EP2384830B1 - Verfahren zum Ermitteln von Parametern eines Modells für eine Walzanlage - Google Patents

Verfahren zum Ermitteln von Parametern eines Modells für eine Walzanlage Download PDF

Info

Publication number
EP2384830B1
EP2384830B1 EP11163141.2A EP11163141A EP2384830B1 EP 2384830 B1 EP2384830 B1 EP 2384830B1 EP 11163141 A EP11163141 A EP 11163141A EP 2384830 B1 EP2384830 B1 EP 2384830B1
Authority
EP
European Patent Office
Prior art keywords
model
rolling mill
parameters
actual value
stored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11163141.2A
Other languages
English (en)
French (fr)
Other versions
EP2384830A1 (de
Inventor
Luis Rey-Mas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Energy Power Conversion GmbH
Original Assignee
GE Energy Power Conversion GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Energy Power Conversion GmbH filed Critical GE Energy Power Conversion GmbH
Publication of EP2384830A1 publication Critical patent/EP2384830A1/de
Application granted granted Critical
Publication of EP2384830B1 publication Critical patent/EP2384830B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby

Definitions

  • the invention relates to a method for determining parameters of a model, with which at least one area of a rolling mill can be simulated mathematically.
  • the invention also relates to a method for operating a rolling mill, wherein at least one area of the rolling mill is simulated by calculation with the model having a parameter.
  • DE 43 38 608 A1 and DE 197 31 980 A1 each describe procedures in which a mathematical model of an automated process is adapted online as part of the process. Furthermore, in the DE 43 38 608 A1 and the DE 197 31 980 A1 just a single adaptation of the mathematical model performed between each process flow.
  • a method for operating a rolling mill in which a measured actual value of an operating variable of the rolling mill is compared with an associated desired value and a manipulated variable is determined as a function thereof. It is provided a so-called process observer, which includes a model, in particular a real-time simulation model, with which at least part of the rolling mill is mathematically modeled. Depending on the operating variables of the rolling plant, for example as a function of the desired value, a calculated actual value associated with the measured actual value is determined from this model. Then the measured actual value and the calculated actual value are compared with each other. From the result of the comparison, it is possible to deduce an error in the rolling mill or in the rolling process.
  • the model has a plurality of equations with which output variables of the rolling mill are calculated as a function of input variables of the rolling mill.
  • multiplicative and / or additive parameters are provided. These parameters must be determined and adjusted with regard to the actual rolling mill to be replicated or the model must be parameterized.
  • the object of the invention is to provide a method for determining the said parameters.
  • FIG. 1 The drawing shows a schematic block diagram of an embodiment of a method for operating a rolling mill by means of a model and FIG. 2 shows a schematic block diagram of an embodiment of a method according to the invention for determining parameters for the model of FIG. 1 ,
  • FIG. 1 illustrated method is provided for the operation of a rolling mill.
  • This may be a cold rolling mill or a hot rolling mill.
  • the in the FIG. 1 specified general sizes can be realized by different special operating variables of the rolling mill.
  • the measured actual value IWG may be, for example, a measured strip thickness actual value or a measured strip tension actual value or another actual value of the rolling mill.
  • the setpoint SW may be an associated strip thickness setpoint or strip setpoint.
  • the measured actual value IWG and the setpoint SW relate to a specific rolling stand.
  • the difference between the measured actual value IWG and the setpoint value SW is supplied to a controller 12, which, inter alia, generates a manipulated variable SG as a function of these two operating variables.
  • a controller 12 which, inter alia, generates a manipulated variable SG as a function of these two operating variables.
  • this manipulated variable SG for example, the roller position of the associated rolling stand can be influenced, in order in turn to act on the strip thickness or the strip tension. In this way, a control and / or regulation of operating variables of the rolling mill can be realized. It is understood that other influences on the rolling mill are possible.
  • the setpoint value SW is supplied to a model 13, in particular a simulation model operating in real time, which is furthermore acted on by a plurality of operating variables of the rolling mill.
  • These operating variables can be any actual values, setpoints and / or manipulated variables that occur within the rolling mill.
  • individual models of the rolling mill or the entire rolling mill are modeled by the model 13.
  • an attempt is made to represent the deformation of the rolled stock during a pass through a roll stand in order to be able to determine an actual value for the same operating variable on which basis the measured actual value IWG is already present.
  • This determined actual value represents an output variable of the model 13 and is referred to below as the calculated actual value IWB.
  • the model 13 is provided to determine the calculated actual value IWB for the same operating size of the rolling mill, for which the measured actual value IWG already exists. It is understood that the model 13 is not only suitable for determining this one calculated actual value IWB, but rather a plurality of such output variables.
  • the calculated actual value IWB is compared with the measured actual value IWG.
  • the two variables of a subtraction 15 are supplied.
  • an error signal FS which is substantially equal to zero, when the calculated actual value IWB is approximately equal to the measured actual value IWG, but deviates from zero, if the calculated actual value IWB and the measured actual value IWG substantially differ.
  • the error signal FS thus represents the result signal of a process observer, which is substantially equal to zero in error-free operation, but which indicates erroneous operation by a non-zero output signal.
  • the determination of the error signal takes place in real time, ie substantially simultaneously with the respective current determination of the measured actual value IWG. This makes it possible to intervene immediately in the control and / or regulation of the rolling mill, in particular in the case of a fault signal FS different from zero, ie in particular also in real time.
  • a device for controlling and / or regulating the rolling mill is provided.
  • This may preferably be a digital computing device which is deleted with an electronic memory, on which a program is stored, which can run on the computing device in real time, and which is then suitable for carrying out the method.
  • the above-described model 13 serves the FIG. 1 To simulate individual areas of the rolling mill or the entire rolling mill by calculation, in particular to simulate in real time. This is done by constructing the model 13 from a plurality of equations in which the input variables supplied to the model 13 are computationally processed. With the aid of the equations, the output quantity (s) of the model 13 is / are then calculated.
  • the equations can be any equations suitable for mathematically representing the actual technical relationships of the rolling mill. For example, it may be exponential equations of higher order, with which the time course of outputs in dependence on a plurality of input variables can be calculated. For the weighting of the individual input variables, each input variable is usually associated with a multiplicative and / or additive parameter which ultimately determines the influence of the Input size / s to the output size / s. These parameters depend on the actual rolling mill.
  • the model 13 must therefore be parameterized. This will be explained below with reference to FIG. 2 explained.
  • the method illustrated is intended to provide the parameters of the equations of model 13 of FIG. 1 to investigate.
  • the procedure of FIG. 2 can be carried out independently of the operation of the rolling mill.
  • the method can be carried out on a computing device, for example on a notebook, which operates "off-line" with respect to the rolling mill and possibly in real time.
  • FIG. 2 It is now assumed that on the example provided notebook, which is necessary for the implementation of the method FIG. 2 is provided in connection with the FIG. 1 model 13 of the rolling mill is shown in the form of a program. This means that all those equations are programmed on this computing device, which are provided for the mathematical simulation of the rolling mill in real time.
  • the parameters of these equations have an output value that can be specified, for example, when programming the equations.
  • the initial value is yet in no way adapted to the actual rolling mill.
  • Each of the data sets 18 contained in the database 17 contains a multiplicity of operating variables, which may be actual values, setpoints, manipulated variables and / or other operating variables of the rolling plant. These operating variables are recorded time-dependent on the associated Walzgang, ie on the passage of time of the rolling stock through the rolling mill.
  • the stored operating variables are at least those operating variables of the rolling plant which are required by the model 13 as input variables and which are calculated by the model 13 as output variables.
  • These farm sizes are in the FIG. 2 in each case referred to in their entirety as input variables EG and output variables AG of the model 13.
  • the database 17 may be a part of the notebook on which the model 13 of the FIG. 2 located.
  • the data records 18 must be stored in some way during operation of the rolling mill on a storage medium and then made available to the notebook, in particular in real time. It is also possible that the database 17 is assigned to the actual rolling mill.
  • the data records 18 can be transmitted via a communication link to the notebook provided as an example, on which the model 13 of the FIG. 2 located. This transmission of the data records 18 can take place in real time, so that the model 13 of the FIG. 2 can take place in real time. But this is not mandatory.
  • model 13 is now calculated on the basis of the output values of the parameters and the input variables EG of a first data set 17 stored in the database 17 and the associated output variables of the model 13 are determined , These output variables, which are referred to in their entirety as model output variables AG *, are compared with the output variables AG of the same first data set 17 stored in the database 18.
  • the method described above is run again, but not with the output values for the parameters of the model 13, but with the first new values of the parameters determined in the first pass of the method.
  • the operating variables from the first data record 18 of the database are used again.
  • a new comparison is made by the block 19 and second new values for the parameters of the model 13 are determined.
  • This repetition of the method can be carried out until the respectively newly determined values for the parameters of the model 13 no longer differ significantly from the previous values.
  • the entire process can be continued with a second data record 18 from the database 17.
  • the operating variables from the second data set 18 as well as the previously determined values for the parameters are used by the model 13 in order then to re-influence the values for the parameters via the block 19.
  • the method can in turn be repeated several times with the second data set 18.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Ermitteln von Parametern eines Modells, mit dem zumindest ein Bereich einer Walzanlage rechnerisch nachbildbar ist. Die Erfindung betrifft ebenfalls ein Verfahren zum Betreiben einer Walzanlage, bei dem mit einem Parameter aufweisenden Modell zumindest ein Bereich der Walzanlage rechnerisch nachgebildet wird.
  • Die DE 41 05 321 A1 , DE 43 38 608 A1 und DE 197 31 980 A1 beschreiben jeweils Verfahren, in dem ein mathematisches Modell eines automatisierten Prozesses als Teil des Prozesses online angepasst wird. Ferner wird in der DE 43 38 608 A1 und der DE 197 31 980 A1 nur eine einzige Anpassung des mathematischen Modells zwischen jedem Prozessablauf durchgeführt.
  • Aus der DE 10 2006 025 026 A1 ist ein Verfahren zum Betreiben einer Walzanlage bekannt, bei dem ein gemessener Istwert einer Betriebsgröße der Walzanlage mit einem zugehörigen Sollwert verglichen und in Abhängigkeit davon eine Stellgröße ermittelt wird. Es ist ein sogenannter Prozessbeobachter vorgesehen, der ein Modell umfasst, insbesondere ein in Echtzeit arbeitendes Simulationsmodell, mit dem zumindest ein Teil der Walzanlage rechnerisch nachgebildet wird. Von diesem Modell wird in Abhängigkeit von Betriebsgrößen der Walzanlage, beispielsweise in Abhängigkeit von dem Sollwert, ein dem gemessenen Istwert zugehöriger berechneter Istwert ermittelt. Es werden dann der gemessene Istwert und der berechnete Istwert miteinander verglichen. Aus dem Vergleichsergebnis kann auf einen Fehler in der Walzanlage oder in dem Walzprozess geschlossen werden.
  • Wie erwähnt, wird mit dem Modell zumindest ein Teil der Walzanlage in Echtzeit rechnerisch nachgebildet. Hierzu weist das Modell eine Mehrzahl von Gleichungen auf, mit denen Ausgangsgrößen der Walzanlage in Abhängigkeit von Eingangsgrößen der Walzanlage berechnet werden. Zur Gewichtung der Eingangsgrößen sind multiplikative und/oder additive Parameter vorgesehen. Diese Parameter müssen im Hinblick auf die nachzubildende tatsächliche Walzanlage ermittelt und eingestellt werden bzw. das Modell muss parametriert werden.
  • Aufgabe der Erfindung ist es, ein Verfahren zum Ermitteln der genannten Parameter zu schaffen.
  • Die Erfindung löst diese Aufgabe durch ein Verfahren nach Anspruch 1. Optionale Merkmale sind in den abhängigen Ansprüchen definiert.
  • Weitere Merkmale, Anwendungsmöglichkeiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung, die in den Figuren der Zeichnung dargestellt sind. Dabei bilden alle beschriebenen oder dargestellten Merkmale für sich oder in beliebiger Kombination den Gegenstand der Erfindung, unabhängig von ihrer Zusammenfassung in den Patentansprüchen oder deren Rückbeziehung sowie unabhängig von ihrer Formulierung bzw. Darstellung in der Beschreibung bzw. in der Zeichnung.
  • Figur 1 der Zeichnung zeigt ein schematisches Blockschaltbild eines Ausführungsbeispiels eines Verfahrens zum Betreiben einer Walzanlage mit Hilfe eines Modells und Figur 2 zeigt ein schematisches Blockschaltbild eines Ausführungsbeispiels eines erfindungsgemäßen Verfahrens zum Ermitteln von Parametern für das Modell der Figur 1.
  • Das in der Figur 1 dargestellte Verfahren ist für den Betrieb einer Walzanlage vorgesehen. Dabei kann es sich um eine Kaltwalzstraße oder um ein Warmwalzwerk handeln. Die in der Figur 1 angegebenen allgemeinen Größen können dabei durch unterschiedliche spezielle Betriebsgrößen der Walzanlage realisiert werden.
  • So wird in der Figur 1 ein gemessener Istwert IWG und ein zugehöriger Sollwert SW mit Hilfe einer Subtraktion 11 miteinander verglichen. Bei dem gemessenen Istwert IWG kann es sich dabei beispielsweise um einen gemessenen Banddickenistwert oder um einen gemessenen Bandzugistwert oder um einen anderen Istwert der Walzanlage handeln. Entsprechend kann es sich bei dem Sollwert SW um einen zugehörigen Banddickensollwert oder Bandzugsollwert handeln. Der gemessene Istwert IWG und der Sollwert SW beziehen sich dabei auf ein bestimmtes Walzgerüst.
  • Die Differenz des gemessenen Istwerts IWG und des Sollwerts SW ist einem Regler 12 zugeführt, der unter anderem in Abhängigkeit von diesen beiden Betriebsgrößen eine Stellgröße SG erzeugt. Mit dieser Stellgröße SG kann beispielsweise die Walzenposition des zugehörigen Walzgerüsts beeinflusst werden, um damit wiederum auf die Banddicke oder den Bandzug einzuwirken. Auf diese Weise kann eine Steuerung und/oder Regelung von Betriebsgrößen der Walzanlage realisiert werden. Es versteht sich, dass auch andere Einflussnahmen auf die Walzanlage möglich sind.
  • Unabhängig von diesen Einflussnahmen ist der Sollwert SW einem Modell 13 zugeführt, insbesondere einem in Echtzeit arbeitenden Simulationsmodell, das weiterhin von einer Mehrzahl von Betriebsgrößen der Walzanlage beaufschlagt ist. Bei diesen Betriebsgrößen kann es sich um beliebige Istwerte, Sollwerte und/oder Stellgrößen handeln, die innerhalb der Walzanlage auftreten. In Abhängigkeit von diesen Eingangsgrößen werden von dem Modell 13 einzelne Bereiche der Walzanlage oder die gesamte Walzanlage rechnerisch nachgebildet. Es wird also beispielsweise versucht, die Verformung des Walzguts bei einem Durchlauf durch ein Walzgerüst rechnerisch darzustellen, um auf dieser Grundlage einen Istwert zu derselben Betriebsgröße ermitteln zu können, zu der bereits der gemessene Istwert IWG vorhanden ist. Dieser ermittelte Istwert stellt eine Ausgangsgröße des Modells 13 dar und wird nachfolgend als berechneter Istwert IWB bezeichnet. Es liegen damit zwei Istwerte z.B. für die Banddicke oder den Bandzug vor, nämlich der gemessene Istwert IWG und der berechnete Istwert IWB.
  • Verallgemeinert ist also das Modell 13 dazu vorgesehen, den berechneten Istwert IWB für dieselbe Betriebsgröße der Walzanlage zu ermitteln, für die bereits der gemessene Istwert IWG vorliegt. Es versteht sich dabei, dass das Modell 13 nicht nur dazu geeignet ist, diesen einen berechneten Istwert IWB zu ermitteln, sondern eine Mehrzahl derartiger Ausgangsgrößen.
  • Es ist nunmehr möglich, dass der zeitliche Verlauf des gemessenen Istwerts IWG und des berechneten Istwerts IWB bei einem fehlerfreien Betrieb weitgehend übereinstimmen, dass aber der berechnete Istwert IWB in seinem absoluten Wert von dem Sollwert SW abweicht. So ist es beispielsweise möglich, dass ein auf dem Band oder den Walzen vorhandener Ölfilm von dem Modell 13 nicht berücksichtigt werden kann, mit der Folge, dass der gemessene Istwert IWG und der berechnete Istwert IWB absolut - aufgrund des Ölfilms - voneinander abweichen, relativ jedoch im wesentlichen denselben zeitlichen Verlauf haben. Zur Kompensation derartiger Abweichungen kann eine Anpassung vorgesehen sein, die jedoch nicht zwingend erforderlich ist, und die deshalb nachfolgend nicht erläutert und auch nicht berücksichtigt wird.
  • Der berechnete Istwert IWB wird mit dem gemessenen Istwert IWG verglichen. Hierzu werden die beiden Größen einer Subtraktion 15 zugeführt. Ausgangsseitig ergibt sich ein Fehlersignal FS, das im wesentlichen gleich Null ist, wenn der berechnete Istwert IWB etwa gleich ist dem gemessenen Istwert IWG, das jedoch von Null abweicht, wenn der berechnete Istwert IWB und der gemessene Istwert IWG wesentlich voneinander abweichen.
  • Im fehlerfreien Betrieb der Walzanlage wird der berechnete Istwert IWB weitgehend mit dem gemessenen Istwert IWG übereinstimmen. Dies ergibt sich daraus, dass in diesem Fall keine Störung vorliegt und somit die von dem Modell 13 vorgenommenen rechnerischen Ermittlungen im wesentlichen dem tatsächlichen Betrieb der Walzanlage entsprechen.
  • Liegt jedoch irgend eine Störung des Betriebs der Walzanlage vor, tritt zum Beispiel ein Rutschen der Walzen beim Durchlauf des Walzguts durch ein Walzgerüst auf, so weicht der tatsächliche Betrieb der Walzanlage aufgrund dieser Störung von demjenigen Verhalten ab, das dem Modell 13 rechnerisch zugrunde gelegt ist. Dies hat zur Folge, dass bei dem von dem Modell 13 berechneten Istwert IMB die vorgenannte Störung nicht berücksichtigt ist, so dass der berechnete Istwert IWB von dem tatsächlich in der Walzanlage gemessenen Istwert IWG, bei dem die Störung zur Wirkung kommt, mit großer Wahrscheinlichkeit abweicht. Es ergibt sich damit ein Fehlersignal FS, das ungleich Null ist.
  • Das Fehlersignal FS stellt damit das Ergebnissignal eines Prozessbeobachters dar, das im fehlerfreien Betrieb im wesentlichen gleich Null ist, das jedoch einen fehlerbehafteten Betrieb durch ein von Null verschiedenes Ausgangssignal anzeigt.
  • Die Ermittlung des Fehlersignals erfolgt in Echtzeit, also im wesentlichen gleichzeitig mit der jeweils aktuellen Ermittlung des gemessenen Istwerts IWG. Damit ist es möglich, insbesondere bei einem von Null verschiedenen Fehlersignal FS sofort, also insbesondere ebenfalls in Echtzeit, in die Steuerung und/oder Regelung der Walzanlage einzugreifen.
  • Zur Ausführung des beschriebenen Verfahrens ist eine Vorrichtung zur Steuerung und/oder Regelung der Walzanlage vorgesehen. Dabei kann es sich vorzugsweise um ein digitales Rechengerät handeln, das mit einem elektronischen Speicher verschen ist, auf dem ein Programm abgespeichert ist, das auf dem Rechengerät in Echtzeit ablaufen kann, und das dann zur Durchführung des Verfahrens geeignet ist.
  • Wie erläutert wurde, dient das vorstehend erläuterte Modell 13 der Figur 1 dazu, einzelne Bereiche der Walzanlage oder die gesamte Walzanlage rechnerisch nachzubilden, insbesondere in Echtzeit zu simulieren. Dies geschieht dadurch, dass das Modell 13 aus einer Vielzahl von Gleichungen aufgebaut ist, in denen die dem Modell 13 zugeführten Eingangsgrößen rechnerisch verarbeitet werden. Mit Hilfe der Gleichungen wird/werden dann die Ausgangsgröße/n des Modells 13 berechnet.
  • Bei den Gleichungen kann es sich um jegliche Gleichungen handeln, die dazu geeignet sind, die tatsächlichen technischen Zusammenhänge der Walzanlage rechnerisch darzustellen. Beispielsweise kann es sich um Exponentialgleichungen höherer Ordnung handeln, mit denen der zeitliche Verlauf von Ausgangsgrößen in Abhängigkeit von einer Mehrzahl von Eingangsgrößen berechnet werden kann. Zur Gewichtung der einzelnen Eingangsgrößen ist dabei üblicherweise jede Eingangsgröße mit einem multiplikativen und/oder additiven Parameter verknüpft, der letztlich den Einfluss der Eingangsgröße/n auf die Ausgangsgröße/n festlegt. Diese Parameter sind von der tatsächlichen Walzanlage abhängig.
  • Vor einem Betrieb der Walzanlage ist es somit erforderlich, die Parameter zu ermitteln und das Modell 13 der Walzanlage entsprechend einzustellen. Das Modell 13 muss also parametriert werden. Dies wird nachfolgend anhand der Figur 2 erläutert.
  • Das in der Figur 2 dargestellte Verfahren ist dazu vorgesehen, die Parameter der Gleichungen des Modells 13 der Figur 1 zu ermitteln. Das Verfahren der Figur 2 kann dabei unabhängig von dem Betrieb der Walzanlage durchgeführt werden. Insbesondere kann das Verfahren auf einem Rechengerät, beispielsweise auf einem Notebook durchgeführt werden, das im Hinblick auf die Walzanlage "off-line" und ggf. in Echtzeit arbeitet.
  • Es wird nunmehr davon ausgegangen, dass auf dem beispielhaft vorgesehenen Notebook, das für die Durchführung des Verfahrens der Figur 2 vorgesehen ist, das im Zusammenhang mit der Figur 1 erläuterte Modell 13 der Walzanlage in der Form eines Programms vorhanden ist. Dies bedeutet, dass auf diesem Rechengerät all diejenigen Gleichungen programmiert sind, die für die rechnerische Nachbildung der Walzanlage in Echtzeit vorgesehen sind. Die Parameter dieser Gleichungen weisen einen Ausgangswert auf, der beispielsweise bei der Programmierung der Gleichungen vorgegeben werden kann. Der Ausgangswert ist dabei noch in keiner Weise an die tatsächliche Walzanlage angepasst.
  • Weiter wird davon ausgegangen, dass eine Datenbank 17 vorhanden ist, auf der ein oder mehrere Datensätze 18 von Walzgängen der tatsächlichen Walzanlage abgespeichert sind. Unter einem Walzgang wird dabei der vollständige Durchlauf eines Walzguts durch die Walzanlage verstanden. Der einem Walzgang zugehörige Datensatz 18 bezieht sich damit nur auf einen bestimmten Durchlauf des Walzguts durch die Walzanlage.
  • Jeder der in der Datenbank 17 enthaltenen Datensätze 18 enthält eine Vielzahl von Betriebsgrößen, bei denen es sich um Istwerte, um Sollwerte, um Stellgrößen und/oder um sonstige Betriebsgrößen der Walzanlage handeln kann. Diese Betriebsgrößen sind dabei zeitabhängig über den zugehörigen Walzgang aufgezeichnet, also über den zeitlichen Durchlauf des Walzguts durch die Walzanlage.
  • Bei den abgespeicherten Betriebsgrößen handelt es sich zumindest um diejenigen Betriebsgrößen der Walzanlage, die von dem Modell 13 als Eingangsgrößen benötigt werden und die von dem Modell 13 als Ausgangsgrößen berechnet werden. Diese Betriebsgrößen sind in der Figur 2 jeweils gesamtheitlich als Eingangsgrößen EG und Ausgangsgrößen AG des Modells 13 bezeichnet.
  • Die Datenbank 17 kann ein Teil des Notebooks sein, auf dem sich das Modell 13 der Figur 2 befindet. In diesem Fall müssen die Datensätze 18 in irgend einer Weise im Betrieb der Walzanlage auf ein Speichermedium abgespeichert werden und dann dem Notebook insbesondere in Echtzeit zugänglich gemacht werden. Ebenfalls ist es möglich, dass die Datenbank 17 der tatsächlichen Walzanlage zugeordnet ist. In diesem Fall können die Datensätze 18 über eine Kommunikationsverbindung zu dem beispielhaft vorgesehenen Notebook übertragen werden, auf dem sich das Modell 13 der Figur 2 befindet. Diese Übertragung der Datensätze 18 kann dabei in Echtzeit stattfinden, so dass auch das Modell 13 der Figur 2 an sich in Echtzeit ablaufen kann. Dies ist aber nicht zwingend erforderlich.
  • Zur Ermittlung der Parameter der Gleichungen des Modells 13 wird nunmehr auf dem Notebook damit begonnen, dass das Modell 13 mit den Ausgangswerten der Parameter und den in der Datenbank 17 abgespeicherten Eingangsgrößen EG eines ersten Datensatzes 17 durchgerechnet wird und die zugehörigen Ausgangsgrößen des Modells 13 ermittelt werden. Diese gesamtheitlich als Modell-Ausgangsgrößen AG* bezeichneten Ausgangsgrößen werden mit den in der Datenbank 18 abgespeicherten Ausgangsgrößen AG desselben ersten Datensatzes 17 verglichen.
  • Dies ist in der Figur 2 beispielhaft anhand des von dem Modell 13 berechneten Istwerts IWB gezeigt, der mit dem in der Datenbank 17 abgespeicherten gemessenen Istwert IWG des zugehörigen ersten Datensatzes 18 verglichen wird. In der Figur 2 ist dieser Vergleich als Block 19 dargestellt.
  • Auf der Grundlage des Vergleichs durch den Block 19 werden nunmehr die Ausgangswerte der Parameter des Modells 13 verändert. Dies ist in der Figur 2 durch die Einflussgroßen PG kenntlich gemacht, die von dem Block 19 auf das Modell 13 einwirken, und die damit die Beeinflussung der Parameter des Modells 13 in Abhängigkeit von dem durchgeführten Vergleich deutlich machen sollen. Die Parameter des Modells 13 weisen nach dem erläuterten ersten Durchlauf des Verfahrens damit nicht mehr die Ausgangswerte, sondern erste Neuwerte auf.
  • Danach wird das vorstehend beschriebene Verfahren erneut durchlaufen, jedoch nicht mit den Ausgangswerten für die Parameter des Modells 13, sondern mit den im ersten Durchlauf des Verfahrens ermittelten ersten Neuwerten der Parameter. Bei diesem zweiten Durchlauf des Verfahrens werden erneut die Betriebsgrößen aus dem ersten Datensatz 18 der Datenbank verwendet. Auf dieser Grundlage wird ein erneuter Vergleich durch den Block 19 vorgenommen und es werden zweite Neuwerte für die Parameter des Modells 13 ermittelt.
  • Diese Wiederholung des Verfahrens kann so lange durchgeführt werden, bis sich die jeweils neu ermittelten Werte für die Parameter des Modells 13 nicht mehr wesentlich von den vorherigen Werten unterscheiden.
  • Danach kann das gesamte Verfahren mit einem zweiten Datensatz 18 aus der Datenbank 17 fortgesetzt werden. In diesem Fall werden also von dem Modell 13 die Betriebsgrößen aus dem zweiten Datensatz 18 sowie die bisher ermittelten Werte für die Parameter verwendet, um über den Block 19 dann die Werte für die Parameter erneut zu beeinflussen. Das Verfahren kann dabei wiederum mehrfach mit dem zweiten Datensatz 18 durchlaufen werden.
  • Danach kann das gesamte Verfahren mit weiteren Datensätzen 18 aus der Datenbank 17 fortgesetzt werden, so dass die zuletzt ermittelten Parameter des Modells 13 immer wieder durch neue Parameter ersetzt werden. Diese Vorgehensweise kann so lange wiederholt werden, bis sich die Werte der Parameter nicht mehr wesentlich ändern.
  • Mit den nunmehr auf dem beispielhaft vorgesehenen Notebook vorliegenden Werten der Parameter kann danach die im Zusammenhang mit der Figur 1 erläuterte Vorrichtung zur Steuerung und/oder Regelung der Walzanlage, also insbesondere das bei der tatsächlichen Walzanlage vorhandene digitale Rechengerät geladen werden. Dies ist gleichbedeutend damit, dass das Modell 13 der Figur 1 anhand der ermittelten Werte für die Parameter eingestellt wird. Danach kann der anhand der Figur 1 erläuterte Prozessbeobachter von dem bei der tatsächlichen Walzanlage vorhandenen Rechengerät mit dem nunmehr parametrierten Modell 13 durchgeführt werden.

Claims (4)

  1. Verfahren zum Ermitteln von Parametern eines Modells (13), mit dem zumindest ein Bereich einer Walzanlage rechnerisch nachbildbar ist, wobei das Modell (13) als Programm, unabhängig von der Walzanlage auf einem Rechengerät gespeichert ist, derart, dass die Parametrierung des Modells unabhängig von der Walzanlage "off-line" ausgeführt wird, wobei eine Datenbank (17) vorhanden ist, auf der mehrere Datensätze (18) von Walzgängen der Walzanlage abgespeichert sind, wobei unter einem Walzgang der vollständige Durchlauf eines Walzguts durch die Walzanlage verstanden wird, und wobei das Verfahren die folgenden Schritte aufweist:
    dem Modell (13) werden Anfangswerte für die zu ermittelnden Parameter vorgegeben,
    dem Modell (13) werden durch Messung innerhalb der Walzanlage ermittelte und in einem ersten Datensatz (18) auf der Datenbank (17) abgespeicherte Eingangsgrößen (EG) zugeführt,
    von dem Modell (13) wird mindestens eine Modell-Ausgangsgröße (AG*) in Abhängigkeit von den Eingangsgrößen (EG) und den Anfangswerten der Parameter berechnet,
    die Modell-Ausgangsgröße (AG*) wird mit einer zugehörigen, durch Messung innerhalb der Walzanlage ermittelten und in dem ersten Datensatz (18) auf der Datenbank (17) abgespeicherten Ausgangsgröße (AG) verglichen, in Abhängigkeit von dem Vergleich werden erste Neuwerte für die Parameter des Modells (13) ermittelt,
    dem Modell (13) werden die in dem ersten Datensatz (18) auf der Datenbank (17) abgespeicherten Eingangsgrößen (EG) erneut zugeführt,
    von dem Modell (13) wird mindestens eine Modell-Ausgangsgröße (AG*) in Abhängigkeit von den Eingangsgrößen (EG) und den ersten Neuwerten der Parameter berechnet,
    die Modell-Ausgangsgröße (AG*) wird mit der zugehörigen, in dem ersten Datensatz (18) auf der Datenbank (17) abgespeicherten Ausgangsgröße (AG) verglichen,
    in Abhängigkeit von dem Vergleich werden zweite Neuwerte für die Parameter des Modells (13) ermittelt.
  2. Verfahren nach Anspruch 1, wobei die Eingangsgrößen (EG) und die Ausgangsgrößen (AG) den ersten Datensatz (18) bilden und einem bestimmten Walzgang zugeordnet sind.
  3. Verfahren zum Betreiben einer Walzanlage unter Verwendung eines gemäß dem Verfahren nach einem der vorstehenden Ansprüche parametrierten Modells, wobei ein gemessener Istwert (IWG) der Walzanlage mit einem zugehörigen Sollwert (SW) verglichen (11) und in Abhängigkeit davon eine Stellgrösse (SG) ermittelt wird, wobei ein berechneter Istwert (IWB) in Abhängigkeit von dem Sollwert (SW) sowie in Abhängigkeit von weiteren Betriebsgrößen der Walzanlage von dem Modell (13) ermittelt wird, und wobei der gemessene Istwert (IWG) mit dem berechneten Istwert (IWB) verglichen (15) und das Vergleichsergebnis als Fehlersignal (FS) verwendet wird.
  4. Rechengerät zur Durchführung des Verfahrens nach Anspruch 1, insbesondere Notebook, auf dem das Modell (13) programmiert ist, auf dem die Anfangswerte für die Parameter abgespeichert sind, und auf dem die Eingangsgrößen (EG) und die Ausgangsgröße (AG) abgespeichert sind.
EP11163141.2A 2010-05-03 2011-04-20 Verfahren zum Ermitteln von Parametern eines Modells für eine Walzanlage Active EP2384830B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010019320A DE102010019320A1 (de) 2010-05-03 2010-05-03 Verfahren zum Ermitteln von Parametern eines Modells für eine Walzanlage

Publications (2)

Publication Number Publication Date
EP2384830A1 EP2384830A1 (de) 2011-11-09
EP2384830B1 true EP2384830B1 (de) 2016-01-20

Family

ID=44583924

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11163141.2A Active EP2384830B1 (de) 2010-05-03 2011-04-20 Verfahren zum Ermitteln von Parametern eines Modells für eine Walzanlage

Country Status (2)

Country Link
EP (1) EP2384830B1 (de)
DE (1) DE102010019320A1 (de)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4105321A1 (de) * 1991-02-20 1992-08-27 Siemens Ag Regelung eines warm- und/oder kaltwalzprozesses
DE4338608B4 (de) * 1993-11-11 2005-10-06 Siemens Ag Verfahren und Vorrichtung zur Führung eines Prozesses in einem geregelten System
DE4338615B4 (de) * 1993-11-11 2005-10-13 Siemens Ag Verfahren und Vorrichtung zur Führung eines Prozesses in einem geregelten System
DE19731980A1 (de) * 1997-07-24 1999-01-28 Siemens Ag Verfahren zur Steuerung und Voreinstellung eines Walzgerüstes oder einer Walzstraße zum Walzen eines Walzbandes
IT1296879B1 (it) * 1997-12-17 1999-08-02 Abb Sistemi Ind Spa Procedimento di supervisione di impianto di laminazione, particolarmente per il controllo in linea della laminazione in
DE102006025026A1 (de) 2006-05-26 2007-11-29 Converteam Gmbh Verfahren zum Betreiben einer Walzanlage

Also Published As

Publication number Publication date
DE102010019320A1 (de) 2011-11-03
EP2384830A1 (de) 2011-11-09

Similar Documents

Publication Publication Date Title
DE4301130C2 (de) Verfahren und Vorrichtung zum Regeln eines Objektes unter Verwendung einer Lernfunktion
DE4008510C2 (de) Regeleinrichtung mit Optimal-Entscheidungseinheit
DE102006047718A1 (de) Verfahren zur Nachverfolgung des physikalischen Zustands eines Warmblechs oder Warmbands im Rahmen der Steuerung einer Grobblechwalzstraße zur Bearbeitung eines Warmblechs oder Warmbands
EP0663632A1 (de) Verfahren und Vorrichtung zur Führung eines Prozesses
EP3537237A1 (de) System zur tabakaufbereitung für die tabak verarbeitende industrie, und verfahren zum betrieb einer vorrichtung
DE102019214548A1 (de) Steuervorrichtung und steuerverfahren
EP0756219A2 (de) Verfahren zur Überwachung von Produkteigenschaften und Verfahren zur Regelung eines Herstellungs-prozesses
DE4338607A1 (de) Verfahren und Vorrichtung zur Führung eines Prozesses in einem geregelten System
EP3825796A1 (de) Verfahren und vorrichtung zum ki-basierten betreiben eines automatisierungssystems
EP1470455A1 (de) Verfahren zur regelung eines industriellen prozesses
WO1998015882A1 (de) Verfahren und einrichtung zur identifikation bzw. vorausberechnung von prozessparametern eines industriellen zeitvarianten prozesses
WO2018192798A1 (de) Optimierung der modellierung von prozessmodellen
DE19731980A1 (de) Verfahren zur Steuerung und Voreinstellung eines Walzgerüstes oder einer Walzstraße zum Walzen eines Walzbandes
EP2384830B1 (de) Verfahren zum Ermitteln von Parametern eines Modells für eine Walzanlage
WO2011003765A1 (de) Steuerverfahren für eine beeinflussungseinrichtung für ein walzgut
WO1995019591A1 (de) Verfahren und vorrichtung zur führung eines prozesses
DE102016209721A1 (de) Modellbasierte Ermittlung eines Systemzustandes mittels eines dynamischen Systems
DE202020100888U1 (de) Vorrichtung zur Zustandsüberwachung von hydraulischen Pressen
DE102006025026A1 (de) Verfahren zum Betreiben einer Walzanlage
EP3686697A1 (de) Regleroptimierung für ein leitsystem einer technischen anlage
DE102021214272A1 (de) Anlagensteuersystem, Anlagensteuerverfahren und Programm
EP4356209A1 (de) Überwachung der produktion von werkstoffplatten, insbesondere holzwerkstoffplatten, insbesondere unter verwendung einer selbstorganisierenden karte
DE19814407A1 (de) Verfahren und Anordnung zur neuronalen Modellierung einer Papierwickelvorrichtung
DE102022209080A1 (de) Verfahren zum Kalibrieren eines Sensors, Recheneinheit und Sensorsystem
DE1538596C (de) Verfahren und Anordnung zur selbst anpassenden Regelung

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120316

17Q First examination report despatched

Effective date: 20121029

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GE ENERGY POWER CONVERSION GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150729

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 771446

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011008688

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: MP

Effective date: 20160120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160421

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160520

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160520

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011008688

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20161021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160420

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 771446

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160420

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230321

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230321

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240320

Year of fee payment: 14