computer 4, as in FIG. 2 represented the determined wear d in the context of the determination of manipulated variables S taken into account, which influence the rolling of the rolling stock 1.
  • the determined manipulated variables S can act on the rolling stand 2 in which the roller 3 is installed.
  • the determined manipulated variables S can act on other facilities of the rolling mill, for example other rolling stands 2.
  • Other measures are also possible. This will be explained in more detail below.
  • step S10 the control computer 4 checks whether it should terminate the investigation procedure. Depending on the result of the check of step S10, the control computer 4 returns to step S2 or not.
  • volume temperature distribution VT is also spatially resolved in the tangential direction, the determination of the upper surface temperature distribution T "can be determined exclusively on the basis of the volume temperature distribution VT FIG. 6 explained in more detail.
  • the control computer 4 selects an axial position z in a step S11.
  • the control computer 4 selects for the selected axial position z the radially outermost elements of the volume temperature distribution VT.
  • the control computer 4 determines, for example, the highest temperature which occurs in the elements of the volume temperature distribution VT selected in step S12.
  • the control computer 4 can determine, for example, the average value of those local temperatures which occur between the beginning of the contact of the roller 3 with the rolling stock 1 and the end of the contact of the roller 3 with the rolling stock 1.
  • Other approaches are possible. It is crucial that the determined temperature is at least close to the maximum temperature.
  • step S14 the control computer 4 assigns the temperature determined in step S13 to the upper surface temperature profile T "as the corresponding temperature value for the selected axial position z.
  • step S15 the control computer 4 checks whether it has already carried out the corresponding temperature determination for all axial positions z If this is not the case, the control computer 4 returns to step S11, in which it selects another, previously untreated, axial position Z. Otherwise, the procedure of FIG FIG. 6 completed.
  • volume temperature distribution VT is not spatially resolved in the tangential direction, both the volume temperature distribution VT and the heat flow distribution WT must be used to determine the upper surface temperature distribution T " FIG. 7 explained in more detail.
  • FIG. 7 are the steps S12 and S13 of FIG. 6 replaced by steps S21 to S24. Steps S11, S14 and S15 of FIG FIG. 6 are retained.
  • step S21 the control computer 4 determines a contact angle ⁇ for the selected axial position z.
  • the contact angle ⁇ corresponds - see for explanation FIG. 4 -
  • the determination of the contact angle ⁇ takes place as a function of process variables such as, for example, the diameter of the roll 3, the reduction of the stock, the rolling stock dimensions, etc.
  • is the angular velocity of the roller 3.
  • the contact time t thus corresponds to the time during which a point of the roller 3 located at this axial position z is in contact with the rolling stock 1 during one revolution of the roller 3.
  • step S23 the control computer 4 determines at least one heat flow j, which occurs during the contact of the roller 3 with the rolling stock 1. For example, the control computer 4 can determine the maximum, the minimum, the average or another value of the heat flows j occurring during this time.
  • step S24 the control computer 4 determines for the selected axial position z the upper surface temperature occurring at this axial position z, ie the corresponding value of the upper surface temperature distribution T "
  • ⁇ , ⁇ and c p are the density, the thermal conductivity and the heat capacity of the material of the roller 3.
  • max ⁇ (j (z, ⁇ )) corresponds to the determined in step S23 heat flow in the event that the maximum occurring heat flow j is used.
  • step S8 of FIG. 2 ie the determination of the wear d, there are also different possibilities. These are discussed below in connection with the FIGS. 9 to 11 explained in more detail.
  • the wear d usually includes a thermal wear component dT.
  • ⁇ P is the plastic strain of the surface of the roller 3 which occurs during a single revolution of the roller 3.
  • the thermal wear dT is substantially proportional to the plastic strain ⁇ P , proportional to the rolled length 1 and indirectly proportional to the radius R of the roll 3.
  • the radius R may alternatively be the flattened or the unloaded radius of the roll 3.
  • the determination of the plastic strain ⁇ P is made on the basis of the corresponding upper surface temperature T "(z) and a further temperature TZ, preferably spatially resolved in the axial direction, ie for the respective axial position z.Also here - analogous to the upper surface temperature T" - below the case is treated that the further temperature TZ is spatially resolved in the axial direction.
  • the (at least one) further temperature TZ may be a temperature related to the surface of the roll 3. It may, for example, be the average temperature T '(z) at the relevant axial position z. Preferably, it is a minimum occurring at the respective axial position z at the surface of the roller 3 temperature.
  • the further temperature TZ may be a temperature which occurs at the relevant axial position z in the interior of the roller 3. In this case, alternatively, a temperature from a relatively near-edge layer or a temperature from the core of the roller 3 can be used.
  • a temperature at the surface of the roller 3 is preferably used when the volume temperature distribution VT is also spatially resolved in the tangential direction. However, the procedure is also possible if the volume temperature distribution VT is not spatially resolved in the tangential direction. A use of a temperature occurring inside the roller 3 is also possible in both cases.
  • the wear also often includes an abrasive wear share dA.
  • a thermal dependency may indirectly be taken into account in this respect.
  • the wear coefficient c is not a constant, but proportional to the root of the contact time t.
  • the thermal wear component dT determines the control computer 4 in a step S31, the thermal wear component dT.
  • the determination of the thermal wear component dT can be carried out, for example, as already explained above.
  • a step S32 the control computer 4 determines a surface hardness H of the roller 3, if necessary spatially resolved in the axial direction.
  • the surface hardness H is determined on the one hand as a function of the material properties of the surface of the roller 3 and on the other hand as a function of the upper surface temperature distribution T. ".
  • step S33 the control computer 4 determines the abrasive wear component dA using the surface hardness H of the roller 3 determined in step S32.
  • step S34 the control computer 4 determines the wear d by summing the thermal wear component dT and the abrasive wear component dA.
  • control computer 4 for example, according to FIG. 11 Use a functional relationship in which the surface hardness H, the rolled length l and the contact angle ⁇ enter.
  • the abrasive wear component dA in this case is proportional to the yield stress ⁇ , the rolled length 1 and the contact angle ⁇ and indirectly proportional to the determined surface hardness H.
  • the temperature T and / or the "chemistry" of the rolling stock 1 can be taken into account in the context of scale models whose result has an influence on the modeling of the abrasive closing portion dA.
  • the determination of the heat flow distribution WT preferably takes place on the basis of process variables I, which relate to the rolling of the rolling stock 1 through the roll 3, in cooperation with the initial surface temperature distribution T '.
  • the process variables I are model-supported expected expected quantities, which are supplied to the computer 4 from the outside, see FIG. 1 .
  • the process variables I it is possible for the process variables I to be actual variables which are detected by the roller 3 during the rolling of the rolling stock 1, see also FIG. 1 , Also mixed forms are possible.
  • calculated actual variables can be calculated for the past and, starting from the thus determined wear d, a forecast for the future expected wear d can be drawn up on the basis of the expected process variables I directed in the future.
  • control computer 4 initializes the volume temperature distribution VT in a step S41.
  • the step S41 corresponds to the step S1 of FIG. 2 ,
  • a step S42 the control computer receives 4 stitch plan data SP (or determines this itself).
  • the stitch plan data SP define - among other things - the mentioned model-based ascertained, future expected process variables I.
  • the step S42 corresponds to a partial embodiment of the step S2 of FIG. 2 ,
  • a step S43 the control computer 4 receives actual variables of the rolling process which describe the rolling of the rolling stock 1 by the roller 3 under consideration.
  • the step S43 corresponds to another partial embodiment of the step S2 of FIG. 2 ,
  • step S44 the control computer 4 uses the actual variables of step S43 to determine an actual crowning and the instantaneous wear d.
  • the step S44 substantially corresponds to a summary of the steps S3 to S8 of FIG FIG. 2 , related to the utilization of the actual quantities of step S43.
  • step S45 the control computer 4 determines the manipulated variables S, which influence the rolling of the rolling stock 1.
  • the manipulated variables S can, as already mentioned, act on the roller 3 under consideration and / or on other rollers 3 of other rolling stands 2.
  • step S46 in which the control computer 4 controls the rolling mill in accordance with the determined manipulated variables S.
  • the control computer 4 the procedure of FIG. 12 Of course, even after rolling of the rolling 1 perform. In this case, step S46 may be omitted.
  • a step S47 the control computer 4 determines a prognosis for the thermal crowning and the wear d.
  • the step S47 corresponds essentially to an implementation of the step S44, but in contrast to the step S44, not the detected actual variables of the rolling process are evaluated, but the stitch plan data SP.
  • a step S48 further measures can be taken depending on the expected future wear d determined in step S47. For example, a roll change can be initiated.
  • the determined wear prognosis can also be output, for example, to the operator 12 of the rolling mill.
  • step S49 the control computer 4 checks whether the procedure of FIG. 12 should be terminated. Depending on the result of the test of step S49, the control computer 4 proceeds to a step S50 or terminates the procedure of FIG. 12 ,
  • step S50 the control computer 4 checks whether it has specified further stitch plan data SP or has been determined by it. Depending on the result of the check of step S50, the control computer 4 returns to step S42 or step S43.
  • Step S42 and S45 to S48 and step S50 are omitted. Instead, there is a step S51, in which the respective determined wear d - possibly broken down by thermal wear dT and abrasive wear dA - is output to the operator 12 of the rolling mill.
  • steps S43 to S46 may be omitted.
  • steps S56 and S57 are further preferably followed by step S47 in this case.
  • the control computer 4 determines the required manipulated variables S on the basis of the wear d determined in step S47.
  • step S57 the control computer 4 stores the manipulated variables S so that they are available for later activation of the rolling mill.
  • Step S48 may still be present. Alternatively, it can be omitted. It may alternatively be upstream or downstream of steps S56 and S57.
  • the present invention has many advantages.
  • the roller life ie the time between installation and removal of the rollers 3, can be optimized.
  • the quality of rolled rolled stock 1 can be optimized.

Abstract

Zum Ermitteln eines Verschleißes (d) einer Walze (3) zum Walzen von Walzgut (1) wird eine Volumentemperaturverteilung (VT) der Walze (3) anhand einer an der Oberfläche der Walze (3) auftretenden Wärmeflussverteilung (WT) mittels eines Temperaturmodells der Walze (3) aktualisiert. Die Volumentemperaturverteilung (VT) ist zumindest in Axialrichtung und in Radialrichtung der Walze (3) ortsaufgelöst. Die Wärmeflussverteilung (WT) ist in Axialrichtung und in Tangentialrichtung der Walze (3) ortsaufgelöst. Der Verschleiß (d) der Walze (3) wird mittels eines Verschleißmodells (11) ermittelt. Im Rahmen des Verschleißmodells (11) wird anhand der aktualisierten Volumentemperaturverteilung (VT) und/oder der Wärmeflussverteilung (WT) mindestens eine obere Oberflächentemperatur (T") ermittelt, welche an bestimmten Punkten der Oberfläche der Walze (3) auftritt, während der jeweilige Punkt mit dem Walzgut (1) in Kontakt ist. Der Verschleiß (d) der Walze (3) wird unter Berücksichtigung der oberen Oberflächentemperatur (T") der Walze (3) ermittelt.

Description

  • Die vorliegende Erfindung betrifft ein Ermittlungsverfahren für einen Verschleiß einer Walze zum Walzen von Walzgut.
  • Die vorliegende Erfindung betrifft weiterhin ein Computerprogramm, das Maschinencode umfasst, der von einem Rechner unmittelbar abarbeitbar ist und dessen Abarbeitung durch den Rechner bewirkt, dass der Rechner ein derartiges Ermittlungsverfahren ausführt.
  • Die vorliegende Erfindung betrifft weiterhin einen Rechner, der derart ausgebildet ist, dass er ein derartiges Ermittlungsverfahren ausführt.
  • Die vorliegende Erfindung betrifft weiterhin ein Walzwerk zum Walzen von Walzgut, das mit einem derartigen Rechner ausgestattet ist.
  • Beim Walzen von Metallen tritt an den Walzen Verschleiß auf. Das Ausmaß, in dem der Verschleiß auftritt, ist von verschiedenen Parametern abhängig. Beispielsweise hängt das Ausmaß des Verschleißes von der Art der Walzen (Arbeitswalze, Stützwalze, ...), der Art des Walzens (Kaltwalzen oder Warmwalzen), der Anordnung der Walzen im Walzwerk (erstes, zweites, drittes Walzgerüst des Walzwerks usw.), dem Material des Walzguts (Stahl, Aluminium, Kupfer, ...), dem Material der Walzen (Gusseisen, Stahlguss, Hochleistungsschnellstahl, ...) usw. ab.
  • Der Verschleiß hat Auswirkungen auf die Qualität des gewalzten Walzguts. Insbesondere muss der Verschleiß durch entsprechende Anstellungskorrekturen - bei flachem Walzgut gegebenenfalls auch in Bezug auf Profil und Planheit - berücksichtigt und nach Möglichkeit kompensiert werden. Weiterhin müssen die Walzen von Zeit zu Zeit gewechselt und nachgeschliffen werden.
  • Eine direkte Messung des Walzenverschleißes ist nur möglich, wenn die betreffende Walze aus dem Walzgerüst ausgebaut ist und vermessen werden kann. Im laufenden Walzprozess ist eine direkte Messung des Walzenverschleißes hingegen nicht möglich. Es ist jedoch bekannt, Prozessgrößen des Walzprozesses zu erfassen und den Walzenverschleiß mittels eines Verschleißmodells in Echtzeit mitzurechnen. Mittels des Verschleißmodells wird in Abhängigkeit von der gewalzten Strecke des Walzguts, dem Verlauf der Walzkraft über diese Strecke usw. der Verschleiß der jeweiligen Walze ermittelt. Das Verschleißmodell stellt den ermittelten Verschleiß anderen Steuerungssystemen zur Verfügung, beispielsweise zur entsprechenden Korrektur der Anstellung.
  • Auch ist bekannt, ähnliche Berechnungen offline durchzuführen. Die verwendeten Prozessgrößen können in diesem Fall beispielsweise modellgestützt ermittelte erwartete Größen sein.
  • In der Regel erfolgt die Ermittlung des Verschleißes gemäß der Beziehung d = c Φ α l
    Figure imgb0001
  • Hierbei bedeuten d den erwarteten Verschleiß, c einen konstanten Verschleißkoeffizienten, Φ die Druckverteilung im Walzspalt, α den Kontaktwinkel und 1 die gewalzte Länge.
  • Der Verschleißkoeffizient c wird geeignet eingestellt. Er kann von den oben genannten Parametern abhängen.
  • Beim Walzen muss im Rahmen der Ermittlung von Stellgrößen für Profil- und Planheitsstellglieder auch eine thermische Balligkeit ermittelt werden. Dies erfolgt im Stand der Technik dadurch, dass im laufenden Betrieb kontinuierlich eine Volumentemperaturverteilung der Walze anhand einer an der Oberfläche der Walze auftretenden Wärmeflussverteilung mittels eines Temperaturmodells der Walze aktualisiert wird. Die Volumentemperaturverteilung ist hierbei zumindest in Axialrichtung und in Radialrichtung der Walze ortsaufgelöst, die Wärmeflussverteilung in Axialrichtung und in Tangentialrichtung der Walze.
  • Die Begriffe "Axialrichtung", Radialrichtung" und "Tangentialrichtung" sind - obenstehend und auch im weiteren - stets auf die Drehachse der Walze bezogen. Die Axialrichtung ist parallel zur Drehachse. Die Radialrichtung steht orthogonal auf der Drehachse. Die Tangentialrichtung zeigt in konstantem Abstand von der Drehachse um die Drehachse herum.
  • Rein beispielhaft wird bezüglich der Vorgehensweise des Standes der Technik auf den Fachaufsatz "An investigation into the control of thermal camber by spray cooling when hot rolling aluminium" von P. A. Atack et al., Modelling of metal rolling processes symposium 7, cooling in rolling mills, 7. Juni 1995 in London, verwiesen. Die Ermittlung der thermischen Balligkeit erfolgt im Rahmen des genannten Fachaufsatzes unter Verwendung einer Volumentemperaturverteilung, die in Tangentialrichtung nicht ortsaufgelöst ist. Die Wärmeflussverteilung wird in Tangentialrichtung gemittelt. Unter Verwendung der gemittelten Wärmeflussverteilung wird die Volumentemperaturverteilung aktualisiert und nachgeführt.
  • Aus dem Fachaufsatz "Increasing work-roll life by improved roll-cooling practice" von P. G. Stevens et al., Journal of The Iron and Steel Institute, Januar 1971, Seiten 1 bis 11, ist bekannt, dass der Verschleiß von Walzen auch einen thermischen Verschleißanteil umfassen kann und dass der thermische Verschleißanteil in erster Näherung durch verschiedene Walz- und Walzgutparameter sowie durch die Variablen "maximale Oberflächentemperatur", "minimale Oberflächentemperatur" und "Temperatur im Inneren der Walze" bestimmt ist.
  • Die Aufgabe der vorliegenden Erfindung besteht darin, Möglichkeiten zu schaffen, den Verschleiß der Walze auf zuverlässige Weise modellgestützt ermitteln zu können.
  • Die Aufgabe wird durch ein Ermittlungsverfahren mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen des Ermittlungsverfahrens sind Gegenstand der abhängigen Ansprüche 2 bis 13.
  • Erfindungsgemäß ist vorgesehen, ein Ermittlungsverfahren der eingangs genannten Art dadurch auszugestalten,
    • dass eine Volumentemperaturverteilung der Walze anhand einer an der Oberfläche der Walze auftretenden Wärmeflussverteilung mittels eines Temperaturmodells der Walze aktualisiert wird,
    • dass die Volumentemperaturverteilung zumindest in Axialrichtung und in Radialrichtung der Walze ortsaufgelöst ist,
    • dass die Wärmeflussverteilung in Axialrichtung und in Tangentialrichtung der Walze ortsaufgelöst ist,
    • dass der Verschleiß der Walze mittels eines Verschleißmodells ermittelt wird,
    • dass im Rahmen des Verschleißmodells
      • -- anhand der aktualisierten Volumentemperaturverteilung und/oder der Wärmeflussverteilung mindestens eine obere Oberflächentemperatur ermittelt wird, welche an bestimmten Punkten der Oberfläche der Walze auftritt, während der jeweilige Punkt mit dem Walzgut in Kontakt ist, und
      • -- der Verschleiß der Walze unter Berücksichtigung der oberen Oberflächentemperatur der Walze ermittelt wird.
  • Um anhand der Daten des Temperaturmodells, also der aktualisierten Volumentemperaturverteilung und der Wärmeflussverteilung, die obere Oberflächentemperatur zu ermitteln, existieren zwei Möglichkeiten.
  • Zum einen ist es möglich, dass die Volumentemperaturverteilung in Tangentialrichtung der Walze nicht ortsaufgelöst ist. In diesem Fall definiert die aktualisierte Volumentemperaturverteilung eine in Axialrichtung ortsaufgelöste durchschnittliche Oberflächentemperaturverteilung, welche für eine durchschnittliche Oberflächentemperatur der Walze charakteristisch ist. In diesem Fall kann die obere Oberflächentemperatur dadurch ermittelt werden,
    • dass anhand von auf das Walzen des Walzguts durch die Walze bezogenen Prozessgrößen in Axialrichtung ortsaufgelöst jeweilige Kontaktzeiten ermittelt werden, die dafür charakteristisch sind, wie lange der jeweilige Punkt der Walze während eines Umlaufs der Walze mit dem Walzgut in Kontakt ist, und
    • dass die obere Oberflächentemperatur anhand der durchschnittlichen Oberflächentemperaturverteilung der Walze, desjenigen Teils der Wärmeflussverteilung, der während des Kontakts der Walze mit dem Walzgut auftritt, und der Kontaktzeiten ermittelt wird.
  • Zum anderen ist es möglich, dass die Volumentemperaturverteilung auch in Tangentialrichtung der Walze ortsaufgelöst ist. In diesem Fall ist es möglich, die obere Oberflächentemperatur ausschließlich anhand der aktualisierten Volumentemperaturverteilung zu ermitteln.
  • Der Verschleiß umfasst vorzugsweise einen thermischen Verschleißanteil. Die Ermittlung des thermischen Verschleißanteils kann beispielsweise unter Verwendung der oberen Oberflächentemperatur und mindestens einer weiteren, auf die Oberfläche der Walze bezogenen Oberflächentemperatur der Walze erfolgen. Alternativ zum Heranziehen der weiteren, auf die Oberfläche der Walze bezogenen Oberflächentemperatur kann eine im Inneren der Walze gegebene Innentemperaturverteilung herangezogen werden.
  • Der Verschleiß umfasst weiterhin vorzugsweise einen abrasiven Verschleißanteil. Die Ermittlung des abrasiven Verschleißanteils erfolgt vorzugsweise unter Verwendung einer Oberflächenhärte der Walze. Die Oberflächenhärte der Walze wird in diesem Fall unter Verwendung der oberen Oberflächentemperatur der Walze ermittelt. Die Ermittlung des abrasiven Verschleißanteils kann unter zusätzlicher Verwendung einer Temperatur und/oder der stofflichen Zusammensetzung des Walzguts erfolgen.
  • Es ist möglich, dass die Wärmeflussverteilung als solche vorgegeben wird. Vorzugsweise jedoch wird die Wärmeflussverteilung anhand von auf das Walzen des Walzguts durch die Walze bezogenen Prozessgrößen und einer durch die noch nicht aktualisierte Volumentemperaturverteilung definierten anfänglichen Oberflächentemperaturverteilung der Walze ermittelt.
  • Es ist möglich, dass die Prozessgrößen (zumindest teilweise) modellgestützt ermittelte erwartete Größen sind. Alternativ ist es möglich, dass die Prozessgrößen (zumindest teilweise) Istgrößen sind, die während des Walzens des Walzguts durch die Walze erfasst werden. Auch Mischformen sind möglich. Beispielsweise kann, ausgehend von während des Walzens erfassten Istgrößen ein erster Verschleißwert ermittelt werden, der momentan erwartet wird. Ausgehend von dem momentan erwarteten Verschleißwert kann sodann anhand zukünftig erwarteter korrespondierender Prozessgrößen eine Prognose des später auftretenden Verschleißes erfolgen.
  • Das Ermittlungsverfahren kann in Echtzeit während des Walzens des Walzguts durch die Walze ausgeführt werden. Alternativ kann es vor dem Walzen des Walzguts durch die Walze ausgeführt werden. Auch ein Ausführen nach dem Walzen des Walzguts durch die Walze ist möglich.
  • Es ist möglich, den Verschleiß lediglich zu ermitteln und beispielsweise an einen Bediener des Walzwerks auszugeben. Vorzugsweise jedoch wird der ermittelte Verschleiß im Rahmen der Ermittlung von Stellgrößen berücksichtigt, die das Walzen des Walzguts beeinflussen.
  • Die erfindungsgemäße Aufgabe wird weiterhin durch ein Computerprogramm der eingangs genannten Art gelöst. Das Computerprogramm ist in diesem Fall derart ausgestaltet, dass der Rechner ein Ermittlungsverfahren mit allen Schritten eines erfindungsgemäßen Ermittlungsverfahrens ausführt.
  • Die Aufgabe wird weiterhin durch einen Rechner gelöst, der derart ausgebildet ist, dass er ein derartiges Betriebsverfahren ausführt.
  • Die Aufgabe wird weiterhin durch ein Walzwerk zum Walzen von flachem Walzgut gelöst, das mit einem derartigen Rechner ausgestattet ist.
  • Weitere Vorteile und Einzelheiten ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen in Verbindung mit den Zeichnungen. Es zeigen in Prinzipdarstellung:
  • FIG 1
    schematisch ein Walzwerk zum Walzen eines Walzguts,
    FIG 2
    ein Ablaufdiagramm,
    FIG 3
    eine mögliche Volumentemperaturverteilung,
    FIG 4
    eine Scheibe einer weiteren möglichen Volumentemperaturverteilung,
    FIG 5
    Oberflächentemperaturverteilungen,
    FIG 6 und 7
    Ablaufdiagramme,
    FIG 8 und 9
    Formeln,
    FIG 10
    ein Ablaufdiagramm,
    FIG 11
    eine Formel und
    FIG 12 bis 14
    Ablaufdiagramme.
  • Die vorliegende Erfindung wird nachfolgend in Verbindung mit dem Walzen eines flachen Walzguts 1 näher erläutert. Diese Ausgestaltung stellt den weitaus häufigsten Anwendungsfall der vorliegenden Erfindung dar. Prinzipiell ist die vorliegende Erfindung jedoch für beliebiges Walzgut 1 anwendbar, beispielsweise stabförmiges Walzgut, rohrförmiges Walzgut oder profiliertes Walzgut.
  • Gemäß FIG 1 weist ein Walzwerk zum Walzen des flachen Walzguts 1 mehrere Walzgerüste 2 auf. Die Walzgerüste 2 werden von dem flachen Walzgut 1 nacheinander durchlaufen. Jedes Walzgerüst 2 des Walzwerks weist Walzen 3 auf. Die Walzen 3 umfassen zumindest Arbeitswalzen, oftmals auch weitere Walzen, beispielsweise Stützwalzen oder - zusätzlich zu Stützwalzen - Zwischenwalzen.
  • Die Anzahl an dargestellten Walzgerüsten 2 des Walzwerks ist rein beispielhaft. Minimal ist nur ein einziges Walzgerüst 2 vorhanden. Weiterhin ist auch nicht zwingend, dass eine Bandlaufrichtung x, wie in FIG 1 dargestellt, stets dieselbe ist. Alternativ könnte ein reversierendes Walzen erfolgen, insbesondere dann, wenn das Walzwerk nur ein einziges Walzgerüst 2 oder nur zwei Walzgerüste 2 aufweist.
  • Das flache Walzgut 1, das in dem Walzwerk gewalzt wird, ist gemäß der Darstellung von FIG 1 ein Band. Alternativ kann es sich jedoch um ein anderes flaches Walzgut 1 handeln, beispielsweise eine Platte oder ein Grobblech.
  • Das Walzwerk ist mit einem Rechner 4 ausgestattet. Der Rechner 4 ist als Steuerrechner ausgebildet, der das Walzwerk steuert. Der Rechner 4 wird daher nachfolgend - zumindest in der Regel - als Steuerrechner 4 bezeichnet. Prinzipiell könnte es sich bei dem Rechner 4 jedoch um einen anderen Rechner handeln, der das Walzwerk nicht steuert, sondern nur anderweitig an das Walzwerk angebunden ist oder auch gar nicht an das Walzwerk angebunden ist.
  • Der Steuerrechner 4 ist in der Regel als softwareprogrammierbare Einrichtung ausgebildet. Die Wirkungsweise des Steuerrechners 4 wird durch ein Computerprogramm 5 bestimmt, das dem Steuerrechner 4 über eine Rechner-Rechner-Verbindung (nicht dargestellt) oder ein Speichermedium 6 zugeführt wird. Auch dem Speichermedium 6 ist das Computerprogramm 5 in maschinenlesbarer Form - zumeist in elektronischer Form - gespeichert. Das Speichermedium 6 ist gemäß FIG 1 als USB-Memorystick ausgebildet. Diese Ausgestaltung ist jedoch rein beispielhaft. Es sind beliebige andere Ausgestaltungen des Speichermediums 6 möglich, beispielsweise als CD-ROM oder als SD-Speicherkarte.
  • Der Steuerrechner 4 ist mit dem Computerprogramm 5 programmiert. Das Computerprogramm 5 umfasst Maschinencode 7, der von dem Steuerrechner 4 unmittelbar ausführbar ist. Die Abarbeitung des Maschinencodes 7 legt die Wirkungsweise des Steuerrechners 4 fest. Die Abarbeitung des Maschinencodes 7 durch den Steuerrechner 4 bewirkt, dass der Steuerrechner 4 ein Ermittlungsverfahren ausführt, das nachfolgend in Verbindung mit FIG 2 näher erläutert wird. Die Programmierung des Steuerrechners 4 mit dem Computerprogramm 5 bewirkt die entsprechende Ausbildung des Steuerrechners 4.
  • Die vorliegende Erfindung ist prinzipiell bei allen Walzen 3 der Walzgerüste 2 anwendbar. Von besonderer Bedeutung ist die Anwendung bei den Arbeitswalzen der Walzgerüste 2. Die vorliegende Erfindung wird weiterhin nachfolgend in Verbindung mit der oberen Arbeitswalze 3 des in FIG 1 dritten Walzgerüsts 2 erläutert. Diese Festlegung ist jedoch rein willkürlich. Die vorliegende Erfindung ist in analoger Weise auf jede andere Walze 3 jedes Walzgerüsts 2 anwendbar.
  • Gemäß FIG 2 nimmt der Steuerrechner 4 in einem Schritt S1 zunächst eine Initialisierung einer Volumentemperaturverteilung VT der betrachteten Walze 3 vor. Im Schritt S1 wird jeder Knoten der Volumentemperaturverteilung - siehe beispielhaft die in FIG 3 eingezeichneten Punkte - der betrachteten Walze 3 mit einer Anfangstemperatur initialisiert. Die Anfangstemperatur kann - beispielsweise - für alle Knoten dieselbe sein und der Umgebungstemperatur entsprechend, also zwischen beispielsweise 0 °C und 40 °C liegen.
  • Die Knoten der Volumentemperaturverteilung VT können, wie in FIG 3 dargestellt, derart angeordnet sein, dass die Volumentemperaturverteilung VT zwar in Axialrichtung (d. h. in Richtung der Drehachse der Walze 3) und in Radialrichtung (d. h. einer Richtung, die orthogonal auf der Drehachse der Walze 3 steht) ortsaufgelöst ist, in Tangentialrichtung (d. h. in einem radialen Abstand um die Drehachse der Walze 3 herum) jedoch nicht ortsaufgelöst ist. Alternativ kann die Volumentemperaturverteilung VT in allen drei Richtungen (axial, radial, tangential) ortsaufgelöst sein. FIG 4 zeigt rein beispielhaft eine Scheibe einer derartigen dreidimensional ortsaufgelösten Volumentemperaturverteilung VT der Walze 3.
  • FIG 4 zeigt zusätzlich auch eine Stützwalze 8 und deren Modellierung sowie das flache Walzgut 1 und dessen Modellierung. Die Modellierung der Stützwalze 8 und des flachen Walzguts 1 sind im Rahmen der vorliegenden Erfindung von untergeordneter Bedeutung. Von Bedeutung sind jedoch die Wärmeflüsse j, die im Wesentlichen durch den Kontakt der betrachteten Walze 3 mit dem flachen Walzgut 1, der Kühlung durch Kühlvorrichtungen 9 und - falls vorhanden - den Kontakt mit der Stützwalze 8 bestimmt sind. In geringem Umfang besteht weiterhin ein Wärmefluss durch Abstrahlung. Dieser Wärmefluss kann jedoch in der Regel vernachlässigt werden.
  • Die Wärmeflüsse j definieren in ihrer Gesamtheit eine Wärmeflussverteilung WT, die in Axialrichtung und Tangentialrichtung ortsaufgelöst ist. Auch im Falle einer in Tangentialrichtung nicht ortsaufgelösten Volumentemperaturverteilung VT ist die Wärmeflussverteilung WT auch in Tangentialrichtung ortsaufgelöst. Dies ist in FIG 3 beispielsweise dadurch angedeutet, dass eine der Axialzonen der Volumentemperaturverteilung VT an ihrer Oberfläche in Tangentialrichtung in einzelne Felder 10 unterteilt ist. Für jedes einzelne Feld 10 kann ein eigener Wärmefluss j vorgegeben sein.
  • Die Ortsauflösung der Volumentemperaturverteilung VT muss nicht überall einheitlich sein. So ist beispielsweise in Bezug auf die radiale Auflösung möglich, in der Nähe der Oberfläche der Walze 3 eine feinere Auflösung vorzusehen als in der Nähe der Drehachse der Walze 3. Falls die Volumentemperaturverteilung VT auch in Tangentialrichtung ortsaufgelöst ist, kann die Ortsauflösung in Tangentialrichtung in ähnlicher Weise immer gröber werden, je weiter man sich an die Drehachse der Walze 3 annähert. Ein Beispiel: In den drei äußersten Schichten (= Ringen) der Volumentemperaturverteilung VT besteht in Tangentialrichtung eine Ortsauflösung von 64 Elementen. In den nächsten drei Schichten besteht eine Ortsauflösung in Tangentialrichtung von je 32 Elementen. In den nächsten drei Schichten besteht eine tangentiale Ortsauflösung von je 16 Elementen usw.. Die genannten Ortsauflösungen und auch die Anzahl an Schichten, für welche diese Ortsauflösung jeweils gilt, können natürlich nach Bedarf variiert werden.
  • Wenn die Volumentemperaturverteilung VT - zusätzlich zur Axial- und Radialrichtung - auch in Tangentialrichtung ortsaufgelöst ist, steht die Oberflächentemperaturverteilung, d. h. die Temperatur in der radial äußersten Schicht der Walze 3, als zweidimensional ortsaufgelöste Funktion zur Verfügung, d. h. die jeweilige lokale Oberflächentemperatur ist eine Funktion sowohl der Axialposition z als auch der Tangentialposition ϕ. Wenn die Volumentemperaturverteilung VT in Tangentialrichtung nicht ortsaufgelöst ist, ist die Oberflächentemperaturverteilung eine nur in Axialrichtung z ortsaufgelöste Funktion. Die Oberflächentemperaturverteilung T' entspricht in diesem Fall der durchschnittlichen Oberflächentemperaturverteilung T' der Walze 3 als Funktion von deren Axialposition z.
  • Die Walze 3 befindet sich im Walzbetrieb nicht im thermischen Gleichgewicht. Die Volumentemperaturverteilung VT muss daher kontinuierlich aktualisiert werden. Zum Aktualisieren der Volumentemperaturverteilung VT wird zum einen die Volumentemperaturverteilung VT selbst benötigt, zum anderen die Wärmeflussverteilung WT, die an der Oberfläche der Walze 3 auftritt. Es werden also die einzelnen Wärmeströme j (z, ϕ) benötigt, die der Walze 3 an einer bestimmten Axialposition z und Tangentialposition ϕ zugeführt werden oder über die Oberfläche der Walze 3 an dieser Stelle aus ihr abfließen. Im Rahmen der vorliegenden Erfindung ist es hierbei nicht ausreichend, wenn die Wärmeströme j in Tangentialrichtung gemittelt sind. Es ist vielmehr erforderlich, dass die Wärmeflussverteilung WT sowohl in Axialrichtung als auch in Tangentialrichtung ortsaufgelöst ist.
  • Es ist möglich, die Wärmeflussverteilung WT als solche zu definieren und dem Steuerrechner 4 vorzugeben. Vorzugsweise jedoch sind die in FIG 2 dargestellten Schritte S2 bis S4 vorhanden.
  • Im Schritt S2 nimmt der Steuerrechner 4 Prozessgrößen I entgegen. Die Prozessgrößen I sind auf das Walzen des Walzguts 1 durch die Walze 3 bezogen. Es handelt sich bei den Prozessgrößen I zum einen um Parameter wie beispielsweise eine Breite des Walzguts 1, die "Chemie" des Walzguts 1 (also dessen stoffliche Zusammensetzung) und den Durchmesser der Walze 3. Zum anderen handelt es sich um Variable wie beispielsweise die Temperatur T des Walzguts 1, die Walzgeschwindigkeit v, die Walzkraft F, die Walzendrehzahl n usw..
  • In einem Schritt S3 bestimmt der Steuerrechner 4 anhand der Volumentemperaturverteilung VT die Oberflächentemperaturverteilung. Die Oberflächentemperaturverteilung ist - je nach dem, ob die Volumentemperaturverteilung VT in Tangentialrichtung ortsaufgelöst ist oder nicht - nur in Axialrichtung oder sowohl in Axialrichtung als auch in Tangentialrichtung ortsaufgelöst. Im Falle einer zylindrischen Walze 3 zum Walzen von flachem Walzgut 1 besteht der Schritt S3 beispielsweise im Wesentlichen aus einer Selektion der radial äußersten Schicht der Volumentemperaturverteilung VT. Die für die radial äußerste Schicht ermittelte Temperatur entspricht in dem Fall, dass die Volumentemperaturverteilung VT in Tangentialrichtung nicht ortsaufgelöst ist, der in Axialrichtung ortsaufgelösten durchschnittlichen Temperatur. Ein Beispiel eines derartigen Temperaturverlaufs ist in FIG 5 dargestellt. In einem Schritt S4 ermittelt der Steuerrechner 4 anhand der Prozessgrößen I und der Oberflächentemperaturverteilung des Schrittes S3 die Wärmeflussverteilung WT. Die Wärmeflussverteilung WT ist, wie bereits erwähnt, sowohl in Axialrichtung als auch in Tangentialrichtung ortsaufgelöst.
  • In einem Schritt S5 aktualisiert der Steuerrechner 4 anhand der Wärmeflussverteilung WT und der Volumentemperaturverteilung VT mittels eines Temperaturmodells der Walze 3 die Volumentemperaturverteilung VT. Wenn die Volumentemperaturverteilung VT (auch) in Tangentialrichtung ortsaufgelöst ist, erfolgt im Schritt S5 ein Lösen einer dreidimensionalen Wärmeleitungsgleichung. Wenn die Volumentemperaturverteilung VT in Tangentialrichtung nicht ortsaufgelöst ist, wird für jede Axialzone zunächst in Tangentialrichtung die Summe der Wärmeströme j(z,ϕ) an der jeweiligen Axialposition z ermittelt. Sodann wird eine zweidimensionale Wärmeleitungsgleichung gelöst. Beide Ansätze sind Fachleuten bekannt und vertraut.
  • Das Aktualisieren der Volumentemperaturverteilung VT der Walze 3 erfolgt im Stand der Technik, um bei einer Walze 3 zum Walzen von flachem Walzgut 1 deren thermische Balligkeit ermitteln zu können. Dies ist auch im Rahmen der vorliegenden Erfindung möglich und wird gegebenenfalls in einem Schritt S6 durchgeführt. Das Ermitteln der thermischen Balligkeit ist jedoch nicht Kerngegenstand der vorliegenden Erfindung.
  • In einem Schritt S7 ermittelt der Steuerrechner 4 mindestens eine obere Oberflächentemperatur T". Vorzugsweise ermittelt der Steuerrechner 4 die obere Oberflächentemperatur T" derart, dass sie in Axialrichtung ortsaufgelöst ist. In diesem Fall - siehe FIG 5 - ist für die jeweilige Axialposition z eine jeweilige obere Temperatur bestimmt, die an den durch die jeweilige Axialposition z bestimmten Punkten der Walze 3 auftritt, während die jeweiligen Punkte mit dem Walzgut 3 in Kontakt sind. Die obere Oberflächentemperatur T" gibt also - ggf. für die jeweilige Axialposition z - die Maximaltemperatur der Walze 3 an. Alternativ kann auch eine entsprechende Temperatur angegeben werden, die geringfügig darunter liegt.
  • Nachfolgend wird nur der Fall behandelt, dass die obere Oberflächentemperatur T" eine in Axialrichtung ortsaufgelöste Verteilung ist. Dies führt zu besseren Ergebnissen. Es ist jedoch prinzipiell ausreichend, eine einzige obere Oberflächentemperatur zu verwenden, beispielsweise in der Walzenmitte.
  • Es ist möglich, dass der Steuerrechner 4 die obere Oberflächentemperaturverteilung T" ausschließlich anhand der aktualisierten Volumentemperaturverteilung VT ermittelt. Dies wird später in Verbindung mit FIG 6 näher erläutert werden. Alternativ ist es möglich, dass der Steuerrechner 4 die obere Oberflächentemperaturverteilung T" anhand der aktualisierten Volumentemperaturverteilung VT und der Wärmeflussverteilung WT ermittelt. Dies wird später in Verbindung mit FIG 7 näher erläutert werden.
  • In einem Schritt S8 ermittelt der Steuerrechner 5 mittels eines Verschleißmodells 11 einen Verschleiß d der Walze 3. Der Steuerrechner 4 ermittelt den Verschleiß d im Rahmen des Schrittes S8 unter Berücksichtigung der im Schritt S7 ermittelten oberen Oberflächentemperaturverteilung T".
  • In einem Schritt S9 ergreift der Steuerrechner 4 weitere Maßnahmen. Beispielsweise kann der Steuerrechner 4 im Rahmen des Schrittes S9 den ermittelten Verschleiß d an einen Bediener 12 des Walzwerks ausgeben. Auch ist es möglich, dass der Steuerrechner 4, wie in FIG 2 dargestellt den ermittelten Verschleiß d im Rahmen der Ermittlung von Stellgrößen S berücksichtigt, die das Walzen des Walzguts 1 beeinflussen. Die ermittelten Stellgrößen S können auf dasjenige Walzgerüst 2 wirken, in das die betrachtete Walze 3 eingebaut ist. Alternativ oder zusätzlich können die ermittelten Stellgrößen S auf andere Einrichtungen des Walzwerks wirken, beispielsweise andere Walzgerüste 2. Auch andere Maßnahmen sind möglich. Darauf wird nachstehend näher eingegangen werden.
  • In einem Schritt S10 prüft der Steuerrechner 4, ob er das Ermittlungsverfahren beenden soll. Je nach dem Ergebnis der Prüfung des Schrittes S10 geht der Steuerrechner 4 zum Schritt S2 zurück oder nicht.
  • Falls die Volumentemperaturverteilung VT auch in Tangentialrichtung ortsaufgelöst ist, kann die Ermittlung der oberen Oberflächentemperaturverteilung T" ausschließlich anhand der Volumentemperaturverteilung VT ermittelt werden. Dies wird nachfolgend in Verbindung mit FIG 6 näher erläutert.
  • Gemäß FIG 6 selektiert der Steuerrechner 4 in einem Schritt S11 eine Axialposition z. In einem Schritt S12 selektiert der Steuerrechner 4 für die selektierte Axialposition z die radial äußersten Elemente der Volumentemperaturverteilung VT. In einem Schritt S13 ermittelt der Steuerrechner 4 - beispielsweise - die höchste Temperatur, die in den im Schritt S12 selektierten Elementen der Volumentemperaturverteilung VT auftritt. Alternativ kann der Steuerrechner 4 beispielsweise den Mittelwert derjenigen lokalen Temperaturen ermitteln, die zwischen dem Anfang des Kontakts der Walze 3 mit dem Walzgut 1 und dem Ende des Kontakts der Walze 3 mit dem Walzgut 1 auftreten. Auch andere Vorgehensweisen sind möglich. Entscheidend ist, dass die ermittelte Temperatur zumindest in der Nähe der Maximaltemperatur liegt. In einem Schritt S14 ordnet der Steuerrechner 4 die im Schritt S13 ermittelte Temperatur dem oberen Oberflächentemperaturverlauf T" für die selektierte Axialposition z als entsprechenden Temperaturwert zu. In einem Schritt S15 prüft der Steuerrechner 4, ob er bereits für alle Axialpositionen z die entsprechende Temperaturermittlung durchgeführt hat. Wenn dies nicht der Fall ist, geht der Steuerrechner 4 zum Schritt S11 zurück, in dem er eine andere, bisher noch nicht behandelte Axialposition z selektiert. Anderenfalls ist die Vorgehensweise von FIG 6 beendet.
  • Falls die Volumentemperaturverteilung VT in Tangentialrichtung nicht ortsaufgelöst ist, müssen zur Ermittlung der oberen Oberflächentemperaturverteilung T" sowohl die Volumentemperaturverteilung VT als auch die Wärmeflussverteilung WT herangezogen werden. Dies wird in Verbindung mit FIG 7 näher erläutert.
  • Gemäß FIG 7 sind die Schritte S12 und S13 von FIG 6 durch Schritte S21 bis S24 ersetzt. Die Schritte S11, S14 und S15 von FIG 6 werden beibehalten.
  • Im Schritt S21 ermittelt der Steuerrechner 4 für die selektierte Axialposition z einen Kontaktwinkel α. Der Kontaktwinkel α entspricht - siehe zur Erläuterung FIG 4 - dem Winkel, über den die Walze 3 an der selektierten Axialposition z mit dem Walzgut 1 in Kontakt steht. Die Ermittlung des Kontaktwinkels α erfolgt in Abhängigkeit von Prozessgrößen wie beispielsweise dem Durchmesser der Walze 3, der Stichabnahme, den Walzgutabmessungen usw..
  • Im Schritt S22 ermittelt der Steuerrechner 4 - vorzugsweise anhand der Beziehung t = α / ω
    Figure imgb0002
    eine korrespondierende Kontaktzeit t. ω ist die Winkelgeschwindigkeit der Walze 3. Die Kontaktzeit t entspricht somit der Zeit, während derer ein an dieser Axialposition z befindlicher Punkt der Walze 3 während einer Umdrehung der Walze 3 mit dem Walzgut 1 in Kontakt ist.
  • Im Schritt S23 ermittelt der Steuerrechner 4 mindestens einen Wärmefluss j, der während des Kontakts der Walze 3 mit dem Walzgut 1 auftritt. Beispielsweise kann der Steuerrechner 4 das Maximum, das Minimum, den Durchschnitt oder einen anderen Wert der während dieser Zeit auftretenden Wärmeflüsse j ermitteln.
  • Im Schritt S24 ermittelt der Steuerrechner 4 für die selektierte Axialposition z die an dieser Axialposition z auftretende obere Oberflächentemperatur, also den entsprechenden Wert der oberen Oberflächentemperaturverteilung T". Der Steuerrechner 4 ermittelt die obere Oberflächentemperatur anhand der für die selektierte Axialposition z gültigen durchschnittlichen Oberflächentemperatur, der im Schritt S22 ermittelten Kontaktzeit t und dem im Schritt S23 ermittelten Wärmefluss j. Beispielsweise kann der Steuerrechner 4 die obere Oberflächentemperatur für die selektierte Axialposition z gemäß FIG 8 anhand der Beziehung z = z + k max φ j z φ t z
    Figure imgb0003
    ermitteln. k ist in obiger Beziehung ein Anpassungsfaktor. Er kann beispielsweise den Wert k = 1 πρλc p
    Figure imgb0004
    aufweisen. ρ, λ und cp sind die Dichte, die Wärmeleitfähigkeit und die Wärmekapazität des Materials der Walze 3. Der Term maxϕ(j(z,ϕ)) entspricht dem im Schritt S23 ermittelten Wärmefluss für den Fall, dass der maximal auftretende Wärmefluss j herangezogen wird.
  • Zur Implementierung des Schrittes S8 von FIG 2, also der Ermittlung des Verschleißes d, existieren ebenfalls verschiedene Möglichkeiten. Diese werden nachfolgend in Verbindung mit den FIG 9 bis 11 näher erläutert.
  • Der Verschleiß d umfasst in der Regel einen thermischen Verschleißanteil dT. Der thermische Verschleißanteil dT kann - beispielsweise - gemäß FIG 9 anhand der Beziehung dT z = dT ε P z , TZ z , R , l
    Figure imgb0005
    ermittelt werden. Hierbei ist εP die plastische Dehnung der Oberfläche der Walze 3, die während einer einzelnen Umdrehung der Walze 3 auftritt. Der thermische Verschleiß dT ist im Wesentlichen proportional zur plastischen Dehnung εP, proportional zur gewalzten Länge 1 und indirekt proportional zum Radius R der Walze 3. Der Radius R kann alternativ der abgeplattete oder der unbelastete Radius der Walze 3 sein.
  • Die Bestimmung der plastischen Dehnung εP erfolgt anhand der entsprechenden oberen Oberflächentemperatur T"(z) und einer weiteren Temperatur TZ, diese vorzugsweise in Axialrichtung ortsaufgelöst, also für die jeweilige Axialposition z. Auch hier wird - analog zur oberen Oberflächentemperatur T" - nachstehend nur der Fall behandelt, dass die weitere Temperatur TZ in Axialrichtung ortsaufgelöst ist.
  • Die (mindestens eine) weitere Temperatur TZ kann eine auf die Oberfläche der Walze 3 bezogene Temperatur sein. Es kann sich beispielsweise um die durchschnittliche Temperatur T'(z) an der betreffenden Axialposition z handeln. Vorzugsweise handelt es sich um eine minimale an der betreffenden Axialposition z an der Oberfläche der Walze 3 auftretende Temperatur. Alternativ kann es sich bei der weiteren Temperatur TZ um eine Temperatur handeln, die an der betreffenden Axialposition z im Inneren der Walze 3 auftritt. Hierbei kann alternativ eine Temperatur aus einer relativ randnahen Schicht oder eine Temperatur aus dem Kern der Walze 3 verwendet werden.
  • Eine Temperatur an der Oberfläche der Walze 3 wird vorzugsweise dann herangezogen, wenn die Volumentemperaturverteilung VT auch in Tangentialrichtung ortsaufgelöst ist. Die Vorgehensweise ist jedoch auch dann möglich, wenn die Volumentemperaturverteilung VT in Tangentialrichtung nicht ortsaufgelöst ist. Eine Verwendung einer im Inneren der Walze 3 auftretenden Temperatur ist ebenfalls in beiden Fällen möglich.
  • Die Ermittlung der plastischen Dehnung εP anhand der beiden Temperaturen ist Fachleuten allgemein bekannt und beispielsweise in dem eingangs erwähnten Fachaufsatz von P. G. Stevens et al. näher erläutert.
  • Der Verschleiß umfasst weiterhin oftmals einen abrasiven Verschleißanteil dA. Der abrasive Verschleißanteil dA wird im Stand der Technik oftmals gemäß der eingangs genannten Beziehung d = c ϕ α l
    Figure imgb0006
    ermittelt. Gegebenenfalls kann in dieser Beziehung indirekt eine thermische Abhängigkeit berücksichtigt werden. In diesem Fall ist der Verschleißkoeffizient c nicht eine Konstante, sondern proportional zur Wurzel aus der Kontaktzeit t.
  • Die letztgenannte Vorgehensweise führt zwar zu einer Verbesserung gegenüber einer Ermittlung des abrasiven Verschleißanteils dA gegenüber dem Stand der Technik. Die Vorgehensweise ist jedoch noch nicht optimal. Zu erheblich besseren Ergebnissen führt eine Vorgehensweise, wie sie nachfolgend in Verbindung mit FIG 10 näher erläutert wird.
  • Gemäß FIG 10 ermittelt der Steuerrechner 4 in einem Schritt S31 den thermischen Verschleißanteil dT. Die Ermittlung des thermischen Verschleißanteils dT kann beispielsweise so erfolgen, wie dies obenstehend bereits erläutert wurde.
  • In einem Schritt S32 ermittelt der Steuerrechner 4 - ggf. in Axialrichtung ortsaufgelöst - eine Oberflächenhärte H der Walze 3. Die Ermittlung der Oberflächenhärte H erfolgt zum einen in Abhängigkeit von den Materialeigenschaften der Oberfläche der Walze 3 und zum anderen in Abhängigkeit von der oberen Oberflächentemperaturverteilung T".
  • In einem Schritt S33 ermittelt der Steuerrechner 4 den abrasiven Verschleißanteil dA unter Verwendung der im Schritt S32 ermittelten Oberflächenhärte H der Walze 3. In einem Schritt S34 ermittelt der Steuerrechner 4 den Verschleiß d durch Summieren des thermischen Verschleißanteils dT und des abrasiven Verschleißanteils dA.
  • Zur Ermittlung des abrasiven Verschleißanteils dA (= Schritt S33) kann der Steuerrechner 4 beispielsweise gemäß FIG 11 eine funktionale Beziehung verwenden, in welche die Oberflächenhärte H, die gewalzte Länge l und der Kontaktwinkel α eingehen.
  • Vorzugsweise geht, wie in FIG 11 dargestellt, in die Ermittlung des abrasiven Verschleißanteils dA zusätzlich die Temperatur T und/oder die stoffliche Zusammensetzung des Walzguts 1 ein. Beispielsweise kann der Steuerrechner 4, wie in FIG 11 dargestellt, anhand der Temperatur T und der stofflichen Zusammensetzung des Walzguts 1 eine maximale Fließspannung σ ermitteln und die Fließspannung σ gemäß der Beziehung dA = σ T , H z , l , α
    Figure imgb0007
    bei der Ermittlung des abrasiven Verschleißanteils dA berücksichtigen. Der abrasive Verschleißanteil dA ist in diesem Fall proportional zur Fließspannung σ, der gewalzten Länge 1 und dem Kontaktwinkel α und indirekt proportional zur ermittelten Oberflächenhärte H. Auch können die Temperatur T und/oder die "Chemie" des Walzgutes 1 im Rahmen von Zundermodellen berücksichtigt werden, deren Ergebnis Einfluss auf die Modellierung des abrasiven Verschließanteils dA hat.
  • Wie bereits erwähnt, erfolgt die Ermittlung der Wärmeflussverteilung WT vorzugsweise anhand von Prozessgrößen I, die auf das Walzen des Walzguts 1 durch die Walze 3 bezogen sind, in Zusammenwirken mit der anfänglichen Oberflächentemperaturverteilung T'. Es ist möglich, dass die Prozessgrößen I modellgestützt ermittelte erwartete Größen sind, die dem Rechner 4 von außen zugeführt werden, siehe FIG 1. Alternativ ist es möglich, dass die Prozessgrößen I Istgrößen sind, die während des Walzens des Walzguts 1 durch die Walze 3 erfasst werden, siehe ebenfalls FIG 1. Auch Mischformen sind möglich. Beispielsweise ist es möglich, dem Steuerrechner 4 modellgestützt ermittelte erwartete Prozessgrößen I bis zu einem in der Zukunft liegenden Zeitpunkt vorzugeben. In diesem Fall kann für die Vergangenheit mit erfassten Istgrößen gerechnet werden und, ausgehend von dem so ermittelten Verschleiß d, anhand der in die Zukunft gerichteten erwarteten Prozessgrößen I eine Prognose für den zukünftig zu erwartenden Verschleiß d erstellt werden. Dies ist ausführlich in der zeitgleich mit dieser Anmeldung eingereichten Anmeldung "Betriebsverfahren für ein Walzwerk zum Walzen von flachem Walzgut mit Walzenverschleißprognose" (internes Aktenzeichen der Anmelderin: 201013425) detailliert beschrieben. Grob wird die Vorgehensweise nachfolgend in Verbindung mit FIG 12 erläutert.
  • Gemäß FIG 12 initialisiert der Steuerrechner 4 in einem Schritt S41 die Volumentemperaturverteilung VT. Der Schritt S41 entspricht dem Schritt S1 von FIG 2.
  • In einem Schritt S42 nimmt der Steuerrechner 4 Stichplandaten SP entgegen (oder ermittelt diese selbst). Die Stichplandaten SP definieren - unter anderem - die erwähnten modellgestützt ermittelten, zukünftig erwarteten Prozessgrößen I. Der Schritt S42 entspricht einer Teilausgestaltung des Schrittes S2 von FIG 2.
  • In einem Schritt S43 nimmt der Steuerrechner 4 Istgrößen des Walzprozesses entgegen, die das Walzen des Walzguts 1 durch die betrachtete Walze 3 beschreiben. Der Schritt S43 entspricht einer weiteren Teilausgestaltung des Schrittes S2 von FIG 2.
  • In einem Schritt S44 ermittelt der Steuerrechner 4 anhand der Istgrößen des Schrittes S43 eine Istballigkeit und den momentanen Verschleiß d. Der Schritt S44 entspricht im Wesentlichen einer Zusammenfassung der Schritte S3 bis S8 von FIG 2, bezogen auf die Verwertung der Istgrößen des Schrittes S43. In einem Schritt S45 ermittelt der Steuerrechner 4 die Stellgrößen S, die das Walzen des Walzguts 1 beeinflussen. Die Stellgrößen S können, wie bereits erwähnt, auf die betrachtete Walze 3 und/oder auf andere Walzen 3 anderer Walzgerüste 2 wirken.
  • Es ist möglich, dass der Steuerrechner 4 die Vorgehensweise von FIG 12 in Echtzeit während des Walzens des Walzguts 1 ausführt. In diesem Fall ist ein Schritt S46 vorhanden, in dem der Steuerrechner 4 das Walzwerk entsprechend den ermittelten Stellgrößen S ansteuert. Alternativ kann der Steuerrechner 4 die Vorgehensweise von FIG 12 selbstverständlich auch nach dem Walzen des Walzguts 1 ausführen. In diesem Fall kann der Schritt S46 entfallen.
  • In einem Schritt S47 ermittelt der Steuerrechner 4 eine Prognose für die thermische Balligkeit und den Verschleiß d. Der Schritt S47 entspricht im Wesentlichen einer Implementierung des Schrittes S44, wobei jedoch im Gegensatz zum Schritt S44 nicht die erfassten Istgrößen des Walzprozesses ausgewertet werden, sondern die Stichplandaten SP. In einem Schritt S48 können in Abhängigkeit von dem im Schritt S47 ermittelten zukünftig erwarteten Verschleiß d weitere Maßnahmen ergriffen werden. Beispielsweise kann ein Walzenwechsel initiiert werden. Auch kann die ermittelte Verschleißprognose beispielsweise an den Bediener 12 des Walzwerks ausgegeben werden.
  • In einem Schritt S49 prüft der Steuerrechner 4, ob die Vorgehensweise von FIG 12 beendet werden soll. Je nach Ergebnis der Prüfung des Schrittes S49 geht der Steuerrechner 4 zu einem Schritt S50 über oder beendet die Vorgehensweise von FIG 12.
  • Im Schritt S50 prüft der Steuerrechner 4, ob ihm weitere Stichplandaten SP vorgegeben werden bzw. von ihm ermittelt worden sind. Je nach Ergebnis der Prüfung des Schrittes S50 geht der Steuerrechner 4 zum Schritt S42 oder zum Schritt S43 zurück.
  • Obenstehend wurde im Wesentlichen eine Vorgehensweise erläutert, die in Echtzeit während des Walzens des Walzguts 1 durch die Walze 3 ausgeführt wird. Dies ist jedoch nicht zwingend erforderlich. Wie bereits erwähnt, kann die Vorgehensweise auch nach dem Walzen des Walzguts 1 ausgeführt werden. In diesem Fall können gemäß FIG 13 die Schritte S42 und S45 bis S48 sowie der Schritt S50 entfallen. Stattdessen ist ein Schritt S51 vorhanden, in dem der jeweils ermittelte Verschleiß d - gegebenenfalls aufgeschlüsselt nach thermischem Verschleiß dT und abrasivem Verschleiß dA - an den Bediener 12 des Walzwerks ausgegeben wird.
  • Ebenso ist es möglich, die Vorgehensweise von FIG 12 so anzupassen, dass sie vor dem Walzen des Walzguts 1 durch die Walze 3 ausgeführt wird. In diesem Fall können die Schritte S43 bis S46 entfallen. Dem Schritt S47 sind in diesem Fall weiterhin vorzugsweise Schritte S56 und S57 nachgeordnet. Im Schritt S56 ermittelt der Steuerrechner 4 anhand des im Schritt S47 ermittelten Verschleißes d die erforderlichen Stellgrößen S. Im Schritt S57 speichert der Steuerrechner 4 die Stellgrößen S ab, so dass sie für eine spätere Ansteuerung des Walzwerks zur Verfügung stehen. Der Schritt S48 kann weiterhin vorhanden sein. Alternativ kann er entfallen. Er kann alternativ den Schritten S56 und S57 vorgeordnet oder nachgeordnet sein.
  • Die vorliegende Erfindung weist viele Vorteile auf. Insbesondere kann die Walzenstandzeit, also die Zeit zwischen Einbau und Ausbau der Walzen 3, optimiert werden. Auch kann oftmals die Qualität des gewalzten Walzguts 1 optimiert werden.
  • Die obige Beschreibung dient ausschließlich der Erläuterung der vorliegenden Erfindung. Der Schutzumfang der vorliegenden Erfindung soll hingegen ausschließlich durch die beigefügten Ansprüche bestimmt sein.

Claims (16)

  1. Ermittlungsverfahren für einen Verschleiß (d) einer Walze (3) zum Walzen von Walzgut (1),
    - wobei eine Volumentemperaturverteilung (VT) der Walze (3) anhand einer an der Oberfläche der Walze (3) auftretenden Wärmeflussverteilung (WZ) mittels eines Temperaturmodells der Walze (3) aktualisiert wird,
    - wobei die Volumentemperaturverteilung (VT) zumindest in Axialrichtung und in Radialrichtung der Walze (3) ortsaufgelöst ist,
    - wobei die Wärmeflussverteilung (WT) in Axialrichtung und in Tangentialrichtung der Walze (3) ortsaufgelöst ist,
    - wobei der Verschleiß (d) der Walze (3) mittels eines Verschleißmodells (11) ermittelt wird,
    - wobei im Rahmen des Verschleißmodells (11)
    -- anhand der aktualisierten Volumentemperaturverteilung (VT) und/oder der Wärmeflussverteilung (WT) mindestens eine obere Oberflächentemperatur (T") ermittelt wird, welche an bestimmten Punkten der Oberfläche der Walze (3) auftritt, während der jeweilige Punkt mit dem Walzgut (1) in Kontakt ist, und
    -- der Verschleiß (d) der Walze (3) unter Berücksichtigung der oberen Oberflächentemperatur (T") der Walze (3) ermittelt wird.
  2. Ermittlungsverfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    - dass die Volumentemperaturverteilung (VT) in Tangentialrichtung der Walze (3) nicht ortsaufgelöst ist,
    - dass die aktualisierte Volumentemperaturverteilung (VT) eine in Axialrichtung ortsaufgelöste durchschnittliche Oberflächentemperaturverteilung (T') definiert, welche für eine durchschnittliche Oberflächentemperatur der Walze (3) charakteristisch ist,
    - dass anhand von auf das Walzen des Walzguts (1) durch die Walze (3) bezogenen Prozessgrößen (I) in Axialrichtung ortsaufgelöst jeweilige Kontaktzeiten (t) ermittelt werden, die dafür charakteristisch sind, wie lange der jeweilige Punkt der Walze (3) während eines Umlaufs der Walze (3) mit dem Walzgut (1) in Kontakt ist, und
    - dass die obere Oberflächentemperatur (T") anhand der durchschnittlichen Oberflächentemperatur (T') der Walze (3), desjenigen Teils der Wärmeflussverteilung (WT), der während des Kontakts der Walze (3) mit dem Walzgut (1) auftritt, und der Kontaktzeiten (t) ermittelt wird.
  3. Ermittlungsverfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Volumentemperaturverteilung (VT) auch in Tangentialrichtung der Walze (3) ortsaufgelöst ist und dass die obere Oberflächentemperatur (T") ausschließlich anhand der aktualisierten Volumentemperaturverteilung (VT) ermittelt wird.
  4. Ermittlungsverfahren nach Anspruch 1, 2 oder 3,
    dadurch gekennzeichnet,
    dass der Verschleiß (d) einen thermischen Verschleißanteil (dT) umfasst und dass die Ermittlung des thermischen Verschleißanteils (dT) unter Verwendung der oberen Oberflächentemperatur (T") und mindestens einer weiteren, auf die Oberfläche der Walze (3) bezogenen Oberflächentemperatur (T') der Walze (3) erfolgt.
  5. Ermittlungsverfahren nach Anspruch 1, 2 oder 3,
    dadurch gekennzeichnet,
    dass der Verschleiß (d) einen thermischen Verschleißanteil (dT) umfasst und dass die Ermittlung des thermischen Verschleißanteils (dT) unter Verwendung der oberen Oberflächentemperatur (T") der Walze (3) und einer im Inneren der Walze (3) gegebenen Innentemperatur erfolgt.
  6. Ermittlungsverfahren nach einem der obigen Ansprüche,
    dadurch gekennzeichnet,
    dass der Verschleiß (d) einen abrasiven Verschleißanteil (dA) umfasst, dass die Ermittlung des abrasiven Verschleißanteils (dA) unter Verwendung einer Oberflächenhärte (H) der Walze (3) erfolgt und dass die Oberflächenhärte (H) der Walze (3) unter Verwendung der oberen Oberflächentemperatur (T") der Walze (3) ermittelt wird.
  7. Ermittlungsverfahren nach Anspruch 6,
    dadurch gekennzeichnet,
    dass die Ermittlung des abrasiven Verschleißanteils (dA) unter zusätzlicher Verwendung einer Temperatur (T) und/oder der stofflichen Zusammensetzung des Walzguts (1) erfolgt.
  8. Ermittlungsverfahren nach einem der obigen Ansprüche,
    dadurch gekennzeichnet,
    dass die Wärmeflussverteilung (WT) anhand von auf das Walzen des Walzguts (1) durch die Walze (3) bezogenen Prozessgrößen (I) und einer durch die noch nicht aktualisierte Volumentemperaturverteilung (VT) definierten anfänglichen Oberflächentemperaturverteilung (T') der Walze (3) ermittelt wird.
  9. Ermittlungsverfahren nach Anspruch 8,
    dadurch gekennzeichnet,
    dass die Prozessgrößen (I) zumindest teilweise modellgestützt ermittelte erwartete Größen sind.
  10. Ermittlungsverfahren nach Anspruch 8 oder 9,
    dadurch gekennzeichnet,
    dass die Prozessgrößen (I) zumindest teilweise Istgrößen sind, die während des Walzens des Walzguts (1) durch die Walze (3) erfasst werden.
  11. Ermittlungsverfahren nach Anspruch 8, 9 oder 10,
    dadurch gekennzeichnet,
    dass es in Echtzeit während des Walzens des Walzguts (1) durch die Walze (3) ausgeführt wird.
  12. Ermittlungsverfahren nach Anspruch 8 oder 9,
    dadurch gekennzeichnet,
    dass es vor dem Walzen des Walzguts (1) durch die Walze (3) ausgeführt wird.
  13. Ermittlungsverfahren nach einem der obigen Ansprüche,
    dadurch gekennzeichnet,
    dass der ermittelte Verschleiß (d) im Rahmen der Ermittlung von Stellgrößen (S) berücksichtigt wird, die das Walzen des Walzguts (1) beeinflussen.
  14. Computerprogramm, das Maschinencode (7) umfasst, der von einem Rechner (4) unmittelbar abarbeitbar ist und dessen Abarbeitung durch den Rechner (4) bewirkt, dass der Rechner (4) ein Ermittlungsverfahren mit allen Schritten eines Ermittlungsverfahrens nach einem der obigen Ansprüche ausführt.
  15. Rechner,
    dadurch gekennzeichnet,
    dass der Rechner derart ausgebildet ist, dass er ein Ermittlungsverfahren mit allen Schritten eines Ermittlungsverfahrens nach einem der Ansprüche 1 bis 13 ausführt.
  16. Walzwerk zum Walzen von Walzgut (1),
    dadurch gekennzeichnet,
    dass das Walzwerk mit einem Rechner (4) nach Anspruch 15 ausgestattet ist.
EP10174341A 2010-08-27 2010-08-27 Ermittlungsverfahren für einen Verschleiß einer Walze zum Walzen von Walzgut Withdrawn EP2422894A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10174341A EP2422894A1 (de) 2010-08-27 2010-08-27 Ermittlungsverfahren für einen Verschleiß einer Walze zum Walzen von Walzgut
PCT/EP2011/058155 WO2012025266A1 (de) 2010-08-27 2011-05-19 Ermittlungsverfahren für einen verschleiss einer walze zum walzen von walzgut
EP11723400.5A EP2595768B1 (de) 2010-08-27 2011-05-19 Ermittlungsverfahren für einen verschleiss einer walze zum walzen von walzgut
CN201180041458.6A CN103097046B (zh) 2010-08-27 2011-05-19 用于轧制轧件的轧辊的磨损的测定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10174341A EP2422894A1 (de) 2010-08-27 2010-08-27 Ermittlungsverfahren für einen Verschleiß einer Walze zum Walzen von Walzgut

Publications (1)

Publication Number Publication Date
EP2422894A1 true EP2422894A1 (de) 2012-02-29

Family

ID=43769238

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10174341A Withdrawn EP2422894A1 (de) 2010-08-27 2010-08-27 Ermittlungsverfahren für einen Verschleiß einer Walze zum Walzen von Walzgut
EP11723400.5A Not-in-force EP2595768B1 (de) 2010-08-27 2011-05-19 Ermittlungsverfahren für einen verschleiss einer walze zum walzen von walzgut

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP11723400.5A Not-in-force EP2595768B1 (de) 2010-08-27 2011-05-19 Ermittlungsverfahren für einen verschleiss einer walze zum walzen von walzgut

Country Status (3)

Country Link
EP (2) EP2422894A1 (de)
CN (1) CN103097046B (de)
WO (1) WO2012025266A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900003501A1 (it) * 2019-03-11 2020-09-11 Primetals Tech Italy S R L Metodo e sistema di controllo del gap in laminatoi
EP3851217B1 (de) 2020-01-15 2022-07-13 Primetals Technologies Germany GmbH Verbesserte adaption eines walzenmodells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059794A (en) * 1974-07-15 1977-11-22 British Steel Corporation Method and apparatus for monitoring pass alignment in rolling mills
SU1329858A1 (ru) * 1986-01-03 1987-08-15 Криворожский Филиал Киевского Института Автоматики Им.Хху Съезда Кпсс Устройство дл автоматического контрол износа валков стана гор чей прокатки
JPH04197507A (ja) * 1990-11-28 1992-07-17 Hitachi Ltd 圧延材の形状制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365610A (ja) * 1989-08-03 1991-03-20 Sumitomo Metal Ind Ltd オンライン形状測定方法および装置
JP2000167613A (ja) * 1998-12-03 2000-06-20 Nippon Steel Corp 板圧延機および板形状制御方法
CN100498805C (zh) * 2007-11-08 2009-06-10 广州珠江钢铁有限责任公司 一种改善csp产品质量的轧辊磨损数学模型优化方法
CN101633004B (zh) * 2008-07-24 2011-01-19 宝山钢铁股份有限公司 厚板轧后控制冷却广义观测器设计方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059794A (en) * 1974-07-15 1977-11-22 British Steel Corporation Method and apparatus for monitoring pass alignment in rolling mills
SU1329858A1 (ru) * 1986-01-03 1987-08-15 Криворожский Филиал Киевского Института Автоматики Им.Хху Съезда Кпсс Устройство дл автоматического контрол износа валков стана гор чей прокатки
JPH04197507A (ja) * 1990-11-28 1992-07-17 Hitachi Ltd 圧延材の形状制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VON P. G. STEVENS ET AL.: "Increasing work-roll life by improved roll-cooling practice", JOURNAL OF THE IRON AND STEEL INSTITUTE, January 1971 (1971-01-01), pages 1 - 11

Also Published As

Publication number Publication date
CN103097046B (zh) 2016-05-04
EP2595768A1 (de) 2013-05-29
CN103097046A (zh) 2013-05-08
WO2012025266A1 (de) 2012-03-01
EP2595768B1 (de) 2015-04-01

Similar Documents

Publication Publication Date Title
EP2548665B1 (de) Ermittlungsverfahren für relativbewegungsabhängigen Verschleiß einer Walze
AT501314B1 (de) Verfahren und vorrichtung zum kontinuierlichen herstellen eines dünnen metallbandes
EP2697001B1 (de) Steuerverfahren für eine walzstrasse
EP2588257B1 (de) Betriebsverfahren für ein walzwerk zum walzen von flachem walzgut mit walzenverschleissprognose
EP2195127B1 (de) Betriebsverfahren zum einbringen eines walzguts in ein walzgerüst eines walzwerks, steuereinrichtung, datenträger und walzwerk zum walzen eines bandförmigen walzgutes
EP2170535B1 (de) Verfahren zur einstellung eines zustands eines walzguts, insbesondere eines vorbands
EP2697002B1 (de) Steuerverfahren für eine walzstrasse
DE69731008T2 (de) Walzverfahren für Bänder zur Reduzierung der Kantenschärfe
EP2691188B1 (de) Betriebsverfahren für eine walzstrasse
DE102016116076B4 (de) Anlagensteuerungsvorrichtung, Walzsteuerungsvorrichtung, Anlagensteuerungsverfahren und Anlagensteuerungsprogramm
WO1998028098A1 (de) Verfahren zur automatisierten prozessführung eines richtprozesses
EP2595768B1 (de) Ermittlungsverfahren für einen verschleiss einer walze zum walzen von walzgut
EP3122483B1 (de) Verfahren zum anstellen einer richtwalze einer richtwalzanlage
DE19642918C2 (de) System zur Berechnung des Enddickenprofils eines Walzbandes
EP3917694B1 (de) Verändern der effektiven kontur einer lauffläche einer arbeitswalze während des warmwalzens eines walzguts in einem walzgerüst zu einem gewalzten band
WO2011029806A2 (de) Verfahren zum überwachen einer walze in einer anlage zum walzen von metall
EP3208673B1 (de) Inline-kalibrierung des walzspalts eines walzgerüsts
EP3851217B1 (de) Verbesserte adaption eines walzenmodells
WO2009112443A1 (de) Betriebsverfahren für eine kaltwalzstrasse mit verbesserter dynamik
DE102018200939A1 (de) Tandem-Walzwerksteuervorrichtung und Tandem-Walzwerksteuerverfahren
EP3685930B1 (de) Lokales verändern des walzspalts im bereich der bandkanten eines gewalzten bands
DE102017122073B4 (de) Verfahren und Steuerung einer Biegemaschine
EP3009204A1 (de) Modellierung von metallband in einer walzstrasse
DE10159608B9 (de) Walzverfahren und Walzstraße für ein Band mit einer Schweißnaht
DE102005042837A1 (de) Verfahren zur Dickenregelung beim Warmwalzen

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120830