EP2385537A1 - Doppelunterbrechendes Schutzschaltgerät zum Überwachen eines Stromkreises - Google Patents

Doppelunterbrechendes Schutzschaltgerät zum Überwachen eines Stromkreises Download PDF

Info

Publication number
EP2385537A1
EP2385537A1 EP11161311A EP11161311A EP2385537A1 EP 2385537 A1 EP2385537 A1 EP 2385537A1 EP 11161311 A EP11161311 A EP 11161311A EP 11161311 A EP11161311 A EP 11161311A EP 2385537 A1 EP2385537 A1 EP 2385537A1
Authority
EP
European Patent Office
Prior art keywords
contact
switching
double
movable
switching contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11161311A
Other languages
English (en)
French (fr)
Other versions
EP2385537B1 (de
Inventor
Gunther Eckert
Michael Neumeier
Christoph Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2385537A1 publication Critical patent/EP2385537A1/de
Application granted granted Critical
Publication of EP2385537B1 publication Critical patent/EP2385537B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/40Multiple main contacts for the purpose of dividing the current through, or potential drop along, the arc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/58Electric connections to or between contacts; Terminals
    • H01H1/5822Flexible connections between movable contact and terminal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/44Means for extinguishing or preventing arc between current-carrying parts using blow-out magnet
    • H01H9/446Means for extinguishing or preventing arc between current-carrying parts using blow-out magnet using magnetisable elements associated with the contacts

Definitions

  • the present invention relates to a double-breaking circuit breaker for monitoring a circuit, comprising a coil for actuating a trigger, comprising a first switching contact pair, a first fixed switching contact and a first movable switching contact, a second switching contact pair comprising a second fixed switching contact and a second movable switching contact, wherein the movable switching contacts are actuated by the trigger, a first quenching chamber having a first guide rail and a first contact horn, which is electrically connected to the first fixed switching contact, a second quenching chamber with a second guide rail and a second contact horn, with the second fixed Switching contact is electrically connected.
  • Such double-breaking protective switching devices work in particular as switching and safety elements in electrical energy supply networks.
  • Circuit breakers are specially designed for high currents.
  • a circuit breaker is an overcurrent protection device in the electrical installation and is used in particular in the field of low-voltage networks.
  • Circuit breakers and miniature circuit breakers guarantee a safe shutdown in the event of a short circuit and protect consumers and systems from overload. For example, they protect cables from damage caused by overheating as a result of excessive current. This means that protective switching devices, such as circuit breakers and circuit breakers, can switch off the circuit automatically in the event of overload.
  • Double-breaking protective switching devices have two switching contact pairs, each consisting of a fixed Switching contact and a movable switching contact.
  • the movable switch contacts contact the fixed switch contacts.
  • the moving switch contacts remove from the fixed switch contacts.
  • the interruption of the current flow leads at least briefly to each protective switching device to a voltage flashover between the fixed switching contacts and the movable switching contacts, since the distance during the separation process of the switching contacts for isolation is not sufficient. If there is gas between the switching contacts, it is ionized by the flashover with a correspondingly high voltage difference between the switching contacts, and arcs are formed due to the gas discharge.
  • Such double-breaker protective switching devices such as circuit breakers or circuit breakers, are designed so that the resulting arcs when opening the switch contacts deleted and thus the flow of current is interrupted.
  • Such protective switching devices preferably have a coil, via which the current or part of the current flowing to the switching contacts, is passed. With a rapid increase in current, the coil attracts an armature that releases a trigger, in particular a latch. This release, which is pneumatically or hydraulically pressurized or resiliently biased, triggers the protection device and interrupts the flow of current.
  • a preloaded spring after the release of the trigger, in particular the pawl, move it and thereby separate the movable switch contacts from the fixed switch contacts.
  • Such protective switching devices furthermore have special arc extinguishing devices for faster extinguishment of the arcs.
  • the arc extinguishing devices are used to better interrupt or delete the arcs, which arise when opening the current-carrying switching contact pairs of the protective device.
  • the switch contacts When the switch contacts are disconnected, the current flows through increasingly small areas of an associated contact zone and heats them up more and more. Shortly before the actual separation of the switching contacts, a molten bridge is formed, which finally breaks off at low currents or evaporates at high currents. The current can therefore continue to flow only via an arc in the form of a conductive plasma column.
  • the strength of the arcs is influenced by the magnitude and type of the switched current.
  • short-circuit currents of more than 25,000 A may occur.
  • the arcs generate in the circuit breaker housing during its burning time in response to a supply of direct or alternating current temperatures of up to 20,000 K.
  • the high thermal load leads to adverse effects for the protection device.
  • metal and insulating parts can be damaged or destroyed by the arc effects. Consequently, it is necessary to extinguish the arcs as quickly as possible in order to minimize the thermal energy conversion.
  • modern protection switching devices arc extinguishing devices, the extinguishing chambers, guide rails, possibly blowing loops and / or metal sheets that cover an antechamber area, have.
  • Double-breaker protection devices that is to say protection devices with two switching contact pairs, have the advantage over simple circuit breakers, that is to say protection switching devices with only one switching contact pair, that two arcs are generated at the same time and thus a higher arc voltage can be built up. As a result, the arcs can extinguish faster and the converted energy in the contact zones or in the protective switching devices are kept low.
  • double-breaking protective switching devices that is to say, protective switching devices with two switching contact pairs.
  • a protective switching device with a double break is for example from the EP1548772 A1 known.
  • the two extinguishing chambers of the local protection switching device are arranged side by side and limit together one side of the antechamber (s) of the arc quenching device.
  • the contact horns of each quenching chamber project in the same direction and parallel to each other in the antechamber of the arc quenching device.
  • the disadvantage of this protective switching device is the arrangement of the extinguishing chambers or the contact horns to each other that the two magnetic fields of the moving arcs interfere with each other and hinder the flow of the other arc.
  • the flow of current in the arc quenching device runs EP1548772 A1 from the first fixed contact via the first resulting arc to the first movable contact and a second resulting arc on to the second fixed contact.
  • the resulting magnetic fields are directed opposite and do not support the respective neighboring arc, but hinder even its movement.
  • the object of the present invention is a double-breaking protective switching device for monitoring an electric circuit to create, which allows a particularly fast and safe deletion of the arcing when opening the switch contacts of the protective device.
  • a double-breaker protection device is to be created, which allows the resulting arcs in the antechamber region of the extinguishing chambers of the protective switching device does not damage the protective switching device.
  • a double-breaking protective switching device for monitoring a circuit, comprising a coil for actuating a trigger, a first switching contact pair, comprising a first fixed switching contact and a first movable switching contact, a second switching contact pair, comprising a second fixed switching contact and a second movable switching contact, wherein the movable switch contacts are actuated by the trigger, a first quenching chamber having a first guide rail and a first contact horn, which is electrically conductively connected to the first fixed switching contact, a second quenching chamber with a second guide rail and a second contact horn, with the second fixed switching contact is electrically connected, in which the first switching contact pair is rotated by 170 ° to 190 ° to the second switching contact pair next to the second switching contact pair and in which between the first movable switching contact and the second movable switching contact, a flexible electrical conductor is provided, which electrically conductively connects the first movable switching contact with the second movable switching
  • Such a double-breaking protection device allows that resulting from the separation of the switching contact pairs Arcs are quickly forced out of the contact zones through the antechamber into the quenching chambers.
  • the reverse arrangement of the switching contact pairs causes each other that the resulting magnetic fields in the region of each pair of switching contact the other pair of switching contact do not disturb and even amplify and thereby the arcs are significantly accelerated, so that they quickly expelled from the contact zones between each fixed contact and a movable switching contact become.
  • the first switching contact pair is arranged parallel to and rotated by 180 ° relative to the second switching contact pair. But it is also conceivable that the switching contact pairs extend at an angle of up to 10 ° to each other.
  • the switching contact pairs are next to each other in the protection switching device. Twisted in the sense of the invention means that the first fixed switching contact is located approximately next to the second movable switching contact and the first movable switching contact approximately adjacent to the second fixed switching contact.
  • the switching contact pairs of the double-breaking protective switching device are arranged such that the current flow can generate a blinding coil driving the arcs.
  • the magnetic field of the individual current paths also helps the other switching contact pair or the respective other contact zone for rapid movement of the arcs.
  • the current flow proceeds in the case of the double-breaking protective switching device after the separation of the switching contacts via the first stationary switching contact and via a first arc to the first movable switching contact. From the first movable switching contact, the current flows via the flexible electrical conductor, which is designed in particular as a strand, to the second movable switching contact. From the second movable switching contact, the current continues to flow via a second arc to the second stationary switching contact.
  • This current flow creates a blow coil driving the arcs.
  • the amplified magnetic field or blowing field of the blow coil already acts at the smallest opening of the switching contacts and drives the resulting arcs immediately in the direction of the extinguishing chambers of the double-breaking protective switching device.
  • the flexible electrical conductor in particular the stranded wire, is designed in such a way that it can follow a relative movement of the movable switching contacts relative to one another and does not break off from the movable switching contacts.
  • the ends of the flexible electrical conductor are fixedly arranged on the two movable switching contacts.
  • Such a double-breaking protection switching device is the powerful acceleration of the resulting arcs after the opening of the switch contacts by the resulting strong magnetic field or blow field and the associated rapid driving the arcs in the extinguishing chambers. Due to the rapid driving of the arcs in the quenching chamber, the residence time of the arcs between the switching contact pairs are reduced. This has the consequence that the arc load between a fixed switch contact and a movable switch contact is reduced, which is why a saving in the contact material of the switch contacts is possible.
  • Such a double-breaking protective switching device has a higher short-circuit breaking capacity than known double-breaking protective switching devices of the same size. Due to the flexible electrical conductor and the blown loop the contact points or contact plates are relieved at the switch contacts.
  • the first switching contact pair and the second switching contact pair are in an antechamber formed by the two extinguishing chambers, the prechamber being arranged mirror-inverted between the first extinguishing chamber and the first extinguishing chamber second quenching chamber is located. That is, the extinguishing chambers are not next to each other, but opposite each other. As a result, the antechamber is between the two extinguishing chambers.
  • the two switching contact pairs are at least partially in the antechamber, so that the resulting arcs can be easily driven into the proposed extinguishing chambers. Due to the mirror-inverted arrangement of the extinguishing chambers and the respective guide rails and contact horns of the extinguishing chamber are mirror-inverted and arranged parallel to each other.
  • a double-breaking protective switching device in which two metal plates arranged parallel to one another are provided, between which the switching contact pairs and at least a part of the first guide rails and the first contact horns are arranged.
  • the metal plates bound the two free, opposite sides of the antechamber of the quenching chambers.
  • double-breaker protection switching device is designed such that two opposite sides of the antechamber through the two Extinguishing chambers and the other two opposite sides of the antechamber are bounded by the two metal plates.
  • the metal plates are connected to a coil of the protective switching device such that the coil can induce a magnetic field between the metal plates.
  • the metal plates in conjunction with the coil of the protective switching device allow a strong magnetic field to form between the metal plates, which influences the arcs in such a way that they are driven once more into the corresponding extinguishing chambers.
  • the coil axis of the coil of the protective device runs perpendicular or approximately perpendicular to the planes in which the metal plates extend.
  • the metal plates are flat. These may be rectangular, oval, round or L-shaped, for example.
  • Almost perpendicular means in the context of the invention that the coil axis of the coil at an angle between 75 ° and 90 °, in particular at an angle between 85 ° and 90 °, to the planes in which the metal plates extend runs.
  • the coil axis of the coil is perpendicular to the planes in which the metal plates extend.
  • the coil is arranged between the metal plates. That is, the coil of the protective switching device is advantageously arranged between the metal plates such that a magnetic field is created between the metal plates, which is induced by the coil on the metal plates.
  • the magnetic field generated between the metal plates causes the resulting arcs to be influenced in such a way that they are forced out of the contact zones more quickly and in the direction of the quenching chambers.
  • at least part of a metal plate covers one side of the spool core of the spool.
  • the arcs that arise after the separation of the switching contact pairs can be influenced particularly effectively by the magnetic field that arises between the metal plates, so that they are forced quickly in the direction of the respective extinguishing chambers. That is, the magnetic field generated by the coil of the protective switching device between the metal plates acts in addition to the blowing field, which is generated by the flow of current through the switching contacts and the arcs.
  • the first stationary switching contact is arranged as a contact plate on the first contact horn and that the second stationary switching contact is arranged as a contact plate on the second contact horn. Due to the special design of the protective switching device, a material saving on the contact plates is possible because they are less burdened by the rapid driving of the arcs in the quenching chambers, as known protection switching devices.
  • the double-breaking protective switching device described above is advantageously designed as a circuit breaker or a circuit breaker, in particular as a high-performance protection switching device.
  • the coil axis of the coil or the coil core is preferably aligned perpendicular to the arc running direction. This allows the protection device that the Arcs are accelerated after the contact opening of the switching contact pairs by the strong magnetic field between the metal plates.
  • a further advantage with such a double-breaking protective switching device is that contact material can be saved at the switching contacts, since the arc load on the switching contacts is shorter and thus relatively low due to the magnetic field between the metal plates and the blowing field generated by the current flow in the switching contacts.
  • the double-breaking protective switching device Due to the special arrangement of the coil to the metal plates and the switching contact pairs, the double-breaking protective switching device has a higher short-circuit switching capacity in comparison to known double-breaking protective switching devices of the same size.
  • the exploitation of the magnetic fields allows a relief of the contact points in the so-called dynamic contact opening.
  • the protective device in which the coil is arranged so that the coil axis points in the direction of the arc running direction, whereby the resulting magnetic field of the coil has no or even a negative effect on the arc motion is in the protective device according to the invention preferably the magnetic field the coil, which generates the coil for the magnetic release of the trigger exploited, to force the resulting arcs quickly into the quenching chambers.
  • the coil of the protective switching device is preferably arranged in such a way in the double-breaking protective switching device, that the orientation of its magnetic field is perpendicular to the arc running direction.
  • the arrangement of the coil, including its coil core, to the two metal plates or steel plates leaves in the antechamber, that is in the area between the two Extinguishing chambers, a magnetic field caused by the coil is induced on the steel plates, and which ensures that the arcs between the movable switch contacts and the fixed switch contacts are pressed in the direction of the guide rails, so as to jump on this.
  • the arrangement of the coil rotated by 90 ° in comparison to the arrangement of the coil in the known protective switching devices allows the magnetic field of the coil can be exploited to extinguish faster the resulting arcs after disconnecting the switch contacts.
  • the metal plates are preferably connected to the coil in such a way that it can induce a magnetic field between the metal plates.
  • a first metal plate may be disposed at the first end of the coil and the second metal plate may be disposed at the second end of the coil.
  • the metal plates contact the coil.
  • a double-breaking protective switching device in which the respective guide rails are arranged at one end of the respective extinguishing chambers and the respective contact horns at the other end of the respective extinguishing chambers.
  • the metal plates in particular designed as iron plates metal plates are preferably designed and arranged in the circuit breaker that they cover the entire pre-chamber or the entire pre-chamber between the extinguishing chambers, so that the resulting arcs by the magnetic field quickly from the contact zones of the switch contacts to the Fire extinguishers can be pressed.
  • the first guide rail of the first extinguishing chamber is electrically conductively connected to the second guide rail of the second extinguishing chamber.
  • the first guide rail of the first extinguishing chambers and the second guide rail of the second extinguishing chambers are monolithic.
  • Monolithically formed means that the guide rails are integrally formed and produced by a common manufacturing process.
  • the guide rails are preferably integrally formed with the bottom sheets of the respective extinguishing chambers. The same applies to the contact horns, which are formed integrally with the uppermost plates of the corresponding extinguishing chambers.
  • FIGS. 1 to 4 each provided with the same reference numerals.
  • Fig. 1 shows a side view of a section through an embodiment of a double-breaking protective switching device 1, which is designed according to the inventive design principle.
  • the double-breaking protective switching device 1 has a first switching contact pair, comprising a first fixed switching contact 3 and a first movable switching contact 4, and a second switching contact pair, comprising a second fixed switching contact 12 and a second movable switching contact 13 on. Therefore, the protective switching device 1 is a so-called double breaker.
  • the protective switching device 1 is designed to monitor a circuit.
  • the protective switching device 1 further comprises a coil, not shown, for actuating a trigger, not shown, which actuates the movable switch contacts, a first quenching chamber 5 with a first guide rail 6 and a first contact horn 7, which is electrically connected to the first fixed switching contact 3, and a second quenching chamber 14 with a second guide rail 15 and a second contact horn 16 which is electrically connected to the first fixed switching contact 12, on.
  • FIG. 3 is an enlarged view of the switching contacts 3, 4 and 12, 13 of the double-breaker protection device 1 according to Fig. 1 shown.
  • the switching contact pairs 3, 4 and 12, 13 are rotated by 180 ° to each other, which are adjacent to each other.
  • a flexible electrical conductor 30 which is formed in particular in the form of a stranded wire, is provided.
  • the flexible electrical conductor 30 connects the first movable switching contact 4 to the second movable switching contact 13 in an electrically conductive manner.
  • Such a double-breaking protection switching device 1 allows that arcing 21 resulting from the separation of the switching contact pairs 3, 4 and 12, 13 are forced quickly from the contact zones through the antechamber 17 in the quenching chambers 5, 14.
  • the special reversed arrangement of the first switching contact pair 3, 4 to the second switching contact pair 12, 13, wherein these are arranged side by side, and the flexible electrical conductor 30 between the first movable switching contact 4 and the second movable switching contact 13 allow a particularly fast driving the in the Separation of the switching contacts 3, 4 and 12, 13 resulting arcs 21 in the quenching chambers 5, 14 of the protective device 1.
  • the reverse arrangement of the switching contact pairs 3, 4 and 12, 13 to each other and the connection via the flexible electrical conductor 30 causes the resulting Magnetic field 23 in the region of each switching contact pair 3, 4 and 12, 13, the other switching contact pair 3, 4 and 12, 13 do not disturb and thereby the arcs 21 are significantly accelerated, so that they quickly from the contact zones between each fixed contact 3 and 12 and a movable switching contact 4 and 13 gearbox n become.
  • the reverse orientation of the switching contact pairs 3, 4 and 12, 13 enables the magnetic field 23 which arises in the region of the switching contact pairs 3, 4 and 12, 13 to be amplified when the arcs 21 are driven out or blown out of the contact zones.
  • the switching contact pairs 3, 4 and 12, 13 of the double-breaking protective switching device 1 are arranged such that the current flow 22 generates a blast coil driving the arcs 21.
  • the magnetic field 23 of the individual current paths also helps the respective other switching contact pair 3, 4 and 12, 13 or the respective other contact zone for rapid movement of the arcs 21st
  • the current flow 22 is in the double-breaking protection switching device 1 after the separation of the switching contacts 3, 4 and 12, 13 via the first fixed switching contact 3 via a first arc 21 to the first movable switching contact 4. From the first movable switching contact 4, the current flows through the From the second movable switching contact 13, the current continues to flow via a second arc 21 to the second stationary switching contact 12. By this current flow 22, one of the arcs 21 is formed driving blubber.
  • the amplified magnetic field or blow field 23 of the blow coil acts at the smallest opening of the switching contacts 3, 4 and 12, 13 and drives the resulting arcs 21 immediately in the direction of the quenching chambers 5, 14 of the double interrupting protection device. 1
  • Such a double-breaking protective switching device 1 is the powerful acceleration of the resulting arcing 21 after the opening of the switching contacts 3, 4 and 12, 13 by the resulting strong magnetic field or blow field 23 and the associated rapid driving the arcs 21 into the quenching chambers 5, 14th Due to the rapid driving of the arcs 21 into the quenching chamber 5, 14, the residence time of the arcs 21 between the switching contact pairs 3, 4 and 12, 13 can be reduced. This has the consequence that the arc load between a fixed switching contact 3, 12 and a movable switching contact 4, 13 is reduced, which is why a saving in the contact material of the switching contacts 3, 4 and 12, 13 is possible.
  • Such a double-breaking protective switching device 1 thereby has a higher short-circuit switching capacity than known double-breaking protective switching devices of the same size.
  • FIG. 2 is a plan view of the inner region of a double-breaker protection device 1, which is designed according to the inventive design principle shown.
  • the arrangement of the switching contact pairs 3, 4 and 12, 13 rotated by 180 ° becomes clear, with the switching contact pairs 3, 4 and 12, 13 lying next to one another.
  • the flexible electrical conductor 30 is arranged between the first movable switching contact 4 and the second movable switching contact 13.
  • the flexible electrical conductor 30 follows the movements of the movable switching contacts 4, 13, without the electrically conductive connection via the flexible electrical conductor 30 is lost.
  • FIG. 4 is a side view of a section through an embodiment of a protective switching device 1, which has an arc quenching device 20, which is formed according to the inventive design principle shown.
  • the guide rails 6, 15 are respectively arranged at the lower end 5a of the first quenching chamber 5 and at the lower end 14a of the second quenching chamber 14, in particular welded.
  • the first contact horn 7 extends between a first end of the coil 2 and the upper end 5b of the first quenching chamber 5, the second contact horn 16 extends between the first guide rail 6 and the upper end 14b of the second quenching chamber 14.
  • the first contact horn 7 is preferably at Winding the coil 2 welded.
  • the fixed switch contacts 3, 12 are arranged on or on the respective contact horns 7, 16.
  • the arrangement of the coil 2 including its coil core 2a and two steel plates 9, wherein only the steel plate with the reference numeral 9 in FIG. 4 is shown, can in the antechamber 17 or in Vorhunt Scheme a strong magnetic field 11, induced by the coil 2 on the metal plates 9, which ensures that the first arc 21 between the first movable switching contact 4 and the first fixed switching contact 3 in the direction the first Guide rail 6 is pressed and the second arc between the second movable switch contact 13 and the second fixed switch contact 12 are pressed in the direction of the second guide rail 15, so skip this.
  • the arcs are then between the respective guide rails 6, 15 and the corresponding contact horns 7, 16 and are thus pressed by the magnetic field 11 and the resulting Blasfelder in the respective extinguishing chambers 5, 14, where they eventually go out.
  • the strong magnetic field 11 between the metal plates 9 allows acceleration of the arcs and thus a reduction in the load of the switching contacts 3, 4, 12, 13.
  • This contact material can be saved at the switch contacts 3, 4, 12, 13.
  • Such trained protective switching devices 1 have a higher short-circuit switching capacity to known protection switching devices of the same size. The contact points are relieved when separating the switch contact pairs 3, 4 and 12, 13.
  • the protective switching device according to the Fig. 4 is preferably designed as a circuit breaker or circuit breaker.
  • the circuit breaker 1 is very well protected from damage. Especially in current ranges beyond 63A and with protective switching devices 1 with a switching capacity over 25kA, ie in high-performance circuit breakers, the special arrangement of the contact systems and the coil 2 in the protective switching device 1 is advantageous.
  • the circuit breaker 1 allows the arcing occurring during a shutdown can be forced as quickly as possible from the pre-chamber 17 into the extinguishing chambers 5, 14, in the antechamber, the protection device 1, in particular the switching contacts 3, 4 and 12, 13 not damage.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Breakers (AREA)

Abstract

Die vorliegende Erfindung betrifft ein doppelunterbrechendes Schutzschaltgerät (1) zum Überwachen eines Stromkreises, aufweisend eine Spule (2) zum Betätigen eines Auslösers, ein erstes Schaltkontaktpaar, umfassend einen ersten feststehenden Schaltkontakt (3) und einen ersten beweglichen Schaltkontakt (4), ein zweites Schaltkontaktpaar, umfassend einen zweiten feststehenden Schaltkontakt (12) und einen zweiten beweglichen Schaltkontakt (13), wobei die beweglichen Schaltkontakte (4, 13) durch den Auslöser betätigbar sind, eine erste Löschkammer (5) mit einer ersten Leitschiene (6) und einem ersten Kontakthorn (7), das mit dem ersten feststehenden Schaltkontakt (3) elektrisch leitend verbunden ist, eine zweite Löschkammer (14) mit einer zweiten Leitschiene (15) und einem zweiten Kontakthorn (16), das mit dem zweiten feststehenden Schaltkontakt (12) elektrisch leitend verbunden ist, bei dem das erste Schaltkontaktpaar (3, 4) um 170° bis 190° verdreht zu dem zweiten Schaltkontaktpaar (12, 13) neben dem zweiten Schaltkontaktpaar (12, 13) angeordnet ist und bei dem zwischen dem ersten beweglichen Schaltkontakt (4) und dem zweiten beweglichen Schaltkontakt (13) ein flexibler elektrischer Leiter (30) vorgesehen ist, der den ersten beweglichen Schaltkontakt (4) mit dem zweiten beweglichen Schaltkontakt (13) elektrisch leitend verbindet.

Description

  • Die vorliegende Erfindung betrifft ein doppelunterbrechendes Schutzschaltgerät zum Überwachen eines Stromkreises, aufweisend eine Spule zum Betätigen eines Auslösers, ein erstes Schaltkontaktpaar umfassend, einen ersten feststehenden Schaltkontakt und einen ersten beweglichen Schaltkontakt, ein zweites Schaltkontaktpaar, umfassend einen zweiten feststehenden Schaltkontakt und einen zweiten beweglichen Schaltkontakt, wobei die beweglichen Schaltkontakte durch den Auslöser betätigbar sind, eine erste Löschkammer mit einer ersten Leitschiene und einem ersten Kontakthorn, das mit dem ersten feststehenden Schaltkontakt elektrisch leitend verbunden ist, eine zweite Löschkammer mit einer zweiten Leitschiene und einem zweiten Kontakthorn, das mit dem zweiten feststehenden Schaltkontakt elektrisch leitend verbunden ist.
  • Derartige doppelunterbrechende Schutzschaltgeräte, wie Leistungsschalter und Leitungsschutzschalter, arbeiten insbesondere als Schalt- und Sicherheitselemente in elektrischen Energieversorgungsnetzen. Leistungsschalter sind speziell für hohe Ströme ausgelegt. Ein Leitungsschutzschalter ist eine Überstromschutzeinrichtung in der Elektroinstallation und wird insbesondere im Bereich von Niederspannungsnetzen eingesetzt. Leistungsschalter und Leitungsschutzschalter garantieren ein sicheres Abschalten bei Kurzschluss und schützen Verbraucher und Anlagen vor Überlast. Sie schützen beispielsweise Leitungen vor Beschädigung durch zu starke Erwärmung in Folge zu hohen Stroms. Das heißt, Schutzschaltgeräte, wie Leistungsschalter und Leitungsschutzschalter, können den Stromkreis bei Überlast selbsttätig abschalten.
  • Doppelunterbrechende Schutzschaltgeräte weisen zwei Schaltkontaktpaare auf, jeweils bestehend aus einem feststehenden Schaltkontakt und einem bewegbaren Schaltkontakt. Zur Durchleitung von Strom kontaktieren die beweglichen Schaltkontakte die feststehenden Schaltkontakte. Zur Trennung des Stromflusses entfernen sich die beweglich ausgeführten Schaltkontakte von den feststehenden Schaltkontakten. Das Unterbrechen des Stromflusses führt bei jedem Schutzschaltgerät zumindest kurzzeitig zu einem Spannungsüberschlag zwischen den feststehenden Schaltkontakten und den beweglichen Schaltkontakten, da der Abstand während des Trennvorganges der Schaltkontakte zur Isolation noch nicht ausreicht. Befindet sich Gas zwischen den Schaltkontakten, wird es bei entsprechend hoher Spannungsdifferenz zwischen den Schaltkontakten durch den Überschlag ionisiert und es bilden sich aufgrund der Gasentladung Lichtbögen.
  • Derartige doppelunterbrechende Schutzschaltgeräte, wie Leistungsschalter beziehungsweise Leitungsschutzschalter, sind so konstruiert, dass die beim Öffnen der Schaltkontakte entstehenden Lichtbögen gelöscht und damit der Stromfluss unterbrochen wird.
  • Derartige Schutzschaltgeräte weisen vorzugsweise eine Spule auf, über die der Strom beziehungsweise ein Teil des Stroms, der zu den Schaltkontakten fließt, geleitet wird. Bei einem schnellen Anstieg des Stroms, zieht die Spule einen Anker an, der einen Auslöser, insbesondere eine Klinke, freigibt. Dieser Auslöser, der beispielsweise pneumatisch oder hydraulisch druckbeaufschlagt ist oder federelastisch vorgespannt ist, löst das Schutzschaltgerät aus und unterbricht den Stromfluss. So kann beispielsweise eine vorgespannte Feder nach der Freigabe des Auslösers, insbesondere der Klinke, diesen bewegen und dadurch die beweglichen Schaltkontakte von den feststehenden Schaltkontakten trennen.
  • Derartige Schutzschaltgeräte weisen des Weiteren zur schnelleren Löschung der Lichtbögen spezielle Lichtbogen-Löschvorrichtungen auf. Die Lichtbogen-Löschvorrichtungen dienen zur besseren Unterbrechung bzw. Löschung der Lichtbögen, die beim Öffnen der stromdurchflossenen Schaltkontaktpaare des Schutzschaltgerätes entstehen. Beim Trennen der Schaltkontakte fließt der Strom über immer kleiner werdende Bereiche einer zugehörigen Kontaktzone und heizt diese immer stärker auf. Kurz vor der eigentlichen Trennung der Schaltkontakte entsteht eine schmelzflüssige Brücke, die bei kleinen Strömen schließlich abreißt bzw. bei großen Strömen verdampft. Der Strom kann demnach nur noch über einen Lichtbogen in Form einer leitenden Plasmasäule weiterfließen.
  • Die Stärke der Lichtbögen wird dabei von der Höhe und Art des geschalteten Stroms beeinflusst. Im Fall eines Kurzschlusses in einem beispielsweise durch einen Leitungsschutzschalter abgesicherten Stromkreis können Kurzschlussströme von über 25000 A entstehen. Die Lichtbögen erzeugen dabei im Schutzschaltergehäuse während ihrer Brenndauer in Abhängigkeit von einer Versorgung mit Gleich- oder Wechselstrom Temperaturen von bis zu 20000 K. Die hohe thermische Belastung führt jedoch zu schädlichen Wirkungen für das Schutzschaltgerät. Beispielsweise können Metall- und Isolierteile durch die Lichtbogeneinwirkungen beschädigt oder zerstört werden. Demzufolge ist es erforderlich, die Lichtbögen schnellstmöglich zum Erlöschen zu bringen, um den thermischen Energieumsatz zu minimieren. Hierzu haben moderne Schutzschaltgeräte Lichtbogen-Löschvorrichtungen, die Löschkammern, Leitschienen, gegebenenfalls Blasschleifen und/oder Metallbleche, die einen Vorkammerbereich abdecken, aufweisen.
  • Doppelunterbrechende Schutzschaltgeräte, dass heißt Schutzschaltgeräte mit zwei Schaltkontaktpaaren, haben gegenüber Einfachunterbrechern, das heißt Schutzschaltgeräten mit nur einem Schaltkontaktpaar, den Vorteil, das zeitgleich zwei Lichtbögen erzeugt werden und dadurch eine höhere Bogenspannung aufgebaut werden kann. Dadurch können die Lichtbögen schneller verlöschen und die umgesetzte Energie in den Kontaktzonen beziehungsweise in den Schutzschaltgeräten niedrig gehalten werden. Insbesondere im Bereich der Hochleistungsschutzschaltgeräte werden doppelunterbrechende Schutzschaltgeräte, das heißt Schutzschaltgeräte mit zwei Schaltkontaktpaaren, verwendet.
  • Ein Schutzschaltgerät mit einer Doppelunterbrechung ist beispielsweise aus der EP1548772 A1 bekannt. Die beiden Löschkammern des dortigen Schutzschaltgerätes sind nebeneinander angeordnet und begrenzen zusammen eine Seite der Vorkammer(n) der Lichtbogenlöscheinrichtung. Die Kontakthörner einer jeden Löschkammer ragen gleich gerichtet und parallel zueinander in die Vorkammer der Lichtbogenlöscheinrichtung hinein. Nachteilig bei diesem Schutzschaltgerät ist durch die Anordnung der Löschkammern beziehungsweise der Kontakthörner zueinander, dass sich die beiden Magnetfelder der sich bewegenden Lichtbögen gegenseitig stören und den Lauf des jeweiligen anderen Lichtbogens behindern. Das heißt, der Stromfluss verläuft bei der Lichtbogenlöscheinrichtung der EP1548772 A1 vom ersten Festkontakt über den ersten entstehenden Lichtbogen zum ersten beweglichen Kontakt und über einen zweiten entstehenden Lichtbogen weiter zum zweiten Festkontakt. Die dabei entstehenden Magnetfelder sind entgegengesetzt gerichtet und unterstützen den jeweiligen Nachbarlichtbogen nicht, sondern behindern sogar dessen Bewegung.
  • Dieser schädliche Einfluss wird bei den bekannten Schutzschaltgeräten mit Doppelunterbrechung in der Regel hingenommen. Teilweise wird versucht durch eine Stahlummantelung der einzelnen Vorkammern die Magnetfelder voneinander abzuschirmen. Diese Lösung ist aufwendig und kostenintensiv. Ein weiterer Lösungsansatz ist es, die Löschsysteme der Lichtbogenlöscheinrichtung, das heißt die Löschkammern und entsprechend die Kontakthörner sowie die Leitschienen, räumlich zu trennen, so dass die Magnetfelder entsprechend abgeschwächt sind. Dies erfordert jedoch einen höheren Platzbedarf für die Löschsysteme der Lichtbogenlöscheinrichtung in dem Schutzschaltgerät.
  • Aufgabe der vorliegenden Erfindung ist es, ein doppelunterbrechendes Schutzschaltgerät zur Überwachung eines Stromkreislaufes zu schaffen, das eine besonders schnelle und sichere Löschung der beim Öffnen der Schaltkontakte des Schutzschaltgerätes entstehenden Lichtbögen ermöglicht. Insbesondere soll ein doppelunterbrechendes Schutzschaltgerät geschaffen werden, das ermöglicht, dass die entstehenden Lichtbögen im Vorkammerbereich der Löschkammern des Schutzschaltgerätes das Schutzschaltgerät nicht schädigt.
  • Diese Aufgabe wird erfindungsgemäß durch ein doppelunterbrechendes Schutzschaltgerät mit den Merkmalen gemäß dem unabhängigen Patentanspruch 1 gelöst. Weitere Merkmale und Details der Erfindung ergeben sich aus den Unteransprüchen, der Beschreibung und den Zeichnungen.
  • Gemäß der Erfindung wird die Aufgabe durch ein doppelunterbrechendes Schutzschaltgerät zum Überwachen eines Stromkreises, aufweisend eine Spule zum Betätigen eines Auslösers, ein erstes Schaltkontaktpaar, umfassend einen ersten feststehenden Schaltkontakt und einen ersten beweglichen Schaltkontakt, ein zweites Schaltkontaktpaar, umfassend einen zweiten feststehenden Schaltkontakt und einen zweiten beweglichen Schaltkontakt, wobei die beweglichen Schaltkontakte durch den Auslöser betätigbar sind, eine erste Löschkammer mit einer ersten Leitschiene und einem ersten Kontakthorn, das mit dem ersten feststehenden Schaltkontakt elektrisch leitend verbunden ist, eine zweite Löschkammer mit einer zweiten Leitschiene und einem zweiten Kontakthorn, das mit dem zweiten feststehenden Schaltkontakt elektrisch leitend verbunden ist, bei dem das erste Schaltkontaktpaar um 170° bis 190° verdreht zu dem zweiten Schaltkontaktpaar neben dem zweiten Schaltkontaktpaar angeordnet ist und bei dem zwischen dem ersten beweglichen Schaltkontakt und dem zweiten beweglichen Schaltkontakt ein flexibler elektrischer Leiter vorgesehen ist, der den ersten beweglichen Schaltkontakt mit dem zweiten beweglichen Schaltkontakt elektrisch leitend verbindet, gelöst.
  • Ein derartiges doppelunterbrechendes Schutzschaltgerät ermöglicht, dass die bei der Trennung der Schaltkontaktpaare entstehenden Lichtbögen schnell aus den Kontaktzonen durch die Vorkammer in die Löschkammern gezwungen werden.
  • Die Anordnung des ersten Schaltkontaktpaares um 170° bis 190° verdreht zu dem zweiten Schaltkontaktpaar, wobei diese nebeneinander angeordnet sind, und der flexible elektrische Leiter zwischen dem ersten beweglichen Schaltkontakt und dem zweiten beweglichen Schaltkontakt, der den ersten beweglichen Schaltkontakt mit dem zweiten beweglichen Schaltkontakt elektrisch leitend verbindet, ermöglicht ein besonders schnelles Eintreiben der entstehenden Lichtbögen in die Löschkammern des Schutzschaltgerätes.
  • Die umgekehrte Anordnung der Schaltkontaktpaare zueinander bewirkt, dass die entstehenden Magnetfelder im Bereich jedes Schaltkontaktpaares das jeweils andere Schaltkontaktpaar nicht stören und sogar verstärken und dadurch die Lichtbögen deutlich beschleunigt werden, so dass diese schnell aus den Kontaktzonen zwischen jeweils einem feststehenden Schaltkontakt und einem beweglichen Schaltkontakt herausgetrieben werden.
  • Besonders vorteilhaft ist es, wenn das erste Schaltkontaktpaar parallel und um 180° verdreht zu dem zweiten Schaltkontaktpaar angeordnet ist. Es ist aber auch denkbar, dass die Schaltkontaktpaare in einem Winkel von bis zu 10° zueinander verlaufen. Die Schaltkontaktpaare liegen nebeneinander in dem Schutzschaltgerät. Verdreht bedeutet in Sinne der Erfindung, dass der erste feststehende Schaltkontakt ungefähr neben dem zweiten beweglichen Schaltkontakt und der erste bewegliche Schaltkontakt ungefähr neben dem zweiten feststehenden Schaltkontakt liegt. Die umgekehrte Ausrichtung der Schaltkontaktpaare und die Verbindung der beweglichen Kontakte über den flexiblen elektrischen Leiter, insbesondere die Litze, ermöglicht, dass die im Bereich der Schaltkontaktpaare entstehenden Magnetfelder sich beim Austreiben beziehungsweise Ausblasen der Lichtbögen aus den Kontaktzonen gegenseitig unterstützen.
  • Die Schaltkontaktpaare des doppelunterbrechenden Schutzschaltgerätes sind derart angeordnet, dass der Stromfluss eine die Lichtbögen antreibende Blasspule erzeugen kann. Das Magnetfeld der einzelnen Strombahnen hilft auch dem jeweils anderen Schaltkontaktpaar beziehungsweise der jeweils anderen Kontaktzone zur schnellen Bewegung der Lichtbögen.
  • Der Stromfluss verläuft bei dem doppelunterbrechenden Schutzschaltgerät nach der Trennung der Schaltkontakte über den ersten feststehenden Schaltkontakt und über einen ersten Lichtbogen zu dem ersten beweglichen Schaltkontakt. Von dem ersten beweglichen Schaltkontakt fließt der Strom über den flexiblen elektrischen Leiter, der insbesondere als Litze ausgebildet ist, zu dem zweiten beweglichen Schaltkontakt. Von dem zweiten beweglichen Schaltkontakt fließt der Strom weiter über einen zweiten Lichtbogen zu dem zweiten feststehenden Schaltkontakt. Durch diesen Stromfluss entsteht eine die Lichtbögen antreibende Blasspule. Das verstärkte Magnetfeld beziehungsweise Blasfeld der Blasspule wirkt bereits bei der kleinsten Öffnung der Schaltkontakte und treibt die entstehenden Lichtbögen sofort in Richtung der Löschkammern des doppelunterbrechenden Schutzschaltgerätes.
  • Der flexible elektrische Leiter, insbesondere die Litze, ist derart ausgebildet, dass er einer relativen Bewegung der beweglichen Schaltkontakte zueinander folgen kann und nicht von den beweglichen Schaltkontakten abreißt. Die Enden des flexiblen elektrischen Leiters sind fest an den beiden beweglichen Schaltkontakten angeordnet.
  • Vorteile eines derartigen doppelunterbrechenden Schutzschaltgerätes ist die kräftige Beschleunigung der entstehenden Lichtbögen nach der Öffnung der Schaltkontakte durch das entstehende starke Magnetfeld beziehungsweise Blasfeld und das damit verbundene schnelle Eintreiben der Lichtbögen in die Löschkammern. Durch das schnelle Eintreiben der Lichtbögen in die Löschkammer kann die Verweilzeit der Lichtbögen zwischen den Schaltkontaktpaaren reduziert werden. Dies hat zur Folge, dass die Lichtbogenbelastung zwischen einem feststehenden Schaltkontakt und einem beweglichen Schaltkontakt verringert wird, weshalb eine Einsparung bei dem Kontaktmaterial der Schaltkontakte möglich ist. Ein derartiges doppelunterbrechendes Schutzschaltgerät weist ein höheres Kurzschluss-Schaltvermögen auf als bekannte doppelunterbrechende Schutzschaltgeräte gleicher Baugröße. Durch den flexiblen elektrischen Leiter und die Blasschleife werden die Kontaktstellen beziehungsweise Kontaktplätten an den Schaltkontakten entlastet.
  • Gemäß einer besonders bevorzugten Weiterentwicklung der Erfindung kann bei dem doppelunterbrechenden Schutzschaltgerät vorgesehen sein, dass das erste Schaltkontaktpaar und das zweite Schaltkontaktpaar in einer Vorkammer einliegen, die durch die beiden Löschkammern gebildet wird, wobei die Vorkammer zwischen der ersten Löschkammer und der zur ersten Löschkammer spiegelverkehrt angeordneten zweiten Löschkammer liegt. Das heißt, die Löschkammern liegen nicht nebeneinander, sondern sich gegenüber. Dadurch liegt die Vorkammer zwischen den beiden Löschkammern. Die beiden Schaltkontaktpaare liegen zumindest teilweise in der Vorkammer ein, so dass die entstehenden Lichtbögen leicht in die vorgesehenen Löschkammern eingetrieben werden können. Durch die spiegelverkehrte Anordnung der Löschkammern sind auch die jeweiligen Leitschienen und Kontakthörner der Löschkammer spiegelverkehrt und parallel zueinander angeordnet.
  • Bevorzugt ist ferner ein doppelunterbrechendes Schutzschaltgerät, bei dem zwei parallel zueinander angeordnete Metallplatten vorgesehen sind, zwischen denen die Schaltkontaktpaare sowie zumindest ein Teil der ersten Leitschienen und der ersten Kontakthörner angeordnet sind. Die Metallplatten begrenzen die zwei freien, sich gegenüberliegenden Seiten der Vorkammer der Löschkammern. Das heißt, dass doppelunterbrechende Schutzschaltgerät ist derart ausgebildet, dass zwei gegenüberliegende Seiten der Vorkammer durch die beiden Löschkammern und die beiden anderen sich gegenüberliegenden Seiten der Vorkammer durch die beiden Metallplatten begrenzt werden. Die Metallplatten sind derart mit einer Spule des Schutzschaltgerätes verbunden, dass die Spule zwischen den Metallplatten ein Magnetfeld induzieren kann. Die Metallplatten ermöglichen im Zusammenspiel mit der Spule des Schutzschaltgerätes, dass ein starkes Magnetfeld zwischen den Metallplatten entsteht, welches die Lichtbögen derart beeinflusst, dass diese nochmals beschleunigt in die entsprechenden Löschkammern getrieben werden.
  • Die Spulenachse der Spule des Schutzschaltgerätes verläuft senkrecht oder annähernd senkrecht zu den Ebenen, in denen die Metallplatten verlaufen. Die Metallplatten sind eben ausgebildet. Dabei können diese beispielsweise rechteckig, oval, rund oder L-förmig ausgebildet sein. Annähernd senkrecht bedeutet im Sinne der Erfindung, dass die Spulenachse der Spule in einem Winkel zwischen 75° und 90°, insbesondere in einem Winkel zwischen 85° und 90°, zu den Ebenen, in denen die Metallplatten verlaufen, verläuft. Vorzugsweise verläuft die Spulenachse der Spule jedoch senkrecht zu den Ebenen, in denen die Metallplatten verlaufen.
  • Gemäß einer besonders bevorzugten Weiterentwicklung der Erfindung kann bei dem doppelunterbrechenden Schutzschaltgerät vorgesehen sein, dass die Spule zwischen den Metallplatten angeordnet ist. Das heißt, die Spule des Schutzschaltgerätes ist vorteilhafterweise derart zwischen den Metallplatten angeordnet, dass zwischen den Metallplatten ein Magnetfeld entsteht, welches durch die Spule auf die Metallplatten induziert wird. Das zwischen den Metallplatten entstehende Magnetfeld bewirkt, dass die entstehenden Lichtbögen derart beeinflusst werden, dass diese schneller aus den Kontaktzonen heraus und in Richtung der Löschkammern gezwungen werden. Bevorzugt deckt zumindest ein Teil einer Metallplatte eine Seite des Spulenkerns der Spule ab.
  • Gemäß einer weiteren bevorzugten Weiterentwicklung der Erfindung kann bei dem Schutzschaltgerät vorgesehen sein, dass die Schwenkebenen, in der die beweglichen Schaltkontakte bewegbar sind, und die Leitschienen sowie die Kontakthörner der Löschkammern parallel oder annähernd parallel zu den Metallplatten verlaufen. Hierdurch können die Lichtbögen, die nach dem Trennen der Schaltkontaktpaare entstehen, durch das Magnetfeld, dass zwischen den Metallplatten entsteht, besonders effektiv beeinflusst werden, so dass diese schnell in Richtung der jeweiligen Löschkammern gezwungen werden. Das heißt, das durch die Spule des Schutzschaltgerätes erzeugte Magnetfeld zwischen den Metallplatten wirkt zusätzlich zu dem Blasfeld, das durch den Stromfluss durch die Schaltkontakte und die Lichtbögen erzeugt wird.
  • Gemäß einer weiteren bevorzugten Weiterentwicklung der Erfindung kann bei dem doppelunterbrechenden Schutzschaltgerät vorgesehen sein, dass der erste feststehende Schaltkontakt als Kontaktplättchen an dem ersten Kontakthorn und dass der zweite feststehende Schaltkontakt als Kontaktplättchen an dem zweiten Kontakthorn angeordnet ist. Durch die spezielle Ausgestaltung des Schutzschaltgerätes ist eine Materialeinsparung an den Kontaktplättchen möglich, da diese durch das schnelle Eintreiben der Lichtbögen in die Löschkammern weniger belastet werden, als bekannte Schutzschaltgeräte.
  • Das zuvor beschriebene doppelunterbrechende Schutzschaltgerät ist vorteilhafterweise als ein Leistungsschalter oder ein Leitungsschutzschalter, insbesondere als ein Hochleistungsschutzschaltgerät, ausgebildet.
  • Bei einem derartig ausgebildeten doppelunterbrechenden Schutzschaltgerät, insbesondere einem derartig ausgebildeten doppelunterbrechenden Leistungsschalter oder einem derartig ausgebildeten doppelunterbrechenden Leitungsschutzschalter, ist die Spulenachse der Spule beziehungsweise des Spulenkerns vorzugsweise senkrecht zur Lichtbogenlaufrichtung ausgerichtet. Dadurch ermöglicht das Schutzschaltgerät, dass die Lichtbögen nach der Kontaktöffnung der Schaltkontaktpaare durch das starke Magnetfeld zwischen den Metallplatten beschleunigt werden. Ein weiterer Vorteil bei einem derartigen doppelunterbrechenden Schutzschaltgerät ist, dass Kontaktmaterial an den Schaltkontakten eingespart werden kann, da durch das Magnetfeld zwischen den Metallplatten und das durch den Stromfluss in den Schaltkontakten erzeugte Blasfeld die Lichtbogenbelastung auf die Schaltkontakte kürzer und damit relativ gering ist. Das doppelunterbrechende Schutzschaltgerät weist durch die spezielle Anordnung der Spule zu den Metallplatten und den Schaltkontaktpaaren ein höheres Kurzschluss-Schaltvermögen im Vergleich zu bekannten doppelunterbrechenden Schutzschaltgeräten gleicher Baugröße auf. Das Ausnutzen der Magnetfelder ermöglicht eine Entlastung der Kontaktstellen beim sogenannten dynamischen Kontaktöffnen.
  • Im Gegenteil zu den bisher bekannten Schutzschaltgeräten, bei denen die Spule so angeordnet ist, dass die Spulenachse in Richtung der Lichtbogenlaufrichtung zeigt, wodurch das entstehende Magnetfeld der Spule keine oder sogar eine negative Wirkung auf die Lichtbogenbewegung ausübt, wird bei dem erfindungsgemäßen Schutzschaltgerät vorzugsweise das Magnetfeld der Spule, welches die Spule zur magnetischen Auslösung des Auslösers erzeugt, ausgenutzt, um die entstehenden Lichtbögen schnell in die Löschkammern zu zwingen.
  • Die Spule des Schutzschaltgerätes ist vorzugsweise derart in dem doppelunterbrechenden Schutzschaltgerät angeordnet, dass die Ausrichtung ihres Magnetfeldes senkrecht zur Lichtbogenlaufrichtung verläuft. Das von der Spule auf die Metallplatten induzierte Magnetfeld, das zwischen den Metallplatten entsteht, wirkt auf die Lichtbögen in positiver Weise, so dass diese nochmals schneller in die Löschkammern des Schutzschaltgerätes gezwungen werden können.
  • Die Anordnung der Spule, inklusive ihres Spulenkernes, zu den beiden Metallplatten beziehungsweise Stahlplatten lässt in der Vorkammer, das heißt im Bereich zwischen den beiden Löschkammern, ein Magnetfeld entstehen, das durch die Spule auf die Stahlplatten induziert ist, und welches dafür sorgt, dass die Lichtbögen zwischen den beweglichen Schaltkontakten und den feststehenden Schaltkontakten in Richtung der Leitschienen gedrückt werden, um so auf diese überzuspringen.
  • Die im Vergleich zu der Anordnung der Spule bei den bekannten Schutzschaltgeräten um 90° gedrehte Anordnung der Spule ermöglicht, dass das Magnetfeld der Spule ausgenutzt werden kann, um die nach dem Trennen der Schaltkontakte entstehenden Lichtbögen schneller zu verlöschen.
  • Die Metallplatten sind vorzugsweise derart mit der Spule verbunden, dass diese zwischen den Metallplatten ein Magnetfeld induzieren kann. So kann beispielsweise eine erste Metallplatte an dem ersten stirnseitigen Ende der Spule und die zweite Metallplatte an dem zweiten stirnseitigen Ende der Spule angeordnet sein. Insbesondere kontaktieren die Metallplatten die Spule.
  • Bevorzugt ist ferner ein doppelunterbrechendes Schutzschaltgerät, bei dem die jeweiligen Leitschienen an einem Ende der jeweiligen Löschkammern und die jeweiligen Kontakthörner an dem anderen Ende der jeweiligen Löschkammern angeordnet sind. Durch eine derartige Anordnung der Leitschienen und der Kontakthörner können die Lichtbögen leicht in die Löschkammern gezwungen werden.
  • Die Metallplatten, insbesondere die als Eisenplatten ausgebildeten Metallplatten, sind vorzugsweise derart ausgebildet und in dem Schutzschaltgerät angeordnet, dass sie die komplette Vorkammer beziehungsweise den kompletten Vorkammerbereich zwischen den Löschkammern abdecken, damit die entstehenden Lichtbögen durch das Magnetfeld schnell von den Kontaktzonen der Schaltkontakte bis in die Löschkammern gedrückt werden können.
  • Vorteilhafterweise kann bei dem Schutzschaltgerät vorgesehen sein, dass die erste Leitschiene der ersten Löschkammer mit der zweiten Leitschiene der zweiten Löschkammer elektrisch leitend verbunden ist. Insbesondere ist es bevorzugt, wenn die erste Leitschiene der ersten Löschkammern und die zweite Leitschiene der zweiten Löschkammern monolithisch ausgebildet sind. Monolithisch ausgebildet bedeutet, dass die Leitschienen einstückig ausgebildet sind und durch ein gemeinsames Herstellungsverfahren erzeugt worden sind. Die Leitschienen sind vorzugsweise mit den untersten Blechen der entsprechenden Löschkammern einstückig ausgebildet. Gleiches gilt für die Kontakthörner, die einstückig mit den obersten Blechen der entsprechenden Löschkammern ausgebildet sind.
  • Die Erfindung und ihre Weiterbildungen sowie deren Vorteile werden nachfolgend anhand von Zeichnungen näher erläutert. Es zeigen jeweils schematisch:
  • Figur 1
    in einer Seitenansicht einen Schnitt durch ein Ausführungsbeispiel eines doppelunterbrechenden Schutzschaltgerätes, das nach dem erfindungsgemäßen Konstruktionsprinzip ausgebildet ist,
    Figur 2
    eine Draufsicht auf den inneren Bereich eines doppelunterbrechenden Schutzschaltgerätes, das nach dem erfindungsgemäßen Konstruktionsprinzip ausgebildet ist,
    Figur 3
    eine vergrößerte Darstellung der Schaltkontakte des doppelunterbrechenden Schutzschaltgerätes gemäß Fig. 1,
    Figur 4
    in einer Seitenansicht einen Schnitt durch ein weiteres Ausführungsbeispiel eines doppelunterbrechenden Schutzschaltgerätes, das nach dem erfindungsgemäßen Konstruktionsprinzip ausgebildet ist.
  • Elemente mit gleicher Funktion und Wirkungsweise sind in den Figuren 1 bis 4 jeweils mit denselben Bezugszeichen versehen.
  • Fig. 1 zeigt in einer Seitenansicht einen Schnitt durch ein Ausführungsbeispiel eines doppelunterbrechenden Schutzschaltgerätes 1, das nach dem erfindungsgemäßen Konstruktionsprinzip ausgebildet ist. Das doppelunterbrechende Schutzschaltgerät 1 weist ein erstes Schaltkontaktpaar, aufweisend einen ersten feststehenden Schaltkontakt 3 und einen ersten beweglichen Schaltkontakt 4, und ein zweites Schaltkontaktpaar, aufweisend einen zweiten feststehenden Schaltkontakt 12 und einen zweiten beweglichen Schaltkontakt 13, auf. Daher ist das Schutzschaltgerät 1 ein sogenannter Doppelunterbrecher. Das Schutzschaltgerät 1 ist zum Überwachen eines Stromkreises ausgebildet. Das Schutzschaltgerät 1 weist ferner eine nicht dargestellte Spule zum Betätigen eines nicht dargestellten Auslösers, der die beweglichen Schaltkontakte betätigt, eine erste Löschkammer 5 mit einer ersten Leitschiene 6 und einem ersten Kontakthorn 7, das mit dem ersten feststehenden Schaltkontakt 3 elektrisch leitend verbunden ist, und eine zweite Löschkammer 14 mit einer zweiten Leitschiene 15 und einem zweiten Kontakthorn 16, das mit dem ersten feststehenden Schaltkontakt 12 elektrisch leitend verbunden ist, auf.
  • In der Fig. 3 ist eine vergrößerte Darstellung der Schaltkontakte 3, 4 sowie 12, 13 des doppelunterbrechenden Schutzschaltgerätes 1 gemäß Fig. 1 gezeigt.
  • Die Schaltkontaktpaare 3, 4 sowie 12, 13 sind um 180° verdreht zueinander angeordnet, wobei diese nebeneinander liegen. Zwischen dem ersten beweglichen Schaltkontakt 4 und dem zweiten beweglichen Schaltkontakt 13 ist ein flexibler elektrischer Leiter 30, der insbesondere in Form einer Litze ausgebildet ist, vorgesehen. Der flexible elektrische Leiter 30 verbindet den ersten beweglichen Schaltkontakt 4 mit dem zweiten beweglichen Schaltkontakt 13 elektrisch leitend.
  • Ein derartiges doppelunterbrechendes Schutzschaltgerät 1 ermöglicht, dass die bei der Trennung der Schaltkontaktpaare 3, 4 und 12, 13 entstehenden Lichtbögen 21 schnell aus den Kontaktzonen durch die Vorkammer 17 in die Löschkammern 5, 14 gezwungen werden.
  • Die spezielle umgedrehte Anordnung des ersten Schaltkontaktpaares 3, 4 zu dem zweiten Schaltkontaktpaar 12, 13, wobei diese nebeneinander angeordnet sind, und der flexible elektrische Leiter 30 zwischen dem ersten beweglichen Schaltkontakt 4 und dem zweiten beweglichen Schaltkontakt 13 ermöglichen ein besonders schnelles Eintreiben der bei der Trennung der Schaltkontakte 3, 4 und 12, 13 entstehenden Lichtbögen 21 in die Löschkammern 5, 14 des Schutzschaltgerätes 1. Die umgekehrte Anordnung der Schaltkontaktpaare 3, 4 und 12, 13 zueinander und die Verbindung über den flexiblen elektrischen Leiter 30 bewirkt, dass das entstehende Magnetfeld 23 im Bereich jedes Schaltkontaktpaares 3, 4 und 12, 13 das jeweils andere Schaltkontaktpaar 3, 4 und 12, 13 nicht stören und dadurch die Lichtbögen 21 deutlich beschleunigt werden, so dass diese schnell aus den Kontaktzonen zwischen jeweils einem feststehenden Schaltkontakt 3 bzw. 12 und einem beweglichen Schaltkontakt 4 bzw. 13 herausgetrieben werden. Die umgekehrte Ausrichtung der Schaltkontaktpaare 3, 4 und 12, 13 ermöglicht, dass das im Bereich der Schaltkontaktpaare 3, 4 und 12, 13 entstehende Magnetfeld 23 sich beim Austreiben beziehungsweise Ausblasen der Lichtbögen 21 aus den Kontaktzonen verstärkt.
  • Die Schaltkontaktpaare 3, 4 und 12, 13 des doppelunterbrechenden Schutzschaltgerätes 1 sind derart angeordnet, dass der Stromfluss 22 eine die Lichtbögen 21 antreibende Blasspule erzeugt. Das Magnetfeld 23 der einzelnen Strombahnen hilft auch dem jeweils anderen Schaltkontaktpaar 3, 4 und 12, 13 beziehungsweise der jeweils anderen Kontaktzone zur schnellen Bewegung der Lichtbögen 21.
  • Der Stromfluss 22 verläuft bei dem doppelunterbrechenden Schutzschaltgerät 1 nach der Trennung der Schaltkontakte 3, 4 und 12, 13 über den ersten feststehenden Schaltkontakt 3 über einen ersten Lichtbogen 21 zu dem ersten beweglichen Schaltkontakt 4. Von dem ersten beweglichen Schaltkontakt 4 fließt der Strom über den flexiblen elektrischen Leiter 30, der insbesondere als Litze ausgebildet ist, zu dem zweiten beweglichen Schaltkontakt 13. Von dem zweiten beweglichen Schaltkontakt 13 fließt der Strom weiter über einen zweiten Lichtbogen 21 zu dem zweiten feststehenden Schaltkontakt 12. Durch diesen Stromfluss 22 entsteht eine die Lichtbögen 21 antreibende Blasspule. Das verstärkte Magnetfeld beziehungsweise Blasfeld 23 der Blasspule wirkt bereits bei der kleinsten Öffnung der Schaltkontakte 3, 4 und 12, 13 und treibt die entstehenden Lichtbögen 21 sofort in Richtung der Löschkammern 5, 14 des doppelunterbrechenden Schutzschaltgerätes 1.
  • Vorteile eines derartigen doppelunterbrechenden Schutzschaltgerätes 1 ist die kräftige Beschleunigung der entstehenden Lichtbögen 21 nach der Öffnung der Schaltkontakte 3, 4 und 12, 13 durch das entstehende starke Magnetfeld beziehungsweise Blasfeld 23 und das damit verbundene schnelle Eintreiben der Lichtbögen 21 in die Löschkammern 5, 14. Durch das schnelle Eintreiben der Lichtbögen 21 in die Löschkammer 5, 14 kann die Verweilzeit der Lichtbögen 21 zwischen den Schaltkontaktpaaren 3, 4 und 12, 13 reduziert werden. Dies hat zur Folge, dass die Lichtbogenbelastung zwischen einem feststehenden Schaltkontakt 3, 12 und einem beweglichen Schaltkontakt 4, 13 verringert wird, weshalb eine Einsparung bei dem Kontaktmaterial der Schaltkontakte 3, 4 und 12, 13 möglich ist. Ein derartiges doppelunterbrechendes Schutzschaltgerät 1 weist dadurch ein höheres Kurzschluss-Schaltvermögen auf als bekannte doppelunterbrechende Schutzschaltgeräte gleicher Baugröße. Durch den flexiblen elektrischen Leiter 30 und die damit ermöglichte elektrisch leitende Verbindung zwischen den beweglichen Schaltkontakten nach dem Öffnen der Schaltkontakte 3, 4 und 12, 13 werden die Kontaktstellen der Schaltkontakte 3, 4 und 12, 13 entlastet.
  • In der Fig. 2 ist eine Draufsicht auf den inneren Bereich eines doppelunterbrechenden Schutzschaltgerätes 1, das nach dem erfindungsgemäßen Konstruktionsprinzip ausgebildet ist, dargestellt. In dieser Darstellung wird die um 180° verdreht Anordnung der Schaltkontaktpaare 3, 4 und 12, 13 deutlich, wobei die Schaltkontaktpaare 3, 4 und 12, 13 nebeneinander liegen. Zwischen dem ersten beweglichen Schaltkontakt 4 und dem zweiten beweglichen Schaltkontakt 13 ist der flexible elektrische Leiter 30 angeordnet. Dabei folgt der flexible elektrische Leiter 30 den Bewegungen der beweglichen Schaltkontakte 4, 13, ohne dass die elektrisch leitende Verbindung über den flexiblen elektrischen Leiter 30 verloren geht.
  • In der Fig. 4 ist in einer Seitenansicht ein Schnitt durch ein Ausführungsbeispiel eines Schutzschaltgerätes 1, das eine Lichtbogenlöscheinrichtung 20 aufweist, die nach dem erfindungsgemäßen Konstruktionsprinzip ausgebildet ist, gezeigt. Die Leitschienen 6, 15 sind jeweils an dem unteren Ende 5a der ersten Löschkammer 5 beziehungsweise an dem unteren Ende 14a der zweiten Löschkammer 14 angeordnet, insbesondere verschweißt. Das erste Kontakthorn 7 verläuft zwischen einem ersten Ende der Spule 2 und dem oberen Ende 5b der ersten Löschkammer 5, das zweite Kontakthorn 16 verläuft zwischen der ersten Leitschiene 6 und dem oberen Ende 14b der zweiten Löschkammer 14. Das erste Kontakthorn 7 ist vorzugsweise an der Wicklung der Spule 2 angeschweißt. Die feststehenden Schaltkontakte 3, 12 sind an beziehungsweise auf den jeweiligen Kontakthörnern 7, 16 angeordnet.
  • Die Anordnung der Spule 2 inklusive ihres Spulenkerns 2a und zweier Stahlplatten 9, wobei nur die Stahlplatte mit dem Bezugszeichen 9 in Figur 4 dargestellt ist, lässt in der Vorkammer 17 beziehungsweise im Vorkammerbereich ein starkes Magnetfeld 11 entstehen, induziert durch die Spule 2 auf die Metallplatten 9, welches dafür sorgt, dass der erste Lichtbogen 21 zwischen dem ersten beweglichen Schaltkontakt 4 und dem ersten feststehenden Schaltkontakt 3 in Richtung der ersten Leitschiene 6 gedrückt und der zweite Lichtbogen zwischen dem zweiten beweglichen Schaltkontakt 13 und dem zweiten feststehenden Schaltkontakt 12 in Richtung der zweiten Leitschiene 15 gedrückt werden, also auf diese überspringen. Die Lichtbögen stehen dann zwischen den jeweiligen Leitschienen 6, 15 und den entsprechenden Kontakthörnern 7, 16 und werden somit durch das Magnetfeld 11 und die entstehenden Blasfelder in die jeweiligen Löschkammern 5, 14 gedrückt, wo sie schließlich verlöschen.
  • Das starke Magnetfeld 11 zwischen den Metallplatten 9 ermöglicht eine Beschleunigung der Lichtbögen und damit eine Reduzierung der Belastung der Schaltkontakte 3, 4, 12, 13. Hierdurch kann Kontaktmaterial an den Schaltkontakten 3, 4, 12, 13 eingespart werden. Derartig ausgebildete Schutzschaltgeräte 1 weisen ein höheres Kurzschluss-Schaltvermögen zu bekannten Schutzschaltgeräten gleicher Baugröße auf. Die Kontaktstellen werden beim Trennen der Schaltkontaktpaare 3, 4 sowie 12, 13 entlastet.
  • Das Schutzschaltgerät gemäß der Fig. 4 ist bevorzugt als Leitungsschutzschalter oder Leistungsschalter ausgebildet.
  • Dadurch, dass die Lichtbögen 21 durch das entstehende Magnetfeld 11 zwischen den Metallplatten 9 und die entstehenden Blasfelder 23 schnell in die entsprechenden Löschkammern 5, 14 gezwungen werden können, ist das Schutzschaltgerät 1 sehr gut vor Beschädigungen geschützt. Insbesondere in Strombereichen jenseits von 63A und bei Schutzschaltgeräten 1 mit einem Schaltvermögen über 25kA, also bei Hochleistungsschutzschaltgeräten, ist die spezielle Anordnung der Kontaktsysteme und der Spule 2 in dem Schutzschaltgerät 1 vorteilhaft. Das Schutzschaltgerät 1 ermöglicht, dass die bei einer Abschaltung entstehenden Lichtbögen so schnell wie möglich von der Vorkammer 17 in die Löschkammern 5, 14 gezwungen werden können, um in der Vorkammer das Schutzschaltgerät 1, insbesondere die Schaltkontakte 3, 4 und 12, 13 nicht zu schädigen.
  • Bezugszeichenliste
  • 1
    Schutzschaltgerät
    2
    Spule
    2a
    Spulenkern
    3
    erster feststehender Schaltkontakt
    4
    erster beweglicher Schaltkontakt
    5
    erste Löschkammer
    5a
    unteres Ende der ersten Löschkammer
    5b
    oberes Ende der ersten Löschkammer
    6
    erste Leitschiene
    7
    erstes Kontakthorn
    9
    Metallplatte
    10
    Spulenachse
    11
    Magnetfeld zwischen Metallplatten
    12
    zweiter feststehender Schaltkontakt
    13
    zweiter beweglicher Schaltkontakt
    14
    zweite Löschkammer
    14a
    unteres Ende der zweiten Löschkammer
    14b
    oberes Ende der zweiten Löschkammer
    15
    zweite Leitschiene
    16
    zweites Kontakthorn
    17
    Vorkammer
    21
    Lichtbogen
    22
    Stromfluss
    23
    Blasfeld/Magnetfeld
    30
    flexibler elektrischer Leiter / Litze

Claims (11)

  1. Doppelunterbrechendes Schutzschaltgerät (1) zum Überwachen eines Stromkreises, aufweisend eine Spule (2) zum Betätigen eines Auslösers, ein erstes Schaltkontaktpaar, umfassend einen ersten feststehenden Schaltkontakt (3) und einen ersten beweglichen Schaltkontakt (4), ein zweites Schaltkontaktpaar, umfassend einen zweiten feststehenden Schaltkontakt (12) und einen zweiten beweglichen Schaltkontakt (13), wobei die beweglichen Schaltkontakte (4, 13) durch den Auslöser betätigbar sind, eine erste Löschkammer (5) mit einer ersten Leitschiene (6) und einem ersten Kontakthorn (7), das mit dem ersten feststehenden Schaltkontakt (3) elektrisch leitend verbunden ist, eine zweite Löschkammer (14) mit einer zweiten Leitschiene (15) und einem zweiten Kontakthorn (16), das mit dem zweiten feststehenden Schaltkontakt (12) elektrisch leitend verbunden ist, dadurch gekennzeichnet, dass das erste Schaltkontaktpaar (3, 4) um 170° bis 190° verdreht zu dem zweiten Schaltkontaktpaar (12, 13) neben dem zweiten Schaltkontaktpaar (12, 13) angeordnet ist und dass zwischen dem ersten beweglichen Schaltkontakt (4) und dem zweiten beweglichen Schaltkontakt (13) ein flexibler elektrischer Leiter (30) vorgesehen ist, der den ersten beweglichen Schaltkontakt (4) mit dem zweiten beweglichen Schaltkontakt (13) elektrisch leitend verbindet.
  2. Doppelunterbrechendes Schutzschaltgerät (1) nach Anspruch 1, dadurch gekennzeichnet, dass der flexible elektrische Leiter (30) eine Litze ist.
  3. Doppelunterbrechendes Schutzschaltgerät (1) nach mindestens einem der vorhergehenden Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das erste Schaltkontaktpaar (3, 4) parallel und um 180° verdreht zu dem zweiten Schaltkontaktpaar (12, 13) angeordnet ist.
  4. Doppelunterbrechendes Schutzschaltgerät (1) nach mindestens einem der vorhergehenden Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das erste Schaltkontaktpaar (3, 4) und das zweite Schaltkontaktpaar (12, 13) in einer Vorkammer (17) einliegen, die durch die beiden Löschkammern (5, 14) gebildet wird, wobei die Vorkammer (17) zwischen der ersten Löschkammer (5) und der zur ersten Löschkammer (5) spiegelverkehrt angeordneten zweiten Löschkammer (14) liegt.
  5. Doppelunterbrechendes Schutzschaltgerät (1) nach mindestens einem der vorhergehenden Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zwei parallel zueinander angeordnete Metallplatten (9) vorgesehen sind, zwischen denen die Schaltkontaktpaare (3, 4, 12, 13) sowie zumindest ein Teil der ersten Leitschienen (6, 15) und der ersten Kontakthörner (7, 16) angeordnet sind.
  6. Doppelunterbrechendes Schutzschaltgerät (1) nach Anspruch 5, dadurch gekennzeichnet, dass die Spulenachse (10) der Spule (2) senkrecht oder annähernd senkrecht zu den Ebenen, in denen die Metallplatten (9) verlaufen, verläuft.
  7. Doppelunterbrechendes Schutzschaltgerät (1) nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Spule (2) zwischen den Metallplatten (9) angeordnet ist.
  8. Doppelunterbrechendes Schutzschaltgerät (1) nach mindestens einem der vorhergehenden Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Metallplatten (9) derart zu der Spule (2) angeordnet sind, dass zwischen den Metallplatten (9) ein Magnetfeld (11) entstehen kann, welches durch die Spule (2) auf die Metallplatten (9) induzierbar ist.
  9. Doppelunterbrechendes Schutzschaltgerät (1) nach mindestens einem der vorhergehenden Ansprüche 5 bis 8, dadurch gekennzeichnet, dass die Schwenkebenen, in der die beweglichen Schaltkontakte (4, 13) bewegbar sind, und die Leitschienen (6, 15) sowie die Kontakthörner (7, 16) der Löschkammern (5, 14) parallel oder annähernd parallel zu den Metallplatten (9) verlaufen.
  10. Doppelunterbrechendes Schutzschaltgerät (1) nach mindestens einem der vorhergehenden Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der erste feststehende Schaltkontakt (3) als Kontaktplättchen an dem ersten Kontakthorn (7) angeordnet ist und dass der zweite feststehende Schaltkontakt (12) als Kontaktplättchen an dem zweiten Kontakthorn (16) angeordnet ist.
  11. Doppelunterbrechendes Schutzschaltgerät (1) nach mindestens einem der vorhergehenden Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Schutzschaltgerät (1) ein Leistungsschalter oder ein Leitungsschutzschalter ist.
EP11161311.3A 2010-05-05 2011-04-06 Doppelunterbrechendes Schutzschaltgerät zum Überwachen eines Stromkreises Not-in-force EP2385537B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010019432A DE102010019432A1 (de) 2010-05-05 2010-05-05 Doppelunterbrechendes Schutzschaltgerät zum Überwachen eines Stromkreises

Publications (2)

Publication Number Publication Date
EP2385537A1 true EP2385537A1 (de) 2011-11-09
EP2385537B1 EP2385537B1 (de) 2017-05-31

Family

ID=44511633

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11161311.3A Not-in-force EP2385537B1 (de) 2010-05-05 2011-04-06 Doppelunterbrechendes Schutzschaltgerät zum Überwachen eines Stromkreises

Country Status (3)

Country Link
EP (1) EP2385537B1 (de)
CN (1) CN102237230B (de)
DE (1) DE102010019432A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011080525A1 (de) * 2011-08-05 2013-02-07 Siemens Aktiengesellschaft Doppeltunterbrechendes Schutzschaltgerät
EP3293748A1 (de) * 2016-09-09 2018-03-14 Microelettrica Scientifica S.p.A. Verbesserte kontaktorvorrichtung für hochstromschaltanwendungen

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE928655C (de) * 1951-08-08 1955-06-06 Siemens Ag Loeschanordnung mit Loeschblechen fuer Gleichstromschalter
US3133175A (en) * 1960-10-05 1964-05-12 Cutler Hammer Inc Shockproof electromagnetic contactor having arc chute and blowout assembly and pivoted contact carriage means
US4831347A (en) * 1985-07-12 1989-05-16 Square D Company Air break contactor
EP0418786A2 (de) * 1989-09-18 1991-03-27 Mitsubishi Denki Kabushiki Kaisha Stromkreisunterbrecher
FR2814851A1 (fr) * 2000-10-03 2002-04-05 Hager Electro Disjoncteur magnetique a haut pouvoir de coupure
EP1473750A1 (de) * 2003-04-30 2004-11-03 Siemens Aktiengesellschaft elektromechanisches Schaltgerät
EP1548772A1 (de) 2003-12-22 2005-06-29 ABB Schweiz Holding AG Lichtbogenlöscheinrichtung für Schutzschalter mit Doppelunterbrechung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69828147T2 (de) * 1997-09-18 2005-12-15 General Electric Co. Strombegrenzender leistungsschalter mit stromumschaltung
DE10222668A1 (de) * 2001-05-28 2002-12-05 Fuji Electric Co Ltd Schaltgerät

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE928655C (de) * 1951-08-08 1955-06-06 Siemens Ag Loeschanordnung mit Loeschblechen fuer Gleichstromschalter
US3133175A (en) * 1960-10-05 1964-05-12 Cutler Hammer Inc Shockproof electromagnetic contactor having arc chute and blowout assembly and pivoted contact carriage means
US4831347A (en) * 1985-07-12 1989-05-16 Square D Company Air break contactor
EP0418786A2 (de) * 1989-09-18 1991-03-27 Mitsubishi Denki Kabushiki Kaisha Stromkreisunterbrecher
FR2814851A1 (fr) * 2000-10-03 2002-04-05 Hager Electro Disjoncteur magnetique a haut pouvoir de coupure
EP1473750A1 (de) * 2003-04-30 2004-11-03 Siemens Aktiengesellschaft elektromechanisches Schaltgerät
EP1548772A1 (de) 2003-12-22 2005-06-29 ABB Schweiz Holding AG Lichtbogenlöscheinrichtung für Schutzschalter mit Doppelunterbrechung

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011080525A1 (de) * 2011-08-05 2013-02-07 Siemens Aktiengesellschaft Doppeltunterbrechendes Schutzschaltgerät
EP3293748A1 (de) * 2016-09-09 2018-03-14 Microelettrica Scientifica S.p.A. Verbesserte kontaktorvorrichtung für hochstromschaltanwendungen
WO2018046695A1 (en) * 2016-09-09 2018-03-15 Microelettrica Scientifica S.P.A. Improved contactor device for high current switching applications
US11037745B2 (en) 2016-09-09 2021-06-15 Microelettrica Scientifica S.P.A. Contactor device for high current switching applications

Also Published As

Publication number Publication date
CN102237230A (zh) 2011-11-09
EP2385537B1 (de) 2017-05-31
CN102237230B (zh) 2015-04-08
DE102010019432A1 (de) 2011-11-10

Similar Documents

Publication Publication Date Title
EP3046124B1 (de) Schalt- und schutzeinrichtung für hochvolt-bordnetze
EP2502251B1 (de) Schalteinheit zum schalten von hohen gleichspannungen
EP2786385B1 (de) Schaltgeraet fuer gleichstromanwendungen
EP3061111B1 (de) Vorrichtung und verfahren zum schalten eines gleichstromes
DE102011089234B4 (de) Lichtbogen-Löschvorrichtung und Schutzschaltgerät
DE1124125B (de) Elektrischer Schalter mit Lichtbogenloeschanordnung
EP1683173B1 (de) Lichtbogen-löschvorrichtung
DE4332546A1 (de) Niederspannungsschalter in isolierendem Gehäuse
EP2385537B1 (de) Doppelunterbrechendes Schutzschaltgerät zum Überwachen eines Stromkreises
DE102011002714B4 (de) Schutzschaltgerät
DE19903837B4 (de) Selbsterholende Strombegrenzungseinrichtung mit Flüssigmetall
EP2830076B1 (de) Schaltgerät
EP1722384B1 (de) Elektrisches Installationsgerät mit Lichtbogen-Vorkammerraum, Vorkammerplatten und strombegrenzender Lichtbogenlöscheinrichtung
DE102010019429B4 (de) Lichtbogenlöscheinrichtung für ein Schutzschaltgerät sowie Schutzschaltgerät
DE102005007303B4 (de) Elektrisches Installationsgerät mit Lichtbogen-Vorkammerraum, Lichtbogenleitschienen und strombegrenzender Lichtbogenlöscheinrichtung
DE102017202370A1 (de) Lichtbogenlöschvorrichtung, elektromechanisches Schutzschaltgerät und Herstellverfahren
EP3327742B1 (de) Lichtbogenlöschvorrichtung und elektromechanisches schutzschaltgerät
EP2541574B1 (de) Doppeltunterbrechendes Schutzschaltgerät
EP3025361B1 (de) Schaltgerät mit einem elektromagnetischen lichtbogenantrieb
DE1182323B (de) Elektrischer Schalter mit einem zur Lichtbogenloeschung dienenden Kamin
DE102018113534B4 (de) Hochspannungs- und Hochstromrelais
DE102010019430A1 (de) Schutzschaltgerät zum Überwachen eines Stromkreises
EP3084798B1 (de) Schaltgerät
DE635854C (de) Elektromagnetischer Selbstschalter in Stoepselform
EP1554739B1 (de) Niederspannungs-leistungsschalter

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120423

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20160811

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161216

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 898139

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011012338

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170531

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170901

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170831

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170831

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170930

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011012338

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

26N No opposition filed

Effective date: 20180301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180406

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180406

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180406

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 898139

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110406

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210419

Year of fee payment: 11

Ref country code: DE

Payment date: 20210618

Year of fee payment: 11

Ref country code: IT

Payment date: 20210422

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011012338

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220406