EP2410237A1 - Reflector of the corrected elliptical type - Google Patents

Reflector of the corrected elliptical type Download PDF

Info

Publication number
EP2410237A1
EP2410237A1 EP11174353A EP11174353A EP2410237A1 EP 2410237 A1 EP2410237 A1 EP 2410237A1 EP 11174353 A EP11174353 A EP 11174353A EP 11174353 A EP11174353 A EP 11174353A EP 2410237 A1 EP2410237 A1 EP 2410237A1
Authority
EP
European Patent Office
Prior art keywords
focus
reflector
blade
light
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11174353A
Other languages
German (de)
French (fr)
Other versions
EP2410237B1 (en
Inventor
Pierre Albou
Julien Muller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Vision SAS
Original Assignee
Valeo Vision SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Vision SAS filed Critical Valeo Vision SAS
Publication of EP2410237A1 publication Critical patent/EP2410237A1/en
Application granted granted Critical
Publication of EP2410237B1 publication Critical patent/EP2410237B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/322Optical layout thereof the reflector using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • F21S41/148Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device the main emission direction of the LED being perpendicular to the optical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/285Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24 - F21S41/2805
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/321Optical layout thereof the reflector being a surface of revolution or a planar surface, e.g. truncated

Definitions

  • the invention relates to a lighting module for a motor vehicle headlamp as well as to a method of optimizing such a module. More particularly, the lighting module comprises a reflector with a first and second focus, such as an elliptical reflector, a blade of transparent material disposed near the second focus, and a dioptric element such as a convergent lens.
  • a reflector with a first and second focus such as an elliptical reflector
  • a blade of transparent material disposed near the second focus
  • a dioptric element such as a convergent lens
  • the slice or upper surface of the transparent blade is generally flat and aligned with the optical axis and covered with a reflective coating.
  • the leading edge of the wafer i.e., the edge of the wafer on the side of the lens is in the vicinity of the second focus.
  • the reflective coating on the upper edge of the transparent strip consists for example of an aluminum deposit deposited under vacuum with a thickness ranging from less than a micron to a few tens of microns.
  • the reflective coating constitutes a "folder” able to "fold” by reflection the rays coming from the upper reflector to ensure a cutoff of the "code” type beam thus generated.
  • the rays from the lower reflector are added to those of the upper reflector to provide the "road" function.
  • the bender thus formed has the advantage of being extremely thin which is particularly interesting in "road” function to avoid a dark area between the beams "code” and “road”. Such fineness of bending is difficult to achieve by means of a reflective plate, at least in an industrial logic and at a reasonable price.
  • the blade serving as a support for the reflective coating has the drawback of having a refractive index greater than 1 and hence of refracting the rays coming from the lower reflector.
  • the use of a transparent support blade therefore generates a slight deviation of the rays that otherwise would pass through the second focus. This results in a loss of efficiency and lighting quality, the maximum intensity being lower than in the absence of blade.
  • the lighting of the "code" type is provided by the establishment of a movable concealing cover between the folder and the lens. This construction leads to losses of efficiency since a portion of the lighting power is lost in the housing of the projector in lighting type "code".
  • the patent document FR 2 858 042 A1 discloses a lighting device comprising two elliptical reflectors arranged in opposition to a plane comprising the optical axis of the device. It differs from that of the preceding document essentially in that each reflector comprises its own light source, the lower reflector is inclined so that its optical axis forms an angle with the optical axis of the device and the upper reflector.
  • This construction eliminates the cache of the previous teaching and allows a little room for cooling light sources. They are in fact preferably light sources of the light emitting diode type that generate a certain amount of heat and require suitable cooling.
  • the device of this document differs from the previous teaching also in that the support of the coating forming the folder is no longer shaped blade but rounded part with a substantially flat upper face for the coating.
  • the rounded surface of the support is generally spherical centered on the second focus.
  • the rays from the lower reflector penetrate the transparent support to the normal of its outer surface so that the rays are not deflected by refraction.
  • This part is ideally made of PMMA (polymethyl methacrylate).
  • PMMA polymethyl methacrylate
  • the production of this support piece is quite expensive on an industrial scale, especially when it is made of glass.
  • the use of plastic material has indeed been problematic because of the presence of the lens that can cause overheating of this room by the outside light ("sun burn"). Glass is therefore preferred.
  • this piece has a significant thickness in comparison with the blade of the previous teaching, which increases the intrinsic losses by absorption.
  • Patent Application No. FR09 / 56728 of the same applicant as the present application and not yet published at the filing date of the present application relates to a lighting module comprising a double blade consisting of two superimposed blades with a slight clearance so as to form two diopters between the transparent material and the thin layer of air trapped between the two blades, these dioptres to ensure a total reflection phenomenon and thus play the role of folder.
  • the face of the blade facing the lower reflector ensuring the "road" function has a particular profile in order to recover some rays that would otherwise be lost.
  • the use of transparent blades generates a slight deviation of the rays that otherwise would pass through the second focus and, therefore, a loss of efficiency and lighting quality, including glassy reflections.
  • the object of the invention is to propose a lighting module that is more efficient than the modulators mentioned above.
  • the reflective surface according to the present invention is corrected compared to the two-focus reflective surfaces of the prior art.
  • the shape of the reflector is such that the light rays emitted by the light source and from the first focus are reflected to the second focus.
  • Blade use with these systems of the prior art causes the deviation of the rays starting from the first focus before they reach the second focus. After refraction these rays, which initially left the first focus, no longer pass through the second focus.
  • the surface is such that it is after refraction that these rays starting from the first focus pass through the second focus.
  • This also makes it possible to optimize the use of a blade as a folder support, and thus to have a folder of particularly thin thickness, particularly in an application where the folder serves as a cutoff for a first cut-off beam adding to a second complementary beam cut, to avoid a dark area between the beams. For example, a dark zone is avoided between a code beam with an upper cut and a complementary beam with a lower cut, the complementary beam associated with the code beam forming a road beam.
  • the reflective surface may for example be a corrected ellipsoid portion surface, i.e., a surface modified with respect to an ellipsoid portion surface so as to compensate for the refraction of the blade.
  • the corrected reflecting surface is such that it transforms a spherical wave surface in the air coming from a given point of the light source into a spherical wave surface in the material of the blade centered approximately at the second focus.
  • This given point is for example the center of the light source.
  • the corrected reflecting surface corresponds to a surface calculated on the basis of the Fermat principle of inverse light return and stationarity of the optical path followed by light along a path, starting from a beam of inverse rays passing through the second focus.
  • the calculated area is obtained by vector calculation of the inverse ray beam reflected by an imaginary surface corresponding to the area to be calculated, which is determined by imposing the constancy of the optical path along the calculated paths.
  • the blade is arranged to have a generally flat wafer and generally aligned with the optical axis of the dioptric element, said wafer forming a bender adapted to reflect a portion of the rays reflected by the reflective surface of the first reflector towards a portion of the dioptric element.
  • the edge of the blade is covered with a reflective coating.
  • the upper surface of the blade thus forms a folder with a particularly thin thickness, for example in order to avoid a dark area between the "road” and "code” beams.
  • the edge of the edge of the blade on the side of the dioptric element is approximately at said second focus.
  • the optical axis of the first reflector forms an angle with the optical axis of the dioptric element, preferably an angle of more than 10 °, more preferably an angle of more than 20 °. , more preferably still an angle of more than 30 °. Preferentially, this angle is less than 50 °. These angles make it possible to optimize the yield.
  • the first reflector is arranged so that its reflecting surface moves away from the optical axis of the dioptric element when said reflective surface approaches its first focus.
  • the first focus of the reflecting surface is located below the optical axis of the dioptric element.
  • the proposed reflective surface correction is particularly interesting for this configuration of the reflector, namely when it is inclined and moreover when it is "turned over”. Indeed, in this configuration, the rays penetrate the blade with a greater angle of incidence and therefore undergo a greater deviation. The correction compensates for this deviation.
  • the module comprises a second reflector with a reflective surface, at least a first focus for a light source, a second focus, said reflecting surface being able to reflect the rays emitted by said light source.
  • said second focus being approximately coincident with the second focus of the first reflector
  • the optical axis of the second reflector forming an angle with the optical axis of the first reflector
  • the first and second reflectors being oriented by relative to their axes so that the reflecting surface of the second reflector is vis-à-vis the outer surface of the first reflector, this outer surface being the opposite surface to the reflecting surface of the first reflector.
  • the reflective face of the second reflector is facing the back of the second reflector.
  • the light source or sources are electroluminescent diodes.
  • the invention also consists in a method for optimizing a lighting module of a motor vehicle headlamp, the module comprising: a first reflector with a reflective surface, with at least a first focus for a light source and a second home; a dioptric element with an optical axis, arranged to receive the light rays reflected by the first reflector and to transmit the light rays reaching it in a light beam; a blade of transparent material disposed near said second focus.
  • This method comprises a step of producing the reflective surface of the first reflector.
  • This embodiment comprises the correction of a reflective surface capable of reflecting the light rays emitted by the light source from the first focus to the second focus, this correction being performed so that rays emitted by said light source and starting of the first focus pass approximately through said second focus after reflection on said reflective surface and refraction when passing through said blade.
  • the correction of said reflective surface can be carried out by vector calculation of the optical path of a beam of inverse rays which, according to the principle of the inverse return of light, pass through the second focus then the blade, leave the blade with refraction and are then reflected by an imaginary surface corresponding to the surface to be calculated, the area to be calculated being obtained by applying the principle of Fermat reverse light reversal and stationarity of the optical path followed by light along a path .
  • the reflecting surface of the first reflector is obtained by vector calculation of the optical path of a beam of inverse rays reflected by an imaginary surface corresponding to the surface to be calculated.
  • the beam of inverse rays passes through the second focus then the blade, leaving the blade with refraction and then reflected by an imaginary surface corresponding to the surface to be calculated.
  • the module is a module according to the invention as defined above.
  • the first reflector and / or the second reflector is / are preferably in the form of a half-shell.
  • optical elements are illustrated in the figures in a simplified manner with perfect matching of the focal points and optical axes for the sake of clarity of presentation. Such matches are not to be interpreted strictly, since in practice there may be slight deviations due to the imperfect nature of certain elements, mounting tolerance and / or to correct some effects related to imperfection of certain optical elements. The same applies to the light sources which are represented in a specific way, whereas it is clear that in practice these light sources are not perfectly punctual and have a light emission surface that has been chosen here. voluntarily not to represent.
  • FIG 1 is schematically illustrated in perspective a lighting module according to the invention. It comprises a convergent lens 4 with a focus 24 and an optical axis 2 passing through the focus.
  • a transparent plate 6 is disposed generally perpendicularly to the optical axis 2, or generally vertically in the half-space delimited by a horizontal median plane passing through the optical axis 2.
  • the blade has a generally flat upper edge 26 comprising the axis optical 2 and at least approximately passing through the plane in question.
  • the upper edge 26 is covered with a reflective coating. This coating is applied exclusively to the wafer 26, leaving the other faces transparent blade.
  • the blade is arranged so that the front edge is at the focus 24.
  • the wafer 26 has a projection at its median corresponding to the optical axis 2. The function of the jump will be explained further later.
  • the blade is made of transparent material such as glass or any other transparent material, for example PMMA (polymethyl methacrylate).
  • edge 26 of the blade can perform the folding function without the presence of a reflective coating, and this by the use of the principle of total reflection on a diopter formed by the interface between two media index of different refraction. In this case, it will be necessary to ensure that the rays meet the diopter formed by the wafer with an angle of incidence greater than the limit angle of total reflection.
  • the module also comprises a first reflector 10 in the lower half-space. It is represented schematically by its reflective surface. This surface has an approximate elliptical profile, symmetrical in rotation about its optical axis 20. It comprises a first focus 22 intended to receive a light source and a second focus coinciding with the focus 24 of the lens 4.
  • the optical axis 20 of the first reflector forms an angle with the optical axis 2 which is between 30 ° and 60 °, preferably between 40 ° and 50 °.
  • the light source mainly illuminates in a half-space delimited by the transverse plane comprising the optical axis 20 of the reflector and is preferably of the type of diode electrolum inescente.
  • the module also comprises a second reflector 8 represented by its reflecting surface. It is composed of two reflecting sub-surfaces of symmetrical elliptical profile in revolution with respect to the respective optical axes 12 and 14. Each reflective sub-surface includes a first focus 16 or 18 for receiving a light source and a second focus coinciding with focus 24 of the lens and the second focus of the first reflector.
  • the reflecting surface of the second reflector 8 consists of the juxtaposition of the two sub-surfaces in a half-space delimited by a plane passing through the respective optical axes 12 and 14 and the optical axis 2 of the lens 4, so as to form a doubly concave cavity able to reflect the light rays coming from the first
  • the two respective optical axes 12 and 14 form an acute angle between them and each form an angle equal to the optical axis 2 of the lens and the module.
  • the lighting module also comprises a reflective plate 9 on its two faces and disposed approximately in the plane passing through the optical axes 12 and 14 of the second reflector and the reflecting edge 26 of the blade 6. It is disposed adjacent or almost -Adjacent to the rear edge of the wafer and extends to a distance from this rear edge.
  • the rear edge of the plate 9 reaches approximately the height of the intersection of the reflecting surface of the first reflector 10 with said plane. More specifically, the profile of the rear edge of the reflective plate 9 is V-shaped whose tip is aligned with the optical axis and symmetry 2 of the module and directed rearwardly, so that the reflecting surface of the plate covers a major part of the area defined by the intersection of the reflective surface of the first reflector with the plane.
  • the reflective plate 9 plays the role of complementary folder and will be explained later.
  • optical axes 12 and 14 of the reflective sub-surfaces of the second reflector 8 need not be included in the horizontal median plane. Indeed, they can form a certain angle with this plane.
  • FIG. 2 A sectional view and optical principle of the device of the figure 1 is illustrated in the figure 2 .
  • it has been chosen to assimilate the second reflector to a single reflective surface with a single first focus and a single light source. This simplification does not alter the operating principle of the second reflector comprising two reflecting sub-surfaces and two light sources.
  • the second reflector 8 generates with its light source or sources 16 and 18 a cut-off beam ensuring for example a lighting function of the "code" type. Indeed, the majority of the rays emitted by the light source are reflected by the reflecting surface of the second reflector 8 to the second focus 24 and are transmitted by the lens in a beam of substantially parallel rays. Such a ray is illustrated by a solid line from the light source 16, 18 to the lens through the reflective surface and the second focus 24. Some rays, especially those emitted from a front lateral area of the light source, meet the folder 26 at the rear of the focus 24. They are reflected or "folded" towards an upper part of the lens with an angle of incidence such that they come out of the lens tilted slightly down.
  • the folder thus plays the role of a cache in a conventional projection system and the projection of its edge forms the horizontal cut of the projected beam, this cutoff being useful in particular for a lighting function of the "code” type.
  • the folder comprises a projection at the front edge, so-called cutting edge, so that the cut is higher on one side than the other of the vertical median plane in order to project a cut. beam type "code" in accordance with the legislation.
  • the figure 3 is a view similar to that of the figure 2 where among the two reflectors, only the lower reflector, namely the first reflector, is illustrated.
  • This view is enlarged and illustrates certain optical features of the module according to the invention.
  • a first ray interrupted and corresponding to that of the figure 2 is illustrated. It is emitted by the light source 22, is reflected by the reflective surface, penetrates the transparent plate 6 and undergoes a first refraction, passes through the blade, passes through the focus 24, leaves the blade and undergoes a second refraction before meeting the lens in its upper half.
  • a second ray is shown in solid lines. It is emitted by an off-center zone of the light source 22 and is reflected towards an area of the folder slightly behind the second focal point 24.
  • the upper edge of the blade forming the folder is ideally inclined from the cutoff edge to the bottom of the module to further concentrate the rays reflected by the folder.
  • the figure 4 is an enlarged view of the top of the blade.
  • the upper edge 26 included in the horizontal median plane is illustrated in solid lines.
  • the inclined upper edge 36 is shown in broken lines. It has a clearance angle 13 with respect to the horizontal median plane. This angle corresponds to a clearance of height d at the rear face of the blade.
  • a ray 28 from the first reflector 10 and penetrating the blade is illustrated. It is refracted and undergoes a first deflection 30.
  • the outgoing ray 40 undergoes a second refraction and forms an angle ⁇ 'with the normal to the front face of the blade which is less than the value ⁇ of the same incident ray reflected by the inclined bender 36. Because of these two effects, the Outgoing ray 40 will meet the lens at a lower incident angle and at a point closer to the optical axis. The projected beam from such rays will therefore be closer to the horizontal and provide higher photometric illumination due to lower losses by glassy reflections, especially on the front face of the blade and on the faces of the lens.
  • the material of the blade will preferably be glass as opposed to plastic materials for reasons of temperature resistance. Indeed, the presence of the lens has the effect that the external sunlight can concentrate via the lens at the focus 24 and overheat the material of the blade.
  • the edge of the blade opposite the edge serving as a folder may also be similarly inclined, and this symmetrically so as to reduce the height of the rear face of a given value. Although this slice of the blade does play no role from the point of view of optics, such inclination or clearance angle simplifies the shaping of the blade by simplifying demolding in a direction perpendicular to the front and rear faces. The optical faces can then be surfaced to ensure flatness and optical qualities.
  • the reflective surface of the first reflector is corrected to compensate for the first refraction to which the rays are subjected upon entry into the blade.
  • the calculation of the correction of the surface will be described below in relation to the figure 5 .
  • the calculation is based on the application of the Huygens principle and Fermat's optical path principle.
  • the light spreads from one to the next, the set of points of equal light disturbance being called the wave surface.
  • Each point of this surface reached by light behaves like a secondary source that emits spherical wavelets in an isotropic medium.
  • the envelope surface of these wavelets forms a new wave surface.
  • n c / v
  • c and v are the speed of light in the vacuum and in the medium, respectively.
  • the optical path is the path traveled by the light traveled in a vacuum during the propagation time in the medium:
  • s denotes the curvilinear abscissa along the path traveled in the middle between points A and B, and AB the length of the path traveled between A and B.
  • the Fermat principle is stated: between two points A and B, reached by the light, the optical path followed along the path is stationary.
  • the vector is known since the points F and P are known, the vector has been calculated on the basis of the above-mentioned calculation and ⁇ is known, it is then sufficient to set a constant K which is suitable for then calculating the value of p and deducing a point from the surface for a vector given.
  • K is suitable for then calculating the value of p and deducing a point from the surface for a vector given.
  • the skilled person will have no difficulty in implementing such a calculation including numerical iterative calculation methods.
  • the reflector is corrected so as to transform a spherical wave surface from a source point F to the surface of the emitter into a spherical wave surface in the material of the blade, centering the second focus 24, this second focus being located in the material of the blade in the vicinity of its front exit face and its upper face (slice).
  • the elliptical reflective surface correction is applicable to various configurations, including the configuration of the reflector 10 of the present invention, as well as to a conventional configuration as shown in broken line at the end of FIG. figure 5 .
  • the correction does not necessarily have to be made on the entire reflective surface but essentially on the area reflecting the rays that will form the central part of the beam.
  • the figure 6 illustrates an elliptical reflector configuration in a half-space and whose surface is generally oriented towards the optical axis of the module, showing in particular the effect of the reflective surface correction.
  • it illustrates a lighting module configuration with two elliptical reflectors 8 and 42 in opposite half-spaces and whose reflective surfaces are both directed towards the optical axis 2 of the module.
  • the optical axes of the reflectors are slightly inclined to provide a space for cooling the light sources 16, 18 and 44.
  • a first ray from the light source 44 and reflected at a point A is shown in solid lines.
  • the broken line associated with the solid line illustrates the optical path that would follow the ray if the reflecting surface was not corrected according to the transparent blade 6; namely, this ray would be refracted as it enters the blade and would be deflected from the second focus 24.
  • a second ray from the light source 44 and reflected at a point B closer to the optical axis of the reflecting surface is shown in a line. full. This grazing ray and directed towards the hearth 24 will meet the space dedicated to cooling and get lost instead of penetrating the blade. In this configuration, some of the rays will be lost in the cooling radiator of the light sources. This situation is all the more true as the surface of the reflector is corrected.
  • this correction has the effect of reflecting the rays from the light source so as to have a deviation from the second focus, this deviation being such that the rays are oriented towards a point at the rear of the second focus, which intensifies the problem of loss of rays in the space needed to cool the light sources.
  • the figure 7 illustrates the effect of reflective surface correction for an elliptical reflector configuration in a half-space and whose surface is generally opposite to the optical axis of the module.
  • a first ray coming from the light source 22 and reflected at a point A of the corrected reflecting surface is shown in solid lines. In the absence of correction of the surface, this ray would point to the second focus 24 but would be deflected when it enters the blade and would pass below the focus. This line is illustrated in broken lines.
  • the reflector about 180 ° on its optical axis has on the one hand to minimize or even eliminate the thickness of the dead volume adjacent to the rear edge of the folder, and secondly tilt the rays reflected by the reflector so that most of them do not get lost in building elements of the module.
  • the correction of the reflective surface is all the more interesting in this configuration that the average angle of incidence on the rear face of the blade is important.
  • a second ray coming from the light source and reflected by a point B further from the optical axis of the reflector is also illustrated. This spoke will meet the complementary folder 9 so as to be returned to the blade and participate in the production of ambient light beam.
  • the preferred light source is of the electroluminescence diode type.
  • Such a source illuminates in a half-space but concentrates a major part of the lighting power in a cone centered on its main illumination axis (that is to say a perpendicular to the optical axis of the reflector), so that the configuration of the figure 7 will allow the spokes forming most of the lighting power to work optimally.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

The module has a dioptric element (4) provided with an optical axis (2), and receiving luminous rays reflected by reflectors (10). A transparent material bar (6) is arranged between the reflectors and the dioptric element. A reflective surface is formed such that the rays emitted by a light source and originated from a combustor (22) passes through another combustor (24) after reflexion on the reflective surface and refraction at the passage in the bar. An independent claim is also included for a method for optimizing a lighting module of a headlamp of a motor vehicle.

Description

L'invention a trait à un module d'éclairage pour projecteur véhicule automobile ainsi qu'à un procédé d'optimisation d'un tel module. Plus particulièrement, le module d'éclairage comprend un réflecteur avec un premier et second foyer, tel qu'un réflecteur elliptique, une lame en matériau transparent disposée à proximité du second foyer, et un élément dioptrique comme par exemple une lentille convergente.The invention relates to a lighting module for a motor vehicle headlamp as well as to a method of optimizing such a module. More particularly, the lighting module comprises a reflector with a first and second focus, such as an elliptical reflector, a blade of transparent material disposed near the second focus, and a dioptric element such as a convergent lens.

Pour créer des coupures dans les faisceaux, il est connu d'utiliser des caches horizontaux réfléchissants appelés « plieuses », comme par exemple dans le document de brevet EP1357334 . Il est connu du document FR 2 917 484 A1 de prévoir un tel dispositif avec un revêtement réfléchissant sur la tranche supérieure d'une lame en guise de plieuse. Ce document divulgue en effet un module optique comprenant un double réflecteur du type elliptique avec un premier foyer où une source lumineuse est disposée, un second foyer, un élément dioptrique du type lentille biconvexe dont le foyer est confondu avec le second foyer du réflecteur, et une lame en matériau transparent disposée perpendiculairement à l'axe optique du module. La tranche ou surface supérieure de la lame transparente est généralement plane et alignée avec l'axe optique et recouverte d'un revêtement réfléchissant. Le bord avant de la tranche, c'est-à-dire le bord de la tranche du côté de la lentille est au voisinage du second foyer. Le revêtement réfléchissant sur la tranche supérieure de la lame transparent consiste par exemple en un dépôt d'aluminium, déposé sous vide avec une épaisseur allant de moins de un micron à quelques dizaines de microns. Le revêtement réfléchissant constitue une « plieuse » apte à « replier » par réflexion les rayons provenant du réflecteur supérieur afin d'assurer une coupure du faisceau du type « code » ainsi généré. Les rayons provenant du réflecteur inférieur viennent s'ajouter à ceux du réflecteur supérieur afin d'assurer la fonction « route ». La plieuse ainsi formée présente l'avantage d'être extrêmement fine ce qui est particulièrement intéressant en fonction « route » afin d'éviter une zone sombre entre les faisceaux « code » et « route ». Une telle finesse de plieuse est difficile à atteindre au moyen d'une plaque réfléchissante, à tout le moins dans une logique industrielle et à un prix raisonnable.To create cuts in the beams, it is known to use horizontal reflective covers called "folders", as for example in the patent document EP1357334 . It is known from the document FR 2 917 484 A1 to provide such a device with a reflective coating on the upper edge of a blade as a folder. This document indeed discloses an optical module comprising a double reflector of the elliptical type with a first focus where a light source is arranged, a second focus, a dioptric element of the biconvex lens type whose focus coincides with the second focus of the reflector, and a blade of transparent material disposed perpendicularly to the optical axis of the module. The slice or upper surface of the transparent blade is generally flat and aligned with the optical axis and covered with a reflective coating. The leading edge of the wafer, i.e., the edge of the wafer on the side of the lens is in the vicinity of the second focus. The reflective coating on the upper edge of the transparent strip consists for example of an aluminum deposit deposited under vacuum with a thickness ranging from less than a micron to a few tens of microns. The reflective coating constitutes a "folder" able to "fold" by reflection the rays coming from the upper reflector to ensure a cutoff of the "code" type beam thus generated. The rays from the lower reflector are added to those of the upper reflector to provide the "road" function. The bender thus formed has the advantage of being extremely thin which is particularly interesting in "road" function to avoid a dark area between the beams "code" and "road". Such fineness of bending is difficult to achieve by means of a reflective plate, at least in an industrial logic and at a reasonable price.

La lame servant du support au revêtement réfléchissant présente cependant l'inconvénient d'avoir un indice de réfraction supérieure à 1 et, partant, de réfracter les rayons provenant du réflecteur inférieur. L'utilisation d'une lame transparente support génère par conséquent une légère déviation des rayons qui sinon passeraient par le second foyer. Il en résulte une perte de rendement et de qualité d'éclairage, l'intensité maximum étant plus faible qu'en l'absence de lame. De plus, l'éclairage du type « code » est assuré par la mise en place d'un cache mobile occultant entre la plieuse et la lentille. Cette construction conduit à des pertes de rendement puisqu'une partie de la puissance d'éclairage se perd dans le boîtier du projecteur en éclairage du type « code ».The blade serving as a support for the reflective coating, however, has the drawback of having a refractive index greater than 1 and hence of refracting the rays coming from the lower reflector. The use of a transparent support blade therefore generates a slight deviation of the rays that otherwise would pass through the second focus. This results in a loss of efficiency and lighting quality, the maximum intensity being lower than in the absence of blade. In addition, the lighting of the "code" type is provided by the establishment of a movable concealing cover between the folder and the lens. This construction leads to losses of efficiency since a portion of the lighting power is lost in the housing of the projector in lighting type "code".

Le document de brevet FR 2 858 042 A1 divulgue un dispositif d'éclairage comprenant deux réflecteurs elliptiques disposés en opposition par rapport à un plan comprenant l'axe optique du dispositif. Il se distingue de celui du document précédent essentiellement en ce que chaque réflecteur comprend sa propre source lumineuse, le réflecteur inférieur est incliné de manière à ce que son axe optique forme un angle avec l'axe optique du dispositif et du réflecteur supérieur. Cette construction permet de s'affranchir du cache de l'enseignement précédent et permet de ménager un peu de place pour le refroidissement des sources lumineuses. Il s'agit en effet préférentiellement de sources lumineuses du type à diode électroluminescente qui génèrent une certaine quantité de chaleur et requièrent un refroidissement adapté. Le dispositif de ce document se distingue de l'enseignement précédent également en ce que le support du revêtement formant la plieuse n'est plus en forme de lame mais bien de pièce arrondie avec une face supérieure essentiellement plate pour le revêtement. La surface arrondie du support est généralement sphérique centrée sur le second foyer. Les rayons provenant du réflecteur inférieur pénètrent le support transparent à la normale de sa surface extérieure si bien que les rayons ne sont pas déviés par réfraction. Cette pièce est idéalement réalisée en PMMA (polymétacrylate de méthyle). La réalisation de cette pièce support est assez coûteuse à échelle industrielle, en particulier lorsqu'elle est en verre. L'utilisation de matière plastique s'est en effet avérée problématique en raison de la présence de la lentille qui peut occasionner une surchauffe de cette pièce par la lumière extérieure (« sun burn »). Le verre est par conséquent privilégié. De plus, cette pièce présente une épaisseur importante en comparaison avec la lame de l'enseignement précédent, ce qui augmente les pertes intrinsèques par absorption.The patent document FR 2 858 042 A1 discloses a lighting device comprising two elliptical reflectors arranged in opposition to a plane comprising the optical axis of the device. It differs from that of the preceding document essentially in that each reflector comprises its own light source, the lower reflector is inclined so that its optical axis forms an angle with the optical axis of the device and the upper reflector. This construction eliminates the cache of the previous teaching and allows a little room for cooling light sources. They are in fact preferably light sources of the light emitting diode type that generate a certain amount of heat and require suitable cooling. The device of this document differs from the previous teaching also in that the support of the coating forming the folder is no longer shaped blade but rounded part with a substantially flat upper face for the coating. The rounded surface of the support is generally spherical centered on the second focus. The rays from the lower reflector penetrate the transparent support to the normal of its outer surface so that the rays are not deflected by refraction. This part is ideally made of PMMA (polymethyl methacrylate). The production of this support piece is quite expensive on an industrial scale, especially when it is made of glass. The use of plastic material has indeed been problematic because of the presence of the lens that can cause overheating of this room by the outside light ("sun burn"). Glass is therefore preferred. In addition, this piece has a significant thickness in comparison with the blade of the previous teaching, which increases the intrinsic losses by absorption.

La demande de brevet n° FR09/56728 du même déposant que la présente demande et non encore publiée à la date dépôt de la présente demande a trait à un module d'éclairage comprenant une double lame constituée de deux lames superposées avec un léger jeu de manière à former deux dioptres entre la matière transparente et la fine couche d'air emprisonnée entre les deux lames, ces dioptres permettant d'assurer un phénomène de réflexion totale et ainsi de jouer le rôle de plieuse. La face de la lame faisant face au réflecteur inférieur assurant la fonction « route » présente un profil particulier afin de récupérer certains rayons qui seraient sinon perdus. Tout comme pour l'enseignement du document FR 2 917 484 A1 , l'utilisation de lames transparentes génère une légère déviation des rayons qui sinon passeraient par le second foyer et, partant, une perte de rendement et de qualité d'éclairage, notamment par réflexions vitreuses.Patent Application No. FR09 / 56728 of the same applicant as the present application and not yet published at the filing date of the present application relates to a lighting module comprising a double blade consisting of two superimposed blades with a slight clearance so as to form two diopters between the transparent material and the thin layer of air trapped between the two blades, these dioptres to ensure a total reflection phenomenon and thus play the role of folder. The face of the blade facing the lower reflector ensuring the "road" function has a particular profile in order to recover some rays that would otherwise be lost. Just like teaching the document FR 2 917 484 A1 , the use of transparent blades generates a slight deviation of the rays that otherwise would pass through the second focus and, therefore, a loss of efficiency and lighting quality, including glassy reflections.

L'invention a pour but de proposer un module d'éclairage plus performant que les modulés cités précédemment.The object of the invention is to propose a lighting module that is more efficient than the modulators mentioned above.

L'objet de l'invention concerne en un module d'éclairage pour un projecteur de véhicule automobile, comprenant :

  • un premier réflecteur avec une surface réfléchissante, avec au moins un premier foyer pour une source lumineuse et un second foyer;
  • un élément dioptrique avec un axe optique, disposé de manière à recevoir les rayons lumineux réfléchis par le premier réflecteur et à transmettre les rayons lumineux l'atteignant en un faisceau lumineux ; cet élément dioptrique peut par exemple être une lentille convergente ;
  • une lame en matériau transparent, disposée entre le premier réflecteur et l'élément dioptrique ;
la surface réfléchissante étant formée de manière à ce que des rayons émis par la source lumineuse et partant du premier foyer passent approximativement par le second foyer après réflexion sur la surface réfléchissante et réfraction au passage dans la lame.The object of the invention relates to a lighting module for a motor vehicle headlamp, comprising:
  • a first reflector with a reflective surface, with at least a first focus for a light source and a second focus;
  • a dioptric element with an optical axis, arranged to receive the light rays reflected by the first reflector and to transmit the light rays reaching it in a light beam; this dioptric element may for example be a convergent lens;
  • a blade of transparent material disposed between the first reflector and the dioptric element;
the reflecting surface being formed in such a way that rays emitted by the light source and starting from the first focus pass approximately through the second focus after reflection on the reflective surface and refraction when passing through the blade.

Ainsi, la surface réfléchissante selon la présente invention est corrigée comparé aux surfaces réfléchissantes à deux foyers de l'art antérieur. Dans, l'art antérieur la forme du réflecteur est telle que les rayons lumineux émis par la source lumineuse et partant du premier foyer sont réfléchis vers le second foyer. L'utilisation de lame avec ces systèmes de l'art antérieur entraîne la déviation des rayons partant du premier foyer avant qu'ils n'atteignent le second foyer. Après réfraction ces rayons, qui partaient initialement du premier foyer, ne passent plus par le second foyer. En revanche, selon l'invention, la surface est telle que c'est après réfraction que ces rayons partant du premier foyer passent par le second foyer. On a donc, selon la présente invention une surface à deux foyers corrigée.Thus, the reflective surface according to the present invention is corrected compared to the two-focus reflective surfaces of the prior art. In the prior art the shape of the reflector is such that the light rays emitted by the light source and from the first focus are reflected to the second focus. Blade use with these systems of the prior art causes the deviation of the rays starting from the first focus before they reach the second focus. After refraction these rays, which initially left the first focus, no longer pass through the second focus. On the other hand, according to the invention, the surface is such that it is after refraction that these rays starting from the first focus pass through the second focus. Thus, according to the present invention, a corrected two-focus surface.

Ces mesures permettent d'optimiser de manière simple le réflecteur en corrigeant au moins une partie de sa surface réfléchissante afin de compenser l'effet de réfraction de la lame. Cela permet d'améliorer la photométrie de réflecteur avec une lame entre le réflecteur et la lentille. L'utilisation d'une lame entre le réflecteur et la lentille peut être faite de différentes façons. L'utilisation d'une lame cause cependant des pertes de lumière de l'ordre de quelques pourcents, par exemple de l'ordre de 10%, en fonction du matériau et de l'épaisseur de lame. Il est donc important pour des raisons de rendement d'optimiser l'optique du module. La correction proposée permet d'obtenir un faisceau plus concentré et de meilleure photométrie. Ceci permet également d'optimiser l'utilisation d'une lame comme support de plieuse, et ainsi d'avoir une plieuse d'épaisseur particulièrement mince, notamment dans une application où la plieuse sert de coupure pour un premier faisceau à coupure s'ajoutant à un deuxième faisceau complémentaire à coupure, en vue d'éviter une zone sombre entre les faisceaux. Par exemple, on évite une zone sombre entre un faisceau code avec une coupure supérieure et un faisceau complémentaire avec une coupure inférieure, le faisceau complémentaire associé au faisceau code formant un faisceau route.These measurements make it possible to simply optimize the reflector by correcting at least a portion of its reflective surface in order to compensate for the refractive effect of the blade. This improves the reflector photometry with a blade between the reflector and the lens. The use of a blade between the reflector and the lens can be done in different ways. The use of a blade, however, causes light losses of the order of a few percent, for example of the order of 10%, depending on the material and the thickness of the blade. It is therefore important for reasons of efficiency to optimize the optics of the module. The proposed correction provides a more concentrated beam and better photometry. This also makes it possible to optimize the use of a blade as a folder support, and thus to have a folder of particularly thin thickness, particularly in an application where the folder serves as a cutoff for a first cut-off beam adding to a second complementary beam cut, to avoid a dark area between the beams. For example, a dark zone is avoided between a code beam with an upper cut and a complementary beam with a lower cut, the complementary beam associated with the code beam forming a road beam.

La surface réfléchissante peut par exemple être une surface de portion d'ellipsoïde corrigée, c'est-à-dire une surface modifiée par rapport à une surface de portion d'ellipsoïde de manière à compenser la réfraction de la lame.The reflective surface may for example be a corrected ellipsoid portion surface, i.e., a surface modified with respect to an ellipsoid portion surface so as to compensate for the refraction of the blade.

Selon un mode avantageux de l'invention, la surface réfléchissante corrigée est telle qu'elle transforme une surface d'onde sphérique dans l'air issue d'un point donné de la source lumineuse en une surface d'onde sphérique dans le matériau de la lame centrée approximativement au second foyer. Ce point donné est par exemple le centre de la source lumineuse.According to an advantageous embodiment of the invention, the corrected reflecting surface is such that it transforms a spherical wave surface in the air coming from a given point of the light source into a spherical wave surface in the material of the blade centered approximately at the second focus. This given point is for example the center of the light source.

La surface réfléchissante corrigée correspond à une surface calculée sur base du principe de Fermat de retour inverse de la lumière et de stationnarité du chemin optique suivi par la lumière le long d'un trajet, en partant d'un faisceau de rayons inverses passant par le second foyer.The corrected reflecting surface corresponds to a surface calculated on the basis of the Fermat principle of inverse light return and stationarity of the optical path followed by light along a path, starting from a beam of inverse rays passing through the second focus.

La surface calculée est obtenue par calcul vectoriel du faisceau de rayons inverses réfléchis par une surface imaginaire correspondant à la surface à calculer, qui est déterminée en imposant la constance du chemin optique le long des trajets calculés.The calculated area is obtained by vector calculation of the inverse ray beam reflected by an imaginary surface corresponding to the area to be calculated, which is determined by imposing the constancy of the optical path along the calculated paths.

Selon un autre mode avantageux de l'invention, la lame est disposée de manière à présenter une tranche généralement plane et généralement alignée avec l'axe optique de l'élément dioptrique, ladite tranche formant une plieuse apte à réfléchir une partie des rayons réfléchis par la surface réfléchissante du premier réflecteur vers une partie de l'élément dioptrique. Préférentiellement, la tranche de la lame est couverte d'un revêtement réfléchissant. La surface supérieure de la lame forme ainsi une plieuse avec une épaisseur particulièrement mince, par exemple en vue d'éviter une zone sombre entre les faisceaux « route » et « code ».According to another advantageous embodiment of the invention, the blade is arranged to have a generally flat wafer and generally aligned with the optical axis of the dioptric element, said wafer forming a bender adapted to reflect a portion of the rays reflected by the reflective surface of the first reflector towards a portion of the dioptric element. Preferably, the edge of the blade is covered with a reflective coating. The upper surface of the blade thus forms a folder with a particularly thin thickness, for example in order to avoid a dark area between the "road" and "code" beams.

Selon un encore autre mode avantageux de l'invention, le bord de la tranche de la lame du côté de l'élément dioptrique est approximativement au niveau dudit second foyer.According to yet another advantageous embodiment of the invention, the edge of the edge of the blade on the side of the dioptric element is approximately at said second focus.

Selon un encore autre mode avantageux de l'invention, l'axe optique du premier réflecteur forme un angle avec l'axe optique de l'élément dioptrique, préférentiellement un angle de plus de 10°, plus préférentiellement un angle de plus de 20°, plus préférentiellement encore un angle de plus de 30°. Préférentiellement encore cet angle est inférieur à 50°. Ces angles permettent d'optimiser le rendement.According to another advantageous embodiment of the invention, the optical axis of the first reflector forms an angle with the optical axis of the dioptric element, preferably an angle of more than 10 °, more preferably an angle of more than 20 °. , more preferably still an angle of more than 30 °. Preferentially, this angle is less than 50 °. These angles make it possible to optimize the yield.

Selon un encore autre mode avantageux de l'invention, le premier réflecteur est disposé de manière à ce que sa surface réfléchissante s'éloigne de l'axe optique de l'élément dioptrique lorsque ladite surface réfléchissante se rapproche de son premier foyer. Par exemple, lorsque l'axe optique de l'élément dioptrique est horizontal, le premier foyer de la surface réfléchissante est situé dessous l'axe optique de l'élément dioptrique.According to yet another advantageous embodiment of the invention, the first reflector is arranged so that its reflecting surface moves away from the optical axis of the dioptric element when said reflective surface approaches its first focus. For example, when the optical axis of the dioptric element is horizontal, the first focus of the reflecting surface is located below the optical axis of the dioptric element.

La correction de surface réfléchissante proposée est particulièrement intéressante pour cette configuration du réflecteur, à savoir lorsqu'il est incliné et de surcroît lorsqu'il est « retourné ». En effet, dans cette configuration, les rayons pénètrent la lame avec un angle d'incidence plus important et subissent par conséquent une plus grande déviation. La correction permet de compenser cette déviation.The proposed reflective surface correction is particularly interesting for this configuration of the reflector, namely when it is inclined and moreover when it is "turned over". Indeed, in this configuration, the rays penetrate the blade with a greater angle of incidence and therefore undergo a greater deviation. The correction compensates for this deviation.

Selon un encore autre mode avantageux de l'invention, le module comprend un deuxième réflecteur avec une surface réfléchissante, au moins un premier foyer pour une source lumineuse, un second foyer, ladite surface réfléchissante étant apte à réfléchir les rayons émis par ladite source lumineuse partant dudit premier foyer vers ledit second foyer, ledit second foyer étant approximativement confondu avec le second foyer du premier réflecteur, l'axe optique du second réflecteur formant un angle avec l'axe optique du premier réflecteur, les premier et deuxième réflecteurs étant orientés par rapport à leurs axes de manière à ce que la surface réfléchissante du deuxième réflecteur soit en vis-à-vis de la surface externe du premier réflecteur, cette surface externe étant la surface opposée à la surface réfléchissante du premier réflecteur. Par exemple, la face réfléchissante du deuxième réflecteur est face au dos du deuxième réflecteur.According to another advantageous embodiment of the invention, the module comprises a second reflector with a reflective surface, at least a first focus for a light source, a second focus, said reflecting surface being able to reflect the rays emitted by said light source. from said first focus to said second focus, said second focus being approximately coincident with the second focus of the first reflector, the optical axis of the second reflector forming an angle with the optical axis of the first reflector, the first and second reflectors being oriented by relative to their axes so that the reflecting surface of the second reflector is vis-à-vis the outer surface of the first reflector, this outer surface being the opposite surface to the reflecting surface of the first reflector. For example, the reflective face of the second reflector is facing the back of the second reflector.

Préférentiellement, la ou les sources lumineuses sont des diodes électrolum inescentes.Preferably, the light source or sources are electroluminescent diodes.

L'invention consiste également en un procédé d'optimisation d'un module d'éclairage d'un projecteur de véhicule automobile, le module comprenant: un premier réflecteur avec une surface réfléchissante, avec au moins un premier foyer pour une source lumineuse et un second foyer ; un élément dioptrique avec un axe optique, disposé de manière à recevoir les rayons lumineux réfléchis par le premier réflecteur et à transmettre les rayons lumineux l'atteignant en un faisceau lumineux; une lame en matériau transparent, disposée à proximité dudit second foyer. Ce procédé comprend une étape de réalisation de la surface réfléchissante du premier réflecteur. Cette étape de réalisation comprend la correction d'une surface réfléchissante apte à réfléchir les rayons lumineux émis par la source lumineuse partant du premier foyer vers le second foyer, cette correction étant effectuée de manière à ce que des rayons émis par ladite source lumineuse et partant du premier foyer passent approximativement par ledit second foyer après réflexion sur ladite surface réfléchissante et réfraction au passage dans ladite lame. Par exemple la correction de ladite surface réfléchissante peut être réalisée par calcul vectoriel du chemin optique d'un faisceau de rayons inverses qui, selon le principe du retour inverse de la lumière, passent par le second foyer puis la lame, sortent de la lame avec réfraction et sont ensuite réfléchis par une surface imaginaire correspondant à la surface à calculer, la surface à calculer étant obtenue par application du principe de Fermat de retour inverse de la lumière et de stationnarité du chemin optique suivi par la lumière le long d'un trajet.The invention also consists in a method for optimizing a lighting module of a motor vehicle headlamp, the module comprising: a first reflector with a reflective surface, with at least a first focus for a light source and a second home; a dioptric element with an optical axis, arranged to receive the light rays reflected by the first reflector and to transmit the light rays reaching it in a light beam; a blade of transparent material disposed near said second focus. This method comprises a step of producing the reflective surface of the first reflector. This embodiment comprises the correction of a reflective surface capable of reflecting the light rays emitted by the light source from the first focus to the second focus, this correction being performed so that rays emitted by said light source and starting of the first focus pass approximately through said second focus after reflection on said reflective surface and refraction when passing through said blade. For example, the correction of said reflective surface can be carried out by vector calculation of the optical path of a beam of inverse rays which, according to the principle of the inverse return of light, pass through the second focus then the blade, leave the blade with refraction and are then reflected by an imaginary surface corresponding to the surface to be calculated, the area to be calculated being obtained by applying the principle of Fermat reverse light reversal and stationarity of the optical path followed by light along a path .

Selon un mode avantageux de l'invention, la surface réfléchissante du premier réflecteur est obtenue par calcul vectoriel du chemin optique d'un faisceau de rayons inverses réfléchis par une surface imaginaire correspondant à la surface à calculer.According to an advantageous embodiment of the invention, the reflecting surface of the first reflector is obtained by vector calculation of the optical path of a beam of inverse rays reflected by an imaginary surface corresponding to the surface to be calculated.

Selon un autre mode avantageux de l'invention, le faisceau de rayons inverses passe par le second foyer puis la lame, sortant de la lame avec réfraction et ensuite réfléchis par une surface imaginaire correspondant à la surface à calculer.According to another advantageous embodiment of the invention, the beam of inverse rays passes through the second focus then the blade, leaving the blade with refraction and then reflected by an imaginary surface corresponding to the surface to be calculated.

Selon un encore autre mode avantageux de l'invention, le module est un module selon l'invention telle que définie précédemment.According to another advantageous embodiment of the invention, the module is a module according to the invention as defined above.

Le premier réflecteur et/ ou le deuxième réflecteur est/sont préférentiellement en forme de demi-coquille.The first reflector and / or the second reflector is / are preferably in the form of a half-shell.

D'autres caractéristiques et avantages de la présente invention seront mieux compris à l'aide de la description et des dessins parmi lesquels :

  • La figure 1 est une vue en perspective d'un mode de réalisation d'un module d'éclairage selon l'invention.
  • La figure 2 est une vue en coupe du mode de réalisation illustré en figure 1 avec tracé de rayons.
  • La figure 3 est une vue schématisant le fonctionnement du réflecteur inférieur du module illustré en figure 2.
  • La figure 4 est une vue agrandie de la lame d'un module d'éclairage selon l'invention.
  • La figure 5 est une vue d'un module d'éclairage selon l'invention illustrant les points de référence, le référentiel et les vecteurs utilisés pour un exemple de calcul de la surface du réflecteur.
  • La figure 6 est une première vue illustrant l'impact de la correction du réflecteur.
  • La figure 7 est une seconde vue illustrant l'impact de la correction du réflecteur.
Other features and advantages of the present invention will be better understood from the description and the drawings, among which:
  • The figure 1 is a perspective view of an embodiment of a lighting module according to the invention.
  • The figure 2 is a sectional view of the embodiment illustrated in FIG. figure 1 with ray tracing.
  • The figure 3 is a schematic view of the operation of the lower reflector of the module illustrated in figure 2 .
  • The figure 4 is an enlarged view of the blade of a lighting module according to the invention.
  • The figure 5 is a view of a lighting module according to the invention illustrating the reference points, the reference frame and the vectors used for an example of calculation of the surface of the reflector.
  • The figure 6 is a first view illustrating the impact of reflector correction.
  • The figure 7 is a second view illustrating the impact of reflector correction.

On comprend dans la description de l'invention les termes « avant », « arrière », « haut », « bas », « supérieur » ou « inférieur » d'après la position du module d'éclairage selon les figures et une fois intégré dans un projecteur et monté sur un véhicule en mode de fonctionnement conventionnel. Il est rappelé que le module pourrait être monté et utilisé dans d'autres positions et/ou orientations sans pour autant s'éloigner de l'invention. Les termes sus mentionnés sont donc à interpréter de manière relative et non absolue.In the description of the invention, the terms "front", "back", "top", "bottom", "upper" or "bottom" are understood according to the position of the lighting module according to the figures and once integrated in a projector and mounted on a vehicle in conventional operating mode. It is recalled that the module could be mounted and used in other positions and / or orientations without departing from the invention. The terms mentioned above are therefore to be interpreted in a relative and not absolute manner.

Il est également à noter que les éléments optiques sont illustrés aux figures de manière simplifiée avec correspondance parfaite des foyers et axes optiques pour des raisons de clarté d'exposé. De telles correspondances ne sont pas à interpréter de manière stricte sachant qu'en pratique, il peut y avoir de légères déviations en raison de la nature imparfaite de certains éléments, de tolérance de montage et/ou afin de corriger certains effets liés à l'imperfection de certains éléments optiques. Il en va de même pour les sources lumineuses qui sont représentées de manière ponctuelle alors qu'il est clair qu'en pratique ces sources lumineuses ne sont pas parfaitement ponctuelles et présentent bien une surface d'émission de lumière qu'il a été choisi ici volontairement de ne pas représenter.It should also be noted that the optical elements are illustrated in the figures in a simplified manner with perfect matching of the focal points and optical axes for the sake of clarity of presentation. Such matches are not to be interpreted strictly, since in practice there may be slight deviations due to the imperfect nature of certain elements, mounting tolerance and / or to correct some effects related to imperfection of certain optical elements. The same applies to the light sources which are represented in a specific way, whereas it is clear that in practice these light sources are not perfectly punctual and have a light emission surface that has been chosen here. voluntarily not to represent.

A la figure 1 est illustré de manière schématique et en perspective un module d'éclairage selon l'invention. Il comprend une lentille convergente 4 avec un foyer 24 et un axe optique 2 passant par le foyer. Une lame transparente 6 est disposée généralement perpendiculairement à l'axe optique 2, soit généralement verticalement dans le demi-espace délimité par un plan médian horizontal passant par l'axe optique 2. La lame présente une tranche supérieure 26 généralement plane comprenant l'axe optique 2 et passant au moins approximativement par le plan en question. La tranche supérieure 26 est recouverte d'un revêtement réfléchissant. Ce revêtement est appliqué exclusivement sur la tranche 26, laissant les autres faces de la lame transparentes. La lame est disposée de manière à ce que le bord avant soit au niveau du foyer 24. La tranche 26 présente un ressaut au niveau de sa médiane correspondant à l'axe optique 2. La fonction de ressaut sera explicitée d'avantage plus loin. La lame est en matériau transparent comme du verre ou tout autre matériau transparent, comme par exemple du PMMA (polymétacrylate de méthyle).To the figure 1 is schematically illustrated in perspective a lighting module according to the invention. It comprises a convergent lens 4 with a focus 24 and an optical axis 2 passing through the focus. A transparent plate 6 is disposed generally perpendicularly to the optical axis 2, or generally vertically in the half-space delimited by a horizontal median plane passing through the optical axis 2. The blade has a generally flat upper edge 26 comprising the axis optical 2 and at least approximately passing through the plane in question. The upper edge 26 is covered with a reflective coating. This coating is applied exclusively to the wafer 26, leaving the other faces transparent blade. The blade is arranged so that the front edge is at the focus 24. The wafer 26 has a projection at its median corresponding to the optical axis 2. The function of the jump will be explained further later. The blade is made of transparent material such as glass or any other transparent material, for example PMMA (polymethyl methacrylate).

Il est à noter que la tranche 26 de la lame peut assurer la fonction de plieuse sans la présence de revêtement réfléchissant, et ce par l'utilisation du principe de réflexion totale sur un dioptre formé par l'interface entre deux milieux d'indice de réfraction différents. Dans ce cas, il conviendra de veiller à ce que les rayons rencontrent le dioptre formé par la tranche avec un angle d'incidence supérieur à l'angle limite de réflexion totale.It should be noted that the edge 26 of the blade can perform the folding function without the presence of a reflective coating, and this by the use of the principle of total reflection on a diopter formed by the interface between two media index of different refraction. In this case, it will be necessary to ensure that the rays meet the diopter formed by the wafer with an angle of incidence greater than the limit angle of total reflection.

Le module comprend également un premier réflecteur 10 dans le demi-espace inférieur. Il est représenté schématiquement par sa surface réfléchissante. Cette surface présente un profil approximatif d'ellipse, symétrique en rotation autour de son axe optique 20. Elle comprend un premier foyer 22 destiné à recevoir une source lumineuse et un second foyer confondu avec le foyer 24 de la lentille 4. L'axe optique 20 du premier réflecteur forme un angle avec l'axe optique 2 qui est compris entre 30° et 60°, préférentiellement compris entre 40° et 50°. La source lumineuse éclaire majoritairement dans un demi-espace délimité par le plan transversal comprenant l'axe optique 20 du réflecteur et est préférentiellement du type à diode électrolum inescente.The module also comprises a first reflector 10 in the lower half-space. It is represented schematically by its reflective surface. This surface has an approximate elliptical profile, symmetrical in rotation about its optical axis 20. It comprises a first focus 22 intended to receive a light source and a second focus coinciding with the focus 24 of the lens 4. The optical axis 20 of the first reflector forms an angle with the optical axis 2 which is between 30 ° and 60 °, preferably between 40 ° and 50 °. The light source mainly illuminates in a half-space delimited by the transverse plane comprising the optical axis 20 of the reflector and is preferably of the type of diode electrolum inescente.

Le module comprend également un deuxième réflecteur 8 représenté par sa surface réfléchissante. Elle est composée de deux sous-surfaces réfléchissantes de profil elliptique symétrique en révolution par rapport aux axes optiques 12 et 14 respectifs. Chaque sous-surface réfléchissante comporte un premier foyer 16 ou 18 destiné à recevoir une source lumineuse et un second foyer confondu avec le foyer 24 de la lentille et le second foyer du premier réflecteur. La surface réfléchissante du deuxième réflecteur 8 est constituée de la juxtaposition des deux sous-surfaces dans un demi-espace délimité par un plan passant par les axes optiques respectifs 12 et 14 et l'axe optique 2 de la lentille 4, de manière à former une cavité doublement concave apte à réfléchir les rayons lumineux provenant des premiers foyers 16 et 18 vers le second foyer 24. Les deux axes optiques respectifs 12 et 14 forment un angle aigu entre eux et forment, chacun, un angle égal avec l'axe optique 2 de la lentille et du module.The module also comprises a second reflector 8 represented by its reflecting surface. It is composed of two reflecting sub-surfaces of symmetrical elliptical profile in revolution with respect to the respective optical axes 12 and 14. Each reflective sub-surface includes a first focus 16 or 18 for receiving a light source and a second focus coinciding with focus 24 of the lens and the second focus of the first reflector. The reflecting surface of the second reflector 8 consists of the juxtaposition of the two sub-surfaces in a half-space delimited by a plane passing through the respective optical axes 12 and 14 and the optical axis 2 of the lens 4, so as to form a doubly concave cavity able to reflect the light rays coming from the first The two respective optical axes 12 and 14 form an acute angle between them and each form an angle equal to the optical axis 2 of the lens and the module.

Le module d'éclairage comprend également une plaque 9 réfléchissante sur ses deux faces et disposée approximativement dans le plan passant par les axes optiques 12 et 14 du deuxième réflecteur et la tranche réfléchissante 26 de la lame 6. Elle est disposée de manière adjacente ou quasi-adjacente au bord arrière de la tranche et s'étend jusqu'à une distance depuis ce bord arrière. Le bord arrière de la plaque 9 arrive approximativement à hauteur de l'intersection de la surface réfléchissante du premier réflecteur 10 avec ledit plan. Plus précisément, le profil du bord arrière de la plaque réfléchissante 9 est en forme de V dont la pointe est alignée avec l'axe optique et de symétrie 2 du module et dirigée vers l'arrière, de manière à ce que la surface réfléchissante de la plaque couvre une majeure partie de la zone délimitée par l'intersection de la surface réfléchissante du premier réflecteur avec le plan. La plaque réfléchissante 9 joue le rôle de plieuse complémentaire et sera explicité plus loin.The lighting module also comprises a reflective plate 9 on its two faces and disposed approximately in the plane passing through the optical axes 12 and 14 of the second reflector and the reflecting edge 26 of the blade 6. It is disposed adjacent or almost -Adjacent to the rear edge of the wafer and extends to a distance from this rear edge. The rear edge of the plate 9 reaches approximately the height of the intersection of the reflecting surface of the first reflector 10 with said plane. More specifically, the profile of the rear edge of the reflective plate 9 is V-shaped whose tip is aligned with the optical axis and symmetry 2 of the module and directed rearwardly, so that the reflecting surface of the plate covers a major part of the area defined by the intersection of the reflective surface of the first reflector with the plane. The reflective plate 9 plays the role of complementary folder and will be explained later.

Il est à noter que les axes optiques 12 et 14 des sous-surfaces réfléchissantes du deuxième réflecteur 8 ne doivent pas nécessairement être compris dans le plan médian horizontal. En effet, ils peuvent former un certain angle avec ce plan.It should be noted that the optical axes 12 and 14 of the reflective sub-surfaces of the second reflector 8 need not be included in the horizontal median plane. Indeed, they can form a certain angle with this plane.

Une vue en coupe et de principe optique du dispositif de la figure 1 est illustrée à la figure 2. Pour des raisons de simplicité d'exposé, il a été choisi d'assimiler le deuxième réflecteur à une surface réfléchissante unique avec un seul premier foyer et une seule source lumineuse. Cette simplification ne modifie en rien le principe de fonctionnement du deuxième réflecteur comprenant deux sous-surfaces réfléchissantes et deux sources lumineuses.A sectional view and optical principle of the device of the figure 1 is illustrated in the figure 2 . For reasons of simplicity of exposition, it has been chosen to assimilate the second reflector to a single reflective surface with a single first focus and a single light source. This simplification does not alter the operating principle of the second reflector comprising two reflecting sub-surfaces and two light sources.

Le deuxième réflecteur 8 génère avec sa ou ses sources lumineuses 16 et 18 un faisceau à coupure assurant par exemple une fonction d'éclairage de type « code ». En effet, la majorité des rayons émis par la source lumineuse sont réfléchis par la surface réfléchissante du deuxième réflecteur 8 vers le second foyer 24 et sont transmis par la lentille en un faisceau de rayons essentiellement parallèles. Un tel rayon est illustré par un trait plein depuis la source lumineuse 16, 18 jusqu'à la lentille en passant par la surface réfléchissante et le second foyer 24. Certains rayons, notamment ceux émis depuis une zone latérale avant de la source lumineuse, rencontrent la plieuse 26 à l'arrière du foyer 24. Ils sont réfléchis ou « repliés » vers une partie haute de la lentille avec un angle d'incidence tel qu'ils sortent de la lentille inclinés légèrement vers le bas. Un tel rayon est illustré par un trait interrompu à la partie supérieure de la figure. La plieuse joue donc le rôle d'un cache dans un système de projection classique et la projection de son bord forme la coupure horizontale du faisceau projeté, cette coupure étant utile notamment pour une fonction d'éclairage du type « code ». Il est à noter que comme mentionné précédemment, la plieuse comporte un ressaut au niveau du bord avant dit bord de coupure de manière à ce que la coupure soit plus haute d'un côté que de l'autre du plan médian vertical afin de projeter un faisceau du type « code » en conformité avec la législation.The second reflector 8 generates with its light source or sources 16 and 18 a cut-off beam ensuring for example a lighting function of the "code" type. Indeed, the majority of the rays emitted by the light source are reflected by the reflecting surface of the second reflector 8 to the second focus 24 and are transmitted by the lens in a beam of substantially parallel rays. Such a ray is illustrated by a solid line from the light source 16, 18 to the lens through the reflective surface and the second focus 24. Some rays, especially those emitted from a front lateral area of the light source, meet the folder 26 at the rear of the focus 24. They are reflected or "folded" towards an upper part of the lens with an angle of incidence such that they come out of the lens tilted slightly down. Such a ray is illustrated by a dashed line at the top of the figure. The folder thus plays the role of a cache in a conventional projection system and the projection of its edge forms the horizontal cut of the projected beam, this cutoff being useful in particular for a lighting function of the "code" type. It should be noted that, as previously mentioned, the folder comprises a projection at the front edge, so-called cutting edge, so that the cut is higher on one side than the other of the vertical median plane in order to project a cut. beam type "code" in accordance with the legislation.

La plupart des rayons émis par la source lumineuse 22 du premier réflecteur 10 sont réfléchis par la surface réfléchissante du réflecteur, traversent la lame 6, passent par le foyer 24, sont projetés par la partie haute de la lentille 4 et viennent s'ajouter au faisceau provenant du réflecteur supérieur afin d'assurer la fonction « route ». Un tel rayon est illustré par un train interrompu à la partie inférieure de la figure.Most of the rays emitted by the light source 22 of the first reflector 10 are reflected by the reflecting surface of the reflector, pass through the blade 6, pass through the focus 24, are projected by the upper part of the lens 4 and are added to the beam from the upper reflector to provide the "road" function. Such a radius is illustrated by a train interrupted at the bottom of the figure.

La figure 3 est une vue similaire à celle de la figure 2 où parmi les deux réflecteurs, seul le réflecteur inférieur, à savoir le premier réflecteur, est illustré. Cette vue est agrandie et illustre certaines particularités optiques du module selon l'invention. Un premier rayon en train interrompu et correspondant à celui de la figure 2 est illustré. Il est émis par la source lumineuse 22, est réfléchi par la surface réfléchissante, pénètre la lame transparente 6 et subit une première réfraction, traverse la lame, passe par le foyer 24, sort de la lame et subit une seconde réfraction avant de rencontrer la lentille dans sa moitié supérieure. Un deuxième rayon est illustré en trait plein. Il est émis par une zone décentrée de la source lumineuse 22 et est réfléchi vers une zone de la plieuse située légèrement en arrière du second foyer 24. Similairement au premier rayon, il pénètre la lame, subit une première réfraction, traverse la lame jusqu'à rencontrer la plieuse 26, est réfléchi vers le bas, traverse le reste de l'épaisseur de la lame, sort de la lame, subit une second réfraction vers le bas et rencontre la lentille dans sa moitié inférieure. Ce rayon sera ensuite transmis et dévié par la lentille vers la partie haute du faisceau d'éclairage. Une vue agrandie du haut de la lame illustre bien les phénomènes de réfraction et de réflexion de ces deux rayons types.The figure 3 is a view similar to that of the figure 2 where among the two reflectors, only the lower reflector, namely the first reflector, is illustrated. This view is enlarged and illustrates certain optical features of the module according to the invention. A first ray interrupted and corresponding to that of the figure 2 is illustrated. It is emitted by the light source 22, is reflected by the reflective surface, penetrates the transparent plate 6 and undergoes a first refraction, passes through the blade, passes through the focus 24, leaves the blade and undergoes a second refraction before meeting the lens in its upper half. A second ray is shown in solid lines. It is emitted by an off-center zone of the light source 22 and is reflected towards an area of the folder slightly behind the second focal point 24. Like the first ray, it penetrates the blade, undergoes a first refraction, passes through the blade until to meet the folder 26, is reflected down, crosses the rest of the thickness of the blade, leaves the blade, undergoes a second refraction downwards and meets the lens in its lower half. This ray will then be transmitted and deflected by the lens towards the upper part of the illumination beam. An enlarged view from the top of the blade illustrates the phenomena of refraction and reflection of these two typical rays.

La tranche supérieure de la lame formant la plieuse est idéalement inclinée depuis le bord de coupure vers le bas du module afin de concentrer d'avantage les rayons réfléchis par la plieuse. La figure 4 est une vue agrandie du haut de la lame. La tranche supérieure 26 comprise dans le plan médian horizontal est illustrée en trait plein. La tranche supérieure inclinée 36 est illustrée en trait interrompu. Elle présente un angle de dépouille 13 par rapport au plan médian horizontal. Cet angle correspond à une dépouille de hauteur d au niveau de la face arrière de la lame. Un rayon 28 provenant du premier réflecteur 10 et pénétrant la lame est illustré. Il est réfracté et subit une première déviation 30. Il est ensuite réfléchi par la plieuse non inclinée en un rayon 32 traversant le reste de l'épaisseur de la lame pour ensuite en sortir en subissant une seconde réfraction 34. Le point d'émergence du rayon est à une distance e du bord de coupure. Ce rayon sort de la lame selon un angle a avec la normale à la face avant de la lame. Le même rayon incident de la lame sera réfléchi par la plieuse inclinée 36 en un rayon 38 moins incliné que le rayon correspondant 32. Ce rayon 38 va alors sortir de la lame en un point d'émergence à un distance e' du bord de coupure, cette distance e' étant inférieure à la distance e. Le rayon sortant 40 subit une second réfraction et forme un angle α' avec la normale à la face avant de la lame qui est inférieur à la valeur α du même rayon incident réfléchi par la plieuse inclinée 36. En raison de ces deux effets, le rayon sortant 40 va rencontrer la lentille à avec un angle incident plus faible et en un point plus proche de l'axe optique. Le faisceau projeté provenant de tels rayons sera par conséquent plus proche de l'horizontale et assurera un éclairage de photométrie supérieure en raison de pertes plus faibles par réflexions vitreuses, notamment sur la face avant de la lame et sur les faces de la lentille.The upper edge of the blade forming the folder is ideally inclined from the cutoff edge to the bottom of the module to further concentrate the rays reflected by the folder. The figure 4 is an enlarged view of the top of the blade. The upper edge 26 included in the horizontal median plane is illustrated in solid lines. The inclined upper edge 36 is shown in broken lines. It has a clearance angle 13 with respect to the horizontal median plane. This angle corresponds to a clearance of height d at the rear face of the blade. A ray 28 from the first reflector 10 and penetrating the blade is illustrated. It is refracted and undergoes a first deflection 30. It is then reflected by the non-inclined folder into a radius 32 traversing the remainder of the thickness of the blade and then out by undergoing a second refraction 34. The point of emergence of the radius is at a distance e from the cutoff edge. This ray comes out of the blade at an angle with the normal to the front face of the blade. The same incident ray of the blade will be reflected by the inclined bender 36 in a radius 38 less inclined than the corresponding radius 32. This ray 38 will then leave the blade at an emergence point at a distance e 'of the cutting edge this distance e 'being less than the distance e. The outgoing ray 40 undergoes a second refraction and forms an angle α 'with the normal to the front face of the blade which is less than the value α of the same incident ray reflected by the inclined bender 36. Because of these two effects, the Outgoing ray 40 will meet the lens at a lower incident angle and at a point closer to the optical axis. The projected beam from such rays will therefore be closer to the horizontal and provide higher photometric illumination due to lower losses by glassy reflections, especially on the front face of the blade and on the faces of the lens.

Il est à noter que le matériau de la lame sera préférentiellement du verre par opposition aux matériaux plastiques pour des raisons de tenue en température. En effet, la présence de la lentille a pour effet que les rayons solaires extérieurs peuvent se concentrer via la lentille au foyer 24 et surchauffer le matériau de la lame. La tranche de la lame opposée à la tranche servant de plieuse peut également être similairement incliné, et ce de manière symétrique de manière à réduire la hauteur de la face arrière d'une valeur donnée. Bien que cette tranche de la lame ne joue aucun rôle du point de vue de l'optique, une telle inclinaison ou angle de dépouille permet de simplifier la mise à forme de la lame en simplifiant le démoulage selon une direction perpendiculaire aux faces avant et arrière. Les faces optiques peuvent ensuite être surfacée afin d'en garantir la planéité et les qualités optiques.It should be noted that the material of the blade will preferably be glass as opposed to plastic materials for reasons of temperature resistance. Indeed, the presence of the lens has the effect that the external sunlight can concentrate via the lens at the focus 24 and overheat the material of the blade. The edge of the blade opposite the edge serving as a folder may also be similarly inclined, and this symmetrically so as to reduce the height of the rear face of a given value. Although this slice of the blade does play no role from the point of view of optics, such inclination or clearance angle simplifies the shaping of the blade by simplifying demolding in a direction perpendicular to the front and rear faces. The optical faces can then be surfaced to ensure flatness and optical qualities.

La surface réfléchissante du premier réflecteur est corrigée afin de compenser la première réfraction à laquelle les rayons sont soumis lors de leur entrée dans la lame. Le calcul de correction de la surface va être décrit ci-après en relation avec la figure 5.The reflective surface of the first reflector is corrected to compensate for the first refraction to which the rays are subjected upon entry into the blade. The calculation of the correction of the surface will be described below in relation to the figure 5 .

Le calcul se base sur l'application du principe de Huygens et le principe de Fermat relatif au chemin optique.The calculation is based on the application of the Huygens principle and Fermat's optical path principle.

En effet, selon le principe de Huygens, la lumière se propage de proche en proche, l'ensemble des points d'égale perturbation lumineuse étant appelée surface d'onde. Chacun des points de cette surface atteint par la lumière se comporte comme une source secondaire qui émet des ondelettes sphériques dans un milieu isotrope. La surface enveloppe de ces ondelettes forme une nouvelle surface d'onde.Indeed, according to the principle of Huygens, the light spreads from one to the next, the set of points of equal light disturbance being called the wave surface. Each point of this surface reached by light behaves like a secondary source that emits spherical wavelets in an isotropic medium. The envelope surface of these wavelets forms a new wave surface.

La lumière se propage plus difficilement ou plus lentement dans les milieux autres que le vide. L'indice n du milieu est défini par
n = c/v
où c et v sont la vitesse de la lumière dans le vide et dans le milieu, respectivement.
Light propagates more difficultly or more slowly in environments other than vacuum. The middle index n is defined by
n = c / v
where c and v are the speed of light in the vacuum and in the medium, respectively.

Le chemin optique est le chemin parcouru par la lumière parcouru dans le vide durant la durée de propagation dans le milieu: L AB = t A t B cdt = A B nds = c t B - t A = n AB

Figure imgb0001
où s désigne l'abscisse curviligne le long du chemin parcouru dans le milieu entre les points A et B, et AB la longueur du chemin parcouru entre A et B. Le principe de Fermat s'énonce : entre deux points A et B, atteints par la lumière, le chemin optique suivi le long du trajet est stationnaire. Il résulte notamment: L AB = A B nds = B A n - ds = B A nds ʹ
Figure imgb0002
en considérant que ds'=-ds est l'élément de coordonnée curviligne de B vers A, on peut alors écrire que L AB = L BA
Figure imgb0003
The optical path is the path traveled by the light traveled in a vacuum during the propagation time in the medium: The AB = t AT t B cdt = AT B nds = vs t B - t AT = not AB
Figure imgb0001
where s denotes the curvilinear abscissa along the path traveled in the middle between points A and B, and AB the length of the path traveled between A and B. The Fermat principle is stated: between two points A and B, reached by the light, the optical path followed along the path is stationary. It results in particular: The AB = AT B nds = B AT not - ds = B AT nds '
Figure imgb0002
considering that ds' = - ds is the curvilinear coordinate element from B to A, we can then write that The AB = The BA
Figure imgb0003

C'est le principe de retour inverse de la lumière : le trajet suivi par la lumière pour aller d'un point un autre ne dépend pas du sens de propagation de la lumière.This is the reverse principle of light: the path followed by the light to go from one point to another does not depend on the direction of propagation of light.

Le chemin optique inverse depuis un point d'émergence O correspondant au foyer 24 jusqu'à la source lumineuse F se calcule comme suit :

  • Un référentiel x-y-z centré en O est illustré à la figure. Un vecteur
    Figure imgb0004
    de longueur égale à 1, originaire du point O et orienté selon le chemin inverse de la lumière dans la lame depuis le point O où ϕ est le complément de l'angle avec l'axe z et θ le complément de l'ange avec l'axe y et s'écrit : r = - cos φ cos θ cos φ sin θ sin φ
    Figure imgb0005
The reverse optical path from an emergence point O corresponding to the focus 24 to the light source F is calculated as follows:
  • An xyz repository centered at O is shown in the figure. A vector
    Figure imgb0004
    of length equal to 1, originating from the point O and oriented along the inverse path of the light in the plate from the point O where φ is the complement of the angle with the axis z and θ the complement of the angel with the axis y and is written: r = - cos φ cos θ cos φ sin θ sin φ
    Figure imgb0005

La première section de chemin optique OP s'écrit : O + λ r = OP

Figure imgb0006
λ sin φ = ε
Figure imgb0007

où ε est l'épaisseur de la lame.
Il s'ensuit : O = P + ε sin φ r
Figure imgb0008
The first optical path section OP is written: O + λ r = OP
Figure imgb0006
λ sin φ = ε
Figure imgb0007

where ε is the thickness of the blade.
It follows: O = P + ε sin φ r
Figure imgb0008

Or, en l'application de la loi de Snell-Descartes seul l'angle ϕ change au passage du dioptre, si bien que n r - i z ,

Figure imgb0009
Figure imgb0010
est le vecteur normé originaire du point P orienté selon le rayon inverse vers le réflecteur, il s'ensuit que ix = nrx et iy = nry Etant donné que le module de
Figure imgb0011
est égal à 1, il s'ensuit que n 2 r x 2 + r y 2 + i z 2 = 1
Figure imgb0012
et i z = 1 - n 2 cos φ 2
Figure imgb0013
d'où on peut calculer
Figure imgb0014
. Le point M est un point de la surface réfléchissante à calculer, d'où P + μ ι = M
Figure imgb0015
PM + μ + n λ = K
Figure imgb0016
où K, qui est le chemin optique de O à F est une constante en application du principe de Fermat. Il s'ensuit FP + μ ι 2 = K - n λ - μ 2
Figure imgb0017
FP 2 + μ 2 + 2 μ FP ι = K - n λ 2 + μ 2 - 2 K - n λ μ
Figure imgb0018
2 μ FP ι + K - n λ = K - n λ 2 - FP 2
Figure imgb0019
However, in the application of the law of Snell-Descartes only the angle φ changes with the passage of the diopter, so that not r - i α z ,
Figure imgb0009
or
Figure imgb0010
is the normalized vector originating from the point P oriented according to the inverse radius towards the reflector, it follows that i x = n rx and i y = nr y Given that the modulus of
Figure imgb0011
is equal to 1, it follows that not 2 r x 2 + r there 2 + i z 2 = 1
Figure imgb0012
and i z = 1 - not 2 cos φ 2
Figure imgb0013
from where we can calculate
Figure imgb0014
. Point M is a point on the reflecting surface to be calculated, hence P + μ ι = M
Figure imgb0015
PM + μ + not λ = K
Figure imgb0016
where K, which is the optical path from O to F, is a constant in application of the Fermat principle. It follows FP + μ ι 2 = K - not λ - μ 2
Figure imgb0017
FP 2 + μ 2 + 2 μ FP ι = K - not λ 2 + μ 2 - 2 K - not λ μ
Figure imgb0018
2 μ FP ι + K - not λ = K - not λ 2 - FP 2
Figure imgb0019

Le vecteur

Figure imgb0020
est connu étant donné que les points F et P sont connus, le vecteur
Figure imgb0021
a été calculé sur base du calcul sus mentionné et λ est connu, il suffit alors de poser une constante K qui convient pour alors calculer la valeur de p et en déduire un point de la surface pour un vecteur
Figure imgb0022
donné. On peut ensuite itérer sur base d'un faisceau de rayons inverses et en déduire les coordonnées de la surface réfléchissante. L'homme de métier n'aura aucune difficulté à mettre en oeuvre un pareil calcul notamment par des méthodes de calcul numérique itératives.The vector
Figure imgb0020
is known since the points F and P are known, the vector
Figure imgb0021
has been calculated on the basis of the above-mentioned calculation and λ is known, it is then sufficient to set a constant K which is suitable for then calculating the value of p and deducing a point from the surface for a vector
Figure imgb0022
given. We can then iterate on the basis of a beam of inverse rays and deduce the coordinates of the reflecting surface. The skilled person will have no difficulty in implementing such a calculation including numerical iterative calculation methods.

En d'autres termes plus physiques, le réflecteur est corrigé de manière à transformer une surface d'onde sphérique issue d'un point source F à la surface de l'émetteur en une surface d'onde sphérique dans la matière de la lame, ayant pour centre le deuxième foyer 24, ce deuxième foyer étant situé dans la matière de la lame au voisinage de sa face de sortie avant et de sa face supérieure (tranche).In other words more physical, the reflector is corrected so as to transform a spherical wave surface from a source point F to the surface of the emitter into a spherical wave surface in the material of the blade, centering the second focus 24, this second focus being located in the material of the blade in the vicinity of its front exit face and its upper face (slice).

La correction de surface réfléchissante elliptique est applicable à diverses configurations, notamment la configuration du réflecteur 10 de la présente invention, ainsi qu'à une configuration classique telle qu'illustrée en trait interrompu 42 à la figure 5.The elliptical reflective surface correction is applicable to various configurations, including the configuration of the reflector 10 of the present invention, as well as to a conventional configuration as shown in broken line at the end of FIG. figure 5 .

Il à noter que la correction ne doit pas nécessairement être faite sur toute la surface réfléchissante mais bien essentiellement sur la zone réfléchissant les rayons qui vont former la partie centrale du faisceau.It should be noted that the correction does not necessarily have to be made on the entire reflective surface but essentially on the area reflecting the rays that will form the central part of the beam.

La figure 6 illustre une configuration de réflecteur elliptique dans un demi-espace et dont la surface est généralement orientée vers l'axe optique du module, montrant notamment l'effet de la correction de surface réfléchissante. Plus précisément, elle illustre une configuration de module d'éclairage avec deux réflecteurs elliptiques 8 et 42 dans des demi-espaces opposés et dont les surfaces réfléchissantes sont toutes deux généralement dirigées vers l'axe optique 2 du module. Les axes optiques des réflecteurs sont légèrement inclinés afin de ménager un espace pour le refroidissement des sources lumineuses 16, 18 et 44. Un premier rayon provenant de la source lumineuse 44 et réfléchi en un point A est illustré en trait plein. Le trait interrompu associé au trait plein illustre le chemin optique que suivrait le rayon si la surface réfléchissante n'était pas corrigée en fonction de la lame transparente 6 ; à savoir ce rayon serait réfracté à son entrée dans la lame et serait dévié du second foyer 24. Un deuxième rayon provenant de la source lumineuse 44 et réfléchi en un point B plus proche de l'axe optique de la surface réfléchissante est illustré en trait plein. Ce rayon rasant et dirigé vers le foyer 24 va rencontrer l'espace dédié au refroidissement et s'y perdre au lieu de pénétrer la lame. Dans cette configuration, certains des rayons rasants vont se perdre dans le radiateur de refroidissement des sources lumineuses. Cette situation est d'autant plus vraie que la surface du réflecteur est corrigée. En effet, cette correction a pour effet de réfléchir les rayons issus de la source lumineuse de manière à présenter une déviation par rapport au second foyer, cette déviation étant de sorte à ce que les rayons soient orientés vers un point situé à l'arrière du second foyer, ce qui intensifie le problème de perte de rayons dans l'espace nécessaire au refroidissement des sources lumineuses.The figure 6 illustrates an elliptical reflector configuration in a half-space and whose surface is generally oriented towards the optical axis of the module, showing in particular the effect of the reflective surface correction. Specifically, it illustrates a lighting module configuration with two elliptical reflectors 8 and 42 in opposite half-spaces and whose reflective surfaces are both directed towards the optical axis 2 of the module. The optical axes of the reflectors are slightly inclined to provide a space for cooling the light sources 16, 18 and 44. A first ray from the light source 44 and reflected at a point A is shown in solid lines. The broken line associated with the solid line illustrates the optical path that would follow the ray if the reflecting surface was not corrected according to the transparent blade 6; namely, this ray would be refracted as it enters the blade and would be deflected from the second focus 24. A second ray from the light source 44 and reflected at a point B closer to the optical axis of the reflecting surface is shown in a line. full. This grazing ray and directed towards the hearth 24 will meet the space dedicated to cooling and get lost instead of penetrating the blade. In this configuration, some of the rays will be lost in the cooling radiator of the light sources. This situation is all the more true as the surface of the reflector is corrected. Indeed, this correction has the effect of reflecting the rays from the light source so as to have a deviation from the second focus, this deviation being such that the rays are oriented towards a point at the rear of the second focus, which intensifies the problem of loss of rays in the space needed to cool the light sources.

La figure 7 illustre l'effet de la correction de surface réfléchissante pour une configuration de réflecteur elliptique dans un demi-espace et dont la surface est généralement opposée à l'axe optique du module. Un premier rayon issu de la source lumineuse 22 et réfléchi en un point A de la surface réfléchissante corrigée est illustré en trait plein. En l'absence de correction de la surface, ce rayon pointerait vers le second foyer 24 mais serait dévié lors de son entrée dans la lame et passerait en dessous du foyer. Ce trait est illustré en trait interrompu. Le fait d'avoir « retourné » le réflecteur d'environ 180° sur son axe optique a permis d'une part de réduire au minimum, voire d'éliminer l'épaisseur du volume mort adjacent au bord arrière de la plieuse, et d'autre part d'incliner les rayons réfléchis par le réflecteur de manière à ce que la majeure partie d'entre eux ne se perdent pas dans des éléments de construction du module. La correction de la surface réfléchissante est d'autant plus intéressante dans cette configuration que l'angle moyen d'incidence sur la face arrière de lame est important. Un deuxième rayon issu de la source lumineuse et réfléchi par un point B plus éloigné de l'axe optique du réflecteur est également illustré. Ce rayon va rencontrer la plieuse complémentaire 9 de manière à être renvoyé vers la lame et participer à la production de lumière ambiante du faisceau. Il est à noter que la source lumineuse privilégiée est du type à diode électroluminescence. Une telle source éclaire dans un demi-espace mais concentre une majeure partie de la puissance d'éclairage dans un cône centré sur son axe principal d'éclairage (c'est-à-dire une perpendiculaire à l'axe optique du réflecteur), si bien que la configuration de la figure 7 va permettre aux rayons formant la majeure partie de la puissance d'éclairage de travailler de manière optimale.The figure 7 illustrates the effect of reflective surface correction for an elliptical reflector configuration in a half-space and whose surface is generally opposite to the optical axis of the module. A first ray coming from the light source 22 and reflected at a point A of the corrected reflecting surface is shown in solid lines. In the absence of correction of the surface, this ray would point to the second focus 24 but would be deflected when it enters the blade and would pass below the focus. This line is illustrated in broken lines. Having "Turned" the reflector about 180 ° on its optical axis has on the one hand to minimize or even eliminate the thickness of the dead volume adjacent to the rear edge of the folder, and secondly tilt the rays reflected by the reflector so that most of them do not get lost in building elements of the module. The correction of the reflective surface is all the more interesting in this configuration that the average angle of incidence on the rear face of the blade is important. A second ray coming from the light source and reflected by a point B further from the optical axis of the reflector is also illustrated. This spoke will meet the complementary folder 9 so as to be returned to the blade and participate in the production of ambient light beam. It should be noted that the preferred light source is of the electroluminescence diode type. Such a source illuminates in a half-space but concentrates a major part of the lighting power in a cone centered on its main illumination axis (that is to say a perpendicular to the optical axis of the reflector), so that the configuration of the figure 7 will allow the spokes forming most of the lighting power to work optimally.

Il est à noter que le fait de prévoir un angle de dépouille à la tranche de la lame formant la plieuse et tel que décrit précédemment en relation avec la figure 4 a particulièrement de sens avec la disposition « retournée » du réflecteur car les rayons y rencontrent la lame transparente avec un angle d'incidence plus important.It should be noted that providing a draft angle to the edge of the blade forming the folder and as described above in connection with the figure 4 is particularly meaningful with the "upside-down" arrangement of the reflector because the rays there meet the transparent blade with a larger angle of incidence.

Claims (14)

Module d'éclairage pour un projecteur de véhicule automobile, comprenant : un premier réflecteur (10) avec une surface réfléchissante, avec au moins un premier foyer (22) pour une source lumineuse et un second foyer (24); un élément dioptrique (4) avec un axe optique (2), disposé de manière à recevoir les rayons lumineux réfléchis par le premier réflecteur et à transmettre les rayons lumineux l'atteignant en un faisceau lumineux ; une lame en matériau transparent (6), disposée entre ledit premier réflecteur (10) et ledit élément dioptrique (4) ; caractérisé en ce que ladite surface réfléchissante est formée de manière à ce que des rayons émis par ladite source lumineuse et partant du premier foyer (22) passent approximativement par ledit second foyer (24) après réflexion sur ladite surface réfléchissante et réfraction au passage dans ladite lame (6). Lighting module for a motor vehicle headlamp, comprising: a first reflector (10) with a reflective surface, with at least a first focus (22) for a light source and a second focus (24); a dioptric element (4) with an optical axis (2), arranged to receive the light rays reflected by the first reflector and to transmit the light rays reaching it in a light beam; a transparent material blade (6) disposed between said first reflector (10) and said dioptric element (4); characterized in that said reflective surface is formed in such a way that rays emitted by said light source and from the first focus (22) pass approximately through said second focus (24) after reflection on said reflective surface and refraction when passing through said blade (6) . Module d'éclairage selon la revendication précédente, caractérisé en ce que la surface réfléchissante corrigée est telle qu'elle transforme une surface d'onde sphérique dans l'air issue d'un point donné de la source lumineuse en une surface d'onde sphérique dans le matériau de la lame centrée approximativement au second foyer.Lighting module according to the preceding claim, characterized in that the corrected reflecting surface is such that it transforms a spherical wave surface in the air from a given point of the light source into a spherical wave surface in the material of the blade centered approximately at the second focus. Module d'éclairage selon l'une des revendications précédentes, caractérisé en ce la surface réfléchissante corrigée correspond à une surface calculée sur base du principe de Fermat de retour inverse de la lumière et de stationnarité du chemin optique suivi par la lumière le long d'un trajet, en partant d'un faisceau de rayons inverses passant par le second foyer.Lighting module according to one of the preceding claims, characterized in that the corrected reflecting surface corresponds to a surface calculated on the basis of Fermat principle of reverse light return and stationarity of the optical path followed by light along a path, starting from a beam of inverse rays passing through the second focus. Module d'éclairage selon la revendication précédente, caractérisé en ce que la surface calculée est obtenue par calcul vectoriel du chemin optique du faisceau de rayons inverses réfléchis par une surface imaginaire correspondant à la surface à calculer, qui est déterminée en imposant la constance du chemin optique le long des trajets calculés.Lighting module according to the preceding claim, characterized in that the calculated area is obtained by vector calculation of the optical path of the beam of inverse rays reflected by an imaginary surface corresponding to the surface to be calculated, which is determined by imposing the constancy of the path optical along the calculated paths. Module d'éclairage selon l'une des revendications précédentes, caractérisé en ce que la lame (6) est disposée de manière à présenter une tranche (26) généralement plane et généralement alignée avec l'axe optique (2) de l'élément dioptrique (4), ladite tranche (26) étant apte à réfléchir une partie des rayons réfléchis par ladite surface réfléchissante vers une partie de l'élément dioptrique (4).Lighting module according to one of the preceding claims, characterized in that the blade (6) is arranged to have a generally flat wafer (26) which is generally aligned with the optical axis (2) of the dioptric element. (4), said wafer (26) being able to reflect a portion of the rays reflected by said reflecting surface to a portion of the dioptric element (4). Module d'éclairage selon la revendication précédente, caractérisé en ce que le bord de la tranche (26) de la lame (6) du côté de l'élément dioptrique (4) est approximativement au niveau dudit second foyer (24).Lighting module according to the preceding claim, characterized in that the edge of the edge (26) of the blade (6) on the side of the dioptric element (4) is approximately at said second focus (24). Module d'éclairage selon l'une des revendications 5 et 6, caractérisé en ce que l'axe optique (22) du premier réflecteur (10) forme un angle avec l'axe optique (2) de l'élément dioptrique (4), préférentiellement un angle de plus de 10°, plus préférentiellement un angle de plus de 20°, plus préférentiellement encore un angle de plus de 30°.Lighting module according to one of Claims 5 and 6, characterized in that the optical axis (22) of the first reflector (10) forms an angle with the optical axis (2) of the dioptric element (4) , preferably an angle of more than 10 °, more preferably an angle of more than 20 °, more preferably still an angle of more than 30 °. Module d'éclairage selon l'une des revendications précédentes, caractérisé en ce que le premier réflecteur (10) est disposé de manière à ce que la surface réfléchissante s'éloigne de l'axe optique (2) de l'élément dioptrique (4) lorsque ladite surface réfléchissante se rapproche de son premier foyer.Lighting module according to one of the preceding claims, characterized in that the first reflector (10) is arranged in such a way that the reflecting surface moves away from the optical axis (2) of the dioptric element (4). ) when said reflective surface approaches its first focus. Module d'éclairage selon l'une des revendications précédentes, caractérisé en ce qu'il comprend un deuxième réflecteur (8) avec une surface réfléchissante, au moins un premier foyer (16, 18) pour une source lumineuse, un second foyer (24), ladite surface réfléchissante étant apte à réfléchir les rayons lumineux émis par ladite source lumineuse partant dudit premier foyer (16, 18) vers ledit second foyer (24), ledit second foyer étant approximativement confondu avec le second foyer (24) du premier réflecteur (10), l'axe optique (12, 14) du second réflecteur (8) formant un angle avec l'axe optique (20) du premier réflecteur (10), les premier et deuxième réflecteurs (10, 8) étant orientés par rapport à leurs axes optiques respectifs (20 ; 12, 14) de manière à ce que la surface réfléchissante du deuxième réflecteur soit en vis-à-vis de la surface externe du premier réflecteur, cette surface externe étant la surface opposée à la surface réfléchissante du premier réflecteur.Lighting module according to one of the preceding claims, characterized in that it comprises a second reflector (8) with a reflective surface, at least a first focus (16, 18) for a light source, a second focus (24). ), said reflective surface being adapted to reflect light rays emitted from said light source from said first focus (16, 18) to said second focus (24), said second focus being approximately coincident with the second focus (24) of the first reflector (10), the optical axis (12, 14) of the second reflector (8) forming an angle with the optical axis (20) of the first reflector (10), the first and second reflectors (10, 8) being oriented by relative to their respective optical axes (20; 12, 14) so that the reflective surface of the second reflector is opposite the outer surface of the first reflector; outer surface being the surface opposite to the reflecting surface of the first reflector. Module d'éclairage selon l'une des revendications précédentes, dans lequel la ou les sources lumineuses sont des diodes électroluminescentes.Lighting module according to one of the preceding claims, wherein the one or more light sources are light emitting diodes. Procédé d'optimisation d'un module d'éclairage d'un projecteur de véhicule automobile, le module comprenant : un premier réflecteur (10) avec une surface réfléchissante, avec au moins un premier foyer (22) pour une source lumineuse et un second foyer (24), ; un élément dioptrique (4) avec un axe optique (2), disposé de manière à recevoir les rayons lumineux réfléchis par le premier réflecteur et à transmettre les rayons lumineux l'atteignant en un faisceau lumineux ; une lame (6) en matériau transparent, disposée à proximité dudit second foyer (24) ; caractérisé en ce que le procédé comprend une étape de réalisation de la surface réfléchissante du premier réflecteur, ladite étape de réalisation comprenant la correction d'une surface réfléchissante apte à réfléchir les rayons lumineux émis par ladite source lumineuse partant dudit premier foyer (22) vers ledit second foyer (24), cette correction étant effectuée de manière à ce que des rayons émis par ladite source lumineuse et partant du premier foyer (22) passent approximativement par ledit second foyer (24) après réflexion sur ladite surface réfléchissante et réfraction au passage dans ladite lame (6).. A method of optimizing a lighting module of a motor vehicle headlamp, the module comprising: a first reflector (10) with a reflective surface, with at least a first focus (22) for a light source and a second focus (24),; a dioptric element (4) with an optical axis (2), arranged to receive the light rays reflected by the first reflector and to transmit the light rays reaching it in a light beam; a blade (6) of transparent material disposed near said second focus (24); characterized in that the method comprises a step of producing the reflective surface of the first reflector, said manufacturing step comprising the correction of a reflective surface able to reflect the light rays emitted by said light source from said first focus (22) to said second focus (24), this correction being carried out so that rays emitted by said light source and from the first focus (22) pass approximately through said second focus (24) after reflection on said reflective surface and refraction to the passage in said blade (6). . Procédé selon la revendication 11, caractérisé en ce que la surface réfléchissante du premier réflecteur (10) est obtenue par calcul vectoriel du chemin optique d'un faisceau de rayons inverses réfléchis par une surface imaginaire correspondant à la surface à calculer.Method according to claim 11, characterized in that the reflecting surface of the first reflector (10) is obtained by vector calculation of the optical path of a beam of inverse rays reflected by an imaginary surface corresponding to the surface to be calculated. Procédé selon la revendication 12, caractérisé en ce que le faisceau de rayons inverses passe par le second foyer (24) puis la lame (6), sortant de la lame (6) avec réfraction et ensuite réfléchis par une surface imaginaire correspondant à la surface à calculer.Method according to claim 12, characterized in that the reverse beam passes through the second focus (24) and then the blade (6), coming out of the blade (6) with refraction and then reflected by an imaginary surface corresponding to the surface to calculate. Procédé selon l'une des revendications 11 à 13, caractérisé en ce que le module est un module selon l'une des revendications 1 à 10.Method according to one of Claims 11 to 13, characterized in that the module is a module according to one of Claims 1 to 10.
EP11174353.0A 2010-07-19 2011-07-18 Reflector of the corrected elliptical type Active EP2410237B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1055850A FR2962784B1 (en) 2010-07-19 2010-07-19 REFLECTOR OF THE ELLIPTICAL TYPE CORRECTED

Publications (2)

Publication Number Publication Date
EP2410237A1 true EP2410237A1 (en) 2012-01-25
EP2410237B1 EP2410237B1 (en) 2017-04-19

Family

ID=43567783

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11174353.0A Active EP2410237B1 (en) 2010-07-19 2011-07-18 Reflector of the corrected elliptical type

Country Status (2)

Country Link
EP (1) EP2410237B1 (en)
FR (1) FR2962784B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR956728A (en) 1950-02-06
FR2537249A1 (en) * 1982-12-02 1984-06-08 Cibie Projecteurs Interrupted-beam headlamp with elliptical reflector for motor vehicle.
US5681104A (en) * 1995-11-06 1997-10-28 Ford Motor Company Mini-projector beam headlamps
EP1357334A1 (en) 2002-04-25 2003-10-29 Valeo Vision Elliptical lighting module without screen providing a cut-off beam and headlamp comprising the same
FR2858042A1 (en) 2003-07-24 2005-01-28 Valeo Vision LUMINAIRE-FREE ELLIPTICAL LIGHTING MODULE COMPRISING A CUT-OFF LIGHTING BEAM AND PROJECTOR COMPRISING SUCH A MODULE
FR2917484A1 (en) 2007-06-18 2008-12-19 Valeo Vision Sa OPTICAL MODULE FOR AUTOMOTIVE LIGHTING DEVICE
EP2302292A1 (en) * 2009-09-29 2011-03-30 Valeo Vision Optical module with folder formed by a transparent material/air dioptre

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR956728A (en) 1950-02-06
FR2537249A1 (en) * 1982-12-02 1984-06-08 Cibie Projecteurs Interrupted-beam headlamp with elliptical reflector for motor vehicle.
US5681104A (en) * 1995-11-06 1997-10-28 Ford Motor Company Mini-projector beam headlamps
EP1357334A1 (en) 2002-04-25 2003-10-29 Valeo Vision Elliptical lighting module without screen providing a cut-off beam and headlamp comprising the same
FR2858042A1 (en) 2003-07-24 2005-01-28 Valeo Vision LUMINAIRE-FREE ELLIPTICAL LIGHTING MODULE COMPRISING A CUT-OFF LIGHTING BEAM AND PROJECTOR COMPRISING SUCH A MODULE
FR2917484A1 (en) 2007-06-18 2008-12-19 Valeo Vision Sa OPTICAL MODULE FOR AUTOMOTIVE LIGHTING DEVICE
EP2302292A1 (en) * 2009-09-29 2011-03-30 Valeo Vision Optical module with folder formed by a transparent material/air dioptre

Also Published As

Publication number Publication date
EP2410237B1 (en) 2017-04-19
FR2962784A1 (en) 2012-01-20
FR2962784B1 (en) 2015-01-16

Similar Documents

Publication Publication Date Title
EP3299703B1 (en) Dual-function lighting module made of transparent material
EP2865937B1 (en) Lighting device comprising a light guide
EP3708904B1 (en) Lighting device illustrating the lit surfaces of at least two manifolds
EP3128226A1 (en) Luminous module made of transparent material with two reflecting surfaces
FR2944578A1 (en) MODULE AND LIGHTING DEVICE FOR VEHICLE WITH ENHANCED ROAD FUNCTION
EP3708905B1 (en) Lighting device imaging the mirrored image of a light collector
EP2976569B1 (en) Illuminating and/or signalling module for an automotive vehicle
EP0838628B1 (en) Motor vehicle headlamp comprising a light conducting element
WO2022129420A1 (en) Light-emitting module that images the illuminated surface of a collector, with a blocker of parasitic rays
EP3141806B1 (en) Luminous module made of transparent material
EP3505813B1 (en) Light module with scanning of light beam, in particular for a motor vehicle, provided with a reduced dimension focusing system, and lighting device for a motor vehicle comprising such a light module
EP2302292A1 (en) Optical module with folder formed by a transparent material/air dioptre
EP2410237B1 (en) Reflector of the corrected elliptical type
EP2565522A1 (en) Headlight for automobile
EP2410238B1 (en) Optical reflector consisting of a transparent blade with an undercut
FR2962786A1 (en) Lighting module for headlamp of motor vehicle, has reflector arranged so that folding reflective surface moves away from optical axis of dioptric element when reflective surface approaches combustor
EP3959467B1 (en) Light module
WO2023186915A1 (en) Light module with a lens imaging the illuminated surface of a collector and a screen blocking stray direct rays
EP4264123A1 (en) Dual-function lighting device with rotating lens
WO2021122860A1 (en) Optical part for a motor vehicle

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120712

17Q First examination report despatched

Effective date: 20160108

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 886336

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011037064

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170419

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 886336

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170720

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170819

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011037064

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20180122

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170719

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170718

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170718

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240712

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240725

Year of fee payment: 14