EP2390603A1 - Method and device for separating a material mixture using distillation - Google Patents

Method and device for separating a material mixture using distillation Download PDF

Info

Publication number
EP2390603A1
EP2390603A1 EP11003606A EP11003606A EP2390603A1 EP 2390603 A1 EP2390603 A1 EP 2390603A1 EP 11003606 A EP11003606 A EP 11003606A EP 11003606 A EP11003606 A EP 11003606A EP 2390603 A1 EP2390603 A1 EP 2390603A1
Authority
EP
European Patent Office
Prior art keywords
cooling medium
distillation column
krypton
condenser
xenon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11003606A
Other languages
German (de)
French (fr)
Inventor
Robert Eichelmann
Alexander Dr. Alekseev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE201010021798 external-priority patent/DE102010021798A1/en
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP11003606A priority Critical patent/EP2390603A1/en
Publication of EP2390603A1 publication Critical patent/EP2390603A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04793Rectification, e.g. columns; Reboiler-condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04278Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using external refrigeration units, e.g. closed mechanical or regenerative refrigeration units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04745Krypton and/or Xenon
    • F25J3/04751Producing pure krypton and/or xenon recovered from a crude krypton/xenon mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/80Processes or apparatus using separation by rectification using integrated mass and heat exchange, i.e. non-adiabatic rectification in a reflux exchanger or dephlegmator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/34Krypton
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/36Xenon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/42Quasi-closed internal or closed external nitrogen refrigeration cycle

Definitions

  • the invention relates to a separation of a substance mixture by distillation according to the preamble of patent claim 1.
  • Such head cooling systems are used, for example, in krypton-xenon production, in which pure or substantially pure krypton and xenon products are produced from a krypton- and xenon-containing substance mixture which originates from an air separation plant.
  • a method of the type mentioned is, for example DE 4202468 A1 known, which deals with the head cooling of a xenon column.
  • gaseous nitrogen is used as the cooling medium, which is heated in the indirect heat exchange in the head condenser.
  • the temperature of the gaseous cooling medium is adjusted by directly injecting liquid nitrogen upstream of the introduction into the top condenser.
  • the temperature of the cooling medium may be adjusted by mixing two streams available at different temperatures, for example, hot and cryogenic pressurized nitrogen.
  • the warm pressure nitrogen has approximately ambient temperature
  • the deep-cold pressure nitrogen is usually taken directly from the high pressure column of an air separation plant.
  • This cooling method can be used for example in a krypton-xenon column or in a cryptone column for the purification of krypton.
  • the invention is therefore based on the object to provide a method of the type mentioned above and a corresponding device that allow a particularly favorable operation, in particular a particularly reliable and stable operation of the separation process.
  • the cooling medium is therefore not cooled as in the known methods by admixing a cold stream to the required temperature, but by indirect heat exchange in a heat exchanger.
  • the cold is not provided in the form of a cold gas stream, which is often not readily available, but by a liquid fraction that can be easily kept in stock in a liquid tank.
  • the temperature setting by adding a liquid control technology is much easier than when mixing two gas streams. Nevertheless, there is no risk in the invention that liquid inadvertently enters the top condenser and there lowers the temperature so far that components of the top gas freeze and embarrass the passages of the first top condenser.
  • control method according to the invention a corresponding system can be put into operation very quickly and their operation is particularly safe and reliable.
  • the invention is not the admixture of the liquid fraction only during special operating cases, for example, the start, especially the cold running of the system.
  • a liquid fraction is admixed to the cooling medium during steady-state operation of the distillation column system, preferably continuously. (Of course, also in non-stationary operating cases, for example when starting, the maintenance or even increase the liquid supply may be useful.)
  • the mixed cooling medium downstream of the heat exchanger is not returned to the first top condenser. In this case, no part of the cooling medium is recycled, but the "spent" cooling medium is either discarded, withdrawn as a product or used for other purposes.
  • a second variant of the invention assigns the system analogously DE 4202468 A1 a circuit in which a part of the mixed cooling medium is returned downstream of the heat exchanger to the first top condenser. However, it serves This cycle is not used for cooling, but the recirculated cooling medium is not working expanded in the circuit. Rather, the entire recirculated amount of cooling medium is returned to the first overhead condenser, without any part of it would work would be relaxed.
  • the recirculated cooling medium in the circulation is not at all decompressed, that is to say it is not subjected to a definite expansion step. Nevertheless, a circulation blower is necessary; but this serves only to overcome the natural pressure difference in the lines, apparatus and control devices.
  • the pressure ratio at the circulation blower is for example at most 1.0 bar and is preferably between 150 and 500 mbar.
  • the cooling for the cooling of the first top condenser is not generated by expansion of the cooling medium, but predominantly or exclusively by the heat of vaporization of the added liquid fraction.
  • the mixed liquid fraction is evaporated very quickly, so that the cooling medium itself constantly remains gaseous, even when it is circulated.
  • the gaseous coolant in the supply line to the first top condenser remains completely gaseous in both variants anyway, both during cooling in the heat exchanger by indirect heat exchange with the mixed cooling medium, as well as on the way from this heat exchanger to the first top condenser.
  • the used cooling medium can be blown off downstream of the admixture of the liquid fraction and downstream of the indirect heat exchange into the atmosphere (first variant).
  • it is introduced into a refrigeration cycle; this can be a circuit independent of the first overhead condenser, which requires different pressures or temperatures (first variant) or an above-mentioned circuit with recirculation via a circulation blower to the first overhead condenser (second variant).
  • the cooling medium according to the second variant When the cooling medium according to the second variant is circulated through the first top condenser, it is necessary to use a cooling medium which does not condense in the circuit. The entire coolant that is conducted in the circuit, so it remains gaseous at all points of the cycle.
  • nitrogen is used as the gaseous cooling medium, and preferably also as the liquid fraction.
  • Nitrogen is easy and safe to handle and also available at low cost, even in cryogenic liquid form.
  • nitrogen is meant here technically pure or substantially pure nitrogen, its purity is at least 95 mol%, preferably more than 99 mol%
  • any other substance can be used as a cooling medium which does not condense at the temperatures occurring, For example, dry air, such as in combination with liquid nitrogen as a liquid fraction.
  • the indirectly cooled gaseous cooling medium can be used in parallel to the head cooling of two or more distillation columns by the cooled cooling medium is divided on the two head capacitors, as described in claim 4 in detail. This is particularly advantageous if a stream of the first distillation column (for example, its overhead product, in particular a krypton-rich gas) is further separated in the second distillation column.
  • first distillation column for example, its overhead product, in particular a krypton-rich gas
  • the invention also relates to the use of the method in the krypton-xenon recovery according to the claims 5 to 7.
  • a krypton- and xenon-containing mixture 1 is separated, which, moreover, consists essentially of oxygen and, for example, by a crude product of one or several air separation plants is formed.
  • This mixture of substances is decomposed, for example, in a first distillation column, which is designed as a krypton-xenon column, into a krypton-rich overhead fraction and a xenon-rich bottom fraction.
  • the krypton-rich overhead fraction is further decomposed into pure krypton and a residual fraction in the sump in a cryptone column.
  • the invention relates to a device according to the claims 8 to 10.
  • the mixing device of the device is designed for admixing the liquid fraction during the steady-state operation of the distillation column system, that is, it has a control device which automatically adjusts the mixing device during stationary operation accordingly ,
  • the exemplary embodiment shows a method for separating a krypton- and xenon-containing substance mixture by cryogenic distillation, which can be directly connected to a cryogenic air separation plant or constructed independently.
  • the distillation column system has two distillation columns (2, 5).
  • the krypton- and xenon-containing substance mixture 1 is formed by a crude product from one or more air separation plants. It still contains oxygen in addition to krypton and xenon.
  • the krypton- and xenon-containing substance mixture 1 is introduced in a liquid state into a krypton-xenon column 2 ("first distillation column") and decomposed there into a krypton-rich overhead fraction 3 and a xenon-rich bottom fraction 4.
  • the xenon-rich bottom fraction 4 can be further processed to pure xenon, for example in a getter unit (not shown).
  • the krypton-rich overhead fraction 3 is fed in the gaseous state to a cryptone column 5 ("second distillation column") as a substance mixture to be decomposed. From the head of Krypton yarn 5 liquid pure krypton is withdrawn as the final product. At the bottom of the crypt column 5, a liquid residual stream is removed.
  • the two distillation columns 2, 5 have top condensers, a "first top condenser” 101 and a second top condenser 201, and bottom heaters 102, 202, which are electrically heated in the example.
  • the two top condensers are heated according to the invention with an indirectly cooled gaseous cooling medium 10, which is formed in the example by nitrogen. They are both designed as reflux condensers, that is, within the condensation passages, the condensate formed flows downwards due to its gravity and then back into the top of the distillation column.
  • Warm pressurized nitrogen 11 is introduced at about ambient temperature in a heat exchanger 19 and cooled there by indirect heat exchange to a temperature of about 130 K.
  • the cooled cooling medium 10 is divided into a first partial flow 110 and a second partial flow 210, which are respectively fed to the head condensers 101, 201, where they undergo indirect heat exchange with the condensing head gas of the respective distillation column and thereby absorb heat.
  • the two cooling medium streams via valves 111, 211 and lines 112, 212 are reunited and together flow via line 12 to a mixing device 13, where liquid nitrogen (a "liquid fraction of the cooling medium") is added to the common coolant stream.
  • the mixed cooling medium 18 is introduced into the heat exchanger 19 and draws there the heat 11 heat. Through the valve 17, the amount of liquid added is adjusted and thus the temperature of the cooling medium 110, 210 regulated at the entrance to the top condensers.
  • the cryogenic liquid nitrogen 14, 16 is taken from a liquid tank, if necessary by means of a pump or pressure build-up evaporation on the tank to the same pressure as the gaseous pressure nitrogen 11 brought (not shown to here in the drawing) and then fed to a separator (phase separator) 15, to keep a possible gas content 20 from the valve 17.
  • the gas portion 20 from the separator 15 is blown off together with the warmed mixed cooling medium 21 via line 22 into the atmosphere.
  • the gas portion 20 can be blown off cold.

Abstract

The method involves mixing the gaseous cooling medium downstream a condenser head (101) to a liquid fraction of the cooling medium during the stationary operation of the distilling column system. The mixed cooling medium (18) is returned downstream a heat exchanger (19) wither not to the condenser head. An independent claim is also included for a device for separating a mixture of material by distillation in a distilling column system.

Description

Die Erfindung betrifft ein zur Trennung eines Stoffgemischs durch Destillation gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a separation of a substance mixture by distillation according to the preamble of patent claim 1.

Derartige Kopfkühlungen werden zum Beispiel in der Krypton-Xenon-Gewinnung eingesetzt, bei der aus einem krypton- und xenonhaltigen Stoffgemisch, das aus einer Luftzerlegungsanlage stammt, reine oder weitgehend reine Krypton- und Xenon-Produkte hergestellt werden.Such head cooling systems are used, for example, in krypton-xenon production, in which pure or substantially pure krypton and xenon products are produced from a krypton- and xenon-containing substance mixture which originates from an air separation plant.

Ein Verfahren der eingangs genannt Art ist beispielsweise aus DE 4202468 A1 bekannt, die sich mit der Kopfkühlung einer Xenonsäule befasst. Hier wird in dem "ersten Kopfkondensator", der Rücklauf für die Xenonsäule produziert, gasförmiger Stickstoff als Kühlmedium eingesetzt, der bei dem indirekten Wärmeaustausch in dem Kopfkondensator angewärmt wird. Hier wird die Temperatur des gasförmigen Kühlmediums durch direktes Einspritzen von Flüssigstickstoff stromaufwärts der Einleitung in den Kopfkondensator eingestellt.A method of the type mentioned is, for example DE 4202468 A1 known, which deals with the head cooling of a xenon column. Here, in the "first top condenser", which produces reflux for the xenon column, gaseous nitrogen is used as the cooling medium, which is heated in the indirect heat exchange in the head condenser. Here, the temperature of the gaseous cooling medium is adjusted by directly injecting liquid nitrogen upstream of the introduction into the top condenser.

Alternativ kann die Temperatur des Kühlmediums durch Mischen zweier Ströme eingestellt werden, die unter verschiedenen Temperaturen verfügbar sind, beispielsweise von warmem und tiefkaltem Druckstickstoff. Der warme Druckstickstoff weist dabei etwa Umgebungstemperatur auf, der tiefkalte Druckstickstoff wird in der Regel direkt aus der Hochdrucksäule einer Luftzerlegungsanlage entnommen. Dieses Kühlverfahren kann beispielsweise bei einer Krypton-Xenon-Säule oder in einer Kryptonsäule zur Reinigung von Krypton eingesetzt werden.Alternatively, the temperature of the cooling medium may be adjusted by mixing two streams available at different temperatures, for example, hot and cryogenic pressurized nitrogen. The warm pressure nitrogen has approximately ambient temperature, the deep-cold pressure nitrogen is usually taken directly from the high pressure column of an air separation plant. This cooling method can be used for example in a krypton-xenon column or in a cryptone column for the purification of krypton.

Die beiden oben beschriebenen Verfahren sind betriebstechnisch nicht vollständig zufriedenstellend.The two methods described above are not completely satisfactory in terms of operation.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art sowie eine entsprechende Vorrichtung anzugeben, die eine besonders günstige Betriebsweise erlauben, insbesondere einen besonders zuverlässigen und stabilen Betrieb des Trennprozesses.The invention is therefore based on the object to provide a method of the type mentioned above and a corresponding device that allow a particularly favorable operation, in particular a particularly reliable and stable operation of the separation process.

Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst. Das Kühlmedium wird also nicht wie bei den bekannten Verfahren durch Zumischung eines kalten Stroms auf die benötigte Temperatur abgekühlt, sondern durch indirekten Wärmeaustausch in einem Wärmetauscher. Die Kälte wird dabei nicht in Form eines kalten Gasstroms, der häufig nicht ohne Weiteres verfügbar ist, zur Verfügung gestellt, sondern durch eine Flüssigfraktion, die leicht in einem Flüssigtank vorrätig gehalten werden kann. Außerdem ist die Temperatureinstellung durch Zumischung einer Flüssigkeit regelungstechnisch wesentlich einfacher als bei der Vermischung zweier Gasströme. Dennoch besteht bei der Erfindung nicht die Gefahr, dass Flüssigkeit unbeabsichtigt in den Kopfkondensator gelangt und dort die Temperatur so weit absenkt, dass Komponenten des Kopfgases ausfrieren und die Passagen des ersten Kopfkondensators verlegen.This object is solved by the features of patent claim 1. The cooling medium is therefore not cooled as in the known methods by admixing a cold stream to the required temperature, but by indirect heat exchange in a heat exchanger. The cold is not provided in the form of a cold gas stream, which is often not readily available, but by a liquid fraction that can be easily kept in stock in a liquid tank. In addition, the temperature setting by adding a liquid control technology is much easier than when mixing two gas streams. Nevertheless, there is no risk in the invention that liquid inadvertently enters the top condenser and there lowers the temperature so far that components of the top gas freeze and embarrass the passages of the first top condenser.

Durch die erfindungsgemäße Regelmethode kann eine entsprechende Anlage besonders schnell in Betrieb genommen werden und ihr Betrieb wird besonders sicher und zuverlässig.By the control method according to the invention, a corresponding system can be put into operation very quickly and their operation is particularly safe and reliable.

Gegenstand der Erfindung ist nicht die Zumischung der Flüssigfraktion nur während spezieller Betriebsfälle, zum Beispiel dem Anfahren, insbesondere dem Kaltfahren der Anlage. Im Rahmen der Erfindung wird vielmehr während des stationären Betriebs des Destilliersäulen-Systems eine Flüssigfraktion dem Kühlmedium zugemischt, vorzugsweise kontinuierlich. (Selbstverständlich kann darüber hinaus auch in nichtstationären Betriebsfällen, beispielsweise beim Anfahren, die Aufrechterhaltung oder sogar Verstärkung der Flüssigzufuhr sinnvoll sein.)The invention is not the admixture of the liquid fraction only during special operating cases, for example, the start, especially the cold running of the system. In the context of the invention, rather, a liquid fraction is admixed to the cooling medium during steady-state operation of the distillation column system, preferably continuously. (Of course, also in non-stationary operating cases, for example when starting, the maintenance or even increase the liquid supply may be useful.)

In einer ersten Variante der Erfindung ohne Kreislauf wird das vermischte Kühlmedium stromabwärts des Wärmetauschers nicht zu dem ersten Kopfkondensator zurückgeführt. In diesem Fall wird kein Teil des Kühlmediums im Kreislauf geführt, sondern das "verbrauchte" Kühlmedium wird entweder verworfen, als Produkt abgezogen oder zu anderen Zwecken genutzt.In a first variant of the invention without a circuit, the mixed cooling medium downstream of the heat exchanger is not returned to the first top condenser. In this case, no part of the cooling medium is recycled, but the "spent" cooling medium is either discarded, withdrawn as a product or used for other purposes.

Eine zweite Variante der Erfindung weist das System analog zu DE 4202468 A1 einen Kreislauf auf, in dem ein Teil des vermischten Kühlmedium stromabwärts des Wärmetauschers zu dem ersten Kopfkondensator zurückgeführt wird. Allerdings dient dieser Kreislauf nicht zur Kälteerzeugung, sondern das zurückgeführte Kühlmedium wird in dem Kreislauf nicht arbeitsleistend entspannt. Vielmehr wird die gesamte zurückgeführte Kühlmediummenge zum ersten Kopfkondensator zurückgeleitet, ohne dass ein Teil davon arbeitsleistend entspannt würde. Vorzugsweise wird das zurückgeführte Kühlmedium in dem Kreislauf überhaupt nicht entspannt, das heißt keinem dezidierten Entspannungsschritt unterzogen. Dennoch ist ein Kreislaufgebläse notwendig; dieses dient aber nur der Überwindung des natürlichen Druckunterschieds in den Leitungen, Apparaten und Regeleinrichtungen. Das Druckverhältnis am Kreislaufgebläse beträgt beispielsweise höchstens 1,0 bar und liegt vorzugsweise zwischen 150 und 500 mbar.A second variant of the invention assigns the system analogously DE 4202468 A1 a circuit in which a part of the mixed cooling medium is returned downstream of the heat exchanger to the first top condenser. However, it serves This cycle is not used for cooling, but the recirculated cooling medium is not working expanded in the circuit. Rather, the entire recirculated amount of cooling medium is returned to the first overhead condenser, without any part of it would work would be relaxed. Preferably, the recirculated cooling medium in the circulation is not at all decompressed, that is to say it is not subjected to a definite expansion step. Nevertheless, a circulation blower is necessary; but this serves only to overcome the natural pressure difference in the lines, apparatus and control devices. The pressure ratio at the circulation blower is for example at most 1.0 bar and is preferably between 150 and 500 mbar.

Beiden Varianten gemeinsam ist, dass die Kälte für die Kühlung des ersten Kopfkondensators nicht durch Entspannung des Kühlmediums erzeugt wird, sondern überwiegend beziehungsweise ausschließlich durch die Verdampfungswärme der zugemischten Flüssigfraktion. Die zugemischte Flüssigfraktion wird dabei sehr schnell verdampft, sodass das Kühlmedium selbst ständig gasförmig bleibt, auch dann, wenn es im Kreislauf geführt wird. Das gasförmige Kühlmittel in der Zuleitung zum ersten Kopfkondensator bleibt bei beiden Varianten ohnehin vollständig gasförmig, sowohl während der Abkühlung im Wärmetauscher durch indirekten Wärmeaustausch mit dem vermischten Kühlmedium, als auch auf dem Weg von diesem Wärmetauscher zum ersten Kopfkondensator.Common to both variants is that the cooling for the cooling of the first top condenser is not generated by expansion of the cooling medium, but predominantly or exclusively by the heat of vaporization of the added liquid fraction. The mixed liquid fraction is evaporated very quickly, so that the cooling medium itself constantly remains gaseous, even when it is circulated. The gaseous coolant in the supply line to the first top condenser remains completely gaseous in both variants anyway, both during cooling in the heat exchanger by indirect heat exchange with the mixed cooling medium, as well as on the way from this heat exchanger to the first top condenser.

Das gebrauchte Kühlmedium kann stromabwärts der Zumischung der Flüssigfraktion und stromabwärts des indirekten Wärmeaustauschs in die Atmosphäre abgeblasen werden (erste Variante). Alternativ wird es in einen Kühlkreislauf eingeführt; dabei kann es sich um einen vom ersten Kopfkondensator unabhängigen Kreislauf handeln, der andere Drücke beziehungsweise Temperaturen benötigt, (erste Variante) oder um einen oben erwähnten Kreislauf mit Rückführung über ein Kreislaufgebläse zum ersten Kopfkondensator (zweite Variante).The used cooling medium can be blown off downstream of the admixture of the liquid fraction and downstream of the indirect heat exchange into the atmosphere (first variant). Alternatively, it is introduced into a refrigeration cycle; this can be a circuit independent of the first overhead condenser, which requires different pressures or temperatures (first variant) or an above-mentioned circuit with recirculation via a circulation blower to the first overhead condenser (second variant).

Wenn das Kühlmedium gemäß der zweiten Variante in einem Kreislauf durch den ersten Kopfkondensator geführt wird, ist dafür ein Kühlmedium einzusetzen, der in dem Kreislauf nicht kondensiert. Das gesamte Kühlmittel, das in dem Kreislauf geführt wird, bleibt also an allen Stellen des Kreislaufs gasförmig.When the cooling medium according to the second variant is circulated through the first top condenser, it is necessary to use a cooling medium which does not condense in the circuit. The entire coolant that is conducted in the circuit, so it remains gaseous at all points of the cycle.

Besonders bei Tieftemperatur-Trennverfahren ist es günstig, wenn als gasförmiges Kühlmedium, und vorzugsweise auch als Flüssigfraktion, Stickstoff eingesetzt wird. Stickstoff ist einfach und sicher zu handhaben und außerdem kostengünstig verfügbar, auch in tiefkalter flüssiger Form. Unter "Stickstoff' wird hier technisch reiner oder im Wesentlichen reiner Stickstoff verstanden; seine Reinheit beträgt mindestens 95 mol-%, vorzugsweise mehr als 99 mol-%. Alternativ kann jeder andere Stoff als Kühlmedium eingesetzt werden, der bei den vorkommenden Temperaturen nicht kondensiert, beispielsweise trockene Luft, etwa in Kombination mit Flüssigstickstoff als Flüssigfraktion.Particularly in the case of low-temperature separation processes, it is favorable if nitrogen is used as the gaseous cooling medium, and preferably also as the liquid fraction. Nitrogen is easy and safe to handle and also available at low cost, even in cryogenic liquid form. By "nitrogen" is meant here technically pure or substantially pure nitrogen, its purity is at least 95 mol%, preferably more than 99 mol% Alternatively, any other substance can be used as a cooling medium which does not condense at the temperatures occurring, For example, dry air, such as in combination with liquid nitrogen as a liquid fraction.

Das indirekt gekühlte gasförmige Kühlmedium kann parallel zur Kopfkühlung von zwei oder mehreren Destilliersäulen verwendet werden, indem das abgekühlte Kühlmedium auf deren zwei Kopfkondensatoren aufgeteilt wird, wie es im Patentanspruch 4 im Einzelnen beschrieben ist. Dies ist insbesondere dann günstig, wenn ein Strom der ersten Destilliersäule (zum Beispiel deren Kopfprodukt, insbesondere ein kryptonreiches Gas) in der zweiten Destilliersäule weiter aufgetrennt wird.The indirectly cooled gaseous cooling medium can be used in parallel to the head cooling of two or more distillation columns by the cooled cooling medium is divided on the two head capacitors, as described in claim 4 in detail. This is particularly advantageous if a stream of the first distillation column (for example, its overhead product, in particular a krypton-rich gas) is further separated in the second distillation column.

Die Erfindung betrifft außerdem die Anwendung des Verfahrens bei der Krypton-Xenon-Gewinnung gemäß den Patentansprüchen 5 bis 7. Hier wird insbesondere ein krypton- und xenonhaltiges Stoffgemisch 1 getrennt, welches im Übrigen im Wesentlichen aus Sauerstoff besteht und beispielsweise durch ein Rohprodukt aus einer oder mehreren Luftzerlegungsanlagen gebildet wird. Dieses Stoffgemisch wird zum Beispiel in einer ersten Destilliersäule, die als Krypton-Xenon-Säule ausgebildet ist, in eine kryptonreiche Kopffraktion und eine xenonreiche Sumpffraktion zerlegt. Die kryptonreiche Kopffraktion wird in einer Kryptonsäule weiter in reines Krypton und eine Restfraktion im Sumpf zerlegt.The invention also relates to the use of the method in the krypton-xenon recovery according to the claims 5 to 7. Here, in particular a krypton- and xenon-containing mixture 1 is separated, which, moreover, consists essentially of oxygen and, for example, by a crude product of one or several air separation plants is formed. This mixture of substances is decomposed, for example, in a first distillation column, which is designed as a krypton-xenon column, into a krypton-rich overhead fraction and a xenon-rich bottom fraction. The krypton-rich overhead fraction is further decomposed into pure krypton and a residual fraction in the sump in a cryptone column.

Ferner betrifft die Erfindung eine Vorrichtung gemäß den Patentansprüchen 8 bis 10. Die Mischeinrichtung der Vorrichtung ist zur Zumischung der Flüssigfraktion während des stationären Betriebs des Destilliersäulen-Systems ausgebildet, das heißt sie weist eine Regeleinrichtung auf, welche die Mischeinrichtung während des stationären Betriebs automatisch entsprechend einstellt.Furthermore, the invention relates to a device according to the claims 8 to 10. The mixing device of the device is designed for admixing the liquid fraction during the steady-state operation of the distillation column system, that is, it has a control device which automatically adjusts the mixing device during stationary operation accordingly ,

Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispiels näher erläutert. Das Ausführungsbeispiel zeigt ein Verfahren zur Trennung eines krypton- und xenonhaltigen Stoffgemischs durch Tieftemperatur-Destillation, das unmittelbar an eine Tieftemperatur-Luftzerlegungsanlage angeschlossen oder selbstständig aufgebaut sein kann. In dem Beispiel weist das Destilliersäulen-System zwei Destilliersäulen (2, 5) auf.The invention and further details of the invention are described in more detail below with reference to an embodiment schematically illustrated in the drawing explained. The exemplary embodiment shows a method for separating a krypton- and xenon-containing substance mixture by cryogenic distillation, which can be directly connected to a cryogenic air separation plant or constructed independently. In the example, the distillation column system has two distillation columns (2, 5).

Das krypton- und xenonhaltige Stoffgemisch 1 wird durch ein Rohprodukt aus einer oder mehreren Luftzerlegungsanlagen gebildet. Es enthält außer Krypton und Xenon noch Sauerstoff. Das krypton- und xenonhaltige Stoffgemisch 1 wird in dem Beispiel in flüssigem Zustand in eine Krypton-Xenon-Säule 2 ("erste Destilliersäule") eingeleitet und dort in eine kryptonreiche Kopffraktion 3 und eine xenonreiche Sumpffraktion 4 zerlegt. Die xenonreiche Sumpffraktion 4 kann weiter zu reinem Xenon aufbereitet werden, beispielsweise in einer Getter-Einheit (nicht dargestellt). Die kryptonreiche Kopffraktion 3 wird in gasförmigem Zustand einer Kryptonsäule 5 ("zweite Destilliersäule") als zu zerlegendes Stoffgemisch zugeleitet. Vom Kopf der Kryptonsäule 5 wird flüssiges reines Krypton als Endprodukt abgezogen. Am Sumpf der Kryptonsäule 5 wird ein flüssiger Reststrom entnommen.The krypton- and xenon-containing substance mixture 1 is formed by a crude product from one or more air separation plants. It still contains oxygen in addition to krypton and xenon. In the example, the krypton- and xenon-containing substance mixture 1 is introduced in a liquid state into a krypton-xenon column 2 ("first distillation column") and decomposed there into a krypton-rich overhead fraction 3 and a xenon-rich bottom fraction 4. The xenon-rich bottom fraction 4 can be further processed to pure xenon, for example in a getter unit (not shown). The krypton-rich overhead fraction 3 is fed in the gaseous state to a cryptone column 5 ("second distillation column") as a substance mixture to be decomposed. From the head of Kryptonsäule 5 liquid pure krypton is withdrawn as the final product. At the bottom of the crypt column 5, a liquid residual stream is removed.

Die beiden Destilliersäulen 2, 5 weisen Kopfkondensatoren auf, einen "ersten Kopfkondensator" 101 und einen zweiten Kopfkondensator 201, sowie Sumpfheizungen 102, 202, die in dem Beispiel elektrisch beheizt werden. Die beiden Kopfkondensatoren werden gemäß der Erfindung mit einem indirekt abgekühlten gasförmigen Kühlmedium 10 beheizt, das in dem Beispiel durch Stickstoff gebildet wird. Sie sind beide als Rücklaufkondensatoren ausgebildet, das heißt innerhalb der Kondensationspassagen fließt das gebildete Kondensat aufgrund seiner Schwerkraft nach unten und anschließend zurück in den Kopf der Destilliersäule.The two distillation columns 2, 5 have top condensers, a "first top condenser" 101 and a second top condenser 201, and bottom heaters 102, 202, which are electrically heated in the example. The two top condensers are heated according to the invention with an indirectly cooled gaseous cooling medium 10, which is formed in the example by nitrogen. They are both designed as reflux condensers, that is, within the condensation passages, the condensate formed flows downwards due to its gravity and then back into the top of the distillation column.

Warmer Druckstickstoff 11 wird unter etwa Umgebungstemperatur in einen Wärmetauscher 19 eingeleitet und dort durch indirekten Wärmeaustausch auf eine Temperatur von etwa 130 K abgekühlt. Das abgekühlte Kühlmedium 10 wird auf einen ersten Teilstrom 110 und einen zweiten Teilstrom 210 aufgeteilt, die jeweils den Kopfkondensatoren 101, 201 zugeleitet werden, wo sie in indirekten Wärmeaustausch mit dem kondensierenden Kopfgas der jeweiligen Destilliersäule treten und dabei Wärme aufnehmen. Nach Anwärmung im Kopfkondensator werden die beiden Kühlmediumsströme über Ventile 111, 211 und Leitungen 112, 212 wieder vereinigt und strömen gemeinsam über Leitung 12 einer Mischeinrichtung 13 zu, wo dem gemeinsamen Kühlmittelstrom flüssiger Stickstoff (eine "Flüssigfraktion des Kühlmediums") zugemischt wird. Das vermischte Kühlmedium 18 wird in den Wärmetauscher 19 eingeleitet und entzieht dort dem Strom 11 Wärme. Durch das Ventil 17 wird die Menge der zugemischten Flüssigkeit eingestellt und damit die Temperatur des Kühlmediums 110, 210 am Eintritt in die Kopfkondensatoren geregelt.Warm pressurized nitrogen 11 is introduced at about ambient temperature in a heat exchanger 19 and cooled there by indirect heat exchange to a temperature of about 130 K. The cooled cooling medium 10 is divided into a first partial flow 110 and a second partial flow 210, which are respectively fed to the head condensers 101, 201, where they undergo indirect heat exchange with the condensing head gas of the respective distillation column and thereby absorb heat. After heating in the top condenser, the two cooling medium streams via valves 111, 211 and lines 112, 212 are reunited and together flow via line 12 to a mixing device 13, where liquid nitrogen (a "liquid fraction of the cooling medium") is added to the common coolant stream. The mixed cooling medium 18 is introduced into the heat exchanger 19 and draws there the heat 11 heat. Through the valve 17, the amount of liquid added is adjusted and thus the temperature of the cooling medium 110, 210 regulated at the entrance to the top condensers.

Der tiefkalte, flüssige Stickstoff 14, 16 wird einem Flüssigtank entnommen, falls notwendig mittels einer Pumpe oder Druckaufbauverdampfung am Tank auf denselben Druck wie der gasförmige Druckstickstoff 11 gebracht (bis hierher in der Zeichnung nicht dargestellt) und anschließend einem Abscheider (Phasentrenner) 15 zugeführt, um einen möglichen Gasanteil 20 vom Ventil 17 fernzuhalten. Der Gasanteil 20 aus dem Abscheider 15 wird gemeinsam mit dem angewärmten vermischten Kühlmedium 21 über Leitung 22 in die Atmosphäre abgeblasen. Alternativ kann der Gasanteil 20 kalt abgeblasen werden.The cryogenic liquid nitrogen 14, 16 is taken from a liquid tank, if necessary by means of a pump or pressure build-up evaporation on the tank to the same pressure as the gaseous pressure nitrogen 11 brought (not shown to here in the drawing) and then fed to a separator (phase separator) 15, to keep a possible gas content 20 from the valve 17. The gas portion 20 from the separator 15 is blown off together with the warmed mixed cooling medium 21 via line 22 into the atmosphere. Alternatively, the gas portion 20 can be blown off cold.

Claims (10)

Verfahren zur Trennung eines Stoffgemischs durch Destillation in einem Destilliersäulen-System, das mindestens eine erste Destilliersäule (2) aufweist, wobei bei dem Verfahren das Stoffgemisch (1) in die erste Destilliersäule (2) eingeleitet wird, eine Kopffraktion aus der ersten Destilliersäule in einem ersten Kopfkondensator (101) in indirektem Wärmeaustausch mit einem gasförmigen Kühlmedium (11, 10, 110) mindestens teilweise kondensiert wird und das dabei gewonnene Kondensat mindestens teilweise als Rücklauf auf die erste Destilliersäule (2) aufgegeben wird, dadurch gekennzeichnet, dass während des stationären Betriebs des Destilliersäulen-Systems dem gasförmigen Kühlmedium (112, 12) stromabwärts des ersten Kopfkondensators (101) eine Flüssigfraktion (14, 16) des Kühlmediums zugemischt (13) wird, das dabei gebildete vermischte Kühlmedium (18) durch einen Wärmetauscher (19) geleitet wird, in dem das gasförmige Kühlmedium (11) stromaufwärts des ersten Kopfkondensators (101) durch indirekten Wärmeaustausch abgekühlt wird, die Temperatur des Kühlmediums (110) beim Eintritt in den ersten Kopfkondensator (101) durch Einstellung (17) der Menge der zugemischten Flüssigfraktion (16) geregelt wird und dass das vermischte Kühlmedium (18) stromabwärts des Wärmetauschers (19) entweder nicht zu dem ersten Kopfkondensator (101) zurückgeführt wird oder dass ein Teil des vermischten Kühlmediums (18) stromabwärts des Wärmetauschers (19) in einem Kreislauf, der ein Kreislaufgebläse aufweist, zu dem ersten Kopfkondensator (101) zurückgeführt wird, wobei das zurückgeführte Kühlmedium in dem Kreislauf nicht arbeitsleistend entspannt wird.A process for the separation of a mixture by distillation in a distillation column system comprising at least a first distillation column (2), wherein in the process the mixture (1) is introduced into the first distillation column (2), a top fraction from the first distillation column in one first overhead condenser (101) is at least partially condensed in indirect heat exchange with a gaseous cooling medium (11, 10, 110) and the condensate obtained is at least partially fed as reflux to the first distillation column (2), characterized in that during stationary operation of the distillation column system, a liquid fraction (14, 16) of the cooling medium is admixed (13) with the gaseous cooling medium (112, 12) downstream of the first top condenser (101), the mixed cooling medium (18) formed thereby being passed through a heat exchanger (19) in which the gaseous cooling medium (11) upstream of the first head condensate cooled by indirect heat exchange, the temperature of the cooling medium (110) when entering the first top condenser (101) by adjusting (17) the amount of mixed liquid fraction (16) is regulated and that the mixed cooling medium (18) downstream the heat exchanger (19) is either not returned to the first head condenser (101) or that part of the mixed cooling medium (18) is returned to the first head condenser (101) downstream of the heat exchanger (19) in a circuit having a circulation blower , wherein the recirculated cooling medium is not released in the circuit work. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das gesamte Kühlmittel, das in dem Kreislauf geführt wird, an allen Stellen des Kreislaufs gasförmig ist.A method according to claim 1, characterized in that all the coolant that is circulated in the circuit is gaseous at all points of the circuit. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als gasförmiges Kühlmedium (11) Stickstoff eingesetzt wird.A method according to claim 1 or 2, characterized in that as the gaseous cooling medium (11) nitrogen is used. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Destilliersäulen-System eine zweite Destilliersäule (5) aufweist, wobei eine Kopffraktion aus der zweiten Destilliersäule (5) in einem zweiten Kopfkondensator (201) in indirektem Wärmeaustausch mindestens teilweise kondensiert wird und das dabei gewonnene Kondensat mindestens teilweise als Rücklauf auf die zweite Destilliersäule (5) aufgegeben wird und wobei das abgekühlte gasförmige Kühlmedium (10) stromabwärts des Wärmetauschers in einen ersten und einen zweiten Teilstrom (110, 210) aufgeteilt wird und der erste Teilstrom (110) dem ersten Kopfkondensator (101) und der zweite Teilstrom (210) dem zweiten Kopfkondensator (201) zugeführt werden.Method according to one of claims 1 to 3, characterized in that the distillation column system comprises a second distillation column (5), wherein a top fraction from the second distillation column (5) in a second top condenser (201) is at least partially condensed in indirect heat exchange and the condensate obtained is at least partially fed as reflux to the second distillation column (5) and wherein the cooled gaseous cooling medium (10) downstream of the heat exchanger into a first and a second partial flow (110, 210) and the first substream (110) is supplied to the first overhead condenser (101) and the second substream (210) is supplied to the second overhead condenser (201). Anwendung des Verfahrens nach einem der Ansprüche 1 bis 4 in einem Verfahren zur Krypton-Xenon-Gewinnung, wobei die erste Destilliersäule (2) durch eine Krypton-Xenon-Säule gebildet wird, in der ein krypton- und xenonhaltiges Stoffgemisch (1) in eine kryptonangereicherte (3) und eine xenonangereicherte (4) Fraktion zerlegt wird.Use of the method according to one of claims 1 to 4 in a method for krypton-xenon recovery, wherein the first distillation column (2) is formed by a krypton-xenon column in which a krypton- and xenon-containing substance mixture (1) in a krypton enriched (3) and a xenon enriched (4) fraction is decomposed. Anwendung des Verfahrens nach einem der Ansprüche 1 bis 4 in einem Verfahren zur Krypton-Xenon-Gewinnung, wobei die erste Destilliersäule durch eine Kryptonsäule (5) gebildet wird, in der ein Kryptonprodukt (6) aus einer kryptonangereicherten Fraktion (3) gewonnen wird.Use of the method according to any one of claims 1 to 4 in a process for krypton-xenon recovery, wherein the first distillation column is formed by a cryptone column (5) in which a krypton product (6) is recovered from a krypton enriched fraction (3). Anwendung des Verfahrens nach Anspruch 4 in einem Verfahren zur Krypton-Xenon-Gewinnung, wobei die erste Destilliersäule durch eine Krypton-Xenon-Säule (2) gebildet wird, in der ein krypton- und xenonhaltiges Gemisch (1) in eine kryptonangereicherte (3) und eine xenonangereicherte (4) Fraktion zerlegt wird, und wobei die zweite Destilliersäule durch eine Kryptonsäule (5) gebildet wird, in der ein Kryptonprodukt (6) aus der kryptonangereicherte Fraktion (3) gewonnen wird.Use of the method according to claim 4 in a process for krypton-xenon recovery, wherein the first distillation column is formed by a krypton-xenon column (2) in which a krypton- and xenon-containing mixture (1) is transformed into a krypton-enriched (3) and a xenon enriched (4) fraction is decomposed, and wherein the second distillation column is formed by a crypt column (5) in which a krypton product (6) is recovered from the krypton enriched fraction (3). Vorrichtung zur Trennung eines Stoffgemischs durch Destillation mit einem Destilliersäulen-System, das mindestens eine erste Destilliersäule (2) aufweist, mit einer Einsatzleitung zum Einleiten des Stoffgemischs (1) in die erste Destilliersäule (2), mit einem ersten Kopfkondensator (101) zur Kondensation einer Kopffraktion aus der ersten Destilliersäule in indirektem Wärmeaustausch mit einem gasförmigen Kühlmedium (11, 10, 110) und mit Mitteln zum Aufgeben des im ersten Kopfkondensator gewonnenen Kondensats als Rücklauf in die erste Destilliersäule (2), gekennzeichnet durch eine Mischeinrichtung (13) zum Zumischen einer Flüssigfraktion (14, 16) des Kühlmediums zu dem gasförmigen Kühlmedium (12) stromabwärts des ersten Kopfkondensators (101) während des stationären Betriebs des Destilliersäulen-Systems und mit einem Wärmetauscher (19) zum Abkühlen des gasförmigen Kühlmediums (11) stromaufwärts des ersten Kopfkondensators (101) durch indirekten Wärmeaustausch mit dem in der Mischeinrichtung gebildeten vermischten Kühlmedium (18) und mit Mitteln (17) zur Regelung der Temperatur des Kühlmediums (110) beim Eintritt in den ersten Kopfkondensator (101) durch Einstellung der Menge der zugemischten Flüssigfraktion (16), wobei die Vorrichtung entweder keine Mittel zum Zurückführen des vermischten Kühlmediums (18) stromabwärts des Wärmetauschers (19) zu dem ersten Kopfkondensator (101) aufweist oder die Vorrichtung einen Kreislauf mit Kreislaufgebläse zum Zurückführen eines Teils des vermischten Kühlmedium (18) stromabwärts des Wärmetauschers (19) zu dem ersten Kopfkondensator (101) aufweist, der Kreislauf aber keine Mittel zur arbeitsleistenden Entspannung des zurückgeführten Kühlmedium enthält.Apparatus for separating a mixture of substances by distillation with a distillation column system having at least one first distillation column (2), with an introduction line for introducing the substance mixture (1) into the first distillation column (2), with a first head condenser (101) for condensation a top fraction from the first distillation column in indirect heat exchange with a gaseous cooling medium (11, 10, 110) and means for applying the condensate obtained in the first top condenser as reflux into the first distillation column (2), characterized by a mixing device (13) for Admixing a liquid fraction (14, 16) of the cooling medium to the gaseous cooling medium (12) downstream of the first head condenser (101) during stationary operation of the distillation column system and with a heat exchanger (19) for cooling the gaseous cooling medium (11) upstream of the first Head condenser (101) by indirect heat exchange with the mixed cooling medium (18) formed in the mixing device and with means (17) for controlling the temperature of the cooling medium (110) upon entry into the first top condenser (101) by adjusting the amount of the mixed liquid fraction ( 16), the apparatus having either no means for returning the blended cooling medium (18) downstream of the heat exchanger (19) to the first top condenser (101) or the apparatus comprising a circuit with recirculation fan for recirculating a portion of the blended cooling medium (18) downstream of Heat exchanger (19) to the first Kopfkon capacitor (101), but the circuit contains no means for work-performing expansion of the recirculated cooling medium. Vorrichtung nach Anspruch 8, bei der das Destilliersäulen-System eine zweite Destilliersäule (5) und einen zweiten Kopfkondensator (201) zur Kondensation einer Kopffraktion aus der zweiten Destilliersäule (5) in indirektem Wärmeaustausch mit einem gasförmigen Kühlmedium (210) aufweist, gekennzeichnet durch Mittel zum Aufteilen des abgekühlten gasförmigen Kühlmediums (10) stromabwärts des Wärmetauschers (19) in einen ersten und einen zweiten Teilstrom (110, 210) und durch Mittel zum Zuführen des ersten Teilstroms (110) zum ersten Kopfkondensator (101) und des zweiten Teilstroms (210) zum zweiten Kopfkondensator (201).Apparatus according to claim 8, wherein the distillation column system comprises a second distillation column (5) and a second overhead condenser (201) for condensing a top fraction from the second distillation column (5) in indirect heat exchange with a gaseous cooling medium (210) characterized by means for dividing the cooled gaseous cooling medium (10) downstream of the heat exchanger (19) into a first and a second substream (110, 210) and by means for supplying the first substream (110) to the first top condenser (101) and the second substream (210 ) to the second head capacitor (201). Vorrichtung nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die erste Destilliersäule durch eine Krypton-Xenon-Säule (2) oder durch eine Kryptonsäule (5) gebildet wird beziehungsweise die erste Destilliersäule durch eine Krypton-Xenon-Säule (2) und die zweite Destilliersäule durch eine Kryptonsäule (5) gebildet werden.Apparatus according to claim 8 or 9, characterized in that the first distillation column is formed by a krypton-xenon column (2) or by a cryptone column (5) or the first distillation column by a krypton-xenon column (2) and the second Distillation column through a cryptone column (5) are formed.
EP11003606A 2010-05-27 2011-05-03 Method and device for separating a material mixture using distillation Withdrawn EP2390603A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11003606A EP2390603A1 (en) 2010-05-27 2011-05-03 Method and device for separating a material mixture using distillation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE201010021798 DE102010021798A1 (en) 2010-05-27 2010-05-27 Process and device for separating a mixture by distillation
EP10007530 2010-07-20
EP11003606A EP2390603A1 (en) 2010-05-27 2011-05-03 Method and device for separating a material mixture using distillation

Publications (1)

Publication Number Publication Date
EP2390603A1 true EP2390603A1 (en) 2011-11-30

Family

ID=44117103

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11003606A Withdrawn EP2390603A1 (en) 2010-05-27 2011-05-03 Method and device for separating a material mixture using distillation

Country Status (1)

Country Link
EP (1) EP2390603A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3609983A (en) * 1968-05-16 1971-10-05 Air Reduction Krypton-xenon recovery system and process
US4270938A (en) * 1978-12-04 1981-06-02 Airco, Inc. Processes for decontaminating nuclear process off-gas streams
DE4202468A1 (en) 1992-01-29 1993-08-05 Linde Ag Process to collect xenon from air in rectification column - includes constant addition of liquid coolant and addition of fluid coolant to lower operating costs
DE10015605A1 (en) * 2000-03-29 2000-12-07 Linde Ag Process and assembly for the production of xenon by cryogenic fractionated distillation of oxygen and xenon
US6351970B1 (en) * 1998-05-26 2002-03-05 Linde Gas Aktiengesellschaft Method for extracting xenon
US6438994B1 (en) * 2001-09-27 2002-08-27 Praxair Technology, Inc. Method for providing refrigeration using a turboexpander cycle
DE102007027819A1 (en) * 2007-06-13 2008-12-18 Linde Ag Cryogenic gas decomposition device cooling method, involves controlling and cooling components of cryogenic gas decomposition device, and using carbon monoxide compressor for compressing components

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3609983A (en) * 1968-05-16 1971-10-05 Air Reduction Krypton-xenon recovery system and process
US4270938A (en) * 1978-12-04 1981-06-02 Airco, Inc. Processes for decontaminating nuclear process off-gas streams
DE4202468A1 (en) 1992-01-29 1993-08-05 Linde Ag Process to collect xenon from air in rectification column - includes constant addition of liquid coolant and addition of fluid coolant to lower operating costs
US6351970B1 (en) * 1998-05-26 2002-03-05 Linde Gas Aktiengesellschaft Method for extracting xenon
DE10015605A1 (en) * 2000-03-29 2000-12-07 Linde Ag Process and assembly for the production of xenon by cryogenic fractionated distillation of oxygen and xenon
US6438994B1 (en) * 2001-09-27 2002-08-27 Praxair Technology, Inc. Method for providing refrigeration using a turboexpander cycle
DE102007027819A1 (en) * 2007-06-13 2008-12-18 Linde Ag Cryogenic gas decomposition device cooling method, involves controlling and cooling components of cryogenic gas decomposition device, and using carbon monoxide compressor for compressing components

Similar Documents

Publication Publication Date Title
DE2535132C3 (en) Process and device for the production of pressurized oxygen by two-stage low-temperature rectification of air
EP0895045B1 (en) Air separation process
EP2980514A1 (en) Method for the low-temperature decomposition of air and air separation plant
EP1067345A1 (en) Process and device for cryogenic air separation
DE10013073A1 (en) Low temperature separation of air in distillation column system uses integrated heat exchanger system for cooling e.g. air supply by indirect heat exchange during vaporization of first liquid fraction
EP0669509A1 (en) Process and apparatus for obtaining pure argon
EP1376037A1 (en) Air separation process and apparatus with a mixing column and krypton and xenon recovery
EP2989400B1 (en) Method for obtaining an air product in an air separating system with temporary storage, and air separating system
EP2322888B1 (en) Method and device for generating a helium-neon concentrate from air
EP3521739A1 (en) Method and device for generating compressed nitrogen by the cryogenic decomposition of air
DE60108579T2 (en) Process and apparatus for air separation by cryogenic distillation
DE19537913A1 (en) Triple column process for the low temperature separation of air
DE10209421A1 (en) Process for recovering a compressed product comprises subjecting air to low temperature decomposition in a rectification system consisting of a high pressure column and a low pressure column
DE19933558C5 (en) Three-column process and apparatus for the cryogenic separation of air
DE19720453A1 (en) Process and device for the production of nitrogen by low-temperature separation of air
EP2390603A1 (en) Method and device for separating a material mixture using distillation
DE10153919A1 (en) Process for recovering highly pure oxygen from less pure oxygen in a distillation system comprises cooling the heat exchange fluid downstream of the high pressure column sump vaporizer and upstream of a pressure relieving device
DE10052180A1 (en) Three-column system for the low-temperature separation of air
DE19910871B4 (en) Process and installation for the separation of air by cryogenic distillation
DE102010021798A1 (en) Process and device for separating a mixture by distillation
DE2518557C3 (en) Process for air separation with liquid generation by cryogenic rectification
DE10015605A1 (en) Process and assembly for the production of xenon by cryogenic fractionated distillation of oxygen and xenon
DE202018006161U1 (en) Plant for the cryogenic separation of air
DE102010056569A1 (en) Method for recovery of pressurized nitrogen product in distilling column system, involves making secondary portion of vaporized/pseudo-vaporized nitrogen flow in indirect heat exchange with oxygen-enriched liquid of high pressure column
EP3870917B1 (en) Method and installation for cryogenic separation of air

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120516

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20130402