EP2399035B1 - Temoin d'erosion pour roue de compresseur - Google Patents

Temoin d'erosion pour roue de compresseur Download PDF

Info

Publication number
EP2399035B1
EP2399035B1 EP10708305.7A EP10708305A EP2399035B1 EP 2399035 B1 EP2399035 B1 EP 2399035B1 EP 10708305 A EP10708305 A EP 10708305A EP 2399035 B1 EP2399035 B1 EP 2399035B1
Authority
EP
European Patent Office
Prior art keywords
erosion
wheel
compressor wheel
rib
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10708305.7A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2399035A1 (fr
Inventor
Geoffroy Billotey
Olivier Descubes
Sylvain Gourdant
Olivier Tuot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Helicopter Engines SAS
Original Assignee
Turbomeca SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Turbomeca SA filed Critical Turbomeca SA
Priority to PL10708305T priority Critical patent/PL2399035T3/pl
Publication of EP2399035A1 publication Critical patent/EP2399035A1/fr
Application granted granted Critical
Publication of EP2399035B1 publication Critical patent/EP2399035B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/289Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps having provision against erosion or for dust-separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics

Definitions

  • the present invention relates to the field of compression stages of turbomachines, such as, but not exclusively, aircraft turbine engines and, in particular, to the problem of wear of the constituent elements of these compression stages.
  • the present invention more specifically relates to one of these constituent elements, namely a centrifugal compressor wheel which comprises a hub, a web extending radially from the hub and carrying a plurality of blades.
  • centrifugal compressor wheel which is also well known, participates with a radial diffuser in the compression of the air which enters axially into the compression stage, before emerging radially therefrom.
  • each of the blades extends between a leading edge and a trailing edge and has a lower surface and an upper surface.
  • the compressor wheel tends to erode due in particular to the ingestion particles, such as sand in the compression stage.
  • the recoil of the leading edges can lead to a degradation of the performances and the aerodynamic stability of the compressor, as well as a degradation of the mechanical strength of the blades.
  • the groove degrades the mechanical strength of the disk of the wheel. Erosion at the leading edge is easily detectable by conventional means (camera by the engine air inlet) and may be weaker than furrow erosion. It is therefore also necessary to control this type of erosion, and so that when the compressor wheel is too much eroded by this groove, it is necessary to change it.
  • the erosion profile is very thin and not very visible, so that it is difficult to estimate rapidly whether erosion is tolerable or not.
  • Examples of known compressor wheels are described in EP 1 985 801 and US 2001/0007 632 .
  • An object of the present invention is to provide a centrifugal compressor wheel whose furrow-type erosion can be controlled quickly and simply.
  • the invention achieves its purpose by the fact that the web includes an indicator of erosion of the wheel.
  • the erosion witness is chosen so that when it is completely eroded, the level of erosion of the compressor wheel is such that it is necessary to replace it.
  • the erosion indicator erodes as the furrow is formed in the web of the compressor wheel.
  • the control is arranged in such a way that the erosion causes a decrease in the axial thickness of the haze and, therefore, of the erosion control.
  • the erosion indicator is located on an outer peripheral edge of the web, whereby the formation of the groove is easily controllable, and, in addition, the erosion control thus positioned does not disturb the flow of the in the compressor wheel.
  • the wear indicator comprises at least one rib projecting radially from a peripheral edge of the web, the rib having an axial thickness less than that of the web so as to form a step between a section of the web. rib and a surface of the veil from which the blades extend.
  • the rib has a radial height slightly greater than that of the associated blade, it being understood that radial height means the radial distance considered from the axis of rotation of the compressor wheel.
  • this rib constitutes a radial extra thickness of the peripheral edge of the web.
  • axial height means the distance between the flange of the rib and the inner surface of the sail carrying the blade. This axial height also corresponds to the difference between the axial thickness of the web taken at its peripheral edge and the axial thickness of the rib.
  • the inventors have found that the beginning of the erosion of the rib is particularly visible on the side of the rib, so that it is advantageously easy to identify the end of the erosion of the erosion control. .
  • the axial height of the step is advantageously calibrated.
  • the step has an axial height of between 0.5 and 1.5 mm.
  • the radial height of the rib is preferably between 0.5 and 3 mm.
  • the wear indicator may consist of one or more ribs.
  • a single rib extending along the circumference of the peripheral edge of the web will preferably be selected.
  • the present invention furthermore relates to a compression stage of a turbomachine comprising a compressor wheel according to the invention, and to a casing provided with an inlet for allowing the introduction of a camera into the compression stage of the invention. to control the wear of the erosion witness.
  • the camera is an endoscope.
  • the present invention also relates to a turbomachine comprising a compression stage according to the invention.
  • the turbomachine is a helicopter turbine engine or any other aircraft.
  • the present invention finally relates to a method for determining the erosion of a centrifugal compressor wheel of a turbomachine according to the invention, in which process an endoscope is introduced into the compression stage to control the wear of the control lamp. erosion of said wheel.
  • the endoscope is introduced through an opening made in the housing, preferably a boss, and then penetrates through the diffuser until it is possible to observe the peripheral edge of the veil and therefore the control panel. 'erosion.
  • monitoring the level of erosion can be done directly in service and no longer during an overall maintenance of the turbomachine.
  • the figure 1 is a perspective view of a compressor wheel 10 that is usually found in helicopter gas turbines.
  • the present invention also applies to other types of turbomachine which comprise a compressor wheel.
  • the compressor wheel 10 comprises a hub 12 intended to cooperate with a drive shaft (not shown here) to drive the wheel 10 in rotation about its axis A.
  • a drive shaft not shown here
  • This compressor wheel 10 is intended to be mounted in a housing vis-à-vis a diffuser 11 of a compression stage 13 visible on the figure 7 .
  • the compressor wheel 10 also comprises a sail 14 , better visible on the figure 2 which extends radially from the hub 12 .
  • the compressor wheel 10 carries a plurality of blades 16 , each extending between a leading edge 16a and a trailing edge 16b . It is also known that these blades 16 are carried by the hub 12 and the sail 14. As can be seen in the Figures 2 and 3 In this example, edges 16b of leakage of the blades 16 are flush with a peripheral edge 22 of the plate 14.
  • the web 14 of the compressor wheel 10 comprises an erosion control 18 which, in this case, comprises a rib 20 , preferably but not necessarily unique, said rib 20 projecting radially from the edge device 22 of the web 14 , at the location of the trailing edge 16b of each of the blades 16 .
  • the rib 20 has an axial thickness EN less than the axial thickness EV of the web so as to form a step M between a section 20a of the rib 20 and a surface S of the web 14 from which extend the blades 16 .
  • this step M constitutes a downward movement in the direction F of the flow of air in the compressor wheel 10 .
  • the rib 20 is disposed at an axial end of the peripheral edge, which is opposite the surface S carrying the blades 1 6 .
  • the rib 20 has a radial height HN preferably between 0.5 and 3 mm, so as to leave a radial clearance between the end of the rib 20 and the diffuser 11 of the compression stage 13 .
  • This step 20 has an axial height HM preferably between 0.5 and 1.5 mm, the interest of which will be explained below.
  • the sail 14 When the wheel is not eroded, which is the case of a new wheel for example, the sail 14 has no erosion profile at the bottom of the blade as shown in FIG. figure 4 .
  • This groove 30 increases gradually and tends to consume the axial thickness EV of the web 14 .
  • the groove 30 at the trailing edge 16b has a depth less than the axial height HM of the step M.
  • the step M is not completely eroded and the rib 20 has not been attacked.
  • the wear of the compressor wheel 10 is still acceptable as long as the erosion has not attacked the rib 20 .
  • the depth of the groove 30 is greater than the axial height HM of the step M.
  • the erosion witness 18 is completely eroded which implies that the compressor wheel 10 must be changed.
  • the erosion control wear control 18 is advantageously carried out by means of a camera, preferably an endoscope 40, which is introduced through an inlet 42 of the housing 15 of the compression stage 13, in this case a boss, as is schematized on the figure 7 .
  • the introduction of the endoscope 40 is performed through a radial diffuser 44 that is usually found in the compression stages.
  • the endoscope 40 allows to observe and check the wear state of the erosion indicator 18 without requiring complete disassembly of the wheel 10.
  • the inventors have discovered that the beginning of the erosion of the rib 20 , reflecting the total wear of the erosion control 18, is easily detectable using the endoscope. Indeed, the disappearance of the step M associated with the erosion of the rib is easily seen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
EP10708305.7A 2009-02-19 2010-02-09 Temoin d'erosion pour roue de compresseur Active EP2399035B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL10708305T PL2399035T3 (pl) 2009-02-19 2010-02-09 Wskaźnik erozji koła sprężarki

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0951085A FR2942267B1 (fr) 2009-02-19 2009-02-19 Temoin d'erosion pour roue de compresseur
PCT/FR2010/050205 WO2010094873A1 (fr) 2009-02-19 2010-02-09 Temoin d'erosion pour roue de compresseur

Publications (2)

Publication Number Publication Date
EP2399035A1 EP2399035A1 (fr) 2011-12-28
EP2399035B1 true EP2399035B1 (fr) 2015-10-14

Family

ID=41050458

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10708305.7A Active EP2399035B1 (fr) 2009-02-19 2010-02-09 Temoin d'erosion pour roue de compresseur

Country Status (11)

Country Link
US (1) US8915711B2 (ru)
EP (1) EP2399035B1 (ru)
JP (1) JP5475018B2 (ru)
KR (1) KR101706795B1 (ru)
CN (1) CN102326003B (ru)
CA (1) CA2752487C (ru)
ES (1) ES2553761T3 (ru)
FR (1) FR2942267B1 (ru)
PL (1) PL2399035T3 (ru)
RU (1) RU2516755C2 (ru)
WO (1) WO2010094873A1 (ru)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2981131B1 (fr) * 2011-10-07 2013-11-01 Turbomeca Compresseur centrifuge equipe d'un marqueur de mesure d'usure et procede de suivi d'usure utilisant ce marqueur
WO2014046927A1 (en) * 2012-09-19 2014-03-27 Borgwarner Inc. Turbine wheel
CN103206407A (zh) * 2012-10-24 2013-07-17 哈尔滨东安发动机(集团)有限公司 压气机叶轮
FR3006013B1 (fr) * 2013-05-21 2017-10-13 Turbomeca Turbomachine comportant un temoin d'usure du carter
CN105339675A (zh) * 2013-08-06 2016-02-17 株式会社Ihi 离心压缩机以及增压器
FR3018114B1 (fr) * 2014-03-03 2016-03-25 Turbomeca Dispositif pour le positionnement d'un outil d'inspection
US9556743B2 (en) 2014-07-03 2017-01-31 Rolls-Royce Corporation Visual indicator of coating thickness
CN104816836A (zh) * 2015-05-07 2015-08-05 哈尔滨飞机工业集团有限责任公司 一种利用分囊面痕迹鉴别尾桨叶气囊类型的方法
US10221858B2 (en) 2016-01-08 2019-03-05 Rolls-Royce Corporation Impeller blade morphology
FR3046812B1 (fr) * 2016-01-20 2019-05-17 Safran Helicopter Engines Roue de compresseur centrifuge ou mixte et etage de compression equipe d'une telle roue de compresseur
US10428674B2 (en) * 2017-01-31 2019-10-01 Rolls-Royce North American Technologies Inc. Gas turbine engine features for tip clearance inspection
IT201700108888A1 (it) * 2017-09-28 2019-03-28 Nuovo Pignone Tecnologie Srl Method of providing monitoring of erosion and/or corrosion in a machine and machine / metodo per consentire di monitorare erosione e/o corrosione in una macchina e macchina
KR102172654B1 (ko) * 2018-11-27 2020-11-02 한국가스공사 Lng펌프용 임펠러의 마모링 어셈블리
CN110907349A (zh) * 2019-12-24 2020-03-24 温州宏量机械科技有限公司 一种钢材抗二氧化碳腐蚀性能的对比模拟测试装置
US11326469B2 (en) 2020-05-29 2022-05-10 Rolls-Royce Corporation CMCs with luminescence environmental barrier coatings
CN114439771A (zh) * 2022-01-24 2022-05-06 广东顺威精密塑料股份有限公司 一种变斜式离心叶轮

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1016888B (de) * 1952-02-23 1957-10-03 Maschf Augsburg Nuernberg Ag Laufrad fuer Radialverdichter
DE2621201C3 (de) * 1976-05-13 1979-09-27 Maschinenfabrik Augsburg-Nuernberg Ag, 8900 Augsburg Laufrad für eine Strömungsmaschine
US4195473A (en) * 1977-09-26 1980-04-01 General Motors Corporation Gas turbine engine with stepped inlet compressor
SU1249150A1 (ru) 1985-01-28 1986-08-07 Институт проблем надежности и долговечности машин АН БССР Устройство дл индикации допустимого износа насосно-компрессорных труб
JPH0234786U (ru) * 1988-08-30 1990-03-06
US5052803A (en) * 1989-12-15 1991-10-01 Welch Allyn, Inc. Mushroom hook cap for borescope
US5215439A (en) * 1991-01-15 1993-06-01 Northern Research & Engineering Corp. Arbitrary hub for centrifugal impellers
US5735669A (en) * 1996-07-31 1998-04-07 Ryobi North America Fly wheel assembly and method of forming
DE50012259D1 (de) * 2000-01-11 2006-04-27 Sulzer Pumpen Ag Winterthur Strömungsmaschine für ein Fluid mit einem radialen Dichtspalt zwischen Statorteilen und einem Rotor
JP2002047944A (ja) * 2000-07-31 2002-02-15 Toyota Motor Corp 高回転型インペラ
FR2830579B1 (fr) * 2001-10-05 2004-01-23 Abb Solyvent Ventec Roue de compression centrifuge associant une structure en materiau composite et une structure metallique et procede de fabrication
JP3876195B2 (ja) * 2002-07-05 2007-01-31 本田技研工業株式会社 遠心圧縮機のインペラ
JP2004044423A (ja) * 2002-07-09 2004-02-12 Ishikawajima Harima Heavy Ind Co Ltd 動翼のクリープ検知方法及びクリープ検知用マーク付き動翼
FR2866079B1 (fr) * 2004-02-05 2006-03-17 Snecma Moteurs Diffuseur pour turboreacteur
US20060071473A1 (en) 2004-10-05 2006-04-06 Sivley Robert S Iv Helical groove for a tubular connection
JP4476794B2 (ja) * 2004-12-10 2010-06-09 株式会社荏原製作所 立軸ポンプ
US7207768B2 (en) * 2005-01-15 2007-04-24 Siemens Power Generation, Inc. Warning system for turbine component contact
EP1985801A1 (en) * 2007-04-23 2008-10-29 Siemens Aktiengesellschaft Impeller coating
GB2449709A (en) * 2007-06-02 2008-12-03 Rolls Royce Plc Method and apparatus for determining a clearance between relatively movable components
DE102007055614A1 (de) * 2007-11-20 2009-05-28 Mann + Hummel Gmbh Verdichterrad eines Radialverdichters und Verfahren zur Herstellung eines solchen Verdichterrades
FR2931214B1 (fr) 2008-05-15 2013-07-26 Turbomeca Pale de rouet de compresseur a raccordement evolutif
US20100028160A1 (en) * 2008-07-31 2010-02-04 General Electric Company Compressor blade leading edge shim and related method

Also Published As

Publication number Publication date
US8915711B2 (en) 2014-12-23
FR2942267B1 (fr) 2011-05-06
FR2942267A1 (fr) 2010-08-20
CA2752487A1 (fr) 2010-08-26
ES2553761T3 (es) 2015-12-11
JP5475018B2 (ja) 2014-04-16
KR101706795B1 (ko) 2017-02-14
WO2010094873A1 (fr) 2010-08-26
CA2752487C (fr) 2017-03-14
US20110299987A1 (en) 2011-12-08
CN102326003B (zh) 2014-09-03
JP2012518123A (ja) 2012-08-09
RU2011138200A (ru) 2013-03-27
CN102326003A (zh) 2012-01-18
KR20110122192A (ko) 2011-11-09
RU2516755C2 (ru) 2014-05-20
EP2399035A1 (fr) 2011-12-28
PL2399035T3 (pl) 2016-02-29

Similar Documents

Publication Publication Date Title
EP2399035B1 (fr) Temoin d'erosion pour roue de compresseur
CA2826153C (fr) Ensemble pale-plateforme pour ecoulement subsonique
EP2376790B1 (fr) Aube a calage variable pour etage de redresseur, comprenant une plateforme interne non circulaire
EP2315642B1 (fr) Procede de reparation ou de reprise d'un disque de turbomachine
EP3315721B1 (fr) Renfort de bord d'attaque d'une aube de turbomachine
FR2942454A1 (fr) Dispositif de retenue d'aube pour helice de turbomachine.
FR2931904A1 (fr) Degagement d'aube de rotor de compresseur
EP2406500A1 (fr) Compresseur axialo-centrifuge a angle de rake evolutif
EP3320181B1 (fr) Ensemble rotatif de turbomachine aéronautique comprenant une plateforme rapportée d'aube de soufflante
EP1469165B1 (fr) Réduction de jeux dans une turbine à gaz
FR3075869A1 (fr) Roue mobile de turbine pour turbomachine d'aeronef, comprenant un anneau d'etancheite retenu radialement par des excroissances sur l'echasse des aubes
FR2993599A1 (fr) Disque labyrinthe de turbomachine
FR3063102A1 (fr) Aube statorique a angle de calage variable pour une turbomachine d'aeronef
FR3082558A1 (fr) Distributeur de turbine pour turbomachine, comprenant un systeme passif de reintroduction de gaz de fuite dans une veine d'ecoulement des gaz
FR2953252A1 (fr) Secteur de distributeur pour une turbomachine
FR3065759A1 (fr) Rouet centrifuge pour turbomachine
EP2307738B1 (fr) Couvercle de compresseur de turbomoteur à butée axiale
FR3085712A1 (fr) Aube de roue mobile pour turbomachine d'aeronef, presentant un talon decouple de la pale de l'aube
WO2017125662A1 (fr) Roue de compresseur centrifuge ou mixte et étage de compression équipé d'une telle roue de compresseur
EP3935273B1 (fr) Turbine à gaz contrarotative pour aéronef à double rotor
EP4010562B1 (fr) Aube mobile pour une roue d'une turbomachine d'aéronef, roue pour une turbomachine d'aéronef et turbomachine d'aéronef
WO2022200733A1 (fr) Cone d'entree pour une turbomachine d'aeronef
FR3135758A1 (fr) Carter de rétention d’une soufflante présentant une partie sphérique tronquée
FR3098241A1 (fr) Tambour pour une turbomachine d’aeronef
FR3127021A1 (fr) Aube mobile pour turbine de turbomachine, comprenant une échasse équipée d’excroissances de retenue radiale de l’aube

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110913

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: BILLOTEY, GEOFFROY

Inventor name: GOURDANT, SYLVAIN

Inventor name: TUOT, OLIVIER

Inventor name: DESCUBES, OLIVIER

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150430

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 755357

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010028214

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2553761

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20151211

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151014

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 755357

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160114

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160115

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160215

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010028214

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

26N No opposition filed

Effective date: 20160715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160209

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160209

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN HELICOPTER ENGINES, FR

Effective date: 20170727

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20190128

Year of fee payment: 10

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200210

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20230123

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230123

Year of fee payment: 14

Ref country code: IT

Payment date: 20230120

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240123

Year of fee payment: 15

Ref country code: GB

Payment date: 20240123

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240123

Year of fee payment: 15