EP2394290A1 - Spectrometre de masse magnetique achromatique a double focalisation - Google Patents

Spectrometre de masse magnetique achromatique a double focalisation

Info

Publication number
EP2394290A1
EP2394290A1 EP10701685A EP10701685A EP2394290A1 EP 2394290 A1 EP2394290 A1 EP 2394290A1 EP 10701685 A EP10701685 A EP 10701685A EP 10701685 A EP10701685 A EP 10701685A EP 2394290 A1 EP2394290 A1 EP 2394290A1
Authority
EP
European Patent Office
Prior art keywords
axis
electrostatic
mass
aberrations
mass spectrometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10701685A
Other languages
German (de)
English (en)
Other versions
EP2394290B1 (fr
Inventor
Emmanuel De Chambost
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cameca SAS
Original Assignee
Cameca SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cameca SAS filed Critical Cameca SAS
Publication of EP2394290A1 publication Critical patent/EP2394290A1/fr
Application granted granted Critical
Publication of EP2394290B1 publication Critical patent/EP2394290B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/28Static spectrometers
    • H01J49/32Static spectrometers using double focusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements

Definitions

  • the present invention relates to a dual focus achromatic magnetic mass spectrometer.
  • Mass spectrometers are devices that allow the characterization of the chemical structure of molecules constituting a sample or analyte.
  • the mass spectrometer is thus a micro-analysis technique typically requiring only a few picomoles of the sample, in order to extract characteristic information as to its molecular weight or even its molecular structure.
  • mass spectrometers among which are mainly time-of-flight mass spectrometers, quadrupole mass spectrometers and magnetic mass spectrometers.
  • mass spectrometers among which are mainly time-of-flight mass spectrometers, quadrupole mass spectrometers and magnetic mass spectrometers.
  • quadrupole mass spectrometers mainly magnetic mass spectrometers.
  • the present invention is particularly in the field of mass spectrometers of the SIMS type.
  • mass spectrometers of this type it is known that the principle of secondary ion extraction results in a large energy dispersion of the emitted ions.
  • electrostatic sector between the sample and the magnetic sector, this electrostatic sector being intended to make the mass spectrometer achromatic for at least one mass.
  • the condition of achromatism is not attached to a given mass, but to a particular trajectory. If this trajectory is considered as the main axis of the spectrometer, it is said that the spectrometer is achromatic on the axis, and that it is not off the axis or "off axis".
  • the present invention may relate as well to a so-called “mono-collection” spectrometer, that is to say capable of measuring a mass in the axis, that to a mass spectrometer said to " multi-collection ", that is to say capable of simultaneously measuring several masses. It is for example possible to measure several masses simultaneously by arranging a plurality of collectors on the focusing plane of the mass spectrometer.
  • the blur observed at the point of focus of a given mass different from the mass on the axis, when the energy distribution of the ions is relatively wide, is called off-axis chromatic aberration.
  • this fuzziness is characterized by an aberration coefficient x / em defined by the relation:
  • ⁇ x1 (x / em) x ( ⁇ E / E) x (M1-M0) / M0, where MO is the mass on the main axis for which the chromatic focusing is well done, ⁇ E the energy dispersion of the beam, and ⁇ x1 the blur formed at the point where the trajectories of the mass M1 are focused in opening. It is desired to reduce the fuzziness ⁇ x1 to improve the off-axis mass resolution. To reduce this blur, we try to cancel the coefficient x / em. In multi-collection mass spectrometers, it is therefore necessary, in order to guarantee good mass resolution for different masses, to be able to eliminate or significantly reduce off-axis chromatic aberrations.
  • the Mattauch-Herzog spectrometer also known from the state of the art, is characterized in particular by the fact that the output face of the magnet is aligned with the entry point. This particular configuration allows a certain number of remarkable properties, and in particular makes it possible to offer an achromatism for different masses. However, it is sometimes very advantageous for a mass spectrometer to have a large mass dispersion, and in this case, the Mattauch-Herzog spectrometer is not appropriate.
  • second-order aberrations are produced in mass spectrometers comprising a magnetic sector and an electrostatic sector, these second order aberrations are noted in accordance with the use in the field of optics or ion optics: a first aberration noted x / aa proportional to square of the angle of aperture in the radial plane, a second aberration x / bb proportional to the square of the opening angle in the transverse plane, a third aberration x / ae proportional to the opening angle in the radial plane and away in relative energy, and a fourth aberration x / ee proportional to the square of the difference in relative energy.
  • this type of spectrometer is not stigmatic, that is to say that it is impossible to have at the output of the spectrometer the ionic microscope function which makes it possible to visualize an image of the sample, filtered mass. .
  • hexapoles can correct second-order aberrations.
  • a hexapole is a set of six poles arranged around the main axis, and alternately set to an electric potential + V or -V.
  • Spectrometers known from the state of the art are equipped with corrective electrostatic hexapoles: a single-focus mass spectrometer as described in the European patent application EP 0124440 or a dual-focus mass spectrometer as described in US Pat. No. 4,638,160.
  • the advantage of introducing electrostatic hexapoles to reduce aberrations is that it is then possible to adjust the aberration correction.
  • a signal characteristic of the fineness of the spot such as, for example, the signal resulting from the scanning of the beam on the edge of the exit slot of the spectrometer, arranged upstream of a counting member or the projection on an ion-photon conversion device such as a microchannel slab, the image of the ion beam in the plane of the exit slit.
  • An object of the present invention is to overcome at least the aforementioned drawbacks, by proposing a solution for significantly reducing the four second-order aberrations, as well as the out-of-axis chromatic aberrations, while allowing modulation of the mass dispersion, for example a reduction of the mass dispersion to concentrate the masses in the focal plane in order to reduce the travel of mobile collectors or an increase in dispersion mass to be able to measure closer masses with a multi-collection system.
  • the subject of the invention is a dual-focus magnetic mass spectrometer comprising an ion source, an entrance slit, an electrostatic sector, a magnetic sector and means for simultaneously detecting at least one mass.
  • ionic characterized in that it comprises:
  • a first electrostatic device placed between the ion source and the output of the electrostatic sector, focusing the ion beam on the main axis of the mass spectrometer;
  • a second electrostatic device disposed downstream of the magnetic sector, creating in the longitudinal plane of symmetry a radial electric field that is all the greater as the point considered is distant from the axis and whose respective signs, on the side of the weak masses and on the side of the strong masses, are opposed;
  • the electrostatic sector is a truncated spherical electrostatic sector comprising an external electrode brought to a voltage + Ve, an internal electrode, brought to a voltage-Ve, the outer electrode and the inner electrode further comprising a pair of outer parallel plates disposed on either side of the outer electrode and brought to a voltage V ⁇ Xt , and a pair of parallel inner plates disposed on either side of the inner electrode and brought to a voltage V int , said pairs of inner and outer parallel plates forming the first electrostatic device; the voltages V ⁇ Xt , V int applied respectively to the outer and inner parallel plates being adjusted by the same voltage difference ⁇ V each time the second electrostatic device is activated, to modulate the mass dispersion or to cancel off-axis chromatism, so that the ion beam corresponding to the mass on the axis always remains focused on the main axis.
  • the magnetic mass spectrometer may be characterized in that the second electrostatic device comprises an electrostatic lens and / or a quadrupole and / or an octopole centered on the main axis of the mass spectrometer and whose north and south poles located in the transverse plane and on an axis perpendicular to the radial axis are brought to an electrical potential V, and the east and west poles located on an axis located in the radial plane, perpendicular to the axis defined by the North and South poles, are brought to an electric potential -V.
  • the magnetic mass spectrometer may be characterized in that the first electrostatic device comprises a lens and / or a quadrupole and / or a multiplex activated as a stigmator.
  • the mass spectrometer may be characterized in that it further comprises means for canceling second-order aberrations, said means comprising:
  • FIG. 1 a block diagram of an example of an achromatic magnetic mass spectrometer on the axis known from the state of the art
  • FIG. 2 an overall diagram of an example of a magnetic mass spectrometer. according to the present invention
  • FIGS. 3a, 3b, 3c and 3d diagrams representing an example of a preferred embodiment for devices equipping a magnetic mass spectrometer according to the present invention.
  • FIG. 1 presents, by a synoptic diagram, an example of an achromatic magnetic mass spectrometer on the axis known from the state of the art.
  • a magnetic mass spectrometer 100 is shown in a section in the radial plane.
  • the mass spectrometer 100 includes an inlet slot 101 and an exit slot 102.
  • a diaphragm 103 is located downstream of the inlet slot 101.
  • An electrostatic sector 104 is located downstream of the diaphragm 103.
  • a magnetic sector 105 is disposed downstream of the electrostatic sector 104.
  • An optical device 106 is located between the electrostatic sector 104 and the magnetic sector 105.
  • the radial plane is defined as the plane of symmetry of the mass spectrometer containing the main axis of the mass spectrometer 100, perpendicular to the large dimension of the entrance slit 101 and containing the main axis of the mass spectrometer 100.
  • we define the transverse plane as the plane perpendicular to the radial plane, and which also contains the main axis of the mass spectrometer 100.
  • the mass spectrometer itself is located downstream of the inlet slit 101, and the ionization device, and the ion beam shaping devices up to at the entrance slot 101 are not shown in the figure. In the same way, the collection and measurement devices located downstream of the exit slot 102 are not shown.
  • the opening angle ⁇ of the ion beam is designated a.
  • the mass spectrometer shown in the figure is a Nier-Johnson spectrometer. This type of spectrometer is an example of an achromatic mass spectrometer on the axis. A particular configuration of the physical and geometrical characteristics of the mass spectrometer 100 allows the measurement in the axis of a given mass with a given mass resolution.
  • FIG. 2 shows an overall diagram of an example of a magnetic mass spectrometer according to the present invention.
  • the magnetic mass spectrometer 200 includes an input slot 101, a plurality of output slots 102 for filtering the ion beams to a plurality of collectors not shown in the figure for the sake of clarity.
  • the mass spectrometer 200 also comprises a first diaphragm 103, an electrostatic sector 104, a magnetic sector 105.
  • the mass spectrometer 200 further comprises, upstream of the electrostatic sector 104, a first electrostatic device 201 located downstream of the electrostatic gap. 101, a first hexapole 202 downstream of the first electrostatic device 201 and upstream of the diaphragm 103.
  • the mass spectrometer 200 Downstream of the electrostatic sector 104 and upstream of the magnetic sector 105, the mass spectrometer 200 comprises, in series, a first optical device 21 1, a second hexapole 212, a second diaphragm 213, a second optical device 214, a third hexapole 215 and a third optical device 216.
  • the mass spectrometer 200 Downstream of the magnetic sector 105 and upstream of the output slots 102, the mass spectrometer 200 comprises in series a fourth hexapole 221 and a second electrostatic device 222.
  • optical and electrostatic devices to be considered in a broad sense as optical ion systems electrostatic, which may include lenses with symmetry of revolution, anisotropic lenses more or less effective respectively in the radial plane and in the transverse plane or multipoles for achieving achromatism on the axis, such as commonly used devices in dual mass spectrometers focusing or multipoles also to treat trajectories differently in the transverse plane, as is described for example in the book by E. de Chambost et al. supra.
  • the second electrostatic device 222 located respectively between the input slot 101 and the output of the electrostatic sector 104, and between the magnetic sector 105 and the output slots 102, making it possible to solve both the problem of the modulation of mass dispersion and the problem of suppressing off-axis chromatic aberration.
  • the present invention proposes to arrange in the part where the trajectories are dispersed in mass, that is to say between the magnetic sector 105 and the exit slots 102, a focusing device - the second electrostatic device 222.
  • the second electrostatic device 222 is necessarily more efficient peripherally than in the center, and its convergence is necessarily inversely proportional to the energy of the particle. In other words, such a device produces a displacement of trajectories
  • ⁇ x K * ( ⁇ E / E) * (M1 -M0) / M0
  • ISIOS described by MIYavor, ASBerdnikov in "ISIOS: a program to calculate imperfect peripheral particle systems" (Nucl.lnstr and Meth in Phys Res, Vol 363, No. 1, 1995, pp.416-422) or GIOS described in "Principles of GIOS and COZY, H. WolInik et al.” (AIP Conference Proceedings, eds C.Eminhizer, Vol 177 (1988), p.74-75).
  • This same electrostatic device 222 may be used, excited otherwise, that is to say polarized with different voltages, when the problem is not to reduce out-of-axis aberrations, but to modulate the mass dispersion.
  • the parasitic side effect is the displacement of the plane of the image of the entrance slot. This parasitic side effect is compensated by the first electrostatic device 201 which has the same effect on the trajectories, whatever the mass of the ion in question.
  • the second electrostatic device 222 downstream of the magnetic sector 105, produces in a plane normal to the axis, an electric field all the more important that the point is considered distant from the axis. This electric field is of opposite sign according to whether one is on the side of the weak masses or the side of the strong masses.
  • These electrostatic means may be an electrostatic lens centered on the axis, that is to say a series of revolution symmetry electrodes polarized by applied voltages.
  • These electrostatic means may also be a quadrupole device such that the plane containing one of the pairs of opposite poles contains the radial plane of the spectrometer.
  • These electrostatic means can also be an octopole where the poles located on the Ox and Oy axes are excited as quadrupoles, and the diagonal poles are set to zero.
  • the electrostatic means located between the input slot 101 and the output of the electrostatic sector 104 are intended to reconstruct the opening focus which is broken by the activation of the devices located between the magnet and the detection.
  • a set of 4 judiciously positioned hexapoles and a system making it possible to modify the relative magnifications of the beam according to the radial and transverse planes between the 2 extreme hexapoles, or between the first hexapole 202 and the fourth hexapole 221.
  • the first hexapole 202 arranged in the example of the figure between the input slot 101 and the electrostatic sector 104, is particularly dedicated to the cancellation of the second aberration of the second order x / bb.
  • the fourth hexapole 221, disposed between the magnetic sector 105 and the detection plane on which the output slots 102 are located, is particularly dedicated to the cancellation of the first second order aberration x / aa.
  • the second hexapole 212 disposed near the second diaphragm 213 forming an energy slot, is particularly dedicated to the cancellation of the fourth second order aberration x / ee.
  • the third hexapole 215, disposed between the second diaphragm 213 and the magnetic sector 105, is particularly dedicated to the cancellation of the third aberration of the second order x / ae.
  • the system for varying the magnifications in the radial plane and in the transverse plane, comprising in particular the optical devices 21 1, 214 and 21 6, can be for example that described in the aforementioned European patent application EP0473488.
  • FIG. 3a shows a preferred embodiment for the magnetic sector 105 of the magnetic mass spectrometer 200 according to the invention.
  • the structure of the mass spectrometer is for example of the Nier-Johnson type.
  • the magnetic sector 105 produces on the main axis a deflection of the trajectory of the ions by an angle of 90 °.
  • the trajectory of the ions on the main axis has a radius of curvature equal to 585 mm.
  • the input and output faces 301 and 302 of the magnetic sector 105 have, relative to the plane normal to the axis, an angle of 27 °, in order to give the magnetic sector 105 stigmatic properties, according to a configuration in itself known from the state of the art.
  • Point of focusing of the mass on the main axis is located at a distance of 1220 mm from the output of the magnetic sector 105.
  • FIG. 3b shows a preferred embodiment for the second electrostatic device 222.
  • Three different trajectories for three different masses MO, M1 and M2 are represented.
  • MO is the mass on the main axis.
  • a tangent plane P is also represented; this plane P is an approximation of the surface on which the different masses MO, M1 and M2 focus.
  • FIG. 3c presents a perspective view of a preferred embodiment of an example of an octopole forming the second electrostatic device 222.
  • the octopole 222 comprises eight poles North, North-East, East, South-East, South, Southwest, West and Northwest formed by eight cylindrical bars arranged around the main axis.
  • the North-South axis is perpendicular to the radial plane, and located in the transverse plane.
  • the East-West axis is perpendicular to the North-South axis, and located in the radial plane.
  • octopole 222 100 mm deep may be disposed 460 mm upstream of the focal point of the mass MO.
  • the eight poles of the octopole can be located on a circle with a radius of 75 mm.
  • the diameters of the cylindrical poles may be about 30 mm. If we wish to compress the positive ion trajectories and reduce the mass dispersion, then the North-West, North-East, South-East and South-West poles of the octopole can be excited at 0 Volt, the poles East and West at a positive potential + V, and the North and South poles at potential -V.
  • the typical value of the voltage V which cancels out-of-axis chromatic aberrations is 300 volts, for a kinetic energy of the ions of 10 keV.
  • the application of a voltage on the poles has the effect of tightening the dispersed paths in mass, thus reducing the mass dispersion, typically by a factor of 2/3.
  • an electrostatic lens is used rather than an octopole, that is to say for example a so-called Einzel lens, with an active electrode of the same internal diameter as the octopole, the same effect can be obtained.
  • the additional convergence introduced by the second electrostatic device 222 disrupts the focusing in opening of the entrance slot 101 to the plane of the exit slot 102.
  • a device must be activated.
  • focalisant located in a region where the beam is neither dispersed in mass nor dispersed in energy.
  • a stigmator function may be integrated in the electrostatic sector 104, as illustrated by FIG. 3d.
  • FIG. 3d shows an embodiment of an electrostatic sector 104, in sectional view in a plane perpendicular to the main axis of the mass spectrometer.
  • the electrostatic sector 104 comprises, for example, a pair of additional external parallel plates 341 and a second pair of internal parallel plates 342, called Matsuda plates or, according to the English terminology, "flat Matsuda", arranged on a truncated spherical electrostatic sector. consisting of an outer electrode 343 where is applied, in the case of positively charged ions, a + Ve voltage, and an inner electrode 344 where is applied, always in the case of positively charged ions, a voltage -Ve .
  • the two outer plates 341, symmetrical with respect to the radial plane are interconnected, and the inner two plates 342 are also interconnected.
  • the additional plates 341 and 342, give the truncated sector a full spherical symmetry if they are applied respective voltages V ⁇ Xt and V int determined by calculation or by experience.
  • the voltages V ⁇ Xt and V int can be expressed as form of a differential component V h ⁇ X and a common component Vstig:
  • V ⁇ x t Vhex + V s tig
  • Vint "Vh ⁇ X + V s tig
  • V ⁇ Xt and V int can of course be controlled by computer.
  • the application on the plates 341 and 342 of a common component V st i g creates a stigmatory effect which can be judiciously used to compensate for the defocusing created by the second electrostatic device 222 disposed downstream of the magnetic sector 105, but without having any effect on the mass dispersion.
  • the value of the excitation of the first electrostatic device 201 is adjusted to refocus the beam on the axis.
  • the first electrostatic device 201 is formed by the plates additional 341 and 342, it is for example possible to adjust the voltages V ⁇ Xt and V int which are respectively applied to them, the same voltage difference ⁇ V;
  • the second diaphragm 213 or energy slot is reduced between the electrostatic sector 104 and the magnetic sector 105 at a low value, typically 1 eV;
  • this slot is scanned, typically in a range of zero to 20 eV, ie the slit is moved into energy in regular increments within that range;
  • An advantage of the invention is that this method should be performed once and only once during the life of the mass spectrometer 200.
  • each of the four hexapoles is excited by a single parameter: the voltage which is applied on 3 poles in positive and on the other 3 poles in negative.
  • the method which makes it possible to adjust these 4 hexapoles can for example be the following, again with reference to FIG. 2: • we start by adjusting the second hexapole 212;
  • the first diaphragm 103 commonly called the field diaphragm or the angular aperture diaphragm, is closed in order to reduce the openings a and b sufficiently so that the first, second and third aberrations of the second order are respectively (x /aa).a 2 , (x / bb) .b 2 and (x / ae) .ae, are negligible;
  • the first hexapole 202 is then adjusted; for example by minimizing the beam width that can be observed directly on an image of the output plane made on a micro-channel slab associated with a phosphor screen or indirectly by observing the width of the front S (M) obtained by scanning the output beam on the edge of the output slot and measuring the ion current S downstream of the output slot.
  • the output beam is scanned by incrementing in regular steps the magnetic field which is associated with a value of the mass M of the ion associated with the trajectory on the axis.
  • the third hexapole 215 is then adjusted; the fourth hexapole 221 is finally adjusted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

Spectromètre de masse magnétique (200) achromatique, par exemple de type SIMS à double focalisation, caractérisé en ce qu'il comprend des moyens d'annulation (202, 212, 215, 221 ) des quatre aberrations du second ordre, et des moyens (201, 222) d'annulation de l'achromatisme hors d'axe et de modulation de la dispersion en masse.

Description

SPECTROMETRE DE MASSE MAGNETIQUE ACHROMATIQUE A
DOUBLE FOCALISATION
La présente invention concerne un spectromètre de masse magnétique achromatique à double focalisation.
Les spectromètres de masse sont des dispositifs permettant la caractérisation de la structure chimique de molécules constituant un échantillon ou analyte. La spectrométhe de masse est ainsi une technique de micro-analyse ne nécessitant typiquement que quelques picomoles de l'échantillon, pour en extraire des informations caractéristiques quant à son poids moléculaire voire sa structure moléculaire. Il existe différents types de spectromètres de masse, parmi lesquels se distinguent principalement les spectromètres de masse à temps de vol, les spectromètres de masse à quadrupôles et les spectromètres de masse magnétiques. On pourra par exemple se référer à un ouvrage généraliste tel que celui de John Roboz, Introduction to mass spectrometry, Instrumentation and techniques, aux éditions Interscience publishers, 1968, ou bien de J. Throck Watson, Introduction to Mass Spectrometry, aux éditions Lippincott-Raven, 1997, présentant notamment les différents types de spectromètres de masse et leurs principes de fonctionnement. Parmi les spectromètres de masse magnétiques, on peut encore distinguer les spectromètres à simple focalisation et les spectromètres à double focalisation. En ce qui concerne les aspects théoriques relatifs aux propriétés optiques des spectromètres de masse, il est possible de se référer à l'ouvrage de H. Wollnik, Optics of charged particles, aux éditions Académie Press, 1987.
Le qualificatif "optique" est pour la suite à considérer dans son acception la plus large, ici appliquée à l'optique ionique. Un type particulier de spectrométhe de masse est communément désignée sous le nom de SIMS, selon l'acronyme de l'expression "Secondary Ion Mass Spectrometry" c'est-à-dire "Spectrométrie de masse à émission secondaire". Un des problèmes propre à cette technique d'analyse est que les ions accélérés dans le spectromètre de masse présentent une grande dispersion énergétique. En ce qui concerne les propriétés chromatiques des spectromètres de masse, et notamment les dispositifs traitant des ions présentant une grande dispersion d'énergie, on se référera utilement à l'ouvrage de A. Benninghoven et al., Secondary Ion Mass Spectrometry, aux éditions John Wiley, 1987. Cet ouvrage traite notamment de la technique SIMS. La présente invention se situe notamment dans le domaine des spectromètres de masse de type SIMS. Dans des spectromètres de ce type, il est connu que le principe d'extraction des ions secondaires entraîne une grande dispersion en énergie des ions émis. Il est encore connu qu'il est avantageux d'introduire dans les spectromètres de masse de type SIMS, un secteur électrostatique entre l'échantillon et le secteur magnétique, ce secteur électrostatique étant destiné à rendre le spectromètre de masse achromatique pour au moins une masse. Il est communément possible de faire varier le champ magnétique produit par le secteur magnétique. Ceci est facilement réalisable en faisant varier l'excitation électrique, par exemple dans le cas où le champ magnétique est produit par un électro-aimant. Dans ce cas, la condition d'achromatisme n'est pas attachée à une masse donnée, mais à une trajectoire particulière. Si cette trajectoire est considérée comme l'axe principal du spectromètre, on dit que le spectromètre est achromatique sur l'axe, et qu'il ne l'est pas en dehors de l'axe ou "hors d'axe".
Plus particulièrement encore, la présente invention peut se rapporter aussi bien à un spectromètre dit à "mono-collection", c'est-à-dire capable de mesurer une masse dans l'axe, qu'à un spectromètre de masse dit à "multi- collection", c'est-à-dire capable de mesurer simultanément plusieurs masses. II est par exemple possible de mesurer plusieurs masses simultanément en disposant une pluralité de collecteurs sur le plan de focalisation du spectromètre de masse. Le flou observé au point de focalisation d'une masse donnée différente de la masse sur l'axe, lorsque la distribution en énergie des ions est relativement large, est nommé aberration chromatique hors d'axe. En utilisant la notation de H. Wollnik, présentée dans l'ouvrage précité, on caractérise ce flou par un coefficient d'aberration x/em défini par la relation :
Δx1 =(x/em) x (ΔE/E) x (M1 -M0)/M0, où MO est la masse sur l'axe principal pour laquelle la focalisation chromatique est bien réalisée, ΔE la dispersion en énergie du faisceau, et Δx1 le flou formé à l'endroit où les trajectoires de la masse M1 sont focalisées en ouverture. On souhaite réduire le flou Δx1 pour améliorer la résolution en masse hors d'axe. Pour réduire ce flou, on cherche à annuler le coefficient x/em. Dans des spectromètres de masse à multi-collection, il est donc nécessaire, afin de garantir une bonne résolution en masse pour différentes masses, de pouvoir supprimer ou réduire significativement les aberrations chromatiques hors d'axe.
Il existe différents types de spectromètres de masse connus de l'état de la technique, qui sont réalisés de manière à être achromatiques sur l'axe. Parmi ces types de spectromètres, il est possible de citer le spectromètre de Nier-Johnson.
Le spectromètre de Mattauch-Herzog, aussi connu de l'état de la technique, est notamment caractérisé par le fait que la face de sortie de l'aimant est alignée avec le point d'entrée. Cette configuration particulière permet un certain nombre de propriétés remarquables, et permet notamment d'offrir un achromatisme pour différentes masses. Cependant, il est parfois très avantageux pour un spectromètre de masse d'avoir une grande dispersion en masse, et dans ce cas, le spectromètre de Mattauch-Herzog n'est pas approprié.
II est de plus connu qu'il est préférable, dans un but d'augmenter la résolution en masse, de supprimer ou réduire les aberrations du second ordre. Il est rappelé ici que l'utilisation dans les spectromètres de masse, d'éléments qui ne présentent pas une symétrie de révolution autour de l'axe principal, tels que les secteurs électrostatique et magnétique, entraîne des aberrations du second ordre. Ces aberrations ne sont par définition pas corrigeables par une focalisation. Quatre types d'aberrations du second ordre sont produites dans les spectromètres de masse comprenant un secteur magnétique et un secteur électrostatique, ces aberrations du second ordre sont notées conformément à l'usage dans le domaine de l'optique ou de l'optique ionique : une première aberration notée x/aa proportionnelle au carré de l'angle d'ouverture dans le plan radial, une seconde aberration x/bb proportionnelle au carré de l'angle d'ouverture dans le plan transversal, une troisième aberration x/ae proportionnelle à l'angle d'ouverture dans le plan radial et à l'écart en énergie relatif, et une quatrième aberration x/ee proportionnelle au carré de l'écart en énergie relatif.
Il est connu que l'on peut calculer les paramètres géométriques respectifs du secteur électrostatique et du secteur magnétique et des autres dispositifs d'optique ionique de telle façon que les 4 coefficients d'aberration du second ordre s'annulent. Par exemple, il est possible de se référer à l'ouvrage de H.Matsuda, Double focusing mass spectrometer of second order, International Journal of Mass Spectrometry and Ion Processes, 14 (1974). Dans cet ouvrage, il est notamment proposé un spectromètre à double focalisation conçu avec un ensemble de paramètres physiques et géométriques déterminés très précisément. Ce type de solution a plusieurs inconvénients : il n'y a pas de possibilité de réglage de la correction des aberrations, et si les calculs ne sont pas tout à fait exacts, les aberrations ne sont pas vraiment annulées.
En outre il n'est pas possible de régler différemment ce type de spectromètre selon le type de performances que l'on veut privilégier : par exemple, une très bonne résolution en masse sur l'axe uniquement ou bien une assez bonne résolution en masse pour toutes les masses détectées par la multi-collection. Enfin, ce type de spectromètre n'est pas stigmatique, c'est-à-dire qu'il est impossible de disposer en sortie du spectromètre de la fonction de microscope ionique qui permet de visualiser une image de l'échantillon, filtrée en masse.
Il est également connu que des hexapôles peuvent corriger des aberrations du second ordre. On pourra par exemple se référer à l'ouvrage de Wollnik précité. Un hexapôle est un ensemble de six pôles disposés autour de l'axe principal, et mis alternativement à un potentiel électrique +V ou -V.
Des spectromètres connus de l'état de la technique sont équipés d'hexapôles électrostatiques correcteurs : un spectromètre de masse à simple focalisation comme décrit dans la demande de brevet européen EP 0124440 ou encore un spectromètre de masse à double focalisation tel que décrit dans le brevet américain US 4,638,1 60. L'intérêt d'introduire des hexapôles électrostatiques pour réduire les aberrations est qu'il est alors possible de régler la correction d'aberration le plus finement possible en ajustant la tension d'excitation de l'hexapôle tout en observant un signal caractéristique de la finesse du spot, comme par exemple, le signal résultant du balayage du faisceau sur le bord de la fente de sortie du spectromètre, disposée en amont d'un organe de comptage ou la projection sur un dispositif de conversion ion-photon tel qu'une galette de micro-canaux, de l'image du faisceau ionique au plan de la fente de sortie.
Dans un spectromètre de masse à double focalisation stigmatique, il est connu que tant qu'on ne crée pas une différence de grandissement entre l'image dans le plan radial et le plan transverse, il n'est pas possible d'annuler simultanément les première et seconde aberrations du second ordre précitées x/aa et x/bb ; mais il est également connu que si cette différence de grandissement est créée avec les moyens appropriés tels que décrits dans la demande de brevet européen EP0473488, il est alors possible d'annuler simultanément ces deux aberrations. II est possible de se référer à l'article de E. de Chambost et al.,
Achieving High Transmission with the Cameca IMS1270, Secondary Mass Spectrometry, SIMSX, aux éditions John Wiley, 1995, où il est notamment précisé qu'avec un hexapôle situé entre la fente d'entrée et le secteur électrostatique, un hexapôle situé en amont du secteur magnétique et un hexapôle situé en aval du secteur magnétique, il est possible d'annuler les trois premières aberrations du second ordre précitée x/aa, x/bb et x/ae. Cette configuration permet d'améliorer considérablement la transmission pour une résolution en masse de l'ordre de 10000. Cependant, la quatrième aberration du second ordre x/ee n'est pas annulée, ce qui représente un sérieux inconvénient lorsque des résolutions en masse supérieures à 20000 sont requises.
Un but de la présente invention est de pallier au moins les inconvénients susmentionnés, en proposant une solution pour réduire significativement les quatre aberrations du second ordre, ainsi que les aberrations chromatiques hors d'axe, tout en permettant une modulation de la dispersion en masse, par exemple une réduction de la dispersion en masse pour concentrer les masses sur le plan focal afin de réduire la course de collecteurs mobiles ou bien une augmentation de la dispersion en masse pour pouvoir mesurer des masses plus rapprochées avec un système de multi-collection.
A cet effet, l'invention a pour objet un spectromètre de masse magnétique à double focalisation comprenant une source d'ions, une fente d'entrée, un secteur électrostatique, un secteur magnétique et des moyens de détection simultanée d'au moins une masse ionique, caractérisé en ce qu'il comprend :
• un premier dispositif électrostatique placé entre la source d'ions et la sortie du secteur électrostatique, focalisant le faisceau d'ions sur l'axe principal du spectromètre de masse ;
• un second dispositif électrostatique disposé en aval du secteur magnétique, créant dans le plan de symétrie longitudinal un champ électrique radial d'autant plus élevé que le point considéré est éloigné de l'axe et dont les signes respectifs, du côté des masses faibles et du côté des masses fortes, sont opposés ;
• le secteur électrostatique est un secteur électrostatique sphérique tronqué comprenant une électrode extérieure portée à une tension +Ve, une électrode intérieure, portée à une tension -Ve, l'électrode extérieure et l'électrode intérieure comprenant en outre une paire de plaques parallèles extérieures disposées de part et d'autre de l'électrode extérieure et portées à une tension VΘXt, et une paire de plaques parallèles intérieures disposées de part et d'autre de l'électrode intérieure et portées à une tension Vint, lesdites paires de plaques parallèles intérieures et extérieures formant le premier dispositif électrostatique ; les tensions VΘXt, Vint appliquées respectivement sur les plaques parallèles extérieures et intérieures étant ajustées d'une même différence de tension ΔV chaque fois que le second dispositif électrostatique est activé, pour moduler la dispersion en masse ou pour annuler le chromatisme hors d'axe, de façon à ce que le faisceau d'ions correspondant à la masse sur l'axe reste toujours focalisé sur l'axe principal.
Dans un mode de réalisation de l'invention, le spectromètre de masse magnétique peut être caractérisé en ce que le second dispositif électrostatique comprend une lentille électrostatique et/ou un quadrupôle et/ou un octopôle centré sur l'axe principal du spectromètre de masse et dont les pôles Nord et Sud situés dans le plan transverse et sur un axe perpendiculaire à l'axe radial, sont portés à un potentiel électrique V, et les pôles Est et Ouest situés sur an axe situé dans le plan radial, perpendiculaire à l'axe défini par les pôles Nord et Sud, sont portés à un potentiel électrique -V.
Dans un mode de réalisation de l'invention, le spectromètre de masse magnétique peut être caractérisé en ce que le premier dispositif électrostatique comprend une lentille et/ou un quadrupôle et/ou un multipôle activé en stigmateur.
Dans un mode de réalisation de l'invention, le spectromètre de masse peut être caractérisé en ce qu'il comprend en outre des moyens d'annulation des aberrations du second ordre, lesdits moyens comprenant :
- un premier hexapôle annulant les aberrations du second ordre en x/bb,
- un second hexapôle annulant les aberrations du second ordre en x/ee,
- un troisième hexapôle annulant les aberrations du second ordre en x/ae,
- un quatrième hexapôle annulant les aberrations du second ordre en x/aa.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description, donnée à titre d'exemple, faite en regard des dessins annexés qui représentent : o la figure 1 , un diagramme synoptique d'un exemple de spectromètre de masse magnétique achromatique sur l'axe connu de l'état de la technique, o la figure 2, un schéma d'ensemble d'un exemple de spectromètre de masse magnétique selon la présente invention, o les figures 3a, 3b, 3c et 3d, des schémas représentant un exemple de mode de réalisation préféré pour des dispositifs équipant un spectromètre de masse magnétique selon la présente invention.
La figure 1 présente, par un diagramme synoptique, un exemple de spectromètre de masse magnétique achromatique sur l'axe connu de l'état de la technique.
Un spectromètre de masse magnétique 100 est représenté selon une coupe dans le plan radial. Le spectromètre de masse 100 comprend une fente d'entrée 101 et une fente de sortie 102. Un diaphragme 103 est situé en aval de la fente d'entrée 101 . Un secteur électrostatique 104 est situé en aval du diaphragme 103. Un secteur magnétique 105 est disposé en aval du secteur électrostatique 104. Un dispositif optique 106 se situe entre le secteur électrostatique 104 et le secteur magnétique 105. II est rappelé en premier lieu que le plan radial se définit comme le plan de symétrie du spectromètre de masse contenant l'axe principal du spectromètre de masse 100, perpendiculaire à la grande dimension de la fente d'entrée 101 et contenant l'axe principal du spectromètre de masse 100. En un point donné, on définit le plan transverse comme le plan perpendiculaire au plan radial, et qui contient également l'axe principal du spectromètre de masse 100.
Dans un souci de clarté, il est considéré que le spectromètre de masse à proprement parler se situe en aval de la fente d'entrée 101 , et le dispositif d'ionisation, et les dispositifs de mise en forme du faisceau d'ions jusqu'à la fente d'entrée 101 ne sont pas représentés sur la figure. De la même manière, les dispositifs de collection et de mesure situés en aval de la fente de sortie 102 ne sont pas représentés.
Dans le plan de radial, l'angle d'ouverture θ du faisceau d'ions est désigné par a. L'angle d'ouverture du faisceau d'ions dans le plan transverse, non représenté sur la figure, est désigné par b. Le spectromètre de masse représenté sur la figure est un spectromètre de Nier-Johnson. Ce type de spectromètre est un exemple de spectromètre de masse achromatique sur l'axe. Une configuration particulière des caractéristiques physiques et géométriques du spectromètre de masse 100 permet la mesure dans l'axe d'une masse donnée avec une résolution en masse donnée.
La figure 2 présente un schéma d'ensemble d'un exemple de spectromètre de masse magnétique selon la présente invention. Le spectromètre de masse magnétique 200 comprend une fente d'entrée 101 , une pluralité de fentes de sorties 102 destinées à filtrer les faisceaux d'ions vers une pluralité de collecteurs non représentés sur la figure pour des raisons de clarté. Le spectromètre de masse 200 comprend également un premier diaphragme 103, un secteur électrostatique 104, un secteur magnétique 105. Le spectromètre de masse 200 comprend en outre, en amont du secteur électrostatique 104, un premier dispositif électrostatique 201 situé en aval de la fente d'entrée 101 , un premier hexapôle 202 en aval du premier dispositif électrostatique 201 et en amont du diaphragme 103.
En aval du secteur électrostatique 104 et en amont du secteur magnétique 105, le spectromètre de masse 200 comprend, en série, un premier dispositif optique 21 1 , un second hexapôle 212, un second diaphragme 213, un second dispositif optique 214, un troisième hexapôle 215 et un troisième dispositif optique 216.
En aval du secteur magnétique 105 et en amont des fentes de sortie 102, le spectromètre de masse 200 comprend en série un quatrième hexapôle 221 et un second dispositif électrostatique 222.
Bien sûr, il est rappelé que la configuration présentée ici est donnée à titre d'exemple, et l'homme du métier peut envisager une multitude de configurations équivalentes, les dispositifs optiques et électrostatiques étant à considérer dans un sens large comme des systèmes optiques ioniques électrostatiques, pouvant notamment comprendre des lentilles à symétrie de révolution, des lentilles anisotropiques plus ou moins efficaces respectivement dans le plan radial et dans le plan transverse ou bien des multipôles permettant de réaliser l'achromatisme sur l'axe, tels que les dispositifs communément utilisés dans les spectromètres de masse à double focalisation ou encore des multipôles permettant également de traiter les trajectoires différemment dans le plan transverse, comme cela est par exemple décrit dans l'ouvrage de E. de Chambost et al. précité.
II existe une combinaison entre le premier dispositif électrostatique
201 et le second dispositif électrostatique 222, situés respectivement entre la fente d'entrée 101 et la sortie du secteur électrostatique 104, et entre le secteur magnétique 105 et les fentes de sortie 102, permettant de résoudre à la fois le problème de la modulation de la dispersion en masse et le problème de la suppression de l'aberration chromatique hors d'axe. Dans les 2 cas, c'est le second dispositif électrostatique 222 qui est actif, mais comme il crée une défocalisation de l'image de la fente d'entrée 101 au plan de détection, il faut compenser cet effet avec le premier dispositif électrostatique 201. Il est nécessaire que le premier dispositif électrostatique 201 ne soit situé ni dans la région où les trajectoires sont dispersées en masse, ni dans celles où elles sont dispersées en énergie.
Pour annuler les aberrations chromatiques hors d'axe x/em, la présente invention propose de disposer dans la partie où les trajectoires sont dispersées en masse, c'est-à-dire entre le secteur magnétique 105 et les fentes de sortie 102, un dispositif focalisateur - le second dispositif électrostatique 222. Le second dispositif électrostatique 222 est nécessairement plus efficace en périphérie qu'au centre, et sa convergence est nécessairement inversement proportionnelle à l'énergie de la particule. Autrement dit, un tel dispositif produit un déplacement de trajectoires
Δx=K * (ΔE/E)* (M1 -M0)/M0
II suffit de l'ajuster convenablement pour qu'il s'oppose à l'aberration chromatique hors d'axe. Cet ajustement peut par exemple se faire à l'aide d'un programme de calcul adapté ou bien à l'aide de mesures appropriées qui permettent de caractériser la finesse du faisceau ou le déplacement du faisceau résultant d'un décalage en énergie. Parmi les programmes de calcul adaptés, on peut citer ISIOS décrit par M.I.Yavor, A.S.Berdnikov dans "ISIOS: a program to calculate imperfect charged particle optical Systems" (Nucl.lnstr. and Meth. in Phys. Res., Vol 363, n°1 , 1995, pp.416-422) ou GIOS décrit dans "Principles of GIOS and COSY, H.WolInik et al." (AIP Conférence Proceedings, éd. C.Eminhizer, Vol. 177 (1988), p.74-75).
Ce même dispositif électrostatique 222 peut être utilisé, excité autrement, c'est-à-dire polarisé avec des tensions différentes, lorsque le problème n'est pas de réduire les aberrations hors d'axe, mais de moduler la dispersion en masse.
Dans les deux cas, c'est-à-dire celui de l'annulation des aberrations chromatiques hors d'axe et celui de la modulation de la dispersion en masse, l'effet secondaire parasite est le déplacement du plan de l'image de la fente d'entrée. Cet effet secondaire parasite est compensé par le premier dispositif électrostatique 201 qui a le même effet sur les trajectoires, quelle que soit la masse de l'ion considéré.
Le second dispositif électrostatique 222, en aval du secteur magnétique 105, produit dans un plan normal à l'axe, un champ électrique d'autant plus important que le point considéré est éloigné de l'axe. Ce champ électrique est de signe opposé selon que l'on se trouve du coté des masses faibles ou du côté des masses fortes. Ces moyens électrostatiques peuvent être une lentille électrostatique centrée sur l'axe, c'est-à-dire une série d'électrodes à symétrie de révolution, polarisées par des tensions appliquées. Ces moyens électrostatiques peuvent également être un dispositif quadrupolaire tel que le plan contenant l'une des paires de pôles opposées contient le plan radial du spectromètre. Ces moyens électrostatiques peuvent également être un octopôle où les pôles situés sur les axes Ox et Oy sont excités comme des quadrupôles, et les pôles en diagonales sont mis à zéro.
Les moyens électrostatiques situés entre la fente d'entrée 101 et la sortie du secteur électrostatique 104 sont destinés à reconstituer la focalisation en ouverture qui est brisée par l'activation des dispositifs situés entre l'aimant et la détection. Pour annuler toutes les aberrations chromatiques, il est proposé à la fois un jeu de 4 hexapôles judicieusement positionnés et un système permettant de modifier les grandissements relatifs du faisceau selon les plans radial et transverse entre les 2 hexapôles extrêmes, soit entre le premier hexapôle 202 et le quatrième hexapôle 221 .
Le premier hexapôle 202, disposé dans l'exemple de la figure entre la fente d'entrée 101 et le secteur électrostatique 104, est particulièrement dédié à l'annulation de la deuxième aberration du second ordre x/bb.
Le quatrième hexapôle 221 , disposé entre le secteur magnétique 105 et le plan de détection sur lequel sont situées les fentes de sortie 102, est particulièrement dédié à l'annulation de la première aberration du second ordre x/aa.
Le second hexapôle 212, disposé à proximité du second diaphragme 213 formant une fente en énergie, est particulièrement dédié à l'annulation de la quatrième aberration du second ordre x/ee.
Le troisième hexapôle 215, disposé entre le second diaphragme 213 et le secteur magnétique 105, est particulièrement dédié à l'annulation de la troisième aberration du second ordre x/ae.
Le système permettant de faire varier les grandissements dans le plan radial et dans le plan transverse, comprenant notamment les dispositifs optiques 21 1 , 214 et 21 6, peut être par exemple celui décrit dans la demande de brevet européen EP0473488 précitée.
La figure 3a présente un mode de réalisation préféré pour le secteur magnétique 105 du spectromètre de masse magnétique 200 selon l'invention.
La structure du spectromètre de masse est par exemple du type Nier- Johnson. Le secteur magnétique 105 produit sur l'axe principal une déflexion de la trajectoire des ions d'un angle de 90°. Dans le secteur magnétique 105, la trajectoire des ions sur l'axe principal présente un rayon de courbure égal à 585 mm. Les faces d'entrée et de sortie 301 et 302 du secteur magnétique 105 présentent par rapport au plan normal à l'axe, un angle de 27°, afin de conférer au secteur magnétique 105 des propriétés stigmatiques, selon une configuration en elle-même connue de l'état de la technique. Le point de focalisation de la masse sur l'axe principal est situé à une distance de 1220 mm de la sortie du secteur magnétique 105.
La figure 3b présente un mode de réalisation préféré pour le second dispositif électrostatique 222. Trois trajectoires différentes pour trois masses différentes MO, M1 et M2 sont représentées. MO est la masse sur l'axe principal. Un plan tangent P est également représenté ; ce plan P est une approximation de la surface sur laquelle viennent se focaliser les différentes masses MO, M1 et M2.
La figure 3c présente une vue en perspective d'un mode de réalisation préféré d'un exemple d'octopôle formant le second dispositif électrostatique 222. L'octopôle 222 comprend huit pôles Nord, Nord-Est, Est, Sud-Est, Sud, Sud-Ouest, Ouest et Nord-Ouest formés par huit barreaux cylindriques disposés autour de l'axe principal. L'axe Nord-Sud est perpendiculaire au plan radial, et situé dans le plan transverse. L'axe Est-Ouest est perpendiculaire à l'axe Nord-Sud, et situé dans le plan radial.
Par exemple, l'octopôle 222 de 100 mm de profondeur peut être disposé à 460 mm en amont du point de focalisation de la masse MO. Les huit pôles de l'octopôle peuvent être situés sur un cercle d'un rayon égal à 75 mm. Les diamètres des pôles cylindriques peuvent être d'environ 30 mm. Si l'on souhaite comprimer les trajectoires d'ions positifs et réduire la dispersion en masse, alors les pôles Nord-Ouest, Nord-Est, Sud-Est et Sud-Ouest de l'octopôle peuvent être excités à 0 Volt, les pôles Est et Ouest à un potentiel positif +V, et les pôles Nord et Sud au potentiel -V.
Pour la géométrie particulière décrite ci-dessus, citée à titre d'exemple, la valeur typique de la tension V qui annule les aberrations chromatiques hors d'axe est de 300 Volts, pour une énergie cinétique des ions de 10 keV. En même temps que la compensation d'aberration chromatique, l'application d'une tension sur les pôles a pour effet de resserrer les trajectoires dispersées en masse, réduisant ainsi la dispersion en masse, typiquement d'un facteur 2/3. Si une lentille électrostatique est utilisée plutôt qu'un octopôle, c'est-à- dire par exemple une lentille dite Einzel, avec une électrode active de même diamètre interne que l'octopôle, le même effet peut être obtenu. Typiquement, il faut appliquer sur l'électrode active une tension de l'ordre de la moitié de la tension d'accélération des ions qui, en plus de l'annulation de l'aberration chromatique hors d'axe, a aussi pour effet de réduire la dispersion en masse d'un facteur 2/3 environ.
Dans les deux cas présentés ci-dessus, la convergence supplémentaire introduite par le second dispositif électrostatique 222 perturbe la focalisation en ouverture de la fente d'entrée 101 au plan de la fente de sortie 102. Pour compenser ce phénomène, il faut activer un dispositif focalisant situé dans une région où le faisceau n'est ni dispersé en masse ni dispersé en énergie. Dans un mode de réalisation préféré de l'invention, une fonction de stigmateur peut-être intégrée au secteur électrostatique 104, comme illustré par la figure 3d.
La figure 3d présente un exemple de réalisation d'un secteur électrostatique 104, en vue en coupe dans un plan perpendiculaire à l'axe principal du spectromètre de masse. Le secteur électrostatique 104 comporte par exemple une paire de plaques parallèles additionnelles extérieures 341 et une seconde paire de plaques parallèles intérieures 342, appelées plaques de Matsuda ou, selon la terminologie anglo-saxonne, "Matsuda plates", disposées sur un secteur électrostatique sphérique tronqué constituée d'une électrode extérieure 343 où est appliquée, dans le cas d'ions chargés positivement, une tension +Ve, et d'une électrode intérieure 344 où est appliquée, toujours dans le cas d'ions chargés positivement, une tension -Ve. Les 2 plaques extérieures 341 , symétriques par rapport au plan radial sont reliées entre elles, et les 2 plaques intérieures 342 sont également reliées entre elles. Les plaques additionnelles 341 et 342, redonnent au secteur tronqué une pleine symétrie sphérique si on leur applique des tensions respectives VΘXt et Vint déterminées par le calcul où par l'expérience. Les tensions VΘXt et Vint peuvent être exprimées sous la forme d'une composante différentielle VhθX et d'une composante commune Vstig :
Vθxt = Vhex + Vstig
Vint = "VhθX + Vstig
Les moyens traditionnels de l'électronique analogique ou numérique permettent de produire les tensions VΘXt et Vint à partir des tensions VhθX et Vstig qui peuvent bien sûr être contrôlées par ordinateur.
En d'autres termes, l'application sur les plaques 341 et 342 d'une composante commune Vstig crée un effet stigmateur qui peut être judicieusement mis à profit pour compenser la défocalisation créée par le second dispositif électrostatique 222 disposé en aval du secteur magnétique 105, mais sans avoir aucun effet sur la dispersion en masse. Dans ce mode de réalisation, il est donc possible de substituer les plaques de Matsuda 341 et 342 au premier dispositif électrostatique 201 .
Lorsque l'on souhaite annuler l'aberration chromatique hors d'axe, il est possible de calculer, par exemple avec les programmes de calcul précités, quelles sont les tensions électriques qu'il faut appliquer aux différents dispositifs électrostatiques, mais il est également possible de déterminer ces dernières par des procédés purement expérimentaux. La méthode proposée peut être alors la suivante. Notons tout d'abord que la largeur ΔE et la position de la fente en énergie exprimées en eV sont facilement convertibles en unité de longueur en utilisant le coefficient de dispersion en énergie Kθ d'un secteur électrostatique, selon un calcul en lui- même connu de l'homme du métier : dx (mm) = Kθ (ΔE/E), où E est l'énergie d'accélération des ions :
• on donne une valeur donnée à l'excitation du second dispositif électrostatique 222 ;
• on règle la valeur de l'excitation du premier dispositif électrostatique 201 pour refocaliser le faisceau sur l'axe. Dans le mode de réalisation décrit précédemment, où le premier dispositif électrostatique 201 est formé par les plaques additionnelles 341 et 342, il est par exemple possible d'ajuster les tensions VΘXt et Vint qui leur sont respectivement appliquées, d'une même différence de tension ΔV ;
« on réduit le second diaphragme 213 ou fente en énergie disposée entre le secteur électrostatique 104 et le secteur magnétique 105 à une faible valeur, typiquement 1 eV ;
• on balaye cette fente, typiquement dans une plage de zéro à 20 eV, c'est à dire que l'on déplace la fente en énergie par incréments réguliers à l'intérieur de cette plage ;
• on observe le déplacement induit par le faisceau au niveau d'un collecteur hors d'axe. Typiquement, en balayant le faisceau de sortie sur la fente d'entrée de ce collecteur, c'est-à-dire au niveau de la fente de sortie 102 associée à ce collecteur. Le déplacement induit est caractéristique de l'aberration chromatique hors d'axe, soit l'aberration que l'on cherche à annuler à cette étape ;
• par itérations successives, il est alors possible de déterminer la valeur de l'excitation du second dispositif 222 qui fournit une aberration chromatique hors d'axe minimale.
Un avantage de l'invention est que cette méthode ne doit être déroulée qu'une et une seule fois au cours de la vie du spectromètre de masse 200.
En ce qui concerne l'annulation des quatre aberrations du second ordre, chacun des quatre hexapôles est excité par un paramètre unique : la tension qui est appliquées sur 3 pôles en positif et sur les 3 autres pôles en négatif. La méthode qui permet de régler ces 4 hexapôles peut par exemple être la suivante, à nouveau en se référant à la figure 2 : • on commence par procéder au réglage du second hexapôle 212 ;
• le premier diaphragme 103, communément appelé diaphragme de champ ou encore diaphragme d'ouverture angulaire, est fermé afin de réduire suffisamment les ouvertures a et b de façon à ce que les première, seconde et troisième aberrations du second ordre, soit respectivement (x/aa).a2, (x/bb).b2 et (x/ae).a.e, soient négligeables ;
• il est alors possible de faire varier l'énergie des ions, par exemple en faisant varier la tension d'accélération des ions. Ou encore, lorsque le processus d'émission des ions produit une grande distribution en énergie, il suffit de fermer le second diaphragme 213 ou fente en énergie, et de déplacer cette fente en énergie ainsi fermée. Lorsque la quatrième aberration du second ordre x/ee n'est pas annulée, il résulte de cette variation de l'énergie des ions un déplacement de l'image de la fente d'entrée 101 qu'il est possible de mesurer : il est donc possible de régler l'excitation du second hexapôle 212 pour que ce déplacement soit minimum ;
• on procède alors au réglage du premier hexapôle 202 ; par exemple en minimisant la largeur du faisceau que l'on peut observer directement sur une image du plan de sortie réalisée sur une galette de micro-canaux associée à un écran phosphore ou indirectement en observant la largeur du front S(M) obtenu en balayant le faisceau de sortie sur l'arête de la fente de sortie et en mesurant le courant ionique S en aval de la fente de sortie. On balaye le faisceau de sortie en incrémentant par pas réguliers le champ magnétique auquel est associée une valeur de la masse M de l'ion associé à la trajectoire sur l'axe.
• on procède alors au réglage du troisième hexapôle 215 ; on procède enfin au réglage du quatrième hexapôle 221.

Claims

REVENDICATIONS
1 . Spectromètre de masse magnétique à double focalisation (200) comprenant une source d'ions, une fente d'entrée (1 01 ), un secteur électrostatique (104), un secteur magnétique (105) et des moyens de détection simultanée (102) d'au moins une masse ionique, caractérisé en ce qu'il comprend :
• un premier dispositif électrostatique (201 ) placé entre la source d'ions et la sortie du secteur électrostatique (104), focalisant le faisceau d'ions sur l'axe principal du spectromètre de masse (200) ;
• un second dispositif électrostatique (222) disposé en aval du secteur magnétique (105), créant dans le plan de symétrie longitudinal un champ électrique radial d'autant plus élevé que le point considéré est éloigné de l'axe et dont les signes respectifs, du côté des masses faibles et du côté des masses fortes, sont opposés ;
• le secteur électrostatique (104) est un secteur électrostatique sphérique tronqué comprenant une électrode extérieure (343) portée à une tension +Ve, une électrode intérieure (344), portée à une tension -Ve, l'électrode extérieure (343) et l'électrode intérieure (344) comprenant en outre une paire de plaques parallèles extérieures (341 ) disposées de part et d'autre de l'électrode extérieure (343) et portées à une tension
VΘXt, et une paire de plaques parallèles intérieures (342) disposées de part et d'autre de l'électrode intérieure (344) et portées à une tension Vint, lesdites paires de plaques parallèles intérieures et extérieures (341 , 342) formant le premier dispositif électrostatique (201 ) ; les tensions VΘXt, Vint appliquées respectivement sur les plaques parallèles extérieures et intérieures (341 , 342) étant ajustées d'une même différence de tension ΔV chaque fois que le second dispositif électrostatique (222) est activé, pour moduler la dispersion en masse ou pour annuler le chromatisme hors d'axe, de façon à ce que le faisceau d'ions correspondant à la masse sur l'axe reste toujours focalisé sur l'axe principal.
2. Spectromètre de masse magnétique (200) selon la revendication 1 , caractérisé en ce que le second dispositif électrostatique (222) comprend une lentille électrostatique et/ou un quadrupôle et/ou un octopôle centré sur l'axe principal du spectromètre de masse (200) et dont les pôles Nord et Sud situés dans le plan transverse et sur un axe perpendiculaire à l'axe radial, sont portés à un potentiel électrique V, et les pôles Est et Ouest situés sur an axe situé dans le plan radial, perpendiculaire à l'axe défini par les pôles Nord et Sud, sont portés à un potentiel électrique -V.
3. Spectromètre de masse magnétique (200) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en outre des moyens d'annulation des aberrations du second ordre, lesdits moyens comprenant :
- un premier hexapôle (202) annulant les aberrations du second ordre proportionnelles au carré de l'angle d'ouverture dans le plan transversal dites aberrations en x/bb, - un second hexapôle (212) annulant les aberrations du second ordre proportionnelles au carré de l'écart en énergie relatif dites aberrations en x/ee,
- un troisième hexapôle (215) annulant les aberrations du second ordre proportionnelles à l'angle d'ouverture dans le plan radial et à l'écart en énergie relatif dites aberrations en x/ae,
- un quatrième hexapôle (221 ) annulant les aberrations du second ordre proportionnelles au carré de l'angle d'ouverture dans le plan radial dites aberrations en x/aa.
EP20100701685 2009-02-06 2010-01-29 Spectrometre de masse magnetique achromatique a double focalisation Active EP2394290B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0950764A FR2942072B1 (fr) 2009-02-06 2009-02-06 Spectrometre de masse magnetique achromatique a double focalisation.
PCT/EP2010/051101 WO2010089260A1 (fr) 2009-02-06 2010-01-29 Spectrometre de masse magnetique achromatique a double focalisation

Publications (2)

Publication Number Publication Date
EP2394290A1 true EP2394290A1 (fr) 2011-12-14
EP2394290B1 EP2394290B1 (fr) 2015-04-29

Family

ID=41010319

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20100701685 Active EP2394290B1 (fr) 2009-02-06 2010-01-29 Spectrometre de masse magnetique achromatique a double focalisation

Country Status (5)

Country Link
US (1) US8373121B2 (fr)
EP (1) EP2394290B1 (fr)
JP (1) JP5521255B2 (fr)
FR (1) FR2942072B1 (fr)
WO (1) WO2010089260A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013059723A1 (fr) 2011-10-21 2013-04-25 California Institute Of Technology Spectromètre de masse à résolution élevée et procédés de détermination de l'anatomie isotope de molécules organiques et volatiles
GB2521579B (en) * 2012-10-10 2018-12-19 California Inst Of Techn Mass spectrometer, system and use of the mass spectrometer for determining isotopic anatomy of compounds
LU92981B1 (en) * 2016-02-19 2017-09-08 Luxembourg Inst Science & Tech List Extraction system for charged secondary particles for use in a mass spectrometer or other charged particle device
CA3097198A1 (fr) 2018-04-30 2019-11-07 Leidos, Inc. Systeme d'interrogation de masse a faible consommation d'energie et epreuve de determination des niveaux de vitamine d

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1576381A (fr) * 1968-02-16 1969-08-01
JPS59117055U (ja) * 1983-01-28 1984-08-07 日本電子株式会社 質量分析装置
US4507555A (en) * 1983-03-04 1985-03-26 Cherng Chang Parallel mass spectrometer
FR2544914B1 (fr) * 1983-04-19 1986-02-21 Cameca Perfectionnements apportes aux spectrometres de masse
FR2545651B1 (fr) 1983-05-03 1986-02-07 Cameca Spectrometre de masse a grande luminosite
FR2558988B1 (fr) * 1984-01-27 1987-08-28 Onera (Off Nat Aerospatiale) Spectrometre de masse, a grande clarte, et capable de detection multiple simultanee
JPH03269944A (ja) * 1990-03-20 1991-12-02 Jeol Ltd 同時検出型質量分析装置
FR2666171B1 (fr) * 1990-08-24 1992-10-16 Cameca Spectrometre de masse stigmatique a haute transmission.
US6614026B1 (en) * 1999-04-15 2003-09-02 Applied Materials, Inc. Charged particle beam column
US6979818B2 (en) * 2003-07-03 2005-12-27 Oi Corporation Mass spectrometer for both positive and negative particle detection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010089260A1 *

Also Published As

Publication number Publication date
FR2942072B1 (fr) 2011-11-25
US8373121B2 (en) 2013-02-12
EP2394290B1 (fr) 2015-04-29
US20120032075A1 (en) 2012-02-09
FR2942072A1 (fr) 2010-08-13
WO2010089260A1 (fr) 2010-08-12
JP5521255B2 (ja) 2014-06-11
JP2012517083A (ja) 2012-07-26

Similar Documents

Publication Publication Date Title
US20100001202A1 (en) Spherical aberration correction decelerating lens, spherical aberration correction lens system, electron spectrometer, and photoelectron microscope
EP0188961A1 (fr) Appareil pour la micro-analyse à très haute résolution d'un échantillon solide
EP2394290B1 (fr) Spectrometre de masse magnetique achromatique a double focalisation
EP0125950B1 (fr) Perfectionnements apportés aux spectromètres de masse
EP0978139A1 (fr) Microdispositif pour generer un champ multipolaire, en particulier pour filtrer ou devier ou focaliser des particules chargees
FR2532111A1 (fr) Lentille d'emission et d'objectif electrostatique combinee
EP0151078B1 (fr) Spectromètre de masse, à grande clarté, et capable de détection multiple simultanée
FR2584234A1 (fr) Testeur de circuit integre a faisceau d'electrons
EP2198449B1 (fr) Sonde atomique tomographique grand angle a haute resolution
FR2484182A1 (fr) Ensemble comportant deux aimants pour devier un faisceau de particules chargees
EP3005397B1 (fr) Lentille electrostatique a membrane semiconductrice dielectrique
EP0244289A2 (fr) Dispositif à faisceau électronique pour projeter l'image d'un objet sur un échantillon
EP0473488A2 (fr) Spectromètre de masse stigmatique à haute transmission
LU92981B1 (en) Extraction system for charged secondary particles for use in a mass spectrometer or other charged particle device
FR2942070A1 (fr) Procede de correction d'astigmatisme en imagerie par spectromicroscopie a emission d'electrons
FR2829287A1 (fr) Procede de spectrometrie de masse en tandem produisant simultanement le spectre de masse primaire et les spectres de dissociation de plusieurs molecules differentes sans selection de masse primaire
JP3388130B2 (ja) トロイダル型分光器を有する分光装置
WO2009065938A1 (fr) Sonde atomique a haute acceptance
FR3136105A1 (fr) Détecteur mono-polarisation de particules positives et négatives d’un plasma
EP0692812A1 (fr) Cale magnétique active pour la correction des aberrations dans un spectromètre de masse
FR2637736A1 (fr) Nouveau spectrographe de masse magnetique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110802

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141217

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 724851

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010024283

Country of ref document: DE

Effective date: 20150611

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150429

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 724851

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150429

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150730

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150829

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010024283

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150429

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160129

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100129

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231214

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231222

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231220

Year of fee payment: 15