EP2420107A1 - Leistungsregelung von led, mittels mittelwert des led-stroms und bidirektionaler zähler - Google Patents
Leistungsregelung von led, mittels mittelwert des led-stroms und bidirektionaler zählerInfo
- Publication number
- EP2420107A1 EP2420107A1 EP10711663A EP10711663A EP2420107A1 EP 2420107 A1 EP2420107 A1 EP 2420107A1 EP 10711663 A EP10711663 A EP 10711663A EP 10711663 A EP10711663 A EP 10711663A EP 2420107 A1 EP2420107 A1 EP 2420107A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- switch
- led
- circuit
- current
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/10—Controlling the intensity of the light
- H05B45/14—Controlling the intensity of the light using electrical feedback from LEDs or from LED modules
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/30—Driver circuits
- H05B45/37—Converter circuits
- H05B45/3725—Switched mode power supply [SMPS]
- H05B45/375—Switched mode power supply [SMPS] using buck topology
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/10—Controlling the intensity of the light
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/30—Driver circuits
- H05B45/37—Converter circuits
- H05B45/3725—Switched mode power supply [SMPS]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/30—Driver circuits
- H05B45/37—Converter circuits
- H05B45/3725—Switched mode power supply [SMPS]
- H05B45/38—Switched mode power supply [SMPS] using boost topology
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/30—Driver circuits
- H05B45/37—Converter circuits
- H05B45/3725—Switched mode power supply [SMPS]
- H05B45/385—Switched mode power supply [SMPS] using flyback topology
Definitions
- the present invention relates to a circuit arrangement for operating light emitting diodes (LED), in particular of inorganic light emitting diodes or organic light emitting diodes, which is used in electronic ballasts for corresponding light emitting diodes.
- LED light emitting diodes
- the invention also relates to a lighting system.
- the switch-off time of the switch is determined by the fact that the LED current reaches a fixed predetermined Ausschaltschwellenwert. This leads to inaccuracies, since the negative current flow range can vary immediately after switching on the switch, which makes the power control inaccurate.
- the object of the invention is now to make the power control of an LED in a converter such as a boost converter (boost converter), buck converter (also called step-down) or buck-boost converter (flyback converter or inverter called) to make more accurate.
- a converter such as a boost converter (boost converter), buck converter (also called step-down) or buck-boost converter (flyback converter or inverter called) to make more accurate.
- a first aspect of the invention relates to a method for regulating, in particular for controlling the power of an LED in a converter with a switch.
- the invention can be applied equally to:
- the converter is formed by an active clocked switch and passive energy storage elements with, for example, an inductor.
- a converter can be a buck converter, buck-boost converter or flyback converter (isolated flyback converter).
- the LED is connected in the output circuit.
- An inductance is magnetized if the switch is actively clocked and a current flow takes place via the closed switch and the inductance.
- the feedback variable used for the control is a measured actual value representative of the mean value of the LED current, which is compared with a reference value as setpoint. Depending on a difference between the actual value and the setpoint value, the duty ratio of the current switch-on operation of the actively-clocked switch and / or a subsequent switch-on operation can be set.
- the duty cycle of the active clocked switch can be changed only every n-th switch-on, where n is greater than or equal to 2.
- the duty cycle of the active clocked switch can be changed, for example, over the time of switching off the active clocked switch as a control line.
- the duty cycle can be adjusted by adaptively specifying a turn-off level of a measured, representative of the LED current size, which is switched off when the switch-off level of the active clocked switch.
- the level of the DC bus voltage supplying the converter can alternatively or additionally be used in addition to the clocking of the active clocked switch.
- the bus voltage can be generated by means of an active PFC circuit, wherein the level of the generated bus voltage is carried out by changing the timing of a switch of the PFC circuit.
- a sample of the LED current may be obtained, preferably measured at half the Einschatzeitdauer the active clocked switch.
- the actual value representative of the mean value of the LED current can be determined by a continuous measurement of the LED current (or a quantity representative thereof).
- the continuously measured LED current may be compared to a reference value, and the actual value representative of the mean value may be the duty cycle of the comparison value over the on period of the active switch.
- the duty cycle can be determined using a bidirectional digital payer.
- the reference value may depend on a predetermined dimming value and / or the measured LED voltage.
- the LED power can be through one of the following operating modes
- a dimming of the LED (s) can be done by PWM, wherein the LED current preferably in Continous Conduction Mode in the ON time of a PWM pulse is generated.
- the invention also relates to an integrated circuit, in particular ASIC or microcontroller or hybrid thereof, which is designed to carry out a method as stated above.
- the invention relates to an operating device for an LED, comprising such an integrated circuit.
- a circuit for power control of an LED which has a converter with a switch, wherein the LED in the output circuit can be connected.
- a control unit activates the switch, whereby the switch takes over the current flow and magnetizes the inductance, whereby the LED is supplied with a high-frequency voltage.
- the control unit is fed back a measured actual value representative of the mean value of the LED current, which is compared with a reference value.
- control unit can set the duty cycle of the current switch-on operation of the actively switched switch and / or a subsequent switch-on operation.
- the control unit can change the duty cycle of the active clocked switch only every n-th switch-on, where n is greater than or equal to 2.
- the control unit may change the duty cycle of the active clocked switch over the time of switching off the active clocked switch as a control variable.
- the control unit may adjust the duty cycle by adaptively specifying a turn-off level of a measured magnitude representative of the LED current, the control unit turning off the actively-pulsed switch upon reaching the turn-off level.
- control unit can also control a DC link circuit and obtain feedback signals from the DC link circuit, the DC link voltage generating the DC bus voltage supplying the converter.
- the control unit can be used as a control line of the power control alternatively or in addition to the
- an active PFC circuit may be provided, wherein the control unit carries out the level of the generated bus voltage by changing the timing of a switch of the PFC circuit.
- the control unit may be fed back as a measured actual value representative of the mean value of the LED current, a sample of the LED current, preferably measured at half the on-time of the active clocked switch.
- the control unit may continuously measure the LED current (or a quantity representative thereof) for determining the actual value representative of the mean value of the LED current.
- the control circuit may comprise a comparator which compares the continuously measured LED current with a reference value, and the control circuit uses the duty cycle of the comparator output signal as the actual value representative of the mean value.
- the output of the comparator may be fed to a bidirectional digital counter of the control circuit.
- the control circuit may set the reference value depending on an externally or internally predetermined dimming value and / or the measured and the control circuit supplied LED voltage.
- FIG. 1 shows an operating device according to the invention for LEDs connected in a buck converter
- FIG. 2 shows in detail a circuit according to the invention for LEDs connected in a buck-boost converter and the measurement signals which can be tapped off therefrom.
- FIG. 3 shows the profile of drive signals from a switch of the half bridge as well as the center point voltage U L3 and the LED current I LED ,
- FIG. 4 shows the structure of a regulation of the LED current
- FIG. 5 shows the time profile of signals of the control of FIG. 4
- Fig. 1 shows an electronic ballast for operating LED.
- Fig. 1 shows a converter for operating at least one LED and a power factor correction circuit, both circuits being controlled by a control unit IC.
- the electronic ballast On the input side, the electronic ballast has a mains voltage supplied - not shown rectifier - to which the active power factor correction circuit adjoins, which acts as a boost converter.
- the PFC circuit substantially comprises a coil L ⁇ which is magnetized when the switch (transistor) S6 is closed in response to a drive command S ⁇ D from the integrated circuit IC.
- the bus voltage Uout at the pin can be measured at the pin ST2 when the switch S ⁇ is open.
- the time of demagnetization of the coil L6 can also be determined.
- the converter has a further switch Sl and is designed as a buck converter.
- the current through the switch Sl can be supplied to the control circuit IC by means of a measuring resistor (shunt) Rl at a pin CS.
- a control signal for the switch Sl is output by the control circuit IC.
- the reconnection of the active clocked switch Sl can be determined by the monitoring of the current flowing through the inductor Ll branch current iLl. For example, it can be monitored whether the branch current i L1 flowing through the inductance L 1 has again fallen to zero or whether the inductance L 1 has been demagnetized (critical conduction mode). This can be done by means of a secondary winding to the inductor Ll or by means of monitoring the voltage across the switch Sl. In Continuous Conduction Mode it is monitored whether one of the branch currents has reached a lower switch-on threshold (greater than zero). In the Discontinous Conduction Mode, it is monitored whether the branch current has already been at zero for a predetermined period of time before switching on. In this discontinuous conduction mode, the off time period T off is included to calculate the average time value of the current.
- the switch-on of the switch S1 can be advantageous before complete demagnetization of the inductance L1, especially if no or only a very small capacitor C1 is present. In this case, so-called non-gap current operation can be achieved.
- the control circuit IC drives the converter and can continue to perform the PFC control.
- the control unit can be fed back feedback signals from the range of the PFC intermediate circuit voltage, such as.: - The input voltage via a tap STl, the current through the inductor L ⁇ by means of a voltage divider ST2 (or monitoring the voltage across the inductance L6), and the bus voltage Uout via the voltage divider ST2.
- the control unit can adjust the level of the output voltage by clocking the switch S6 and preferably digitally control it by means of the returned bus voltage.
- the control unit can feedback signals from the range of the load circuit containing the LED are returned to the converter: the LED voltage V LED (for example, determined by means of a comparison of the returned bus voltage with the voltage at the voltage divider
- the LED voltage V LED can be evaluated, for example, as a parameter for the control of the LED operation or for error detection.
- the switch-off time period T O ff of the switch S1 can be included in order to calculate the time-average value of the current through the LED.
- the switch-off time T Off can be determined, for example, by monitoring the voltage across the switch Sl. In this case, it can be recognized over which period of time there is a demagnetization of the inductance L 1 (which is the case) Switch off period T off corresponds).
- the switch-off duration T Off can, however, also be determined or detected, for example, by an evaluation of the drive signal for the switch S1.
- a capacitor Cl is connected in parallel with the LED as a filter or smoothing capacitor in parallel.
- This can smooth the LED voltage during operation and maintain the LED voltage during demagnetization of the inductance Ll.
- the current determined via the shunt Rl does not exactly correspond to the current flowing through the LED, but additionally also contains a current component flowing through the capacitor C1.
- This total current can also be used for the power control according to the invention, since the current through the shunt Rl again represents a measure of the actual power in the output circuit, if it is assumed that the bus voltage Uout is constant (eg due to the regulation of the PFC) or due a measurement is known. This total current is therefore referred to below as LED current.
- a low-impedance shunt Rl is interposed, which, however, serves only for the measurement of currents and has no measurable influence on the voltages in the circuit.
- a brightness change (dimming) of the LED is preferably by a pulsed operation (periods with nearly constant LED current are due to periods without
- Fig. 2 shows a converter for operating at least one LED, which circuit is controlled by a control unit IC.
- the converter may be preceded by a circuit for power factor correction.
- the converter has a further switch Sl and is designed as a buck-boost converter.
- the current through the switch Sl can be supplied to the control circuit IC by means of a measuring resistor (shunt) Rl at a pin CS.
- a control signal for the switch Sl is output by the control circuit IC.
- the switch S1 When the switch S1 is closed, the current flows through an inductance L1 and increases substantially linearly with the magnetization of the inductance L1.
- the LEDs are powered by the capacitor Cl during this phase.
- the switch Sl When the switch Sl is turned off, the energy of the inductance Ll is reduced by a current flow through the LEDs and the freewheeling diode Dl substantially linearly until the switch Sl is finally turned on again.
- the time can be determined in which the magnetization of the inductance Ll is substantially degraded and thus the current through the freewheeling path (diode Dl, LED path, inductance Ll) not more is driven on.
- the reconnection of the active clocked switch Sl can be determined by the monitoring of the current flowing through the inductor Ll branch current iLl. For example, it can be monitored whether the branch current i L1 flowing through the inductance L 1 has fallen back to zero or whether the inductance L 1 has been demagnetized. This can be done by means of a secondary winding to the inductor Ll or by means of monitoring the voltage across the switch Sl. But it can also be a reconnection due to the expiration of a certain period of direct current measurement in the path of the LED.
- the control circuit IC drives the converter and can continue to perform the PFC control.
- the control unit can feedback signals from the range of the load circuit containing the LED are returned to the converter: the LED voltage V LED by means of a voltage divider, not shown, arranged parallel to the LED, the LED current I LED (for example by means of shunt Rl), and the voltage across the switch Sl by means of a tap A2 (inductive or by tapping over the switch Sl).
- a capacitor Cl is connected in parallel with the LED as a filter or smoothing capacitor in parallel. This can smooth the LED voltage during operation and maintain the LED voltage during the magnetization or even during the demagnetization of the inductance Ll.
- a low-impedance shunt Rl is interposed, which, however, serves only for the measurement of currents and has no measurable influence on the voltages in the circuit.
- FIG. 3 signal curves during the switching on and off of the switch S1 are shown.
- the switch S1 is actively clocked and switched on between the times T31 and T32 (time duration t 0N ).
- the linearly increasing LED current I LED can only be detected during the time period t 0 N at the shunt Rl, during which the switch Sl is turned on.
- the LED current can not be detected by means of the shunt Rl.
- the switch-on time of the high-frequency clocked switch Sl can be determined by monitoring the branch current i L1 flowing through the inductance L 1. For example, it can be monitored whether the branch current i L1 flowing through the inductance L 1 has again dropped to zero or whether the inductance L 1 has been demagnetized. This can be done by means of a secondary winding to the inductor L2 or by means of monitoring the voltage across the switch Sl.
- the turn-off timing of the high-frequency clocked switch Sl is thereby set when the LED current reaches a predetermined threshold value Ipeak. As already explained at the outset, any fluctuations in the maximum negative current level ⁇ I at the reversal point T31 and in that case are disregarded, which makes this type of power regulation inaccurate.
- the turn-off instant of the actively-timed switch (in the example of FIG. 2, switch S1) is now made adaptive, so that as a result the turn-on time t.sub.N is variable.
- This can be achieved, for example, by adapting the turn-off threshold for the LED current and / or adaptively adjusting the turn-on time duration of the actively-timed switch.
- the adaptation takes place on the basis of a feedback signal which is representative of the mean value of the LED current (averaging over one or more switch-on durations of the actively-timed switch). By controlling the average of the LED current, the lamp power control is much more accurate.
- the mean value of the LED current can be detected by a sample is detected and evaluated at the time t on / 2, ie half of the on time t ON of the active clocked switch. If this is higher than the setpoint mean value, the switch-on time period or the switch-off current threshold can be reduced, in the current order, in a subsequent switch-on operation of the actively-timed switch.
- the LED current I LED is compared with a reference value lavg soii by a comparator Kl.
- This reference value I aV g soll is therefore the nominal mean value for the LED current and can, for example, depend on an external or internal dimming value specification and / or the level of the LED voltage.
- This reference value l a vg so ii is a measure of the target power.
- the purpose of the control is that the duty cycle of the output of the comparator Kl during a turn-on period t 0N of the active clocked switch is 50%.
- the output signal of the comparator is supplied to a digital up / down counter COUNTER, which is clocked by a timer of the control unit (clock signal CNT_CLK).
- the COUNTER counter counts in one direction as long as the LED current I LED is below the reference value Iavg_setpoint, and in the opposite direction as soon as the LED current I LED reaches the reference value l avg so ii exceeds.
- the duty cycle of the comparison signal supplied to the counter COUNTER will be 50% and thus at the end of a switch-on period the counter reading will correspond exactly to its initial level.
- This deviation signal ERROR is fed to a preferably digital regulator REGULATOR, which is also clocked by a timer of the control unit by a signal reg_clk.
- REGULATOR controller implements a control strategy (eg PI controller) and controls a manipulated variable that influences the power of the LED depending on the input signal ERROR and the control strategy.
- This manipulated variable may, for example, be one or more of:
- the manipulated variable (s) can be changed in the current switch-on process, in each subsequent switch-on process or in every n-th switch-on process, where n is an integer greater than or equal to 2.
- the output signal of the further comparator K2 controls the switching off gate_off of the switch.
- the converter for the LED may, for example, also be a boost converter or a flyback converter.
Landscapes
- Circuit Arrangement For Electric Light Sources In General (AREA)
- Dc-Dc Converters (AREA)
- Led Devices (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL10711663T PL2420107T3 (pl) | 2009-04-14 | 2010-03-26 | Regulacja mocy led, za pomocą średniej wartości prądu led i dwukierunkowych liczników |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT2292009 | 2009-04-14 | ||
DE102009017139A DE102009017139A1 (de) | 2009-04-14 | 2009-04-15 | Leistungsregelung von LED |
DE102010003054 | 2010-03-19 | ||
PCT/EP2010/054014 WO2010118944A1 (de) | 2009-04-14 | 2010-03-26 | Leistungsregelung von led, mittels mittelwert des led-stroms und bidirektionaler zähler |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2420107A1 true EP2420107A1 (de) | 2012-02-22 |
EP2420107B1 EP2420107B1 (de) | 2015-07-08 |
Family
ID=42226646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10711663.4A Revoked EP2420107B1 (de) | 2009-04-14 | 2010-03-26 | Leistungsregelung von led, mittels mittelwert des led-stroms und bidirektionaler zähler |
Country Status (6)
Country | Link |
---|---|
US (1) | US9060406B2 (de) |
EP (1) | EP2420107B1 (de) |
CN (1) | CN102396295B (de) |
DE (1) | DE112010001622A5 (de) |
PL (1) | PL2420107T3 (de) |
WO (1) | WO2010118944A1 (de) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9084303B2 (en) * | 2010-06-04 | 2015-07-14 | Opulent Electronics International Pte. Ltd | Device and method for driving LEDs |
TWI465148B (zh) * | 2011-03-17 | 2014-12-11 | Green Solution Tech Co Ltd | 發光二極體驅動電路及發光二極體驅動控制器 |
TWI442811B (zh) * | 2011-05-27 | 2014-06-21 | Ind Tech Res Inst | 光源驅動裝置 |
GB2492833A (en) * | 2011-07-14 | 2013-01-16 | Softkinetic Sensors Nv | LED boost converter driver circuit for Time Of Flight light sources |
EP2600694B1 (de) | 2011-11-30 | 2013-11-20 | Vossloh-Schwabe Deutschland GmbH | LED-Treiberschaltung mit konstanter Stromsparbetriebsfläche |
KR101328340B1 (ko) * | 2011-12-16 | 2013-11-11 | 삼성전기주식회사 | 발광 소자 구동 장치 및 방법 |
DE102011088966A1 (de) | 2011-12-19 | 2013-06-20 | Tridonic Gmbh & Co. Kg | Betriebsschaltung für Leuchtdioden und Verfahren zum Betrieb von Leuchtdioden |
JP5519861B2 (ja) | 2012-02-09 | 2014-06-11 | パナソニック株式会社 | 電源回路 |
DE102012007477B4 (de) * | 2012-04-13 | 2024-02-22 | Tridonic Gmbh & Co Kg | Verfahren zum Betreiben eines LLC-Resonanzwandlers für ein Leuchtmittel, Wandler und LED-Konverter |
US8680781B1 (en) | 2012-09-07 | 2014-03-25 | Infineon Technologies Austria Ag | Circuit and method for driving LEDs |
US8803445B2 (en) * | 2012-09-07 | 2014-08-12 | Infineon Technologies Austria Ag | Circuit and method for driving LEDs |
DE102012216047A1 (de) * | 2012-09-11 | 2014-03-13 | Tridonic Gmbh & Co. Kg | Einstellung einer Leistungsfaktorkorrektur für Lastkreis mit Leuchtmitteln |
EP2709426A3 (de) * | 2012-09-14 | 2017-04-19 | Panasonic Intellectual Property Management Co., Ltd. | Lichtemittierende Festkörper-Elementantriebsvorrichtung Beleuchtungssystem und Leuchtenfassung |
AT14074U1 (de) * | 2013-04-30 | 2015-04-15 | Tridonic Gmbh & Co Kg | Betriebsschaltung für LED |
WO2016020334A2 (en) * | 2014-08-08 | 2016-02-11 | Koninklijke Philips N.V. | Converter with control loop |
AT16867U1 (de) | 2015-02-24 | 2020-11-15 | Tridonic Gmbh & Co Kg | Abwärtswandler zum Betreiben von Leuchtmitteln mit Spitzenstromwertsteuerung und Mittelstromwerterfassung |
DE102015210710A1 (de) | 2015-06-11 | 2016-12-15 | Tridonic Gmbh & Co Kg | Getaktete Sperrwandlerschaltung |
US9750092B2 (en) * | 2015-10-01 | 2017-08-29 | Xicato, Inc. | Power management of an LED-based illumination device |
AT15390U1 (de) * | 2016-04-29 | 2017-07-15 | Tridonic Gmbh & Co Kg | Verfahren zur Regelung eines LED-Moduls |
TW201926873A (zh) * | 2017-12-06 | 2019-07-01 | 群光電能科技股份有限公司 | 切換式電源之電路結構 |
US10698465B1 (en) * | 2019-05-13 | 2020-06-30 | Quanta Computer Inc. | System and method for efficient energy distribution for surge power |
JP2021048523A (ja) * | 2019-09-19 | 2021-03-25 | 株式会社東芝 | Led駆動制御回路、電子回路及びled駆動制御方法 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4592057A (en) | 1981-03-23 | 1986-05-27 | International Business Machines Corporation | Versatile digital controller for light emitting semiconductor devices |
DE3854094T2 (de) * | 1987-04-13 | 1996-01-25 | Sharp Kk | Apparat zum Betreiben einer Halbleiterlaservorrichtung. |
JPH0590691A (ja) | 1991-09-26 | 1993-04-09 | Sharp Corp | レーザ光出力制御装置 |
US5248879A (en) | 1992-10-19 | 1993-09-28 | Ncr Corporation | Circuit for adjusting the sensitivity of a sensor using a digital counter and a low-pass filter |
DE19841270A1 (de) | 1998-09-09 | 2000-03-16 | Siemens Ag | Ansteuerschaltung zum Erzeugen eines konstanten Stromes durch zumindest eine Leuchtdiode |
US6947848B2 (en) | 2000-08-07 | 2005-09-20 | Cooper Union For The Advancement Of Science And Art | System and method for identifying unknown compounds using spectra pattern recognition |
EP1488229B1 (de) | 2002-03-13 | 2012-10-24 | Q3Dm, Llc | System und verfahren zur automatischen farbsegmentierung und minimalen signifikanten antwort für die messung fraktionierter lokalisierter intensität zellulärer kompartimente |
DE10225670A1 (de) | 2002-06-10 | 2003-12-24 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Ansteuerschaltung für mindestens einen LED-Strang |
EP3223587A3 (de) | 2004-03-15 | 2017-11-08 | Philips Lighting North America Corporation | Leistungsregelungsverfahren und -vorrichtung |
US7075254B2 (en) * | 2004-12-14 | 2006-07-11 | Lutron Electronics Co., Inc. | Lighting ballast having boost converter with on/off control and method of ballast operation |
US7254044B2 (en) | 2005-01-11 | 2007-08-07 | Artesyn Technologies, Inc. | Current limit circuit and power supply including same |
US7323828B2 (en) * | 2005-04-25 | 2008-01-29 | Catalyst Semiconductor, Inc. | LED current bias control using a step down regulator |
EP1894444B1 (de) | 2005-06-10 | 2020-02-19 | Avago Technologies International Sales Pte. Limited | Regulierung von elektrischem strom durch eine widerstandslast |
US7215107B2 (en) * | 2005-07-11 | 2007-05-08 | Power Integrations, Inc. | Method and apparatus to limit output power in a switching power supply |
WO2007016373A2 (en) | 2005-07-28 | 2007-02-08 | Synditec, Inc. | Pulsed current averaging controller with amplitude modulation and time division multiplexing for arrays of independent pluralities of light emitting diodes |
EP1935217A4 (de) | 2005-10-12 | 2009-11-04 | Int Rectifier Corp | Integrierte schaltung für eine dimmbare ballaststeuerung |
US7259525B2 (en) | 2005-11-03 | 2007-08-21 | System General Corporation | High efficiency switching LED driver |
US7852300B2 (en) * | 2006-02-06 | 2010-12-14 | Exclara, Inc. | Current regulator for multimode operation of solid state lighting |
US7649325B2 (en) * | 2006-04-03 | 2010-01-19 | Allegro Microsystems, Inc. | Methods and apparatus for switching regulator control |
DE102006034371B4 (de) | 2006-04-21 | 2019-01-31 | Tridonic Ag | Betriebsschaltung und Betriebsverfahren für Leuchtdioden |
DE102006026938A1 (de) | 2006-06-09 | 2007-12-13 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | LED Lichtquelle mit konstanter Intensität während der Betriebsdauer |
US20100045190A1 (en) | 2008-08-20 | 2010-02-25 | White Electronic Designs Corporation | Led backlight |
AT508195B1 (de) * | 2009-04-30 | 2012-03-15 | Tridonic Gmbh & Co Kg | Betriebsschaltung für leuchtdioden |
CN103269550B (zh) * | 2013-06-04 | 2015-02-04 | 上海晶丰明源半导体有限公司 | 一种led电流纹波消除驱动电路 |
-
2010
- 2010-03-26 DE DE112010001622T patent/DE112010001622A5/de active Pending
- 2010-03-26 PL PL10711663T patent/PL2420107T3/pl unknown
- 2010-03-26 WO PCT/EP2010/054014 patent/WO2010118944A1/de active Application Filing
- 2010-03-26 CN CN201080017081.6A patent/CN102396295B/zh not_active Expired - Fee Related
- 2010-03-26 EP EP10711663.4A patent/EP2420107B1/de not_active Revoked
- 2010-03-26 US US13/264,568 patent/US9060406B2/en active Active
Non-Patent Citations (1)
Title |
---|
See references of WO2010118944A1 * |
Also Published As
Publication number | Publication date |
---|---|
DE112010001622A5 (de) | 2012-08-30 |
US20120133295A1 (en) | 2012-05-31 |
WO2010118944A1 (de) | 2010-10-21 |
CN102396295B (zh) | 2015-06-10 |
US9060406B2 (en) | 2015-06-16 |
EP2420107B1 (de) | 2015-07-08 |
PL2420107T3 (pl) | 2015-12-31 |
CN102396295A (zh) | 2012-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2420107B1 (de) | Leistungsregelung von led, mittels mittelwert des led-stroms und bidirektionaler zähler | |
DE102006034371B4 (de) | Betriebsschaltung und Betriebsverfahren für Leuchtdioden | |
EP2548409B1 (de) | Led-ansteuerung mit getakteter konstantstromquelle | |
AT519021B1 (de) | Leistungsregelung von led, mittels mittelwert des led-stroms und bidirektionaler zähler | |
EP3308604B1 (de) | Getaktete sperrwandlerschaltung | |
WO2016134945A1 (de) | Schaltregler zum betreiben von leuchtmitteln mit spitzenstromwertsteuerung und mittelstromwerterfassung | |
DE102014204127A1 (de) | LED-Treiber | |
DE102015217629A1 (de) | PFC-Modul für lückenden Betrieb | |
DE112013003502T5 (de) | Festkörperlichtquellen-Leuchtvorrichtung, Beleuchtungsvorrichtung, und Beleuchtungssystem | |
EP2512207B1 (de) | Treiberschaltung und Verfahren zum Versorgen einer LED sowie Leuchtmittel | |
WO2014176609A1 (de) | Betriebsschaltung für led | |
WO2011009733A1 (de) | Verfahren und schaltung zur ansteuerung eines hochsetzsteller in einer schaltung zur leistungsfaktor-korrektur | |
EP2266374B1 (de) | Leistungsregelung von gasentladungslampen in halbbrücken- und vollbrückenschaltungen | |
DE102010038787A1 (de) | Schaltungsanordnung und Verfahren zum Betreiben mindestens einer ersten und mindestens einer zweiten Led | |
AT16163U1 (de) | Lampenbetriebsgerät | |
DE102018110696B3 (de) | Betriebsvorrichtung und Verfahren zum Betreiben einer Leuchtmittelanordnung | |
EP3449692A1 (de) | Verfahren zur regelung eines led-moduls | |
EP2474206B1 (de) | Cosinus (phi) - korrektur bei strom- oder leistungsgeregelten betriebsgeräten für leuchtmittel | |
DE102008016757A1 (de) | Leistungsregelung von Gasentladungslampen in Halbbrückenschaltungen | |
AT16546U1 (de) | Pulsweitenmodulierte Ansteuerung einer getakteten Schaltung mit einstellbarer Leistungsübertragung | |
EP2896273A1 (de) | Regelschleife mit veränderbarer zeitkonstant einer leistungsfaktorkorrektur für lastkreis mit leuchtmitteln | |
DE102008014694A1 (de) | Leistungsregelung von Gasentladungslampen in Vollbrückenschaltungen | |
DE102012206044A1 (de) | Betrieb von Leuchtdioden | |
AT13981U1 (de) | Betriebsschaltung für Leuchtdioden | |
DE202017104810U1 (de) | Konverterschaltung und Regelung einer Konverterschaltung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20111013 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20140325 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150209 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 736237 Country of ref document: AT Kind code of ref document: T Effective date: 20150715 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010009822 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20150708 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151008 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151009 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151109 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151108 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502010009822 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 |
|
26 | Opposition filed |
Opponent name: OSRAM GMBH Effective date: 20160408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160331 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160326 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160326 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160331 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100326 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20180328 Year of fee payment: 9 |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20190328 Year of fee payment: 10 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 736237 Country of ref document: AT Kind code of ref document: T Effective date: 20190326 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502010009822 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H05B0033080000 Ipc: H05B0045000000 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190326 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20200319 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200327 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20210329 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20210326 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210329 Year of fee payment: 12 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R103 Ref document number: 502010009822 Country of ref document: DE Ref country code: DE Ref legal event code: R064 Ref document number: 502010009822 Country of ref document: DE |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
R26 | Opposition filed (corrected) |
Opponent name: OSRAM GMBH Effective date: 20160408 |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: MGE |
|
27W | Patent revoked |
Effective date: 20220217 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Effective date: 20220217 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MA03 Ref document number: 736237 Country of ref document: AT Kind code of ref document: T Effective date: 20220217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210326 |