EP2398609B2 - Procédé de coulée pour alliages d'aluminium - Google Patents

Procédé de coulée pour alliages d'aluminium Download PDF

Info

Publication number
EP2398609B2
EP2398609B2 EP10707100.3A EP10707100A EP2398609B2 EP 2398609 B2 EP2398609 B2 EP 2398609B2 EP 10707100 A EP10707100 A EP 10707100A EP 2398609 B2 EP2398609 B2 EP 2398609B2
Authority
EP
European Patent Office
Prior art keywords
casting
gas
process according
dried gas
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10707100.3A
Other languages
German (de)
English (en)
Other versions
EP2398609B1 (fr
EP2398609A1 (fr
Inventor
Guillaume Bes
Robert Rey-Flandrin
Olivier Ribaud
Stéphane VERNEDE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Constellium Issoire SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41119645&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2398609(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Constellium Issoire SAS filed Critical Constellium Issoire SAS
Priority to DE602010003451T priority Critical patent/DE602010003451T8/de
Publication of EP2398609A1 publication Critical patent/EP2398609A1/fr
Application granted granted Critical
Publication of EP2398609B1 publication Critical patent/EP2398609B1/fr
Publication of EP2398609B2 publication Critical patent/EP2398609B2/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/003Aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/116Refining the metal
    • B22D11/117Refining the metal by treating with gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C

Definitions

  • the invention relates to the casting of aluminum alloys, in particular the casting of alloys containing magnesium and/or lithium which are sensitive to oxidation.
  • beryllium has a certain toxicity which has notably led to its elimination in aluminum alloys used as food packaging. Calcium can cause edge cracks during hot rolling. It has also been proposed to protect the surface of the liquid metal by various devices.
  • the patent US 4,582,118 proposes using a non-reactive and non-combustible atmosphere, such as for example an atmosphere of argon, helium, neon, or krypton or even nitrogen or carbon dioxide, for the casting of aluminum alloys- lithium. The implementation of such methods is however very expensive.
  • the patent application EP 0 109 170 A1 describes the use of a baffle on the periphery of the casting loom to sweep the liquid metal surface with an inert gas (usually nitrogen and/or argon with or without chlorine or other halogen).
  • an inert gas usually nitrogen and/or argon with or without chlorine or other halogen.
  • carbon dioxide or flue gases to limit oxidation is also known from CN Cochran, DL Belitskus and DL Kinosz, Metallurgical Transcations B, Volume 8B, 1977, pages 323-331 .
  • the patent application EP 1 964 628 A1 describes a method for producing aluminum ingots in which at least one process step is carried out under an atmosphere containing a fluorinated gas.
  • the patent US 5,415,220 describes the use of molten salts of lithium chloride and potassium chloride to protect the surface of aluminium-lithium alloys during casting.
  • the use of molten salts has the disadvantage of the risk of contamination of the liquid metal with impurities as well as the difficulty of implementation.
  • the patent US 7,267,158 describes the forced addition of a moist gas, containing more than 0.005 kg/m 3 of water, to the surface of the molten metal so as to improve the surface quality of the cast ingots.
  • this process has the disadvantage of bringing the steam and the liquid aluminum into contact despite the dangers of explosion linked to the contact of the water and the liquid aluminum.
  • the document US-A-2005/000677 discloses a method of casting an aluminum alloy containing at least 0.1% by weight of Mg in which a liquid surface of said alloy is contacted during solidification with a dry gas comprising at least about 2% by volume of oxygen and whose water partial pressure has a dew point of 0°C.
  • the problem posed is to find a casting process suitable for the most oxidizable aluminum alloys, in particular aluminum alloys containing magnesium and/or lithium, which does not have these drawbacks and makes it possible to obtain cast ingots free from surface defects and pollution, in complete safety.
  • a first object of the invention is a method of casting an aluminum alloy containing at least approximately 0.1% Mg and/or at least approximately 0.1% Li according to claim 1.
  • the designation of the alloys follows the rules of The Aluminum Association, known to those skilled in the art.
  • the chemical composition of standardized aluminum alloys is defined for example in standard EN 573-3. Unless otherwise stated, the definitions of the European standard EN 12258-1 apply.
  • the term “casting installation” is used here to refer to all the devices making it possible to transform a metal in any form into a semi-finished product in raw form by passing through the liquid phase.
  • a casting installation can include many devices such as one or more furnaces necessary for melting the metal and/or maintaining it at temperature and/or for preparing the liquid metal and adjusting the composition, one or several tanks (or “pockets") intended to carry out a treatment for the elimination of impurities dissolved and/or suspended in the liquid metal, this treatment possibly consisting in filtering the liquid metal on a filter medium in a "filtration pocket” or introducing a so-called “treatment” gas into the bath, which may be inert or reactive, in a “degassing ladle", a device for solidifying the liquid metal (or “casting machine"), for example by vertical semi-continuous casting by direct cooling, horizontal casting, continuous wire casting, continuous strip casting between rolls, continuous strip casting between caterpillars, which may include devices such as a mold (or “mold”) ), a liquid metal supply device (or “nozzle”) a cooling system, these various furnaces, tanks and solidification devices being interconnected by channels called “chutes” in which the liquid metal can be transported.
  • devices such
  • the present inventors have found that, when brought into contact with a dry gas comprising at least approximately 2% by volume of oxygen and whose water partial pressure is less than approximately 150 Pa, a surface of liquid aluminum s oxidizes little, which makes it possible to make castings free from unacceptable surface defects.
  • a surface of liquid aluminum s oxidizes little, which makes it possible to make castings free from unacceptable surface defects.
  • This result is surprising because it is commonly accepted that, on the contrary, the humidity contained in the air makes it possible to limit the oxidation of aluminum alloys in the liquid state.
  • this surprising effect is implemented in a casting process.
  • the method according to the invention is useful for highly oxidizable aluminum alloys, containing at least approximately 0.1% of Mg and/or at least approximately 0.1% of Li.
  • the method according to the invention is particularly useful for alloys of families 2XXX, 3XXX, 5XXX, 6XXX, 7XXX or 8XXX, in particular when these alloys do not contain any deliberate addition of beryllium and/or calcium.
  • the process according to the invention is particularly advantageous for alloys containing less than 3 ppm of beryllium or even less than 1 ppm of beryllium and/or less than 15 ppm of calcium or even less than 5 ppm of calcium.
  • alloys for which the process according to the invention is particularly advantageous are, in the family of 2XXX alloys, the alloys AA2014, AA2017, AA2024, AA2024A, AA2027, AA2139, AA2050, AA2195, AA2196, AA2098, AA2198, AA2214 , AA2219, AA2524 in the 3XXX alloy family AA3003, AA3005, AA3104, AA3915 alloys in the 5XXX alloy family 7XXX alloys AA7010, AA7020, AA7040, AA7140, AA7050, AA7055, AA7056, AA7075, AA7449, AA7450, AA7475, AA7081, AA7085, AA7910, AA7975.
  • the dried gas must contain at least about 2% by volume of oxygen and have a water partial pressure of less than about 150 Pa, preferably less than 100 Pa and even more preferably less than 70 Pa. particularly advantageous invention, the partial water pressure is even less than 30 Pa, preferably less than 5 Pa and even more preferably less than 1 Pa.
  • the water partial pressure of a gas is also known as the vapor pressure.
  • the partial pressure of an ideal gas i in a mixture of ideal gases of total pressure P is defined as the pressure which would be exerted by the molecules of gas i if this gas alone occupied all the volume offered to the mixture.
  • the dew point of a gas is the temperature at which, while keeping current barometric conditions unchanged, the gas becomes saturated with water vapour.
  • a water partial pressure of 150 Pa corresponds to a dew point of -17.9°C and a quantity of water of 0.0013 kg/m 3 at this temperature.
  • a water partial pressure of 100 Pa corresponds to a dew point of -22.6°C and a quantity of water of 0.0009 kg/m 3 at this temperature.
  • a water partial pressure of 70 Pa corresponds to a dew point of -26.5°C and a quantity of water of 0.0006 kg/m 3 at this temperature.
  • the dried gas also advantageously comprises at least one gas selected from air, helium, argon, nitrogen, carbon dioxide, carbon monoxide, natural gas combustion products, methane, ethane, propane, natural gas, organic fluorinated compounds, organic chlorine compounds. Adding carbon dioxide to the dry gas can in some cases enhance the antioxidant effect.
  • the dry gas comprises between 1 and 10% by volume of CO 2
  • the CO 2 content of the dry gas is less than 1% by volume or even less than 0.1% by volume in another advantageous embodiment of the invention.
  • said dried gas is essentially air dried by any appropriate means to reach the desired water partial pressure.
  • the dried gas is brought into contact with a liquid surface of an aluminum alloy during most of the solidification of said alloy.
  • the bringing into contact of the gas with the surface is preferably carried out in such a way as to establish above this surface an atmosphere whose water content is substantially equal, generally different by less than 10% or 20%, to that of the dry gas, that is to say so as to avoid a significant diffusion of water vapor from the ambient air into said atmosphere.
  • this flow it is advantageous for this flow to be sufficient with respect to the liquid surface subjected to the dry flow so as to establish said atmosphere, if this flow is too low, the composition of said atmosphere may be influenced too much by the external atmosphere and its water content may no longer correspond to the desired content.
  • the liquid surface of the aluminum alloy brought into contact with the dried gas represents at least 10%, preferably at least 25% and even more preferably at least 50% of the total liquid surface of said aluminum alloy.
  • a liquid surface of the aluminum alloy is kept in contact with the dry gas during most of the solidification.
  • an increase in the flow rate of a flow of dry gas makes it possible in certain cases to make furrows disappear in the cast product.
  • the contact between the liquid surface and the dried gas can possibly be eliminated before the end of the casting, in particular when a zone is reached which will be cut off during the following operations.
  • a liquid surface of the aluminum alloy is kept in contact with the dry gas for at least 50% or even at least 90% of the solidification.
  • the present invention applies to various casting processes and preferably to a casting process chosen from among vertical semi-continuous casting by direct cooling, horizontal casting, continuous casting of wire, continuous casting of strips between rolls, continuous casting of strips between caterpillars (“belt caster”).
  • the semi-continuous process of vertical casting by direct cooling of aluminum alloys known to those skilled in the art in particular by its name in English "Direct Chill casting” or "DC casting”, is a preferred process in the context of the present invention.
  • an aluminum alloy is poured into an ingot mold having a false bottom by moving vertically and continuously the false bottom so as to maintain a substantially constant level of liquid metal during the solidification of the alloy, the solidified faces being cooled directly with water.
  • the figure 1 illustrates this process.
  • the aluminum alloy is fed through a conduit (4) into a mold (3) placed on a false bottom (21).
  • the aluminum alloy solidifies by direct cooling (5).
  • the solidifying aluminum alloy (1) has at least one solid surface (11, 12, 13) and at least one liquid state aluminum alloy surface which can be coated with oxides, which is called “liquid surface” in the present description (14, 15).
  • a descender (2) makes it possible to gradually lower the alloy during solidification so as to maintain the vertical position of the liquid aluminum surface (14, 15) substantially constant.
  • the method according to the invention is particularly advantageous for the casting of plates and billets by vertical semi-continuous casting by direct cooling.
  • the process according to the invention is particularly advantageous for the casting of plates of large dimensions, in particular with a section greater than 0.5 m 2 .
  • the device is fixed around a liquid metal injector so as to introduce the dried gas from the center of the liquid surface towards its periphery and/or from the periphery towards the center.
  • a device for the supply of gas in the case of semi-continuous vertical casting by direct cooling is illustrated by the figure 2 .
  • the dry gas is supplied by means of a device (6) fixed around the liquid metal injector (4) so that the flow of dry gas (7) is directed from the core of said liquid surface towards its periphery and/or from the periphery towards the core in the liquid metal injection zone.
  • the gas supply device can be fixed on a dam retaining the oxides (“dross dam”) which is positioned around the liquid metal injection zone.
  • the dry gas from the casting process according to the invention can also be used in other parts of a casting installation on a liquid surface of aluminum alloys containing at least about 0.1% Mg and/or at least about 0.1% Li, to minimize oxidation.
  • a casting installation includes several other devices in which liquid surfaces of aluminum alloy are in contact with the atmosphere.
  • the dried gas can advantageously be used to limit the oxidation of the liquid surface of alloys in a furnace, in particular melting or holding, in a treatment tank such as a filtration ladle or a degassing ladle or in a transfer channel such as a chute.
  • conditions for using the dried gas and/or an aluminum alloy composition similar to those of the process according to the invention are preferably used, in particular concerning the supply of the dried gas.
  • the dried gas is also used in at least one furnace, in particular melting or holding and/or in at least one treatment tank such as a filtration ladle or a degassing ladle and/or in at least one transfer channel such as a chute .
  • the products obtained by a process according to the invention and/or by a use according to the invention can optionally be wrought in particular by rolling, spinning and/or forging, so as to obtain in particular sheets and profiles.
  • the invention allows in particular the casting of the most oxidizable aluminum alloys, in particular aluminum alloys containing magnesium and/or lithium, without using additives such as beryllium and/or calcium and without using expensive device and/or gas while obtaining cast ingots free from surface defects and pollution, in complete safety.
  • the oxidation of the liquid metal was measured by thermogravimetric analysis.
  • a crucible containing the liquid metal is maintained at a controlled temperature.
  • This crucible contains approximately 5 kg of metal, for a diameter of 100 mm.
  • the significant size of these experiments which makes it possible to take macroscopic effects into account, may explain the differences with the experiments carried out on very small quantities often reported in the prior art.
  • the mass of the sample is weighed continuously. The weight gain is due to the oxidation of the liquid metal.
  • a diagram illustrating this experiment is presented on the figure 4 .
  • the dried gas (7) is brought to the surface of the liquid metal (14) by a metal tube (6) with an inside diameter of 4 mm, arranged obliquely with respect to this surface.
  • the balance (92) makes it possible to continuously measure the weight of the crucible (93) and of its contents in situ in the furnace (91).
  • the distance between the orifice of the metal tube and the surface of the liquid metal was 120 mm.
  • the air used can be dried until it reaches a water partial pressure of less than 70 Pa.
  • Three alloys were studied: the AA7449, AA2196 and AA5182 alloys. The conditions of the different runs are summarized in Table 1. In all runs, beryllium and calcium content were similar and less than 1 ppm and 10 ppm, respectively. Table 1.
  • thermobalance Trials alloy Gas flow (1/min) Gas Water partial pressure of the injected gas (Pa) 1 AA5182 7.9 Dry air ⁇ 70Pa 2 AA5182 0 Ambiant air > 600Pa 3 AA2196 7.9 Dry air ⁇ 70Pa 4 AA2196 0 Ambiant air > 600Pa 5 AA7449 4.1 Dry air ⁇ 70Pa 6 AA7449 3.8 Ambiant air > 600Pa 7 AA7449 0 Ambiant air > 600Pa 8 AA7449 4.1 Dry air 180Pa 9 AA7449 3.8 Dry air 600Pa
  • the figures 5 to 8 present the results obtained.
  • the figure 5 shows the results obtained with the AA7449 alloy. Significantly lower weight gains are obtained for test 5 for which a very dry air flow was carried out. Bringing a liquid surface into contact with dry air whose water partial pressure is still 600 Pa (dew point of -0.2°C, test 9) or even 180 Pa (dew point -15.6°C, test 8) do not significantly limit oxidation. Likewise, the ambient air does not make it possible to limit the oxidation with or without flow (tests 6 and 7), which excludes a purely mechanical effect linked to a flow of gas.
  • the figure 6 shows the results obtained with the AA5182 alloy. A significantly lower oxidation in the presence of a very dry air flow is also observed for this alloy.
  • the figure 7 shows the results obtained with the AA2196 alloy. Again, for this alloy, significantly lower oxidation is observed in the presence of a very dry air flow.
  • the figure 8a is a photograph of the surface obtained after the test in the case of test 7 (ambient air). A very significant oxidation is observed, leading to oxidation products in the characteristic form of dark colored cauliflower.
  • the figure 8b is a photograph of the surface obtained after the test in the case of test 5 (dry air). A uniform surface of light gray color corresponding to a thin oxide film is observed.
  • Plates of rectangular section 446 mm x 2160 mm in AA7449 alloy were cast vertically using a semi-continuous direct-chill casting (DC-cast) installation, using an AlTiC quench.
  • the length of the plates obtained was between 900 mm and 4000 mm.
  • the beryllium content of the alloy was less than 1 ppm and the calcium content was less than 15 ppm.
  • the picture 3 illustrates the gas supply device having been used to supply dry air during the casting of the plates.
  • the device consists of 4 tubes (611, 612, 621 and 622) regularly pierced with orifices (63) making it possible to inject the dried gas (7) onto the liquid surface of the aluminum alloy.
  • the tubes are connected by screw connections (9) to form a rectangle.
  • the tubes are supplied with gas by two of these screwed connections, by two pipes (81) and (82).
  • the dried gas was dry air with a water partial pressure of 60 Pa, containing in some cases 5% by volume of CO 2 .
  • Table 2 describes the conditions of the various tests carried out as well as the results obtained. Table 2. Casting test condition and results obtained. Test Cast length [mm] dry air flow [m 3 /h] (cast length) % CO2 of dry air flow comments 21 917 Any - Long ( ⁇ 200mm) and deep vertical furrows 22 2776 None (Startup) - Long ( ⁇ 200mm) and deep vertical furrows 22 (1150mm) 5% No furrow 23 3575 22 (Start) 0% A few short (-40 mm) and shallow vertical furrows 27 (1150mm) 0% A few short (-40 mm) and shallow vertical furrows 32 (2500mm) 0% No furrow

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

    Domaine de l'invention
  • L'invention concerne la coulée des alliages d'aluminium, notamment la coulée des alliages contenant du magnésium et / ou du lithium sensibles à l'oxydation.
  • Etat de la technique
  • L'oxydation des alliages d'aluminium à l'état liquide a des conséquences néfastes sur le procédé de fonderie. Dans les fours et les chenaux de transfert, l'oxydation du métal a tout d'abord pour résultat une perte nette de métal, appelée perte au feu. De plus, lors de la coulée, une oxydation trop importante du métal liquide engendre des défauts à la surface du lingot coulé qui nuisent à l'utilisation des produits. Ces problèmes sont particulièrement prononcés dans les alliages contenant du magnésium et / ou du lithium.
    Un défaut principal est le sillon vertical qui est notamment généré par des plissements de la peau d'oxyde en surface du marais. Dans certains cas, et notamment lors de la coulée des alliages 7xxx, ce problème est particulièrement important car les sillons, surtout quand ils sont longs et profonds, initient facilement des fentes de surface. Les sillons et les fentes doivent généralement être éliminés avant la transformation des lingots obtenus lors de la coulée. On peut, par exemple, éliminer les défauts par usinage, ce qui peut être économiquement très défavorable tant par le coût de l'opération que par la perte significative de métal qui en résulte. Dans certains cas, la présence de fente rend le lingot inutilisable et il est nécessaire de le refondre.
  • Il est connu de longue date que l'ajout de certains éléments permet de limiter l'oxydation et d'améliorer la qualité de surface.
    Dès 1943, le brevet US 2,336,512 décrivait l'addition de très faibles quantités béryllium à des alliages d'aluminium contenant du magnésium de façon à limiter l'oxydation de la surface de métal liquide.
    La demande internationale WO 02/30822 décrit la substitution du béryllium par le calcium dans un but identique de limitation de l'oxydation.
  • L'ajout d'éléments d'additions peut cependant être la cause d'autres problèmes. Ainsi, le béryllium présente une certaine toxicité ce qui a notamment conduit à sa suppression dans les alliages d'aluminium utilisés en tant qu'emballages alimentaires. Le calcium peut quant à lui être à l'origine de fissures de rive lors du laminage à chaud.
    On a également proposé de protéger la surface du métal liquide par différents artifices.
    Le brevet US 4,582,118 propose d'utiliser une atmosphère non réactive et non combustible, telle que par exemple une atmosphère d'argon, d'hélium, de néon, ou de krypton ou encore d'azote ou de dioxyde de carbone, pour la coulée des alliages aluminium-lithium. La mise en oeuvre de tels procédés est cependant très coûteuse.
    La demande de brevet EP 0 109 170 A1 décrit l'utilisation d'une chicane sur la périphérie du métier de coulée pour balayer la surface de métal liquide par un gaz inerte (habituellement de l'azote et/ou de l'argon avec ou sans chlore ou un autre halogène). Cependant la mise en oeuvre de ces gaz est délicate et augmente significativement le coût des opérations. L'utilisation de dioxyde de carbone ou de gaz de combustion pour limiter l'oxydation est également connue de C.N. Cochran, D.L. Belitskus et D.L. Kinosz, Metallurgical Transcations B, Volume 8B, 1977, pages 323-331.
    La demande de brevet EP 1 964 628 A1 décrit une méthode pour produire des lingots d'aluminium dans laquelle au moins une étape du procédé est conduite sous une atmosphère contenant un gaz fluoré. Cependant la mise en oeuvre de gaz fluorés est délicate et crée des risques importants vis-à-vis des personnes.
    Le brevet US 5,415,220 décrit l'utilisation de sels fondus de chlorure de lithium et de chlorure de potassium pour protéger la surface d'alliages aluminium-lithium lors de la coulée. Cependant l'utilisation de sels fondus a pour inconvénient le risque de contamination du métal liquide en impuretés ainsi que la difficulté de mise en oeuvre.
    Le brevet US 7,267,158 décrit l'addition forcée d'un gaz humide, contenant plus de 0,005 kg/m3 d'eau, à la surface du métal fondu de façon à améliorer la qualité de surface des lingots coulés. Ce procédé présente cependant l'inconvénient de mettre en contact la vapeur d'eau et l'aluminium liquide en dépit des dangers d'explosion liés au contact de l'eau et de l'aluminium liquide.
    Par ailleurs, il est connu de la demande EP 0 216 393 A1 d'utiliser de l'air sec dans une poche de traitement de l'aluminium liquide pour éviter la pénétration d'hydrogène dans le métal fondu lorsqu'un gaz de traitement est injecté dans le métal liquide et provoque la rupture de la couche d'oxyde protégeant sa surface.
  • Le document US-A-2005/000677 divulgue un procédé de coulée d'un alliage d'aluminium contenant au moins 0, 1 % en poids de Mg dans lequel on met en contact pendant la solidification une surface liquide dudit alliage avec un gaz asséché comprenant au moins environ 2% en volume d'oxygène et dont la pression partielle en eau présente un point de rosée de 0°C.
  • Le problème posé est de trouver un procédé de coulée adapté aux alliages d'aluminium les plus oxydables, en particulier les alliages d'aluminium contenant du magnésium et/ou du lithium, qui ne présente pas ces inconvénients et permette d'obtenir des lingots coulés exempts de défauts de surface et de pollutions, en toute sécurité.
  • Description de l'invention
  • Un premier objet de l'invention est un procédé de coulée d'un alliage d'aluminium contenant au moins environ 0,1% de Mg et/ou au moins environ 0,1% de Li selon la revendication 1.
  • Description des figures
    • Figure 1 : schéma général d'une installation de coulée verticale semi-continue.
    • Figure 2: schéma d'une installation de coulée verticale incluant un dispositif d'approvisionnement d'un flux de gaz asséché.
    • Figure 3 : schéma d'un dispositif d'approvisionnement d'un flux de gaz asséché pour la coulée de plaques.
    • Figure 4 : schéma de la thermo-balance utilisée dans l'exemple 1.
    • Figure 5 : évolution de la prise de poids avec le temps pour les expériences réalisées avec l'alliage 7449 dans l'exemple 1.
    • Figure 6: géométrie évolution de la prise de poids avec le temps pour les expériences réalisées avec l'alliage AA5182 dans l'exemple 1.
    • Figure 7 : évolution de la prise de poids avec le temps pour les expériences réalisées avec l'alliage AA2196 dans l'exemple 1.
    • Figure 8 : photographies des surfaces obtenues après les essais N° 7 (Fig. 8a) et N°5 (Fig. 8b) de l'exemple 1.
    Description détaillée de l'invention
  • La désignation des alliages suit les règles de The Aluminum Association, connues de l'homme du métier. La composition chimique d'alliages d'aluminium normalisés est définie par exemple dans la norme EN 573-3.
    Sauf mention contraire, les définitions de la norme européenne EN 12258-1 s'appliquent. On appelle ici « installation de coulée » l'ensemble des dispositifs permettant de transformer un métal sous forme quelconque en demi-produit de forme brute en passant par la phase liquide. Une installation de coulée peut comprendre de nombreux dispositifs tels que un ou plusieurs fours nécessaires à la fusion du métal et/ou à son maintien en température et/ou à des opérations de préparation du métal liquide et d'ajustement de la composition, une ou plusieurs cuves (ou « poches ») destinées à effectuer un traitement d'élimination des impuretés dissoutes et/ou en suspension dans le métal liquide, ce traitement pouvant consister à filtrer le métal liquide sur un média filtrant dans une « poche de filtration » ou à introduire dans le bain un gaz dit « de traitement » pouvant être inerte ou réactif dans une « poche de dégazage », un dispositif de solidification du métal liquide (ou « métier de coulée »), par exemple par coulée semi-continue verticale par refroidissement direct, coulée horizontale, coulée continue de fil, coulée continue de bandes entre cylindres, coulée continue de bandes entre chenilles, pouvant comprendre des dispositifs tels que un moule (ou « lingotière »), un dispositif d'approvisionnement du métal liquide (ou « busette ») un système de refroidissement, ces différents fours, cuves et dispositifs de solidification étant reliés entre eux par des chenaux appelés « goulottes » dans lesquels le métal liquide peut être transporté.
  • De manière surprenante, les présents inventeurs ont constaté que, mise en contact avec un gaz asséché comprenant au moins environ 2 % en volume d'oxygène et dont la pression partielle en eau est inférieure à environ 150 Pa, une surface d'aluminium liquide s'oxyde peu ce qui permet de réaliser des coulées exemptes de défauts de surface rédhibitoires. Ce résultat est surprenant car il est communément admis qu'au contraire l'humidité contenue dans l'air permet de limiter l'oxydation des alliages d'aluminium à l'état liquide.
    Dans un premier mode de réalisation de l'invention, cet effet surprenant est mis en oeuvre dans un procédé de coulée.
    Le procédé selon l'invention est utile pour des alliages d'aluminium très oxydables, contenant au moins environ 0,1% de Mg et/ou au moins environ 0,1% de Li. Le procédé selon l'invention est particulièrement utile pour les alliages des familles 2XXX, 3XXX, 5XXX, 6XXX, 7XXX ou 8XXX, notamment quand ces alliages ne contiennent pas d'addition volontaire de béryllium et/ou de calcium. Le procédé selon l'invention est particulièrement avantageux pour les alliages contenant moins de 3 ppm de béryllium ou même moins de 1 ppm de béryllium et/ou moins de 15 ppm de calcium ou même moins de 5 ppm de calcium. Des exemples d'alliages pour lesquels le procédé selon l'invention est particulièrement avantageux sont, dans la famille des alliages 2XXX, les alliages AA2014, AA2017, AA2024, AA2024A, AA2027, AA2139, AA2050, AA2195, AA2196, AA2098, AA2198, AA2214, AA2219, AA2524 dans la famille des alliages 3XXX les alliages AA3003, AA3005, AA3104, AA3915 dans la famille des alliages 5XXX les alliages AA5019, AA5052, AA5083, AA5086, AA5154, AA5182, AA5186, AA5383, AA5754, AA5911 et dans_ la famille des alliages 7XXX les alliages AA7010, AA7020, AA7040, AA7140, AA7050, AA7055, AA7056, AA7075, AA7449, AA7450, AA7475, AA7081, AA7085, AA7910, AA7975.
    Le gaz asséché doit contenir au moins environ 2 % en volume d'oxygène et avoir une pression partielle en eau inférieure à environ 150 Pa, préférentiellement inférieure à 100 Pa et de manière encore plus préférée inférieure à 70 Pa. Dans un mode de réalisation de l'invention particulièrement avantageux, la pression partielle en eau est même inférieure à 30 Pa, préférentiellement inférieure à 5 Pa et de manière encore plus préférée inférieure à 1 Pa . La pression partielle en eau d'un gaz est également connue sous le nom de pression de vapeur. La pression partielle d'un gaz parfait i dans un mélange de gaz parfaits de pression totale P est définie comme la pression qui serait exercée par les molécules du gaz i si ce gaz occupait seul tout le volume offert au mélange. Le point de rosée d'un gaz est la température à laquelle, tout en gardant inchangées les conditions barométriques courantes, le gaz devient saturé de vapeur d'eau. Il peut aussi être défini comme la température à laquelle la pression de vapeur serait égale à la pression de vapeur saturante. Une pression partielle en eau de 150 Pa correspond à un point de rosée de -17,9 °C et à une quantité d'eau de 0,0013 kg/m3 à cette température. Une pression partielle en eau de 100 Pa correspond à un point de rosée de -22,6 °C et à une quantité d'eau de 0,0009 kg/m3 à cette température. Une pression partielle en eau de 70 Pa correspond à un point de rosée de -26,5 °C et à une quantité d'eau de 0,0006 kg/m3 à cette température.
    Le gaz asséché comprend également de manière avantageuse au moins un gaz choisi parmi air, hélium, argon, azote, dioxyde de carbone, monoxyde de carbone, produits de combustion du gaz naturel, méthane, éthane, propane, gaz naturel, composés fluorés organiques, composés chlorés organiques. L'ajout de dioxyde de carbone au gaz asséché peut dans certains cas améliorer l'effet anti-oxydant. Dans un mode de réalisation de l'invention, le gaz asséché comprend entre 1 et 10 % en volume de CO2 Cependant, cet effet étant limité et cet addition ayant un coût, la teneur en CO2 du gaz asséché est inférieure à 1% en volume ou même inférieure à 0,1 % en volume dans un autre mode de réalisation avantageux de l'invention. Dans un mode de réalisation avantageux de l'invention ledit gaz asséché est essentiellement de l'air asséché par tout moyen approprié pour atteindre la pression partielle en eau souhaitée.
    Selon l'invention le gaz asséché est mis en contact avec une surface liquide d'alliage d'aluminium pendant l'essentiel de la solidification dudit alliage. La mise en contact du gaz avec la surface est de préférence réalisée de façon à établir au dessus de cette surface une atmosphère dont la teneur en eau est sensiblement égale, généralement différente de moins de 10% ou 20%, à celle du gaz asséché, c'est-à-dire de façon à éviter une diffusion significative de vapeur d'eau provenant de l'air ambiant dans ladite atmosphère.
    Ainsi, quand la mise en contact est réalisée à l'aide d'un flux de gaz asséché, il est avantageux que ce flux soit suffisant par rapport à la surface liquide soumise au flux asséché de façon à établir ladite atmosphère, si ce flux est trop faible, la composition de ladite atmosphère peut être trop influencée par l'atmosphère extérieure et sa teneur en eau peut ne plus correspondre à la teneur souhaitée.
    Par ailleurs, il n'est en général pas nécessaire de mettre en contact avec le gaz asséché la totalité de la surface liquide de alliage d'aluminium disponible, telle qu'illustrée par la figure 1 (14, 15), pour atteindre l'effet avantageux sur la qualité de surface des produits coulés. De manière avantageuse, la surface liquide de l'alliage d'aluminium mise en contact avec le gaz asséché représente au moins 10%, préférentiellement au moins 25 % et de manière encore plus préférée au moins 50% de la totalité de la surface liquide dudit alliage d'aluminium.
  • Une surface liquide de l'alliage d'aluminium est maintenue en contact avec le gaz asséché pendant l'essentiel de la solidification. Ainsi, s'il n'est pas nécessaire de mettre en contact une surface liquide avec le gaz asséché dès l'introduction du métal liquide dans le métier de coulée, il est préférable de le réaliser dès l'établissement d'un régime stationnaire. Par exemple, dans le cas de la coulée semi-continue verticale par refroidissement direct, il est préférable de le réaliser au moins dès le début de descente du faux fond ou au moins dès le début de la coulée d'une zone qui ne sera pas coupée lors des opérations ultérieures. Il est possible de faire varier le débit d'un flux de gaz asséché pendant la coulée, notamment si des défauts de surface apparaissent. Ainsi, une augmentation du débit d'un flux de gaz asséché permet dans certains cas de faire disparaitre des sillons dans le produit coulé. Le contact entre la surface liquide et le gaz asséché peut éventuellement être supprimé avant la fin de la coulée, notamment quand on atteint une zone qui sera coupée lors des opérations suivantes. En général une surface liquide de l'alliage d'aluminium est maintenue en contact avec le gaz asséché pendant au moins 50% ou même au moins 90% de la solidification.
  • La présente invention s'applique à différents procédés de coulée et de préférence à un procédé de coulée choisi parmi la coulée semi-continue verticale par refroidissement direct, la coulée horizontale, la coulée continue de fil, la coulée continue de bandes entre cylindres, la coulée continue de bandes entre chenilles (« belt caster »).
    Le procédé semi-continu de coulée verticale par refroidissement direct des alliages d'aluminium, connu de l'homme du métier notamment sous sa dénomination en langue anglaise « Direct Chill casting » ou « DC casting », est un procédé préféré dans le cadre de la présente invention. Dans ce procédé on coule dans une lingotière présentant un faux fond un alliage d'aluminium en déplaçant verticalement et de façon continue le faux fond de manière à maintenir un niveau de métal liquide sensiblement constant pendant la solidification de l'alliage, les faces solidifiées étant refroidies directement avec de l'eau. La figure 1 illustre ce procédé. Un alliage d'aluminium est alimenté par un conduit (4) dans une lingotière (3) posée sur un faux-fond (21). L'alliage d'aluminium se solidifie par refroidissement direct (5). L' alliage d'aluminium en cours de solidification (1) présente au moins une surface solide (11, 12, 13) et au moins une surface d'alliage d'aluminium à l'état liquide pouvant être recouverte d'oxydes, qui est appelée « surface liquide » dans la présente description (14, 15). Un descenseur (2) permet de faire descendre progressivement l'alliage en cours de solidification de façon à maintenir la position verticale de la surface d'aluminium liquide (14, 15) sensiblement constante.
  • Le procédé selon l'invention est notamment avantageux pour la coulée de plaques et de billettes par coulée semi-continue verticale par refroidissement direct. Le procédé selon l'invention est particulièrement avantageux pour la coulée de plaques de grandes dimensions, notamment de section supérieure à 0,5 m2.
  • Dans le cas de la coulée semi-continue verticale par refroidissement direct, le dispositif est fixé autour d'un injecteur de métal liquide de façon à introduire le gaz asséché du centre de la surface liquide vers sa périphérie et/ou de la périphérie vers le centre.
  • Un dispositif pour l'approvisionnement du gaz dans le cas de la coulée semi-continue verticale par refroidissement direct est illustré par la figure 2. Le gaz asséché est approvisionné à l'aide d'un dispositif (6) fixé autour de l'injecteur de métal liquide (4) de sorte que le flux de gaz asséché (7) est orienté du coeur de ladite surface liquide vers sa périphérie et/ou de la périphérie vers le coeur dans la zone d'injection du métal liquide. Avantageusement, le dispositif d'approvisionnement de gaz peut être fixé sur un barrage retenant les oxydes (« barrage à crasse ») qui est positionné autour de la zone d'injection du métal liquide. De cette façon, on peut obtenir un effet du flux de gaz asséché plus important dans la zone où l'oxydation est probablement la plus élevée c'est-à-dire à proximité de l'injecteur de métal liquide, et dans la zone située entre le barrage à crasses et la lingotière, cette zone étant précisément celle la plus susceptible de générer des défauts de surface sur les produits coulés. Par ailleurs cette configuration permet également de limiter la dimension du dispositif.
  • Le gaz asséché du procédé de coulée selon l'invention peut aussi être utilisé dans d'autres parties d'une installation de coulée sur une surface liquide d'alliages d'aluminium contenant au moins environ 0,1% de Mg et/ou au moins environ 0,1% de Li, afin d'en minimiser l'oxydation. Une installation de coulée comprend plusieurs autres dispositifs dans lesquels des surfaces liquides d'alliage d'aluminium sont en contact avec l'atmosphère. Ainsi le gaz asséché peut avantageusement être utilisé pour limiter l'oxydation de la surface liquide d'alliages dans un four, notamment de fusion ou de maintien, dans une cuve de traitement telles qu'une poche de filtration ou une poche de dégazage ou dans un chenal de transfert tel qu'une goulotte. Dans ces utilisations, on utilise de préférence des conditions de mise en oeuvre du gaz asséché et/ou une composition d'alliage d'aluminium semblables à celles du procédé selon l'invention, notamment concernant l'approvisionnement du gaz asséché. Avantageusement, dans le procédé selon l'invention, le gaz asséché est également utilisé dans au moins un four, notamment de fusion ou de maintien et/ou dans au moins une cuve de traitement telles qu'une poche de filtration ou une poche de dégazage et/ou dans au moins un chenal de transfert tel qu'une goulotte.
    Les produits obtenus par un procédé selon l'invention et/ou par une utilisation selon l'invention peuvent optionnellement être corroyés notamment par laminage, filage et/ou forgeage, de façon à obtenir en particulier des tôles et des profilés.
    L'invention permet notamment la coulée des alliages d'aluminium les plus oxydables, en particulier les alliages d'aluminium contenant du magnésium et/ou du lithium, sans utiliser d'additifs tels que le béryllium et/ou le calcium et sans utiliser de dispositif et/ou gaz couteux tout en obtenant des lingots coulés exempts de défauts de surface et de pollutions, en toute sécurité.
  • Exemples Exemple 1
  • Dans cet exemple, on a mesuré l'oxydation du métal liquide par analyse thermogravimétrique. Dans ces essais, un creuset contenant le métal liquide est maintenu à une température contrôlée. Ce creuset contient environ 5 kg de métal, pour un diamètre de 100 mm. La taille significative de ces expériences qui permet de prendre en compte des effets macroscopiques peut expliquer des différences avec les expériences réalisées sur de très faibles quantités souvent rapportées dans l'art antérieur. La masse de l'échantillon est pesée en continu. La prise de poids est due à l'oxydation du métal liquide. Un schéma illustrant cette expérience est présenté sur la figure 4.
    Le gaz asséché (7) est apporté à la surface du métal liquide (14) par un tube métallique (6) de diamètre intérieur 4 mm, disposé obliquement par rapport à cette surface. La balance (92) permet de mesurer en continu le poids du creuset (93) et de son contenu in situ dans le four (91). La distance entre l'orifice du tube métallique et la surface du métal liquide était 120 mm. L'air utilisé peut être asséché jusqu'à atteindre une pression partielle en eau inférieure à 70 Pa. Trois alliages ont été étudiés : les alliages AA7449, AA2196 et AA5182. Les conditions des différents essais sont résumées dans le tableau 1. Dans tous les essais, la teneur en béryllium et en calcium étaient semblables et inférieures à 1 ppm et 10 ppm, respectivement. Tableau 1. Conditions des essais réalisés avec la thermobalance
    Essais alliage Débit de gaz (1/mn) Gaz Pression partielle en eau du gaz injecté (Pa)
    1 AA5182 7.9 Air sec < 70 Pa
    2 AA5182 0 Air ambiant > 600 Pa
    3 AA2196 7.9 Air sec < 70 Pa
    4 AA2196 0 Air ambiant > 600 Pa
    5 AA7449 4.1 Air sec < 70 Pa
    6 AA7449 3.8 Air ambiant > 600 Pa
    7 AA7449 0 Air ambiant > 600 Pa
    8 AA7449 4.1 Air sec 180 Pa
    9 AA7449 3.8 Air sec 600 Pa
  • Les figures 5 à 8 présentent les résultats obtenus.
    La figure 5 montre les résultats obtenus avec l'alliage AA7449. Des gains de poids significativement plus faibles sont obtenus pour l'essai 5 pour lequel un flux d'air très sec a été réalisé. La mise en contact d'une surface liquide avec de l'air sec dont la pression partielle en eau est encore de 600 Pa (point de rosée de -0,2 °C, essai 9) ou même de 180 Pa (point de rosée de -15,6 °C, essai 8) ne permettent pas de limiter significativement l'oxydation. De même l'air ambiant ne permet pas de limiter l'oxydation avec ou sans flux (essais 6 et 7), ce qui exclut un effet uniquement mécanique lié à un flux de gaz.
    La figure 6 montre les résultats obtenus avec l'alliage AA5182. On constate également pour cet alliage une oxydation significativement plus faible en présence d'un flux d'air très sec.
    La figure 7 montre les résultats obtenus avec l'alliage AA2196. On constate à nouveau pour cet alliage une oxydation significativement plus faible en présence d'un flux d'air très sec.
    La figure 8a est une photographie de la surface obtenue après l'essai dans le cas de l'essai 7 (air ambiant). On observe une oxydation très importante conduisant à des produits d'oxydation en forme caractéristique de choux fleur de teinte sombre. La figure 8b est une photographie de la surface obtenue après l'essai dans le cas de l'essai 5 (air sec). On observe une surface uniforme de teinte gris clair correspondant à un film fin d'oxyde.
  • Exemple 2
  • Des plaques de section rectangulaire 446 mm x 2160 mm en alliage AA7449 ont été coulées verticalement à l'aide d'une installation de coulée semi-continue par refroidissement direct (DC-cast), en utilisant un affmage AlTiC. La longueur des plaques obtenues était comprise entre 900 mm et 4000 mm. La teneur en béryllium de l'alliage était inférieure à 1 ppm et la teneur en calcium était inférieure à 15 ppm. La figure 3 illustre le dispositif d'approvisionnement de gaz ayant été utilisé pour approvisionner de l'air sec lors de la coulée des plaques. Le dispositif est constitué de 4 tubes (611, 612, 621 et 622) régulièrement percés d'orifices (63) permettant d'injecter le gaz asséché (7) sur la surface liquide de l'alliage d'aluminium. Les tubes sont reliés par des raccords vissés (9) pour former un rectangle. Les tubes sont alimentés en gaz par deux de ces raccords vissés, par deux canalisations (81) et (82). La longueur L et la largeur 1 du dispositif (L = 1285 mm, 1 = 300 mm, espacement entre les orifices : 20 mm) représentent moins de environ 70% de la longueur et la largeur de la lingotière, de sorte que la surface soumise au flux de gaz asséché représente environ 50% de la totalité de la surface liquide de alliage d'aluminium (surface liquide totale : 0,96 m2, surface soumise à un flux asséché : 0,58 m2).
    Le gaz asséché était de l'air sec dont la pression partielle en eau était de 60 Pa, contenant dans certains cas 5% en volume de CO2.
  • Le tableau 2 décrit les conditions des différents essais réalisés ainsi que les résultats obtenus. Tableau 2. Condition des essais de coulée et résultats obtenus.
    Essai Longueur coulée [mm] flux d'air sec [m3/h] (longueur coulée) % CO2 du flux d'air sec observations
    21 917 Aucun - Sillons verticaux longs (~200mm) et profonds
    22 2776 Aucun (Démarrage) - Sillons verticaux longs (∼200mm) et profonds
    22 (1150 mm) 5% Aucun sillon
    23 3575 22 (Démarrage) 0% Quelques sillons verticaux courts (-40 mm) et peu profonds
    27 (1150 mm) 0% Quelques sillons verticaux courts (-40 mm) et peu profonds
    32 (2500 mm) 0% Aucun sillon
  • L'effet de l'air sec a été démontré a plusieurs reprises : ainsi lors de l'essai 22, la mise en contact d'une surface liquide avec de l'air sec a permis de faire disparaitre les sillons profonds. De même dans l'essai 23, la présence d'air sec a permis dès le démarrage d'obtenir une qualité de surface satisfaisante pour les plaques coulées (quelques sillons verticaux courts (-40 mm) et peu profonds). On note de plus pour cet essai que l'augmentation du flux d'air sec a permis de faire disparaitre les sillons. L'effet de la présence de CO2 dans le gaz asséché sur la qualité de surface est, s'il existe, du deuxième ordre par rapport à l'effet de la pression partielle en eau. Ainsi pour l'essai 23, un résultat satisfaisant est obtenu en l'absence de CO2.

Claims (11)

  1. Procédé de coulée d'un alliage d'aluminium contenant au moins 0,1% de Mg et/ou au moins 0,1% de Li dans lequel on met en contact pendant l'essentiel de la solidification une surface liquide dudit alliage d'aluminium dans le métier de coulée avec un gaz asséché comprenant au moins 2 % en volume d'oxygène et dont la pression partielle en eau est inférieure à 150 Pa dans lequel ledit gaz est approvisionné à l'aide d'un dispositif (6) fixé autour de l'injecteur de métal liquide (4) de sorte que le flux asséché est orienté du coeur de ladite surface liquide vers sa périphérie et/ou de la périphérie vers le coeur dans la zone d'injection du métal liquide.
  2. Procédé selon la revendication 1 dans lequel la pression partielle en eau dudit gaz asséché est inférieure à 100 Pa et de préférence inférieure à 70 Pa.
  3. Procédé selon la revendication 1 ou la revendication 2 dans lequel la mise en contact du gaz avec la surface est réalisée de façon à établir au dessus de cette surface une atmosphère dont la teneur en eau est sensiblement égale à celle du gaz asséché.
  4. Procédé selon une quelconque des revendications 1 à 3 dans lequel ladite surface liquide de l'alliage d'aluminium soumise au flux de gaz asséché représente au moins 10% préférentiellement au moins 25 % et de manière encoure plus préférée au moins 50% de la totalité de la surface liquide dudit alliage d'aluminium.
  5. Procédé selon une quelconque des revendications 1 à 4 dans lequel ledit alliage d'aluminium est un alliage de la famille 2XXX, 3XXX, 5XXX, 6XXX, 7XXX ou 8XXX.
  6. Procédé selon la revendication 5 dans lequel ledit alliage d'aluminium ne contient pas d'addition volontaire de béryllium et/ou de calcium.
  7. Procédé selon une quelconque des revendications 1 à 6 dans lequel ledit gaz asséché comprend également au moins un gaz choisi parmi air, hélium, argon, azote, dioxyde de carbone, monoxyde de carbone, produits de combustion du gaz naturel, méthane, éthane, propane, gaz naturel, composés fluorés organiques, composés chlorés organiques.
  8. Procédé selon la revendication 7 dans lequel ledit gaz asséché est essentiellement de l'air.
  9. Procédé selon une quelconque des revendications 1 à 8 dans lequel la teneur en C02 du gaz asséché est inférieure à 1% en volume et de préférence inférieure à 0,1% en volume.
  10. Procédé de coulée selon une quelconque des revendications 1 à 9 choisi parmi la coulée semi-continue verticale par refroidissement direct, la coulée horizontale, la coulée continue de fil, la coulée continue de bandes entre cylindres, la coulée continue de bandes entre chenilles.
  11. Procédé de coulée selon une quelconque des revendications 1 à 10 dans lequel ledit gaz asséché est également utilisé dans au moins un four, notamment de fusion ou de maintien et/ou dans au moins une cuve de traitement telle qu'une poche de filtration ou une poche de dégazage et/ou dans au moins un chenal de transfert tel qu'une goulotte.
EP10707100.3A 2009-02-20 2010-02-15 Procédé de coulée pour alliages d'aluminium Active EP2398609B2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE602010003451T DE602010003451T8 (de) 2009-02-20 2010-02-15 Giessverfahren für aluminiumlegierungen

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0900780A FR2942479B1 (fr) 2009-02-20 2009-02-20 Procede de coulee pour alliages d'aluminium
US28659409P 2009-12-15 2009-12-15
PCT/FR2010/000122 WO2010094852A1 (fr) 2009-02-20 2010-02-15 Procédé de coulée pour alliages d'aluminium

Publications (3)

Publication Number Publication Date
EP2398609A1 EP2398609A1 (fr) 2011-12-28
EP2398609B1 EP2398609B1 (fr) 2012-10-31
EP2398609B2 true EP2398609B2 (fr) 2022-01-19

Family

ID=41119645

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10707100.3A Active EP2398609B2 (fr) 2009-02-20 2010-02-15 Procédé de coulée pour alliages d'aluminium

Country Status (10)

Country Link
US (1) US8302657B2 (fr)
EP (1) EP2398609B2 (fr)
KR (1) KR101742330B1 (fr)
CN (1) CN102325611B (fr)
BR (1) BRPI1008406A2 (fr)
CA (1) CA2753089C (fr)
DE (1) DE602010003451T8 (fr)
ES (1) ES2398633T5 (fr)
FR (1) FR2942479B1 (fr)
WO (1) WO2010094852A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8365808B1 (en) 2012-05-17 2013-02-05 Almex USA, Inc. Process and apparatus for minimizing the potential for explosions in the direct chill casting of aluminum lithium alloys
US8479802B1 (en) * 2012-05-17 2013-07-09 Almex USA, Inc. Apparatus for casting aluminum lithium alloys
RU2678848C2 (ru) 2013-02-04 2019-02-04 ОЛМЕКС ЮЭсЭй, ИНК. Способ и устройство для литья с прямым охлаждением
US9936541B2 (en) 2013-11-23 2018-04-03 Almex USA, Inc. Alloy melting and holding furnace
US11272584B2 (en) 2015-02-18 2022-03-08 Inductotherm Corp. Electric induction melting and holding furnaces for reactive metals and alloys
CN109158575A (zh) * 2018-09-12 2019-01-08 中国航发哈尔滨东安发动机有限公司 一种大型镁合金浇注防燃方法
CN110193588B (zh) * 2019-07-10 2021-01-12 东北大学 一种铝锂合金低频方波电磁连铸装置及方法
CN111036869A (zh) * 2019-12-30 2020-04-21 西南铝业(集团)有限责任公司 一种铸造工艺及铸造系统
CN118064747B (zh) * 2024-04-15 2024-07-09 湖南中创空天新材料股份有限公司 一种铝锂合金铸锭高安全性的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2160393A (en) 1936-11-16 1939-05-30 George M Trefts Pressure vessel of the boiler type and method of producing same
GB745769A (en) 1952-12-15 1956-02-29 Kaiser Aluminium Chem Corp Improvements in or relating to the treatment of light metals
GB1065806A (en) 1965-04-01 1967-04-19 Foseco Int Treatment of molten metals
EP0216393A1 (fr) 1985-09-27 1987-04-01 Showa Aluminum Corporation Procédé de traitement d'aluminium fondu pour en éliminer l'hydrogène gazeux et les inclusions non-métalliques
JPS62240141A (ja) 1986-04-11 1987-10-20 Showa Alum Corp 溶融金属処理装置
JPH0237954A (ja) 1988-07-27 1990-02-07 Asahi Tec Corp 低圧鋳造装置
JP2000176606A (ja) 1998-12-17 2000-06-27 Sumitomo Chem Co Ltd 高純度アルミニウムおよび合金の連続鋳造材の製造方法、該鋳造材、並びにそれを用いたアルミニウム合金単結晶ターゲット

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2336512A (en) 1939-09-19 1943-12-14 Aluminum Co Of America Aluminum base alloy
DE3368883D1 (en) 1982-10-15 1987-02-12 Alcan Int Ltd Improvements in casting aluminium alloys
GB8309349D0 (en) * 1983-04-06 1983-05-11 Alcan Int Ltd Heat treatment of aluminium alloys containing lithium
US4582118A (en) 1983-11-10 1986-04-15 Aluminum Company Of America Direct chill casting under protective atmosphere
EP0142341B1 (fr) * 1983-11-10 1988-07-13 Aluminum Company Of America Coulée continue
US4709740A (en) * 1983-11-10 1987-12-01 Aluminum Company Of America Direct chill casting of aluminum-lithium alloys
US4607679A (en) * 1984-12-06 1986-08-26 Aluminum Company Of America Providing oligomer moisture barrier in direct chill casting of aluminum-lithium alloy
FR2607739B1 (fr) * 1986-12-03 1989-04-14 Cegedur Procede et dispositif de coulee dans une fosse, sans risque d'explosion, de l'aluminium et de ses alliages, notamment avec le lithium
US4987950A (en) * 1989-06-14 1991-01-29 Aluminum Company Of America Method and apparatus for controlling the heat transfer of liquid coolant in continuous casting
US5415220A (en) 1993-03-22 1995-05-16 Reynolds Metals Company Direct chill casting of aluminum-lithium alloys under salt cover
US6412164B1 (en) 2000-10-10 2002-07-02 Alcoa Inc. Aluminum alloys having improved cast surface quality
US7267158B2 (en) * 2003-07-02 2007-09-11 Alcoa Inc. Control of oxide growth on molten aluminum during casting using a high moisture atmosphere
JP4504914B2 (ja) * 2005-12-19 2010-07-14 株式会社神戸製鋼所 アルミニウム鋳塊の製造方法、アルミニウム鋳塊、およびアルミニウム鋳塊の製造用保護ガス

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2160393A (en) 1936-11-16 1939-05-30 George M Trefts Pressure vessel of the boiler type and method of producing same
GB745769A (en) 1952-12-15 1956-02-29 Kaiser Aluminium Chem Corp Improvements in or relating to the treatment of light metals
GB1065806A (en) 1965-04-01 1967-04-19 Foseco Int Treatment of molten metals
EP0216393A1 (fr) 1985-09-27 1987-04-01 Showa Aluminum Corporation Procédé de traitement d'aluminium fondu pour en éliminer l'hydrogène gazeux et les inclusions non-métalliques
JPS62240141A (ja) 1986-04-11 1987-10-20 Showa Alum Corp 溶融金属処理装置
JPH0237954A (ja) 1988-07-27 1990-02-07 Asahi Tec Corp 低圧鋳造装置
JP2000176606A (ja) 1998-12-17 2000-06-27 Sumitomo Chem Co Ltd 高純度アルミニウムおよび合金の連続鋳造材の製造方法、該鋳造材、並びにそれを用いたアルミニウム合金単結晶ターゲット

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Cochran C.N. et al: "Oxidation of Aluminium-Magnesium Melst in Air, Oxygen, Flue Gas and Carbon dioxide", Metallurgical Transactions B, vol. 8B, jun 1977, p. 323-332
Wagstaff, "Air slip air casting technology mold", sales brochure, 2007

Also Published As

Publication number Publication date
US20100212855A1 (en) 2010-08-26
CA2753089C (fr) 2019-02-26
BRPI1008406A2 (pt) 2016-03-15
ES2398633T3 (es) 2013-03-20
DE602010003451T8 (de) 2013-04-25
FR2942479A1 (fr) 2010-08-27
US20110209843A2 (en) 2011-09-01
FR2942479B1 (fr) 2011-02-25
KR20110128880A (ko) 2011-11-30
DE10707100T1 (de) 2012-09-06
CN102325611A (zh) 2012-01-18
EP2398609B1 (fr) 2012-10-31
WO2010094852A1 (fr) 2010-08-26
KR101742330B1 (ko) 2017-05-31
CA2753089A1 (fr) 2010-08-26
EP2398609A1 (fr) 2011-12-28
ES2398633T5 (es) 2022-05-06
US8302657B2 (en) 2012-11-06
CN102325611B (zh) 2013-09-04

Similar Documents

Publication Publication Date Title
EP2398609B2 (fr) Procédé de coulée pour alliages d&#39;aluminium
EP2675932B1 (fr) Procédé de fabrication d&#39;un demi-produit en alliage d&#39;aluminium a microporosite amelioree et installation pour mettre en ouvre le procédé
CA2932991C (fr) Procede de fabrication de produits en alliage d&#39;aluminium - cuivre - lithium a proprietes en fatigue ameliorees
EP1913166B1 (fr) Procédé de recyclage de scrap d&#39;alliages de type aluminium-lithium
JP4504914B2 (ja) アルミニウム鋳塊の製造方法、アルミニウム鋳塊、およびアルミニウム鋳塊の製造用保護ガス
EP0196952B1 (fr) Procédé d&#39;obtention d&#39;un acier calmé à faible teneur en azote
US7267158B2 (en) Control of oxide growth on molten aluminum during casting using a high moisture atmosphere
FR2833970A1 (fr) Demi-produit siderurgique en acier au carbone et ses procedes de realisation, et produit siderurgique obtenu a partir de ce demi-produit, notamment destine a la galvanisation
EP0125173A1 (fr) Procédé de production de particules solides métalliques à partir d&#39;un bain métallique
BE427270A (fr)
CH212683A (fr) Procédé de production de pièces de fonte en aluminium ou en alliages d&#39;aluminium.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110804

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONSTELLIUM FRANCE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602010003451

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602010003451

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB, DE

Ref country code: DE

Ref legal event code: R082

Representative=s name: BEETZ & PARTNER PATENT- UND RECHTSANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602010003451

Country of ref document: DE

Representative=s name: BEETZ & PARTNER PATENT- UND RECHTSANWAELTE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602010003451

Country of ref document: DE

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: CONSTELLIUM FRANCE, PARIS, FR

Ref country code: DE

Ref legal event code: R082

Ref document number: 602010003451

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENT- UND RECHTSANWAELTE, DE

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R210

Ref document number: 602010003451

Country of ref document: DE

Effective date: 20120906

Ref country code: DE

Ref legal event code: R210

Effective date: 20120906

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: DE

Ref legal event code: R081

Ref document number: 602010003451

Country of ref document: DE

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: CONSTELLIUM FRANCE, PARIS, FR

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 581703

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010003451

Country of ref document: DE

Effective date: 20121227

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 581703

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2398633

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130320

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130228

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130228

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130201

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130131

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

BERE Be: lapsed

Owner name: CONSTELLIUM FRANCE

Effective date: 20130228

26 Opposition filed

Opponent name: NOVELIS INC.

Effective date: 20130730

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602010003451

Country of ref document: DE

Effective date: 20130730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130215

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130215

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100215

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CONSTELLIUM ISSOIRE

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: CONSTELLIUM ISSOIRE, FR

Effective date: 20150915

Ref country code: FR

Ref legal event code: CA

Effective date: 20150915

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: CONSTELLIUM FRANCE, FR

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602010003451

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602010003451

Country of ref document: DE

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: CONSTELLIUM FRANCE, PARIS, FR

Ref country code: DE

Ref legal event code: R082

Ref document number: 602010003451

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENT- UND RECHTSANWAELTE, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602010003451

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENT- UND RECHTSANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602010003451

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENTANWAELTE, DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200220

Year of fee payment: 11

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLAL Information related to reply to examination report in opposition modified

Free format text: ORIGINAL CODE: EPIDOSCORE3

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20220119

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 602010003451

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210215

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2398633

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20220506

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240301

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 15

Ref country code: GB

Payment date: 20240227

Year of fee payment: 15

Ref country code: CH

Payment date: 20240301

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240226

Year of fee payment: 15