EP2389401A1 - Tensioactifs à base de polyuréthanes - Google Patents

Tensioactifs à base de polyuréthanes

Info

Publication number
EP2389401A1
EP2389401A1 EP10700216A EP10700216A EP2389401A1 EP 2389401 A1 EP2389401 A1 EP 2389401A1 EP 10700216 A EP10700216 A EP 10700216A EP 10700216 A EP10700216 A EP 10700216A EP 2389401 A1 EP2389401 A1 EP 2389401A1
Authority
EP
European Patent Office
Prior art keywords
mol
molecular weight
polyether
nco
average molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10700216A
Other languages
German (de)
English (en)
Inventor
Jan SCHÖNBERGER
Sebastian Dörr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Priority to EP10700216A priority Critical patent/EP2389401A1/fr
Publication of EP2389401A1 publication Critical patent/EP2389401A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0828Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing sulfonate groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/283Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/721Two or more polyisocyanates not provided for in one single group C08G18/73 - C08G18/80
    • C08G18/722Combination of two or more aliphatic and/or cycloaliphatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers

Definitions

  • the present invention relates to novel, high molecular weight surfactants based on polyurethanes, for example for use in coating compositions, adhesives or sealants.
  • cytotoxic coatings, adhesive layers and seals result.
  • such an undesirable effect can be attributed inter alia to the low molecular character of the additives, since molecules with molar masses of less than 500 g / mol are as a rule physiologically considerably more active than compounds having higher molecular weights.
  • the low molecular weight of surfactants is often associated with positive properties, these can not always be achieved by compounds with molecular weights greater than 500 g / mol.
  • EP 0731148 describes hydrophilically modified, branched polyisocyanate adducts based on polyisocyanates having an average NCO functionality of at least 2.5, which are reacted with hydrophilic polyethers. These components have the disadvantage that owing to the relatively high degree of branching, no optimal unfolding of the hydrophilic potential of the polyether chain is possible since, for steric reasons, more than 2 polyether chains can not be completely in the water phase at the same time if the hydrophobic residue of the adduct simultaneously located on a hydrophobic phase. As a result, part of the hydrophilic residue in the vicinity of the hydrophobic phase is always found in the dispersants described in EP 0731148.
  • the object of the present invention was therefore to provide suitable high molecular weight surfactants as (foam) additives which can be foamed in combination with polymers or polymer blends, preferably with polyurethanes, in particular with aqueous polyurethane dispersions, and after drying have a fine-pored and homogeneous even in large layer thicknesses
  • foams which are not cytotoxic and largely free of (thermally) releasable components such as amines. It has now been found that the underlying object can be achieved by adding new surfactants based on polyurethanes as an additive.
  • the content of free isocyanate groups in the inventive polyurethanes is less than 1 wt .-%, generally free isocyanate groups are no longer detectable.
  • Suitable polyisocyanate prepolymers of component A) are the aliphatic, aromatic or cycloaliphatic isocyanate-functional prepolymers known to the person skilled in the art with the abovementioned NCO functionalities.
  • the isocyanate-functional prepolymers which can be used in A) are obtainable by reacting polyisocyanates with hydroxy-functional polyols, if appropriate with addition of catalysts and auxiliaries and additives.
  • Examples of such suitable isocyanate-functional building blocks A) are prepolymers based on polyols and low molecular weight isocyanate building blocks.
  • Low molecular weight isocyanate building blocks are compounds such as 1, 4-butylene diisocyanate, 1, 6-hexamethylene diisocyanate (HDI), isophorone diisocyanate (LPDI), 2,2,4- and / or 2,4,4-trimethylhexamethylene diisocyanate, the isomeric bis- (4,4'-isocyanatocyclohexyl) methanes or mixtures thereof any isomer content, 1,4-cyclohexylene diisocyanate, 4-isocyanatomethyl-l, 8-octane diisocyanate (nonane triisocyanate), 1,4-phenylene diisocyanate, 2,4- and / or 2,6 Toluene diisocyanate, 1,5-naphthylene diisocyanate, 2,2
  • the isocyanate-functional building blocks A) may contain, for example, uretdione, isocyanurate, urethane, urea, allophanate, biuret, iminooxadiazinedione or oxadiazinetrione structures and also mixtures of these.
  • the polymeric polyols for the preparation of A) are the polyester polyols known per se in polyurethane coating technology, polyacrylate polyols, polyurethane polyols, polycarbonate polyols, polyether polyols, polyester polyacrylate polyols, polyurethane polyacrylate polyols, polyurethane polyester polyols, polyurethane polyether polyols, polyurethane polycarbonate polyols and polyester polycarbonate nopolymers. These can be used to prepare the prepolymer A) individually or in any desired mixtures with one another.
  • Suitable polyester polyols are the known polycondensates of di- and optionally tri- and tetraols and di- and optionally tri- and tetracarboxylic acids or hydroxycarboxylic acids or lactones. Instead of the free polycarboxylic acids, it is also possible to use the corresponding polycarboxylic acid anhydrides or corresponding polycarboxylic acid esters of lower alcohols for the preparation of the polyesters.
  • diols examples include ethylene glycol, butylene glycol, diethylene glycol, triethylene glycol, polyalkylene glycols such as polyethylene glycol, furthermore 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol and Isomers, neopentyl glycol or hydroxypivalic acid neopentyl glycol esters, with 1,6-hexanediol and isomers, 1,4-butanediol, neopentyl glycol and neopentyl glycol hydroxypivalate being preferred.
  • polyalkylene glycols such as polyethylene glycol, furthermore 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,6-hexaned
  • polyols such as tri- methylolpropane, glycerol, erythritol, pentaerythritol, trimethylolbenzene or trishydroxyethyl isocyanurate.
  • Suitable dicarboxylic acids are phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, cyclohexanedicarboxylic acid, adipic acid, azelaic acid, sebacic acid, glutaric acid, tetrachlorophthalic acid, maleic acid, fumaric acid, itaconic acid, malonic acid, suberic acid, 2-methylsuccinic acid, 3,3-diethylglutaric acid and / or 2 , 2-Dimethylsuccinic be used.
  • the acid source used may also be the corresponding anhydrides.
  • monocarboxylic acids such as benzoic acid and hexanecarboxylic acid may additionally be used.
  • Preferred acids are aliphatic or aromatic acids of the abovementioned type. Particular preference is given to adipic acid, isophthalic acid and phthalic acid.
  • Hydroxycarboxylic acids which may be co-used as reactants in the preparation of a hydroxyl-terminated polyester polyol include, for example, hydroxycaproic acid, hydroxybutyric acid, hydroxydecanoic acid, hydroxystearic acid and the like.
  • Suitable lactones are caprolactone, butyrolactone and homologs. Preference is given to caprolactone.
  • Low molecular weight polyols can also be used to prepare A).
  • examples of such polyols are ethylene glycol, 1,2- and 1,3-propanediol, 1,3- and 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, neopentyl glycol, 1,4-bis-hydroxymethylcyclohexane, 2- Methyl-l, 3-propanediol, 2,2,4-Trimethylpentandiol-l, 3, dipropylene glycol, polypropylene glycols, dibutylene glycol, Polybu- tylenglykole, bisphenol A and lactonmodif ⁇ explorede diols of the aforementioned kind.
  • the polyether polyols for the preparation of component A) generally have number average molecular weights Mn of 300 to 8000 g / mol, preferably 400 to 6000 g / mol, particularly preferably 600 to 3000 g / mol.
  • they more preferably have an unsaturated end group content of less than or equal to 0.02 meq / gram of polyol (meq / g), preferably less than or equal to 0.015 meq / g, more preferably less than or equal to 0.01 meq / g (assay method ASTM D2849-69).
  • the stated polyether polyols preferably have a polydispersity of 1.0 to 1.5 and an OH functionality of greater than 1.9, more preferably greater than or equal to 1.95.
  • Such polyether polyols can be prepared in a manner known per se by alkoxylation of suitable starter molecules, in particular using double metal cyanide catalysts (DMC catalysis). This is e.g. in US-A 5,158,922 (e.g., Example 30) and EP-A-0654302 (page 5, lines 26 to 6, Z. 32).
  • DMC catalysis double metal cyanide catalysts
  • Suitable starter molecules for the preparation of the polyether polyols are, for example, simple, low molecular weight polyols, water, organic polyamines having at least two N-H bonds or any mixtures of such starter molecules.
  • Alkylene oxides which are suitable for the alkoxylation are, in particular, ethylene oxide and / or propylene oxide, which can be used in any desired order or also in a mixture in the alkoxylation.
  • Preferred starter molecules for the preparation of the polyether polyols by alkoxylation, in particular by the DMC process are in particular simple polyols such as ethylene glycol, diethylene glycol, triethylene glycol, butyl diglycol, 1,3-butylene glycol, 1,3-propylene glycol, 1,2-propanediol , 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, cyclohexanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, 2-ethylhexanediol-1,3-glycerol, trimethylolethane, trimethylolpropane, pentaerythritol, sorbitol , Triethanolamine, hydroquinone dihydroxyethyl ether, bisphenol A (2,2-bis (4-hydroxyphenyl) propane), hydrogenated bisphenol A (2,2-bis
  • Suitable examples are the polytetra methylene glycol polyethers known per se in polyurethane chemistry, such as are obtainable by polymerization of tetrahydrofuran by means of cationic ring opening, and also polypropylene glycol and polycarbonate polyols or mixtures thereof, and polypropylene glycol is particularly preferred.
  • polyether polyols are the per se known addition products of styrene oxide, ethylene oxide, propylene oxide, butylene oxide and / or epichlorohydrin to di- or polyfunctional starter molecules.
  • ester diols of the stated molecular weight range such as ⁇ -hydroxybutyl- ⁇ -hydroxy-caproic acid ester, ⁇ -hydroxyhexyl- ⁇ -hydroxybutyric acid ester, adipic acid ( ⁇ -hydroxyethyl) ester or terephthalic acid bis ( ⁇ -hydroxyethyl) ester.
  • monofunctional isocyanate-reactive hydroxyl-group-containing compounds examples include ethanol, n-
  • NH 2 - and / or NH-functional components can be used to prepare the isocyanate prepolymers.
  • Suitable components for chain extension are organic di- or polyamines such as, for example, ethylenediamine, 1,2- and 1,3-diaminopropane, 1,4-diaminobutane, 1,6-diaminohexane, isophoronediamine, isomer mixtures of 2,2,4- and 2, 4,4-trimethylhexamethylenediamine, 2-methylpentamethylenediamine, diethylenetriamine, diaminodicyclohexylmethane and / or dimethylethylenediamine.
  • organic di- or polyamines such as, for example, ethylenediamine, 1,2- and 1,3-diaminopropane, 1,4-diaminobutane, 1,6-diaminohexane, isophoronediamine, isomer mixtures of 2,2,4- and 2, 4,4-trimethylhexamethylenediamine, 2-methylpentamethylenediamine, diethylenetriamine, diaminodicyclohe
  • compounds which, in addition to a primary amino group also have secondary amino groups or, in addition to an amino group (primary or secondary), also OH groups.
  • primary / secondary amines such as diethanolamine, 3-amino-1-methylaminopropane, 3-amino-1-ethylaminopropane, 3-amino-1-cyclohexylaminopropane, 3-amino-l-methylaminobutane, alkanolamines such as N-Ammoethylethanolamin, ethanolamine , 3-aminopropanol, neopentanolamine, which are used for chain extension or termination.
  • amines having an isocyanate-reactive group such as methylamine, ethylamine, propylamine, butylamine, octylamine, laurylamine, stearylamine, isononyloxypropylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, N-methylaminopropylamine, diethyl (methyl) aminopropylamine, morpholine, piperidine, or suitable substituted derivatives thereof, amide amines from diprimary amines and monocarboxylic acids, mono-ketim of diprimary amines, primary / tertiary amines, such as N, N-dimethylammopropylamine.
  • an isocyanate-reactive group such as methylamine, ethylamine, propylamine, butylamine, octylamine, laurylamine, stearylamine, isononyloxypropylamine,
  • the compounds of component A) are preferably prepolymers of the abovementioned type with exclusively aliphatically or cycloaliphatically bonded isocyanates. nat tendency or mixtures of these and a mean NCO functionality of the mixture of 1.7 to 2.5; preferably 1.8 to 2.2; particularly preferred 2.
  • the low molecular weight polyisocyanates are reacted with the polyols at an NCO / OH ratio of preferably 2: 1 to 20: 1.
  • the reaction temperature here is usually 20 to 160 0 C, preferably 60 to 100 0 C.
  • the proportion of unreacted poly-isocyanates is then separated by suitable methods.
  • the thin-film distillation is used for this purpose, low-monomer products having residual monomer contents of less than 5% by weight, preferably less than 0.5% by weight, very particularly preferably less than 0.1% by weight, being obtained.
  • Suitable nonionically hydrophilicizing compounds of component B) are monofunctional polyoxyalkylene ethers which contain at least one hydroxyl group. Examples are the monohydroxy-functional, on average 5 to 70, preferably 7 to 55 ethylene oxide units per molecule having polyalkylene oxide polyether alcohols, as they are accessible in a conventional manner by alkoxylation of suitable starter molecules (eg in Ullmann's Encyclopedia of Industrial Chemistry, 4th Edition, Volume 19, Verlag Chemie, Weinheim pp. 31-38). These are either pure polyethylene oxide ethers or mixed polyalkylene oxide ethers, wherein they are at least
  • Particularly preferred nonionic compounds are monofunctional mixed polyalkylene oxide polyethers which have 30 to 100 mol% of ethylene oxide and 0 to 70 mol% of propylene oxide units based on the total amount of oxyalkyleneinites.
  • Suitable starter molecules for such building blocks are saturated monoalcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, the isomeric pentanols, hexanols, octanols and nonanols, n-decanol, n-dodecanol, n Tetradecanol, n-hexadecanol, n-octadecanol, cyclohexanol, the isomeric methylcyclohexanols or hydroxymethylcyclohexane, 3-ethyl-3-hydroxymethyloxetane or tetrahydrofurfuryl alcohol, diethylene glycol monoalkyl ethers such as diethylene glycol monobutyl ether, unsaturated alcohols such as allyl alcohol, 1,1-dimethylallyl alcohol or o
  • Alkylene oxides which are suitable for the alkoxylation reaction are, in particular, ethylene oxide and propylene oxide, which can be used in any desired order or else as a mixture in the alkoxylation reaction.
  • Suitable components of component C) are monohydric alcohol components consisting of at least one monohydric alcohol of the number average molecular weight range 32 to 5000 g / mol, which is different from the alcohols of component B).
  • Examples are methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, the isomeric pentanols, hexanols, octanols and nonanols, n-decanol, n-dodecanol, n-tetradecanol, n-hexadecanol, n- octadecanol, cyclohexanol, fatty alcohols, the isomeric methylcyclohexanols or hydroxymethylcyclohexane, 3-ethyl-3-hydroxymethyloxetane or tetrahydrofurfuryl alcohol
  • monofunctional polymers for example polyoxyalkylene ethers containing one hydroxy group and less than 30 mol% of ethylene oxide. Preference is given to monofunctional polypropylene oxide polyethers which have no ethylene oxide building blocks.
  • Suitable building blocks of component D) are polyfunctional isocyanate-reactive components in the sense of the NCO addition reaction of the number average molecular weight range from 32 to 10,000 g / mol.
  • Examples of low molecular weight, especially polyols, preferably having up to 20 carbon atoms are ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,3-butylene glycol, cyclohexanediol, 1, 4-cyclohexanedimethanol, 1,6-hexanediol, neopentyl glycol, hydroquinone dihydroxyethyl ether, bisphenol A (2,2-bis (4-hydroxyphenyl) propane), hydrogenated bisphenol A, (2,2-bis (4-hydroxycyclohexyl) propane), trimethylolpropane , Glycerol, pentaerythritol and any mixture
  • polyester polyols polyacrylate polyols, polyurethane polyols, polycarbonate polyols, polyether polyols, polyester polyacrylate polyols, polyurethane polyacrylate polyols, polyurethane polyester polyols, polyurethane polyether polyols, polyurethane polycarbonate polyols and polyester polycarbonate polyols having a number average molecular weight of up to 10,000 g / mol.
  • di- or polyamines such as 1,2-ethylenediamine, 1,2- and 1,3- Diaminopropane, 1,4-diaminobutane, 1,6-diaminohexane, isophoronediamine, isomer mixtures of 2,2,4- and 2,4,4-trimethylhexamethylenediamine, 2-methylpentamethylenediamine, diethylenetriamine, triaminononane, 1,3- and 1, 4- Xylylenediamine, ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethyl-l, 3- and 1,4-xylylenediamine and 4,4-diaminodicyclohexylmethane and / or dimethylethylenediamine.
  • 1,2-ethylenediamine 1,2- and 1,3- Diaminopropane
  • 1,4-diaminobutane 1,6-diaminohexane
  • isophoronediamine isomer mixtures of 2,2,4- and 2,4,4
  • hydrazine and hydrazides such as adipic dihydrazide.
  • Isophoronediamine, 1, 2-ethylenediamine, 1, 4-diaminobutane, and diethylenetriamine are preferred.
  • compounds which have not only a primary amino group but also secondary amino groups or, in addition to an amino group (primary or secondary), OH groups can also be used as component D).
  • Examples of these are primary / secondary amines, such as diethanolamine, 3-amino-1-methylaminopropane, 3-amino-1-ethylaminopropane, 3-amino-1-cyclohexylaminopro pan, 3-amino-1-methylaminobutane, alkanolamines such as N-aminoethylethanolamine , Ethanolamine, 3-aminopropanol, neopentanolamine. Mixtures of the components mentioned can also be used as component D).
  • no component D) is used, in another preferred variant, at least one polyoxyalkylene ether is used as component D).
  • at least one polyoxyalkylene ether is used which contains at least two isocyanate-reactive groups such as hydroxyl groups and moreover at least 30 mol%, based on all alkylene oxide units contained in ethylene oxide units.
  • Particularly preferred as D) are difunctional polyalkylene oxide polyethers having 30 to 100 mol% of ethylene oxide and 0 to 70 mol% of propylene oxide units, and more preferably 70 to 100 mol% of ethylene oxide and 0 to 30 mol% of propylene oxide unit. Most preferred in D) are contained as alkylene oxide exclusively ethylene oxide.
  • Such polyoxyalkylene ethers can be prepared in a manner known per se by alkoxylation of suitable, at least difunctional starter molecules.
  • the isocyanate-functional prepolymer A) is first prepared by reacting a diisocyanate of the abovementioned type with an excess of a hydrophobic diol such as, for example, polypropylene glycol having a number average molecular weight of, for example, 2000 g / mol.
  • a hydrophobic diol such as, for example, polypropylene glycol having a number average molecular weight of, for example, 2000 g / mol.
  • the molar ratio between isocyanate groups and isocyanate-reactive groups is preferably in the range from 2 to 1 to 20 to 1, particularly preferably 5 to 1 to 15 to 1.
  • a monohydric polyether alcohol of the number average ren molecular weight range from 350 to 3000 g / mol, more preferably 700 to 2300 g / mol with a preferred content of ethylene oxide units from 70 to 100 wt .-% based on the total content of Oxyalkyleneinheten used.
  • the molar ratio between isocyanate groups and isocyanate-reactive groups in the reaction of A) with B) and optionally C) and / or D) is preferably in the range from 0.5: 1 to 2: 1, more preferably 0.7: 1 to 1.2 to 1 and most preferably 1 to 1.
  • Preferred temperature range for the reaction is 20 to 180 0 C, more preferably 40 to 130 0 C.
  • the reaction is preferably carried out until no isocyanate groups are more detectable by IR spectroscopy , In a particularly preferred variant, neither C) nor D) is used, in another particularly preferred variant only D) is used.
  • catalysts known to those skilled in the art is possible both in the preparation of the prepolymers A) and in the preparation of the polyurethanes according to the invention.
  • tertiary amines, tin, zinc or bismuth compounds such as triethylamine, 1,4-diazabicyclo [2,2,2] octane, tin dioctoate, dibutyltin dilaurate and zinc dioctoate can be added.
  • stabilizers such as benzoyl chloride, isophthaloyl chloride, dibutyl phosphate, 3-chloropropionic acid, antioxidant ion or methyl tosylate may be added during and / or after the preparation.
  • the components A) to D) are preferably used in the following quantitative ranges
  • component A 10 to 80% by weight, particularly preferably 20 to 50% by weight of component A),
  • component B 20 to 90% by weight, particularly preferably 30 to 50% by weight of component B),
  • component D 0 to 60% by weight, particularly preferably 10 to 30% by weight of component D).
  • polyurethanes of the invention as an additive, adjuvant, additive, emulsifier, phase mediator, wetting agent, dispersant, stabilizer, modifier, release agent, thickener and / or adhesion promoter.
  • Application examples are the use in coating compositions, paints, coatings, adhesives, laminating materials, sealants, printing inks, inks, colorants, dyes, mordants, corrosion and rust inhibitors, impregnating agents and graphic materials, for the production of wound dressing materials and incontinence products, for the production of pharmaceutical formulations , as lubricants, lubricants, separating agents or coolants, in fuels, as an oil, in or as a diluent, cleaning or pretreatment agent, in foods of all kinds.
  • the use of the polyurethanes according to the invention as foam stabilizers for polymers preferably those based on polyurethane.
  • hydrophilicization of the foams is preferably achieved by the use according to the invention.
  • the foams mentioned above are preferably those obtained by physical drying from aqueous polyurethane dispersions.
  • the polyurethanes according to the invention can be used in the abovementioned fields of application together with solvents such as, for example, water, thickeners or thixotropic agents, stabilizers, free-radical scavengers, binders, foam auxiliaries, antioxidants, light stabilizers, emulsifiers, plasticizers, pigments, fillers and / or leveling agents.
  • solvents such as, for example, water, thickeners or thixotropic agents, stabilizers, free-radical scavengers, binders, foam auxiliaries, antioxidants, light stabilizers, emulsifiers, plasticizers, pigments, fillers and / or leveling agents.
  • Further additives are crosslinkers, thickeners or thixotropic agents, other aqueous binders, antioxidants, light stabilizers, emulsifiers, plasticizers, pigments, fillers and / or leveling agents.
  • Such thickeners may be dextrin, starch or cellulose derivatives such as cellulose ethers or hydroxyethyl cellulose, organic fully synthetic thickeners based on polyacrylic acids, polyvinylpyrrolidones, poly (meth) acrylic compounds or polyurethanes (associative thickeners) and also inorganic thickeners such as concreteites or silicic acids.
  • crosslinking agents there may be added, for example, unblocked polyisocyanates, amide and amine-formaldehyde resins, phenolic resins, aldehyde and ketone resins, e.g. Phenol-formaldehyde resins, resoles, furan resins, urea resins, carbamic acid ester resins, triazine resins, melamine resins, benzoguanamine resins, cyanamide resins or aniline resins.
  • unblocked polyisocyanates amide and amine-formaldehyde resins
  • phenolic resins e.g. Phenol-formaldehyde resins, resoles, furan resins, urea resins, carbamic acid ester resins, triazine resins, melamine resins, benzoguanamine resins, cyanamide resins or aniline resins.
  • phenolic resins e.g. Phenol-
  • aqueous binders may, for. B. of polyester, polyacrylate, polyepoxide or other polyurethane polymers.
  • the polymer foams which can be advantageously stabilized by the polyurethanes according to the invention can be based on polyvinyl chlorides, polyacrylates, polycarbonimides, polymethacrylates, polyamides, phenolic and urea resins, polysiloxanes, polyamidoamines, polyhydroxycarboxylic acids, polycarbonates, polyesters, polyesterpolyamides, polyesterpolyacrylates, polyesterpolycarbonates, polyoxyalkylene ethers, Polyethe ⁇ olyacrylaten, Polyethe ⁇ olycarbonaten, polyether polyamides, polyethylene polyimines, polyureas, polyurethanes, polyurethane polyacrylates, polyurethane polyesters, polyurethane polyethers, polyurethane polyureas and poly urethanpolycarbonaten and any mixtures of the aforementioned polymers.
  • polyureas Preference is given to polyureas, polyurethanes, polyurethane polyacrylates, polyurethane polyesters, polyurethane polyethers, polyurethane polyureas and polyurethane polycarbonates and also any desired mixtures of these polymers.
  • the polyurethanes according to the invention exhibit advantageous effects even in small amounts in the abovementioned applications.
  • the polyurethanes according to the invention are preferably used at from 0.1 to 15 parts by weight, more preferably from 0.5 to 10 parts by weight and very preferably from 1 to 6 parts by weight, based on the dry matter of the composition.
  • the polyurethanes according to the invention can be used flexibly and, if appropriate, employed in a solvent such as water, or dispersed.
  • the solids contents were determined according to DIN-EN ISO 3251.
  • NCO contents were determined volumetrically in accordance with DIN-EN ISO 11909, unless expressly stated otherwise.
  • the determination of the average particle sizes (indicated by the number average) of the polyurethane dispersion 1 was carried out by means of laser correlation spectroscopy (apparatus: Malvern Zetasizer 1000, Malver Inst. Limited).
  • polypropylene glycol polyethers used were prepared by DMC catalysis (base-free).
  • the stated molar masses are weight-average molar masses. They were determined by GPC analysis in tetrahydrofuran at a flow rate of 0.6 ml / min. The calibration was carried out by polystyrene standards.
  • Diaminosulphonate NH 2 -CH 2 CH 2 -NH-CH 2 CH 2 -SO 3 Na (45% in water)
  • Desmophen ® C2200 polycarbonate polyol, OH number 56 mg KOH / g, number average molecular weight 2000 g / mol (Bayer MaterialScience AG, Leverkusen, DE)
  • PolyTHF ® 2000 Polytetramethylenglykolpolyol, OH number 56 mg KOH / g, number average molecular weight 2000 g / mol (BASF AG, Ludwigshafen, DE)
  • PolyTHF ® 1000 Polytetramethylenglykolpolyol, OH number 112 mg KOH / g, average number average molecular weight number 1,000 g / mol (BASF AG, Ludwigshafen, DE)
  • Polyether LB 25 monofunctional polyether based on ethylene oxide / propylene oxide, number average molecular weight 2250 g / mol, OH number 25 mg KOH / g
  • the finished prepolymer was dissolved with 4840 g of acetone while cooled to 50 0 C and then a solution of 27.4 g of ethylenediamine, 127.1 g of isophoronediamine, 67.3 g of diaminosulfonate and 1200 g of water was added within 10 min , The
  • the resulting polyurethane dispersion had the following properties:
  • a monofunctional polyethylene glycol polyether (MeOPEG) having a number-average molecular weight of 2000 g / mol were initially charged in a 2 l four-necked flask while stirring.
  • 202 g of the above-mentioned NCO prepolymer were added at 70 ° C. within 0.5 hours, and stirring was continued for 4 hours at 80 ° C. until no NCO groups could be detected by IR spectroscopy.
  • the resulting surfactant was a solid having a weight average molecular weight of 7232 g / mol.
  • 750 g of a monofunctional polyethylene glycol polyether (MeOPEG) having a number-average molecular weight of 5000 g / mol were initially introduced into a 2 l four-necked flask with stirring.
  • 101 g of the above-mentioned NCO prepolymer were added at 70 ° C. within 0.5 hours and stirring was continued for 4 hours at 80 ° C. until no NCO groups could be detected by IR spectroscopy.
  • the resulting surfactant was a solid having a weight average molecular weight of 13849 g / mol.
  • a monofunctional polyethylene glycol polyether (MeOPEG) having a number average molecular weight of 2000 g / mol and 100 g of a difunctional polyethylene glycol polyether having a number average molecular weight of 2000 g / mol were initially charged in a 2 l four-necked flask. Within 0.5 hours, added at 80 0 C 257 g of the above-mentioned NCO prepolymer are added and stirred for 4 hours at 100-120 0 C after until IR spectroscopy no NCO groups were no longer detectable. The obtained surfactant was a solid.
  • MeOPEG monofunctional polyethylene glycol polyether
  • a surfactant was prepared with the same raw materials as in Example 12, but the previous preparation of the prepolymer from the diisocyanate with the polypropylene glycol polyether was dispensed with and the surfactant preparation was carried out in only one reaction step.
  • each of the polyurethane dispersion 1 prepared according to Example 1 were mixed with various (foam) additives and applied to a volume of 0.5 liter of foam using a commercial hand mixer (bent wire stirrer) Thereafter, the foams were coated by means of a film applicator (doctor blade) with gap height 6 mm on non-stick paper and dried at 120 0 C for 20 minutes.
  • the foam S5 is classified as non-cytotoxic according to guideline ISO 10993.5.
  • each 120 g of the polyurethane dispersion 1 were mixed with various non-inventive additives (Table 2) and pitched using a commercial hand mixer (bent wire stirrer) to 0.5 liters of foam volume. Thereafter, the foams were coated by means of a film applicator (doctor blade) with gap height 6 mm on non-stick paper and dried for 20 minutes at 120 0 C.
  • foams with particularly disadvantageous properties such as inhomogeneous foam structure, surface defects (cracks) or pocket formation (formation of two non-adherent or hardly adhering foam layers, resulting in a cavity in the form of a pocket).
  • the foams V5 and V6, as tested according to the guideline ISO 10993.5 have an additive-caused, strongly cytotoxic effect: the cell viabilities were below 3% for these foams.
  • a ammonium stearate (about 30%, Stokal STA, Bozzetto GmbH, Krefeld, DE), B sulfosuccinamate (about 34%, Stokal SR, Bozzetto GmbH, Krefeld, DE), C CH-Cl ⁇ -fatty alcohol polyglycoside (about 51%, PlantaCare® 1200 UP, Cognis Germany GmbH & Co. KG, Dusseldorf, DE), 2) Inspection according to ISO 10993 5

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

L'invention concerne de nouveaux types de tensioactifs de poids moléculaire élevé, à base de polyuréthanes, par exemple destinés à être employés dans des revêtements, des adhésifs ou des joints.
EP10700216A 2009-01-24 2010-01-13 Tensioactifs à base de polyuréthanes Withdrawn EP2389401A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10700216A EP2389401A1 (fr) 2009-01-24 2010-01-13 Tensioactifs à base de polyuréthanes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09000994 2009-01-24
PCT/EP2010/000128 WO2010083960A1 (fr) 2009-01-24 2010-01-13 Tensioactifs à base de polyuréthanes
EP10700216A EP2389401A1 (fr) 2009-01-24 2010-01-13 Tensioactifs à base de polyuréthanes

Publications (1)

Publication Number Publication Date
EP2389401A1 true EP2389401A1 (fr) 2011-11-30

Family

ID=40674030

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10700216A Withdrawn EP2389401A1 (fr) 2009-01-24 2010-01-13 Tensioactifs à base de polyuréthanes

Country Status (11)

Country Link
US (1) US20110275757A1 (fr)
EP (1) EP2389401A1 (fr)
JP (1) JP2012515815A (fr)
KR (1) KR20110119659A (fr)
CN (1) CN102292368A (fr)
AR (1) AR075001A1 (fr)
AU (1) AU2010206319A1 (fr)
BR (1) BRPI1007040A2 (fr)
CA (1) CA2750427A1 (fr)
TW (1) TW201041925A (fr)
WO (1) WO2010083960A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012069414A1 (fr) * 2010-11-25 2012-05-31 Bayer Materialscience Ag Résine polyuréthane à teneur élevée en groupements carbonate
BR112015032786B1 (pt) * 2013-07-10 2021-07-20 Basf Se Tensoativo de poli(oxialquileno)uretano, processo para preparar os tensoativos de poli (oxialquileno)uretano, composição, formulação aquosa, formulação oleosa e usos do tensoativo de poli(oxialquileno)uretano
JP7361025B2 (ja) * 2017-10-07 2023-10-13 コベストロ、ドイチュラント、アクチエンゲゼルシャフト ポリウレタンフォームに基づく粘弾性要素
CN111465631B (zh) * 2017-12-21 2022-07-12 科思创德国股份有限公司 具有可调节粘合力的基于特殊聚氨酯脲的胶粘剂及其制备和用途
CN114921013A (zh) * 2022-05-19 2022-08-19 江西天丰建设集团管业科技有限公司 一种双肋双色增强螺旋波纹管的制备工艺
CN116712595B (zh) * 2023-08-11 2023-11-14 诺一迈尔(山东)医学科技有限公司 一种软组织用的可降解粘合剂及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4155892A (en) * 1975-10-03 1979-05-22 Rohm And Haas Company Polyurethane thickeners for aqueous compositions
DE4101239C1 (fr) * 1991-01-17 1992-04-02 Th. Goldschmidt Ag, 4300 Essen, De
US5158922A (en) 1992-02-04 1992-10-27 Arco Chemical Technology, L.P. Process for preparing metal cyanide complex catalyst
US5470813A (en) 1993-11-23 1995-11-28 Arco Chemical Technology, L.P. Double metal cyanide complex catalysts
DE19508390A1 (de) 1995-03-09 1996-09-12 Bayer Ag Dispergierhilfsmittel für wäßrige Lacke
US5808131A (en) * 1995-05-01 1998-09-15 The Dow Chemical Company Liquid urethane containing adduct
DE19525489A1 (de) 1995-07-13 1997-01-16 Wolff Walsrode Ag Strahlenhärtbare, wäßrige Dispersionen, deren Herstellung und Verwendung
JP2002539276A (ja) * 1998-07-23 2002-11-19 ハンツマン・インターナショナル・エルエルシー 乳化性イソシアネートの組成物
WO2003099891A1 (fr) * 2002-05-24 2003-12-04 Crompton Corporation Dispersions de polyurethanne
US20090105411A1 (en) * 2006-05-16 2009-04-23 Bedri Erdem Aqueous non-ionic hydrophilic polyurethane dispersions, and a continuous process of making the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010083960A1 *

Also Published As

Publication number Publication date
JP2012515815A (ja) 2012-07-12
CA2750427A1 (fr) 2010-07-29
AR075001A1 (es) 2011-03-02
US20110275757A1 (en) 2011-11-10
KR20110119659A (ko) 2011-11-02
CN102292368A (zh) 2011-12-21
AU2010206319A1 (en) 2011-08-04
BRPI1007040A2 (pt) 2019-04-02
TW201041925A (en) 2010-12-01
WO2010083960A1 (fr) 2010-07-29

Similar Documents

Publication Publication Date Title
EP1396510B1 (fr) Polyurée-uréthane comme agent d'épaississement et procédé pour sa préparation
EP2197930B1 (fr) Procédé de fabrication de mousses de polyuréthane
EP2389402B1 (fr) Mousses de polyuréthanes stabilisées par tensioactif à base de polyuréthane
EP2183309B1 (fr) Copolymères séquencés eo/po utilisés comme agents stabilisants pour des mousses polyuréthane
EP2470580B1 (fr) Mousses de polyuréthane aliphatiques hydrophiles
EP2066711B1 (fr) Alkylpolyglycosides utilisés comme stabilisants de mousses de polyuréthane
EP2398835B1 (fr) Dispersions de polyuréthane-polyurée fonctionnalisées
DE102004060139A1 (de) Festkörperreiche Polyurethanpolyharnstoff-Dispersionen
DE102006002156A1 (de) Polyurethan-Polyharnstoff-Dispersionen auf Basis von Polyether-Polycarbonat-Polyolen
EP1920017A1 (fr) Dispersions de polyurethane-polyuree
EP2523988B1 (fr) Mousse de polyuréthane hydrophile et aliphatique
EP2389401A1 (fr) Tensioactifs à base de polyuréthanes
EP3109269B1 (fr) Dispersions de polyurethane sans uree
DE102007004769A1 (de) Nanoharnstoff-Dispersionen
DE102008017036A1 (de) Hotmelts
EP2028204A1 (fr) Dispersion NC-PU avec séchage accéléré
EP2209828B1 (fr) Dispersions liantes hydrophiles non ioniques
WO2012020026A1 (fr) Procédé de production de dispersions de polyuréthane-urée
WO2011069972A2 (fr) Mousses de polyuréthane aliphatique hydrophiles
EP3177656B1 (fr) Solutions de polyuréthane pour revêtements textiles
WO2013030148A1 (fr) Polyuréthanes thermoplastiques hydrophiles et utilisation desdits polyuréthanes thermoplastiques hydrophiles dans la technique médicale
WO2010043333A1 (fr) Dispersions aqueuses de polyuréthanne-polyurée

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110824

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20120118