EP2385257A2 - Vakuumpumpstufe - Google Patents

Vakuumpumpstufe Download PDF

Info

Publication number
EP2385257A2
EP2385257A2 EP11002911A EP11002911A EP2385257A2 EP 2385257 A2 EP2385257 A2 EP 2385257A2 EP 11002911 A EP11002911 A EP 11002911A EP 11002911 A EP11002911 A EP 11002911A EP 2385257 A2 EP2385257 A2 EP 2385257A2
Authority
EP
European Patent Office
Prior art keywords
channel
vacuum
rotor
design
pumping stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11002911A
Other languages
English (en)
French (fr)
Other versions
EP2385257B1 (de
EP2385257A3 (de
Inventor
Armin Conrad
Aleksandr Shirinov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Publication of EP2385257A2 publication Critical patent/EP2385257A2/de
Publication of EP2385257A3 publication Critical patent/EP2385257A3/de
Application granted granted Critical
Publication of EP2385257B1 publication Critical patent/EP2385257B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D23/00Other rotary non-positive-displacement pumps
    • F04D23/008Regenerative pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/168Pumps specially adapted to produce a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps

Definitions

  • the invention relates to a vacuum pumping stage according to the preamble of the first claim.
  • Vacuum pumps or vacuum pump assemblies composed of vacuum pumps are used to generate such vacuum conditions.
  • vacuum pump stages are used according to different principles of action, which are adapted to different pressure ranges to compress gas from the desired final vacuum to the atmosphere.
  • side channel pumping stages are used to compress the atmosphere.
  • These blades run around in a channel and promote a vortex-like gas flow between inlet and outlet.
  • the gas stream follows the blades during circulation and is removed at a so-called scraper and fed to the outlet.
  • the disadvantage is that designed according to this principle pumping stages operate only in the viscous flow area and lose the transition to the molecular flow very quickly compression and pumping, since no vortex-like gas flow can be generated more.
  • Gaedepump stages are used inter alia in the molecular range adjacent to the viscous flow region at lower absolute pressures. Their drawback is that compression and absorbency are good only under molecular conditions and become poor very quickly in the viscous region.
  • the object of the invention was therefore to provide a vacuum pumping stage, which provides compression and pumping both in the viscous and in the molecular flow area.
  • the vacuum pumping stage having the features of the first claim provides compression and suction in both the viscous and molecular flow regime. It can therefore be used advantageously in both flow regions and in the transition region between them.
  • the vacuum pump according to claims 6 and 7 is characterized by an advantageous power consumption, which is lower compared to vacuum pumping stages with Gaede- or side channel stages due to the compression curve and the pumping speed characteristic.
  • the vacuum pumping stage 100 after FIG. 1 has a housing 102.
  • an inlet 104 is provided, is sucked through the gas in the vacuum pumping stage.
  • an outlet 106 the pumped within the vacuum pumping stage gas is ejected.
  • Inlet and outlet are interconnected by a channel 108.
  • a rotatably arranged in the housing rotor 112 dives with a rotor portion, wherein channel and rotor portion cooperate to generate the pumping action.
  • the rotor section comprises that part of the rotor which, viewed in the radial direction from the axis of rotation of the rotor, projects beyond the inner boundary 118 of the channel into the channel.
  • the smooth section is through a zone of the rotor is formed, which projects beyond the outer surface radius 122 over the blade root radius 120 and extends along the circumference over an angular range 124.
  • the blade root radius is substantially close to the radius of the inner boundary of the channel.
  • the outer radius is chosen so that on the one hand only a small gap to a scraper remains, on the other hand, only a portion of the channel depth 126 is utilized.
  • the scraper separates the gas flow entrained at the rotor section and prevents a direct flow between inlet and outlet.
  • the smooth section creates together with the channel in the molecular flow area compression and pumping speed and acts on the Gaedezin.
  • the vanes 114 act in the viscous flow area as side channel pumping structures which cooperate with the channel.
  • smooth sections are distributed over the circumference of the rotor, resulting in a mass balance. This is achieved for example by two opposite smooth sections. Furthermore, this design can be advantageously further developed by blades and smooth sections are dimensioned so that in each case opposite masses correspond in value.
  • the channel is not arranged as shown in the disk plane but axially offset thereto.
  • the blades and the smooth section are then out of the plane of the drawing.
  • FIG. 2 Channel and rotor section are shown in a development
  • Fig. 3 shows the section along the line I-I '.
  • the channel 208 is provided with a channel depth 226. Beyond the inner boundary 218 of the channel, the rotor section projects into the channel. In it are provided as design elements blades 214 which rotate by rotation of the rotor in the channel. The blades have a thickness 228 in the direction of movement. At least one of the blades has a thickness greater than about one fifth of the distance 230 to the succeeding blade. It is achieved by this thickness that the blade surfaces 250, 252 and 254 facing the channel walls 240, 242 and 244 act in the molecular flow region like gas pumping structures. In the viscous flow region, the rotor section acts as a side channel pumping stage due to the blades.
  • the channel may also, as already mentioned in the other two examples, be offset axially relative to the plane of the rotor 234.
  • the design elements are then arranged in the figure left or right next to the rotor.
  • At least one blade (214) has a thickness which is equal to or greater than approximately the distance (230) to the subsequent blade.
  • FIGS. 4 and 5 Another embodiment is in the FIGS. 4 and 5 shown.
  • Fig. 4 Channel and rotor section are shown in a development,
  • Fig. 5 shows the section along the line II-II '.
  • the channel 308 is provided here, which is bounded by the inner boundary 318 in the direction of the axis of rotation.
  • blades 314 are provided as design elements which lead to a side channel pumping action in the viscous flow area.
  • the rotor section also has a base land 340 which projects beyond the inner boundary into the channel.
  • FIG. 5 It is shown that the base web protrudes with the web height 332 over the inner boundary.
  • the side surface 342 of the base bar This works together with the channel wall in the molecular flow area as Gaedepumplay.
  • the channel may also, as already mentioned in the other two examples, be offset axially relative to the plane of the rotor 334.
  • the design elements are then arranged in the figure left or right next to the rotor.
  • the design elements ie the base web and blades, lie in the plane 334 of the disk-like rotor 312, as a result of which the rotor-dynamic properties are improved.
  • the base web is provided only along part of the circumference of the rotor.
  • a base web with the thicker blades and / or a smooth section can be used together to achieve design elements in the rotor section, by means of which the pumping action in the molecular flow region is effected according to Gaede and in the higher pressure range according to the side channel principle.
  • Curve 70 shows the course for a pure Gaedepumpcut. There is a strong increase in the molecular flow area observed, while at higher pressures, especially above 1 hPa, no significant compression occurs.
  • Curve 72 shows the course of a pure side channel pumping stage. Here the compression reaches its maximum towards higher pressures.
  • Curve 74 shows the compression curve for the smooth-section embodiment FIG. 1
  • Curve 76 traces the course for the embodiment with thick blades FIGS. 2 and 3 ,
  • a vacuum pump 600 is shown in the basic structure, in which the advantages of the vacuum pumping stage described above are particularly good advantage.
  • a shaft 640 is provided, which is rotatably supported by bearings 650 and 652.
  • bearings 650 and 652. may be grease or oil lubricated bearings, gas, sliding or magnetic bearings. These types of bearings can be mixed, with lubricants such as oil or the like can be used in the area of the preliminary vacuum, which can be found on the side of the bearing 652.
  • This is advantageously designed as a Holweck or turbomolecular pumping stage and can itself be constructed in several stages. Different pumping principles can be used in these individual stages.
  • the inlet 604 is in gas flow communication with a suction port 612 so that the multi-section stage 610 sucks gas through both this suction port and the high vacuum pump stage outlet 622.
  • the compressed gas in it is expelled through the outlet 606 and fed to a fore-vacuum stage 630.
  • This can advantageously be designed as a side channel pumping stage and in turn comprise a plurality of pumping stages.
  • a pump outlet 682 the gas is expelled from the vacuum pump, for example against the atmosphere or in the supply line to a backing pump.
  • the pumping stages 610, 620 and 630 are commonly driven by the drive means 660.
  • the multigrade stage advantageously operates in a pressure and flow regime in which it possesses better compression and absorbency properties per power consumed than pure Gaede or side channel pumping stages.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Die Erfindung betrifft eine Vakuumpumpstufe (100; 610) mit einem Einlass (104; 604), einem Auslass (106; 606), einem Rotor (112; 212; 312) und einem Kanal (108; 208; 308), wobei der Rotor mit einem Rotorabschnitt in den Kanal eintaucht und durch Zusammenwirken von Rotorabschnitt und Kanal eine Pumpwirkung erreicht wird, und mit einem zwischen Einlass und Auslass angeordneten Abstreifer (110). Um eine Vakuumpumpstufe bereitzustellen, die sowohl im viskosen als auch im molekularen Strömungsbereich Kompression und Saugvermögen besitzt, wird vorgeschlagen, dass der Rotorabschnitt Gestaltungselemente (114, 116; 214; 314, 340) aufweist, durch die die Pumpwirkung im molekularen Strömungsbereich nach Gaede und im höheren Druckbereich nach dem Seitenkanalprinzip bewirkt wird.

Description

  • Die Erfindung betrifft eine Vakuumpumpstufe nach dem Oberbegriff des ersten Anspruchs.
  • Viele industrielle Prozesse laufen unter Vakuumbedingungen im molekularen Strömungsbereich ab. Zur Erzeugung solcher Vakuumbedingungen werden Vakuumpumpen oder aus Vakuumpumpen zusammengesetzte Vakuumpumpstände eingesetzt. In den Vakuumpumpen kommen Vakuumpumpstufen nach unterschiedlichen Wirkprinzipien zum Einsatz, die unterschiedlichen Druckbereichen angepasst sind, um Gas vom gewünschten Endvakuum bis zur Atmosphäre zu verdichten.
  • Gegen Atmosphäre verdichtend werden beispielsweise Seitenkanalpumpstufen eingesetzt. In diesen laufen Schaufeln in einem Kanal um und fördern einen wirbelartigen Gasstrom zwischen Ein- und Auslass. Der Gasstrom folgt den Schaufeln beim Umlauf und wird an einem sogenannten Abstreifer abgelöst und dem Auslass zugeführt. Nachteilig ist, dass nach diesem Prinzip gestaltete Pumpstufen lediglich im viskosen Strömungsbereich arbeiten und beim Übergang zur molekularen Strömung sehr schnell Kompression und Saugvermögen verlieren, da kein wirbelartiger Gasstrom mehr erzeugt werden kann.
  • Im zu niedrigeren Absolutdrücken an den viskosen Strömungsbereich angrenzenden Molekularbereich werden unter anderem Gaedepumpstufen eingesetzt. Deren Nachteil ist, dass Kompression und Saugvermögen lediglich unter molekularen Bedingungen gut sind und im viskosen Bereich sehr schnell schlecht werden.
  • Die vorgenannten Nachteile werden verschärft, da Vakuumpumpen oft im Zyklusbetrieb eingesetzt werden, so dass die einzelnen Pumpstufen auf die Gesamtbetriebsdauer gesehen oft in einem Strömungsbereich arbeiten, für den sie nicht optimiert sind.
  • Aufgabe der Erfindung war es daher, eine Vakuumpumpstufe zu schaffen, die sowohl im viskosen als auch im molekularen Strömungsbereich Kompression und Saugvermögen bereitstellt.
  • Gelöst wird diese Aufgabe durch eine Vakuumpumpstufe mit den Merkmalen des ersten Patentanspruchs. Die abhängigen Ansprüche 2 bis 7 geben vorteilhafte Weiterbildungen an.
  • Die Vakuumpumpstufe mit den Merkmalen des ersten Anspruchs stellt sowohl im viskosen als auch im molekularen Strömungsbereich Kompression und Saugvermögen bereit. Sie kann daher vorteilhaft in beiden Strömungsbereichen und im Übergangsbereich dazwischen eingesetzt werden.
  • Die Weiterbildungen gemäß der Ansprüche 2 bis 4 sind vorteilhaft, da die Gestaltungselemente kostengünstig herstellbar sind.
  • Die Anordnung der Gestaltungselemente des Rotorabschnitts in der Ebene einer Scheibe des Rotors nach Anspruch 5 ist neben Herstellungsvorteilen rotordyamisch vorteilhaft, da eine günstige Massenverteilung vorliegt. Zudem treten symmetrische Kräfte durch den Gasstrom auf.
  • Die Vakuumpumpe nach Ansprüchen 6 und 7 zeichnet sich durch eine vorteilhafte Leistungsaufnahme aus, die gegenüber Vakuumpumpstufen mit Gaede- oder Seitenkanalstufen aufgrund von Kompressionsverlauf und Saugvermögenscharakteristik niedriger ausfällt.
  • An Hand von Ausführungsbeispielen und deren Weiterbildungen soll die Erfindung näher erläutert und die Darstellung ihrer Vorteile vertieft werden.
  • Es zeigen:
  • Fig. 1:
    Schnitt durch eine Vakuumpumpstufe mit Rotorabschnitt und Gestaltungselementen,
    Fig. 2:
    Gestaltungselemente im Rotorabschnitt gemäß zweitem Ausführungsbeispiel, dargestellt in Abwicklung,
    Fig. 3:
    Gestaltungselemente im Rotorabschnitt gemäß zweitem Ausführungsbeispiel, dargestellt im Querschnitt,
    Fig. 4:
    Gestaltungselemente im Rotorabschnitt gemäß drittem Ausführungsbeispiel, dargestellt in Abwicklung,
    Fig. 5:
    Gestaltungselemente im Rotorabschnitt gemäß drittem Ausführungsbeispiel, dargestellt im Querschnitt,
    Fig. 6:
    Schematische Darstellung einer mehrstufigen Vakuumpumpe,
    Fig. 7:
    Vergleich des Kompressionsverlaufes vom Stand der Technik und der Vakuumpumpstufe.
  • Die Vakuumpumpstufe 100 nach Figur 1 weist ein Gehäuse 102 auf. In diesem ist ein Einlass 104 vorgesehen, durch den Gas in die Vakuumpumpstufe angesaugt wird. Durch einen Auslass 106 wird das innerhalb der Vakuumpumpstufe geförderte Gas ausgestoßen. Einlass und Auslass sind durch einen Kanal 108 miteinander verbunden. In diesen Kanal taucht ein drehbar im Gehäuse angeordneter Rotor 112 mit einem Rotorabschnitt ein, wobei Kanal und Rotorabschnitt zum Erzeugen der Pumpwirkung zusammenwirken. Der Rotorabschnitt umfasst jenen Teil der Rotors, der von Drehachse des Rotors in radialer Richtung betrachtet über die innere Begrenzung 118 des Kanals hinaus in den Kanal hineinragt. Im Ausführungsbeispiel gemäß Figur 1 wird er durch die Gestaltungselemente Schaufeln 114 und wenigstens einem glattem Abschnitt 116 gebildet. Der glatte Abschnitt wird durch eine Zone des Rotors gebildet, die bis zu einem Außenradius 122 über den Schaufelgrundradius 120 hinausragt und sich entlang des Umfangs über einen Winkelbereich 124 erstreckt. Der Schaufelgrundradius liegt im Wesentlichen nahe des Radiuses der inneren Begrenzung des Kanals. Der Außenradius ist so gewählt, dass einerseits nur ein kleiner Spalt zu einem Abstreifer verbleibt, andererseits nur ein Teil der Kanaltiefe 126 ausgenutzt wird. Der Abstreifer trennt den am Rotorabschnitt mitgeführten Gasstrom und verhindert eine direkte Strömung zwischen Ein- und Auslass. Der glatte Abschnitt erzeugt zusammen mit dem Kanal im molekularen Strömungsbereich Kompression und Saugvermögen und wirkt nach dem Gaedeprinzip. Die Schaufeln 114 wirken im viskosen Strömungsbereich als Seitenkanalpumpstrukturen, die mit dem Kanal zusammenwirken.
  • Vorteilhaft werden mehrere glatte Abschnitte derart über den Umfang des Rotors verteilt, dass sich ein Massenausgleich ergibt. Dies wird beispielsweise durch zwei sich gegenüberliegende glatte Abschnitte erreicht. Weiterhin lässt sich diese Gestaltung vorteilhaft weiterbilden, indem Schaufeln und glatte Abschnitte so bemessen werden, dass sich jeweils gegenüberliegende Massen im Wert entsprechen.
  • Die Herstellung eines solchen Rotors ist kostengünstig, da beispielsweise zunächst eine Vollscheibe hergestellt wird, aus der eine Anzahl Schaufeln herausgesägt wird. In dem Bereich des glatten Abschnitts wird auf das Heraussägen verzichtet.
  • In einer abgewandelten Ausführung ist der Kanal nicht wie gezeigt in der Scheibenebene angeordnet sondern axial dazu versetzt. Die Schaufeln und der glatte Abschnitt stehen dann aus der Zeichenebene heraus.
  • Ein zweites Ausführungsbeispiel wird im Folgenden anhand der Figuren 2 und 3 beschrieben. In Fig. 2 sind Kanal und Rotorabschnitt in einer Abwicklung dargestellt, Fig. 3 zeigt den Schnitt entlang der Linie I-I'.
  • Im Gehäuse 202 ist der Kanal 208 mit einer Kanaltiefe 226 vorgesehen. Über die innere Begrenzung 218 des Kanals hinaus ragt der Rotorabschnitt in den Kanal hinein. In ihm sind als Gestaltungselemente Schaufeln 214 vorgesehen, die durch Drehung des Rotors im Kanal umlaufen. Die Schaufeln weisen eine Dicke 228 in Bewegungsrichtung auf. Wenigstens eine der Schaufeln besitzt eine Dicke, die größer als etwa ein Fünftel des Abstandes 230 zur nachfolgenden Schaufel ist. Durch diese Dicke wird erreicht, dass die den Kanalwänden 240, 242 und 244 zugewandten Schaufeloberflächen 250, 252 und 254 im molekularen Strömungsbereich wie Gaedepumpstrukturen wirken. Im viskosen Strömungsbereich wirkt der Rotorabschnitt aufgrund der Schaufeln als Seitenkanalpumpstufe. Der Kanal kann auch hier, wie bereits bei den anderen beiden Beispielen erwähnt, axial zur Ebene des Rotors 234 versetzt angeordnet sein. Die Gestaltungselemente sind dann in der Figur links oder rechte neben dem Rotor angeordnet. Zur Verbesserung der rotordynamischen Eigenschaften ist jedoch vorteilhaft, die Gestaltungselemente, namentlich die Schaufeln 214, in der Ebene 234 des Rotors 212 liegend anzuordnen. Dies ist vorteilhaft in Bezug auf die Massenverteilung und die einwirkenden Kräfte.
  • In einer Weiterbildung besitzt wenigstens eine Schaufel (214) eine Dicke, die gleichgroß oder größer als etwa der Abstand (230) zur nachfolgenden Schaufel ist.
  • Ein weiteres Ausführungsbeispiel ist in den Figuren 4 und 5 gezeigt. In Fig. 4 sind Kanal und Rotorabschnitt in einer Abwicklung dargestellt, Fig. 5 zeigt den Schnitt entlang der Linie II-II'.
  • Im Gehäuse 302 ist hier der Kanal 308 vorgesehen, der durch die innere Begrenzung 318 in Richtung Drehachse begrenzt wird. Im Rotorabschnitt sind als Gestaltungselemente Schaufeln 314 vorgesehen, die im viskosen Strömungsbereich zu einer Seitenkanalpumpwirkung führen. Der Rotorabschnitt weist außerdem einen Grundsteg 340 auf, der über die innere Begrenzung hinaus in den Kanal hineinragt. Im Schnitt nach Figur 5 ist dargestellt, dass der Grundsteg mit der Grundsteghöhe 332 über die innere Begrenzung hinausragt. Hierdurch läuft im Kanal die Seitenfläche 342 des Grundsteges um. Diese wirkt zusammen mit der Kanalwand im molekularen Strömungsbereich als Gaedepumpstufe. Der Kanal kann auch hier, wie bereits bei den anderen beiden Beispielen erwähnt, axial zur Ebene des Rotors 334 versetzt angeordnet sein. Die Gestaltungselemente sind dann in der Figur links oder rechte neben dem Rotor angeordnet. Vorteilhaft liegen die Gestaltungselemente, also Grundsteg und Schaufeln, jedoch in der Ebene 334 des scheibenartigen Rotors 312, wodurch die rotordynamischen Eigenschaften verbesser sind.
  • In einer Weiterbildung ist der Grundsteg nur entlang eines Teils des Umfangs des Rotors vorgesehen.
  • Die einzelnen Maßnahmen der Ausführungsbeispiele können kombiniert werden. So kann ein Grundsteg mit den dickeren Schaufeln und/oder einem glatten Abschnitt zusammen benutzt werden, um im Rotorabschnitt Gestaltungselemente zu erreichen, durch die die Pumpwirkung im molekularen Strömungsbereich nach Gaede und im höheren Druckbereich nach dem Seitenkanalprinzip bewirkt wird.
  • Die vorteilhafte Wirkung der beschriebenen Gestaltungen wird anhand von Messkurven in Fig. 7 deutlich. Gezeigt sind vier Messkurven, die jeweils auf ihren Maximalwert normiert wurden. Dargestellt ist die Kompression bei Nulldurchsatz, also das Verhältnis aus Druck am Auslass zu Druck am Einlass über dem Vorvakuumdruck, gemessen ohne Gasfluss durch den Pumpstufeneinlass.
  • Kurve 70 zeigt den Verlauf für eine reine Gaedepumpstufe. Es wird ein starker Anstieg im molekularen Strömungsbereich beobachtet, während zu höheren Drücken hin, insbesondere oberhalb 1 hPa, keine nennenswerte Kompression auftritt.
  • Kurve 72 zeigt den Verlauf einer reinen Seitenkanalpumpstufe. Hier erreicht die Kompression zu höheren Drücken hin ihr Maximum.
  • Kurve 74 zeigt den Kompressionsverlauf für das Ausführungsbeispiel mit glattem Abschnitt nach Figur 1, Kurve 76 den Verlauf für das Ausführungsbeispiel mit dicken Schaufeln nach Figuren 2 und 3.
  • Die Kurvenverläufe belegen, dass durch Verwendung der Geometrien gemäß der Ausführungsbeispiele vorteilhaft sowohl im molekularen Strömungsbereich 78 als auch im viskosen Strömungsbereich 80 Kompression erreicht wird. Diese ist im molekularen Bereich besser als die einer reinen Seitenkanalpumpstufe und im viskosen Bereich besser als die einer reinen Gaedestufe.
  • In Fig. 6 ist eine Vakuumpumpe 600 im prinzipiellen Aufbau dargestellt, in der die Vorteile der oben beschriebenen Vakuumpumpstufe besonders gut zur Geltung kommen.
  • Im Gehäuse 602 der Vakuumpumpe ist eine Welle 640 vorgesehen, die mittels Lagern 650 und 652 drehbar unterstützt wird. Hierbei kann es sich um fett- oder ölgeschmierte Wälzlager, Gas-, Gleit- oder Magnetlager handeln. Diese Lagerbauformen können gemischt verwendet werden, wobei Schmiermittel wie Öl oder dergleichen eher im Bereich des Vorvakuums eingesetzt werden, welcher auf der Seite des Lagers 652 zu finden ist.
  • Durch einen Pumpeneinlass 680 tritt Gas in die Vakuumpumpe ein und gelangt zur Hochvakuumpumpstufe 620. Diese ist vorteilhaft als Holweck- oder Turbomolekularpumpstufe gestaltet und kann ihrerseits mehrstufig aufgebaut sein. In diesen einzelnen Stufen können unterschiedliche Pumpprinzipien Anwendung finden. Durch einen Auslass 622 der Hochvakuumpumpstufe tritt Gas aus und gelang zum Einlass 604 der Mehrbereichsstufe 610, welche gemäß der zu den Figuren 1 bis 5 beschriebenen Vorgaben gestaltet ist.
  • Der Einlass 604 steht mit einer Ansaugöffnung 612 in Gasflussverbindung, so dass die Mehrbereichsstufe 610 Gas sowohl durch diese Ansaugöffnung als auch vom Auslass 622 der Hochvakuumpumpstufe ansaugt. Das in ihr verdichtete Gas wird durch den Auslass 606 ausgestoßen und einer Vorvakuumstufe 630 zugeführt. Diese kann vorteilhaft als Seitenkanalpumpstufe gestaltet sein und ihrerseits mehrere Pumpstufen umfassen. Durch einen Pumpenauslass 682 wird das Gas aus der Vakuumpumpe ausgestoßen, beispielsweise gegen Atmosphäre oder in die Zuleitung zu einer Vorvakuumpumpe.
  • Die Pumpstufen 610, 620 und 630 werden durch die Antriebsmittel 660 gemeinsam angetrieben.
  • Durch diese Anordnung arbeitet die Mehrbereichsstufe vorteilhaft in einem Druck- und Strömungsbereich, in dem sie bessere Kompressions- und Saugvermögenseigenschaften pro aufgenommener Leistung als reine Gaede- oder Seitenkanalpumpstufen besitzt.

Claims (7)

  1. Vakuumpumpstufe (100; 610) mit einem Einlass (104; 604), einem Auslass (106; 606), einem Rotor (112; 212; 312) und einem Kanal (108; 208; 308), wobei der Rotor mit einem Rotorabschnitt in den Kanal eintaucht und durch Zusammenwirken von Rotorabschnitt und Kanal eine Pumpwirkung erreicht wird, und mit einem zwischen Einlass und Auslass angeordneten Abstreifer (110), dadurch gekennzeichnet, dass der Rotorabschnitt Gestaltungselemente (114, 116; 214; 314, 340) aufweist, durch die die Pumpwirkung im molekularen Strömungsbereich nach Gaede und im höheren Druckbereich nach dem Seitenkanalprinzip bewirkt wird.
  2. Vakuumpumpstufe nach Anspruch 1, dadurch gekennzeichnet, dass die Gestaltungselemente Schaufeln (114; 214; 314) umfassen, wobei wenigstens eine Schaufel (214) eine Dicke besitzt, die größer als etwa ein Fünftel des Abstandes (230) zur nachfolgenden Schaufel ist.
  3. Vakuumpumpstufe nach Anspruch 1, dadurch gekennzeichnet, dass die Gestaltungselemente Schaufeln (114; 214; 314) umfassen, wobei wenigstens eine Schaufel (214) eine Dicke besitzt, die gleichgroß oder größer als etwa der Abstand (230) zur nachfolgenden Schaufel ist.
  4. Vakuumpumpstufe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Gestaltungselemente einen Grundsteg (340) umfassen, welcher in den Kanal eintaucht.
  5. Vakuumpumpstufe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Gestaltungselemente (114, 116; 214; 314, 340) im wesentlichen in der Ebene (234; 334) des Rotor (112; 212; 312) liegend angeordnet sind.
  6. Vakuumpumpe (600), dadurch gekennzeichnet, dass sie eine Vakuumpumpstufe (610) nach einem der vorhergehenden Ansprüche umfasst, welche im Gasstrom zwischen einer hochvakuumseitigen Pumpstufe (620) und einer atmosphärenseitigen Pumpstufe (630) angeordnet ist.
  7. Vakuumpumpe nach Anspruch 6, dadurch gekennzeichnet, dass die Vakuumpumpstufe (610) mit einer Ansaugöffnung (612) und einem Auslass (622) der hochvakuumseitigen Pumpstufe (620) in Gasflussverbindung steht.
EP11002911.3A 2010-05-08 2011-04-07 Vakuumpumpstufe Not-in-force EP2385257B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010019940.0A DE102010019940B4 (de) 2010-05-08 2010-05-08 Vakuumpumpstufe

Publications (3)

Publication Number Publication Date
EP2385257A2 true EP2385257A2 (de) 2011-11-09
EP2385257A3 EP2385257A3 (de) 2014-09-03
EP2385257B1 EP2385257B1 (de) 2017-10-18

Family

ID=44144686

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11002911.3A Not-in-force EP2385257B1 (de) 2010-05-08 2011-04-07 Vakuumpumpstufe

Country Status (3)

Country Link
EP (1) EP2385257B1 (de)
JP (1) JP6302615B2 (de)
DE (1) DE102010019940B4 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150167679A1 (en) * 2013-12-18 2015-06-18 Pfeiffer Vacuum Gmbh Vacuum pump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013108482A1 (de) 2013-08-06 2015-02-12 Pfeiffer Vacuum Gmbh Vakuumpumpstufe

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE605902C (de) 1932-01-08 1934-11-20 Hugo Seemann Dr Turbohochvakuumpumpe
DE2034285A1 (de) 1970-07-10 1972-01-13 Pfeiffer Vakuumtechnik Molekularpumpe
US4141674A (en) * 1975-02-13 1979-02-27 Siemens Aktiengesellschaft Impeller for a ring compressor
US5238362A (en) 1990-03-09 1993-08-24 Varian Associates, Inc. Turbomolecular pump
DE19930952A1 (de) 1999-07-05 2001-01-11 Pfeiffer Vacuum Gmbh Vakuumpumpe
US6641361B2 (en) 2001-12-12 2003-11-04 Visteon Global Technologies, Inc. Fuel pump impeller for high flow applications
US6607351B1 (en) * 2002-03-12 2003-08-19 Varian, Inc. Vacuum pumps with improved impeller configurations
ITTO20020370A1 (it) * 2002-05-06 2003-11-06 Varian Spa Stadio di pompaggio per pompa da vuoto.
US6974302B2 (en) 2002-06-06 2005-12-13 Hitachi Unisia Automotive, Ltd. Turbine fuel pump
GB0229356D0 (en) 2002-12-17 2003-01-22 Boc Group Plc Vacuum pumping arrangement
GB0409139D0 (en) * 2003-09-30 2004-05-26 Boc Group Plc Vacuum pump

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150167679A1 (en) * 2013-12-18 2015-06-18 Pfeiffer Vacuum Gmbh Vacuum pump
EP2886870A1 (de) * 2013-12-18 2015-06-24 Pfeiffer Vacuum GmbH Vakuumpumpe mit verbesserter einlassgeometrie
EP2886870B1 (de) 2013-12-18 2017-12-20 Pfeiffer Vacuum GmbH Vakuumpumpe mit verbesserter Einlassgeometrie

Also Published As

Publication number Publication date
DE102010019940A1 (de) 2011-11-10
JP6302615B2 (ja) 2018-03-28
JP2011236900A (ja) 2011-11-24
EP2385257B1 (de) 2017-10-18
EP2385257A3 (de) 2014-09-03
DE102010019940B4 (de) 2021-09-23

Similar Documents

Publication Publication Date Title
DE3919529C2 (de) Vakuumpumpe
DE102009021620B4 (de) Vakuumpumpe
EP2461040B1 (de) Vakuumpumpe und Verbindung von Welle und Drehkolben
EP3805570A1 (de) Kreiselpumpe zum fördern eines fluids
EP0363503B1 (de) Pumpenstufe für eine Hochvakuumpumpe
DE3722164C2 (de) Turbomolekularpumpe
EP1937980B1 (de) Rotor für eine strömungsmaschine und eine strömungsmaschine
DE102009021642B4 (de) Vakuumpumpe
EP2933497A2 (de) Vakuumpumpe
EP2385257B1 (de) Vakuumpumpstufe
EP3088743B1 (de) Seitenkanal-vakuumpumpstufe mit einem unterbrecher, der auf der saugseite abgeschrägt ist
DE102006043327A1 (de) Vakuumpumpe
DE10210404A1 (de) Verfahren zur Herstellung des Rotors einer Reibungsvakuumpumpe sowie nach diesem Verfahren hergestellter Rotor
DE102007038966B4 (de) Mehrstufige Drehkolbenvakuumpumpe bzw. - verdichter
DE19913950A1 (de) Seitenkanalverdichter
DE10008691B4 (de) Gasreibungspumpe
DE102005047016A1 (de) Laufschaufel für eine axiale Turbomaschine
DE2054033A1 (en) Multicell compressor - with ptfe check plate
DE102013112185B4 (de) Vakuumpumpe sowie Vakuumpumpe mit wenigstens einer Turbomolekularpumpstufe
DE1243816B (de) Mehrstufige Drehkolbenvakuumpumpe vom Rootstyp
EP3877653B1 (de) Mehrstufige hydraulische maschine
DE10200579A1 (de) Selbstansaugende Kreiselpumpe
EP3913187B1 (de) Schraubenspindelpumpe
EP1766241B1 (de) Einflügelvakuumpumpe
EP3227560B1 (de) Verdichter mit einem dichtkanal

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 17/16 20060101AFI20140731BHEP

Ipc: F04D 23/00 20060101ALI20140731BHEP

Ipc: F04D 19/04 20060101ALI20140731BHEP

17P Request for examination filed

Effective date: 20150302

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20160212

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160913

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170426

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 938196

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011013134

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171018

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180118

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180119

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180118

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180218

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011013134

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

26N No opposition filed

Effective date: 20180719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180407

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 938196

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110407

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171018

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220420

Year of fee payment: 12

Ref country code: GB

Payment date: 20220425

Year of fee payment: 12

Ref country code: DE

Payment date: 20220628

Year of fee payment: 12

Ref country code: CZ

Payment date: 20220407

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230407

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011013134

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230407

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230407