EP2384444A1 - Vorrichtung zur messung von richtung und/oder stärke eines magnetfeldes - Google Patents

Vorrichtung zur messung von richtung und/oder stärke eines magnetfeldes

Info

Publication number
EP2384444A1
EP2384444A1 EP09781798A EP09781798A EP2384444A1 EP 2384444 A1 EP2384444 A1 EP 2384444A1 EP 09781798 A EP09781798 A EP 09781798A EP 09781798 A EP09781798 A EP 09781798A EP 2384444 A1 EP2384444 A1 EP 2384444A1
Authority
EP
European Patent Office
Prior art keywords
sensor
magnetic field
fluxgate
substrate
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09781798A
Other languages
English (en)
French (fr)
Inventor
Frank Schatz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2384444A1 publication Critical patent/EP2384444A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/0206Three-component magnetometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/04Measuring direction or magnitude of magnetic fields or magnetic flux using the flux-gate principle

Definitions

  • the invention relates to a device for measuring the direction and / or strength of a magnetic field, comprising a first sensor for detecting a first component of the magnetic field in a first spatial direction, a second sensor for detecting a second component of the magnetic field in a second spatial direction and a third sensor for detecting a third component of the magnetic field in a third spatial direction.
  • Devices of the type mentioned above can be used, for example, to measure the direction and strength of the earth magnetic field.
  • the measured direction of the earth magnetic field can be visualized, for example, to the user in the form of a digital compass.
  • the measured values can be used by a navigation system or an autopilot for controlling a vehicle, an aircraft or a boat.
  • the present invention seeks to provide a device for three-dimensional measurement of the direction and / or strength of a magnetic field, which has a small size and is easy and inexpensive to produce.
  • a device for measuring the direction and / or strength of a magnetic field comprising a first sensor for detecting a first component of the magnetic field in a first spatial direction, a second sensor for detecting a second component of the magnetic field in a second spatial direction and a third sensor for detecting a third component of the magnetic field in a third spatial direction, wherein the first sensor contains at least one salient sensor and the second and / or the third at least one fluxgate sensor included.
  • At least one Hall sensor detects a magnetic field component perpendicular to the sensor surface with maximum sensitivity.
  • a fluxgate sensor is set up to detect a magnetic field component within the sensor plane.
  • at least one Hall sensor and at least one fluxgate sensor can be arranged in a space-saving manner in one plane, for example, on a single semiconductor substrate. If at least two fluxgate sensors are provided, which include approximately a right angle, a magnetic field in all three spatial directions can be detected without a second semiconductor substrate being arranged at right angles to the first semiconductor device. Substrate is needed. The inventively proposed sensor thus saves height and is easier to manufacture.
  • the semiconductor substrate which contains the Hall sensor and the fluxgate sensors, comprise at least one further component.
  • additional components for example, a power supply of the sensors or a measured value detection can take place.
  • the components can be used to subject the output values of the sensors to plausibility, amplification, discrimination or digitization.
  • a further preferred embodiment of the invention can provide several sensors for each spatial direction in order to increase the reliability of the device in this way by redundant measurement.
  • the fluxgate sensor may e.g. be arranged in one or two metallic planes. In this way, the fluxgate sensor can be generated together with the Hall sensor and other electronic components in one operation on the semiconductor substrate.
  • the inventively proposed device can in particular for measuring the direction and / or strength of the
  • the device is suitable for consumer electronics such as mobile phones, PDAs or navigation devices.
  • Figure 1 shows the arrangement of the components on a substrate.
  • the device according to FIG. 1 is arranged on a substrate 10.
  • the substrate 10 comprises, for example, a semiconductor substrate, in particular a silicon substrate.
  • the semiconductor substrate 10 may be provided with a dopant.
  • the surface of the substrate 10 may be coated with an insulator.
  • the insulator may in particular contain silicon nitride, silicon oxide or silicon oxynitride.
  • the Hall sensor 12 comprises a spatially delimited area which contains a semiconductor material with high charge carrier mobility. Along one direction of the Hall sensor 12, an electric field is applied during operation of the sensor, which causes an electrical current flow through the sensor. In the presence of a magnetic field which acts in a direction perpendicular to the surface of the substrate 10, an electrical voltage can be measured at the Hall sensor 12 in a direction orthogonal to the electric current flow, which voltage increases with the field strength of the magnetic field. The Hall sensor 12 thus serves to measure the field component of the magnetic field, which is perpendicular to the surface of the semiconductor substrate 10.
  • the Hall sensor 12 can also be produced in a manner known per se by structuring the semiconductor substrate 10.
  • the material of the Hall sensor 12 can be deposited on the surface of the semiconductor substrate from the gas phase and subsequently structured and provided with metallic connection contacts.
  • the Hall sensor 12 is provided to detect a magnetic field, or a magnetic field component z, which in Substantially perpendicular to the surface of the substrate 10 acts, two fluxgate sensors 13 and 14 are provided to detect a magnetic field or a magnetic field component in the xy plane of the substrate 10.
  • the first fluxgate sensor 13 and the second fluxgate sensor 14 are arranged approximately orthogonal to one another. Together with the Hall sensor 12 thus three components of a magnetic field in all three spatial directions can be determined. This makes it possible to determine the orientation of the magnetic field in space.
  • Each fluxgate sensor 13 and 14 includes at least one
  • Coil core which preferably consists of a soft magnetic material.
  • excitation and detection coils are arranged around the coil core.
  • Detection coil can thus be determined by means of the fluxgate 13, a magnetic field or a magnetic field component in the direction x.
  • the fluxgate sensor 14 serves to determine a magnetic field or a magnetic field component in the direction y.
  • the fluxgate sensors 13 and 14 can be produced, for example, as micromechanical components and subsequently attached to the surface of the substrate 10 by gluing, welding or bonding.
  • the substrate may be formed, for example, of ceramic or of a printed circuit board.
  • the coil windings and the coil cores of the fluxgate sensors 13 and 14 can be deposited from the gas phase onto the surface of the semiconductor substrate 10 and subsequently patterned.
  • the deposition can be carried out, for example, by vapor deposition, sputtering, chemical vapor deposition or physical vapor deposition.
  • the structuring may comprise, for example, an etching step, subregions of the substrate surface being provided by photoresists or hard masks the etching attack are protected. Insulating layers may occasionally be arranged between the coil cores and the coil windings. These layers are also preferably deposited in a gas phase process and subsequently structured. In this way, the device for
  • Measurement of direction and / or strength of a magnetic field with the known CMOS process steps can be made in a simple manner.
  • the surface of the semiconductor substrate 10 comprises a region 15, which electronic components for
  • the region 15 includes, for example, a current regulation with which a predeterminable longitudinal flow through the Hall sensor 12 can be generated.
  • the region 15 may comprise alternating voltage sources which provide a coil current for generating an alternating magnetic field in the cores of the fluxgate sensors 13 and 14.
  • the region 15 may include evaluation circuits 16 as electrical components which read the Hall voltage of the Hall sensor 12 and the signal voltages induced in the measuring coils fluxgate sensors 13 and 14.
  • the area 15 can also comprise further circuits, for example for the digitization of the signals, for amplification, for discrimination or for
  • the region 15 of the semiconductor substrate 10 comprises bond pads, by means of which an operating voltage can be applied to the sensor elements, as well as further bond pads, via which the measured values can be read out.
  • the invention shows a magnetic field sensor for three spatial directions, in which all sensors for all spatial directions are arranged in one plane on the surface of a substrate 10.
  • the invention according to the proposed sensor to a lower height.
  • the proposed sensor can be produced more easily, since it is no longer necessary to arrange a plurality of semiconductor sensors 12 on a plurality of substrates in different, orthogonal directions for measuring magnetic fields in a plurality of mutually orthogonal directions.

Abstract

Die Erfindung betrifft eine Vorrichtung zur Messung von Richtung und/oder Stärke eines Magnetfeldes, enthaltend einen ersten Sensor zur Erfassung einer ersten Komponente des Magnetfeldes in einer ersten Raumrichtung, einen zweiten Sensor zur Erfassung einer zweiten Komponente des Magnetfeldes in einer zweiten Raumrichtung und einen dritten Sensor zur Erfassung einer dritten Komponente des Magnetfeldes in einer dritten Raumrichtung, wobei der erste Sensor zumindest einen Hall-Sensor enthält und der zweite und/oder der dritte Sensor zumindest einen Fluxgate-Sensor enthalten.

Description

VORRICHTUNG ZUR MESSUNG VON RICHTUNG UND/ODER STÄRKE EINES MAGNETFELDES
Die Erfindung betrifft eine Vorrichtung zur Messung von Richtung und/oder Stärke eines Magnetfeldes, enthaltend einen ersten Sensor zur Erfassung einer ersten Komponente des Magnetfeldes in einer ersten Raumrichtung, einen zweiten Sensor zur Erfassung einer zweiten Komponente des Magnetfeldes in einer zweiten Raumrichtung und einen dritten Sensor zur Erfassung einer dritten Komponente des Magnetfeldes in einer dritten Raumrichtung.
Vorrichtungen der eingangs genannten Art können beispielsweise dazu verwendet werden, die Richtung und Stärke des ErdMagnetfeldes zu messen. Die gemessene Richtung des ErdMagnetfeldes kann beispielsweise dem Benutzer in Form eines digitalen Kompasses visualisiert werden. Weiterhin können die gemessenen Werte von einem Navigationssystem oder einem Autopilot zur Steuerung eines Fahrzeuges, eines Flugzeuges oder eines Bootes verwendet werden.
Zur dreidimensionalen Erfassung der Richtung eines Magnetfeldes, beispielsweise dem Erdmagnetfeld, müssen alle drei Raumrichtungen erfasst werden. Im Stand der Technik ist hierzu beispielsweise vorgesehen, einen Hallsensor einzusetzen. Nachteilig an dieser Lösung ist jedoch die Tatsache, dass lediglich eine Feldkomponente senkrecht zur Sensorebene mit ausreichender Genauigkeit bestimmt werden kann. Die Messung der zwei Feldkomponenten in der Sensorebene ist hingegen nicht mit ausreichender Genauigkeit möglich. Die Erfassung aller drei Raumrichtungen eines Magnetfeldes erfordert somit eine Mehrzahl von Hallsensoren, welche jeweils orthogonal zu einander angeordnet sind. Dadurch wird die Herstellung einer Vorrichtung zur dreidimensionalen Messung von Richtung und/oder Stärke eines Magnetfeldes aufwändig in der Herstellung. Weiterhin benötigt eine solche Vorrichtung gemäß dem Stand der Technik einen vergleichsweise großen Bauraum.
Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine Vorrichtung zur dreidimensionalen Messung von Richtung und/oder Stärke eines Magnetfeldes bereitzustellen, welche eine geringe Baugröße aufweist und einfach und kostengünstig herstellbar ist.
Die Aufgabe wird erfindungsgemäß gelöst durch eine Vorrichtung zur Messung von Richtung und/oder Stärke eines Magnetfeldes, enthaltend einen ersten Sensor zur Erfassung einer ersten Komponente des Magnetfeldes in einer ersten Raumrichtung, einen zweiten Sensor zur Erfassung einer zweiten Komponente des Magnetfeldes in einer zweiten Raumrichtung und einen dritten Sensor zur Erfassung einer dritten Komponente des Magnetfeldes in einer dritten Raumrichtung, wobei der erste Sensor zumindest einen HaIl- sensor enthält und der zweite und/oder der dritte zumindest einen Fluxgatesensor enthalten.
Erfindungemäß wird vorgeschlagen, zumindest einen Hallsensor mit zumindest einem Fluxgatesensor zu kombinieren. Der Hallsensor erfasst dabei eine Magnetfeldkomponente senkrecht zur Sensorfläche mit maximaler Empfindlichkeit. Ein Fluxgatesensor hingegen ist dazu eingerichtet, eine Magnetfeldkomponente innerhalb der Sensorebene zu erfassen. Somit kann zumindest ein Hallsensor und zumindest ein Fluxgatesensor platzsparend in einer Ebene angeordnet werden, beispielsweise auf einem einzigen Halbleitersubstrat. Sofern zumindest zwei Fluxgatesensoren vorgesehen sind, welche etwa einen rechten Winkel einschließen, kann ein Magnetfeld in allen drei Raumrichtungen erfasst werden, ohne dass ein zweites Halbleitersubstrat im rechten Winkel zum ersten Halbleiter- Substrat benötigt wird. Der erfindungsgemäß vorgeschlagene Sensor spart somit Bauhöhe ein und ist einfacher zu fertigen.
In einer bevorzugten Weiterbildung der Erfindung kann das Halbleitersubstrat, welches den Hallsensor und die Fluxgate- sensoren enthält, zumindest ein weiteres Bauelement umfassen. Mittels solcher zusätzlicher Bauelemente kann beispielsweise eine Stromversorgung der Sensoren oder eine Messwerterfassung erfolgen. Weiterhin können die Bauelemente dazu eingesetzt werden, die Ausgangswerte der Sensoren einer Plausibilisierung, einer Verstärkung, einer Diskriminierung oder einer Digitalisierung zu unterziehen.
Eine weitere bevorzugte Ausgestaltung der Erfindung kann vorsehen, für jede Raumrichtung mehrere Sensoren vorzusehen, um auf diese Weise durch redundante Messung die Zuverlässigkeit der Vorrichtung zu erhöhen.
In einer Weiterbildung der Erfindung wird vorgeschlagen, zumindest einen Fluxgatesensor auf dem Halbleitersubstrat in Planarspulen- oder 3D-Mikrospulentechnologie zu erzeugen. Dabei kann der Fluxgatesensor z.B. in einer oder in zwei metallischen Ebenen angeordnet sein. Auf diese Weise kann der Fluxgatesensor zusammen mit dem Hallsensor und weiteren elektronischen Bauelementen in einem Arbeitsgang auf dem Halbleitersubstrat erzeugt werden.
Die erfindungsgemäß vorgeschlagene Vorrichtung kann insbesondere zur Messung von Richtung und/oder Stärke des
Erdmagnetfeldes eingesetzt werden. Insbesondere eignet sich die Vorrichtung für Consumer-Elektronik wie beispielsweise Mobiltelefone, PDAs oder Navigationsgeräte.
Nachfolgend soll die Erfindung ohne Beschränkung des allgemeinen Erfindungsgedankens anhand eines Ausführungsbeispiels näher erläutert werden. Dabei zeigt
Figur 1 die Anordnung der Komponenten auf einem Substrat. Die Vorrichtung gemäß Figur 1 ist auf einem Substrat 10 angeordnet. Das Substrat 10 umfasst dabei beispielsweise ein Halbleitersubstrat, insbesondere ein Siliziumsubstrat. Zur Einstellung einer vorgebbaren Leitfähigkeit kann das Halbleitersubstrat 10 mit einem Dotierstoff versehen sein. Um einen elektrischen Kurzschluss zwischen dem Substrat 10 und den auf seiner Oberfläche angeordneten Bauelementen zu verhindern, kann die Oberfläche des Substrates 10 mit einem Isolator beschichtet sein. Der Isolator kann dabei insbesondere Siliziumnitrid, Siliziumoxid oder Siliziumoxinitrid enthalten.
Auf der Oberfläche des Substrates 10 ist ein Hallsensor 12 angeordnet. Der Hallsensor 12 umfasst dabei einen räumlich umgrenzten Bereich, welcher ein Halbleitermaterial mit hoher Ladungsträgerbeweglichkeit enthält. Entlang einer Richtung des Hallsensors 12 wird bei Betrieb des Sensors ein elektrisches Feld angelegt, welches einen elektrischen Stromfluss durch den Sensor bewirkt. Bei Anwesenheit eines Magnetfeldes, welches in einer Richtung senkrecht zur Oberfläche des Substrates 10 wirkt, kann am Hallsensor 12 in einer zum elektrischen Stromfluss orthogonalen Richtung eine elektrische Spannung gemessen werden, welche mit der Feldstärke des Magnetfeldes ansteigt. Der Hallsensor 12 dient damit der Messung der Feldkomponente des Magnetfeldes, welche senkrecht auf der Oberfläche des Halbleitersubstrates 10 steht.
Auch der Hallsensor 12 kann in an sich bekannter Weise durch Strukturieren des Halbleitersubstrates 10 hergestellt werden. In einer weiteren Ausführungsform der Erfindung kann auf die Oberfläche des Halbleitersubstrates das Material des Hallsensors 12 aus der Gasphase abgeschieden und nachfolgend strukturiert und mit metallischen Anschlusskontakten versehen werden .
Da der Hallsensor 12 dazu vorgesehen ist, ein Magnetfeld, bzw. eine Magnetfeldkomponente z nachzuweisen, welche im Wesentlichen senkrecht zur Oberfläche des Substrates 10 wirkt, sind zwei Fluxgatesensoren 13 und 14 vorgesehen, um ein Magnetfeld bzw. eine Magnetfeldkomponente in der x-y- Ebene des Substrates 10 nachzuweisen. Hierzu sind der erste Fluxgatesensor 13 und der zweite Fluxgatesensor 14 in etwa orthogonal zueinander angeordnet. Zusammen mit dem Hallsensor 12 können somit drei Komponenten eines Magnetfeldes in allen drei Raumrichtungen bestimmt werden. Dadurch wird die Bestimmung der Orientierung des Magnetfeldes im Raum möglich.
Jeder Fluxgatesensor 13 und 14 umfasst zumindest einen
Spulenkern, welcher bevorzugt aus einem weichmagnetischen Material besteht. Um den Spulenkern sind jeweils Erreger- und Detektionsspulen angeordnet. Durch zyklisches Induzieren eines Magnetfeldes im Spulenkern mittels der Erregerspule und phasenrichtiges Abtasten des Induktionssignales in der
Detektionsspule kann somit mittels des Fluxgatesensors 13 ein Magnetfeld bzw. eine Magnetfeldkomponente in Richtung x bestimmt werden. In gleicher Weise dient der Fluxgatesensor 14 dazu, ein Magnetfeld bzw. eine Magnetfeldkomponente in Richtung y zu bestimmen.
Die Fluxgatesensoren 13 und 14 können beispielsweise als mikromechanische Bauelemente hergestellt und nachfolgend durch Kleben, Schweißen oder Bonden auf der Oberfläche des Substrates 10 befestigt werden. In dieser Ausführungsform kann das Substrat beispielsweise aus Keramik oder aus einer Leiterplatte gebildet sein.
In einer weiteren Ausführungsform der Erfindung können die Spulenwicklungen und die Spulenkerne der Fluxgatesensoren 13 und 14 aus der Gasphase auf die Oberfläche des Halbleitersubstrates 10 abgeschieden und nachfolgend strukturiert werden. Die Abscheidung kann beispielsweise durch Aufdampfen, Sputtern, Chemical Vapor Deposition oder Physical Vapor Deposition erfolgen. Die Strukturierung kann beispielsweise einen Ätzschritt umfassen, wobei Teilbereiche der Substratoberfläche durch Photolacke oder Hartmasken vor dem Ätzangriff geschützt sind. Zwischen den Spulenkernen und den Spulenwicklungen können fallweise isolierende Schichten angeordnet sein. Auch diese Schichten werden bevorzugt in einem Gasphasenprozess abgeschieden und nachfolgend strukturiert. Auf diese Weise kann die Vorrichtung zur
Messung von Richtung und/oder Stärke eines Magnetfeldes mit den bekannten CMOS-Prozessschritten in einfacher Weise hergestellt werden.
Weiterhin umfasst die Oberfläche des Halbleitersubstrates 10 einen Bereich 15, welcher elektronische Bauelemente zur
Ansteuerung und Datenerfassung der drei Magnetfeldsensoren 12, 13 und 14 enthält. Der Bereich 15 umfasst dabei beispielsweise eine Stromregelung, mit welcher ein vorgebbarer Längsstrom durch den Hallsensor 12 erzeugt werden kann. Weiterhin kann der Bereich 15 Wechselspannungsquellen umfassen, welche einen Spulenstrom zur Erzeugung eines magnetischen Wechselfeldes in den Kernen der Fluxgatesensoren 13 und 14 bereitstellen. Schließlich kann der Bereich 15 Auswerteschaltungen 16 als elektrische Bauelemente umfassen, welche die Hallspannung des Hallsensors 12 und die in den Messspulen Fluxgatesensoren 13 und 14 induzierten Signalspannungen auslesen.
Fallweise kann der Bereich 15 darüber hinaus weitere Schaltkreise umfassen, beispielsweise zur Digitalisierung der Signale, zur Verstärkung, zur Diskriminierung oder zur
Plausiblisierung . Fallweise können auch Schaltkreise für einen Sensorselbsttest vorgesehen sein. Schließlich umfasst der Bereich 15 des Halbleitersubstrates 10 Bondpads, mittels welchen eine Betriebsspannung an die Sensorelemente angelegt werden kann, sowie weitere Bondpads, über welche die Messwerte ausgelesen werden können.
Im Ergebnis zeigt die Erfindung einen Magnetfeldsensor für drei Raumrichtungen, bei welchem alle Sensoren für alle Raumrichtungen in einer Ebene auf der Oberfläche eines Substrates 10 angeordnet sind. Dadurch weist der erfindungs- gemäß vorgeschlagene Sensor eine niedrigere Bauhöhe auf. Weiterhin kann der vorgeschlagene Sensor einfacher produziert werden, da zur Messung von Magnetfeldern in mehreren, zu einander orthogonalen Richtungen nicht mehr mehrere HaIl- sensoren 12 auf mehreren Substraten in unterschiedlichen, orthogonalen Richtungen angeordnet werden müssen.
Dem Fachmann ist selbstverständlich geläufig, dass die Erfindung nicht auf das dargestellte Ausführungsbeispiel beschränkt ist. Vielmehr können bei der Umsetzung der Erfindung Modifikationen und Änderungen vorgenommen werden, ohne die Erfindung an sich wesentlich zu verändern. Die vorstehende Beschreibung ist daher nicht als beschränkend, sondern als erläuternd anzusehen.

Claims

Ansprüche
1. Vorrichtung zur Messung von Richtung und/oder Stärke eines
Magnetfeldes, enthaltend einen ersten Sensor (12, 13, 14) zur Erfassung einer ersten Komponente des Magnetfeldes in einer ersten Raumrichtung, einen zweiten Sensor (12, 13, 14) zur Erfassung einer zweiten Komponente des Magnetfeldes in einer zweiten Raumrichtung und einen dritten Sensor (12, 13, 14) zur Erfassung einer dritten Komponente des Magnetfeldes in einer dritten Raumrichtung, dadurch gekennzeichnet, dass der erste Sensor zumindest einen Hall-Sensor (12) enthält und der zweite und/oder der dritte Sensor zumindest einen Fluxgate-Sensor (13, 14) enthalten .
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass zumindest der erste, der zweite und der dritte Sensor (12, 13, 14) auf einem Substrat angeordnet sind.
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass zumindest ein weiteres elektronisches Bauelement (16) auf dem Substrat angeordnet ist.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Substrat als Halbleitersubstrat ausgebildet ist und die Sensoren (12, 13, 14) mit einem CMOS-Prozess hergestellt sind.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zumindest ein Fluxgate-Sensor (13, 14) in Planarspulen- oder 3D-Mikrospulentechnologie ausgebildet ist.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zumindest ein Fluxgate-Sensor (13, 14) einen Kern enthält, welcher mittels einer Gasphasenabscheidung mit nachfolgender Strukturierung ausgebildet ist.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass zumindest zwei Fluxgate-Sensoren (13, 14) vorgesehen sind, welche dazu eingerichtet sind, ein Magnetfeld in zueinander orthogonalen Richtungen zu messen .
8. Mobiltelefon mit einer Vorrichtung nach einem der Ansprüche 1 bis 7.
9. Verwendung einer Vorrichtung nach einem der Ansprüche 1 bis 7 zur Messung von Richtung und/oder Stärke des Erd- Magnetfeldes .
EP09781798A 2008-10-13 2009-08-13 Vorrichtung zur messung von richtung und/oder stärke eines magnetfeldes Withdrawn EP2384444A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008042800A DE102008042800A1 (de) 2008-10-13 2008-10-13 Vorrichtung zur Messung von Richtung und/oder Stärke eines Magnetfeldes
PCT/EP2009/060490 WO2010043433A1 (de) 2008-10-13 2009-08-13 Vorrichtung zur messung von richtung und/oder stärke eines magnetfeldes

Publications (1)

Publication Number Publication Date
EP2384444A1 true EP2384444A1 (de) 2011-11-09

Family

ID=41226684

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09781798A Withdrawn EP2384444A1 (de) 2008-10-13 2009-08-13 Vorrichtung zur messung von richtung und/oder stärke eines magnetfeldes

Country Status (8)

Country Link
US (1) US20110316531A1 (de)
EP (1) EP2384444A1 (de)
JP (1) JP2012505420A (de)
KR (1) KR20110076923A (de)
CN (1) CN102187240A (de)
DE (1) DE102008042800A1 (de)
TW (1) TW201015097A (de)
WO (1) WO2010043433A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8475347B2 (en) 2010-06-04 2013-07-02 Stowe Woodward Licensco, Llc Industrial roll with multiple sensor arrays
US8793085B2 (en) * 2011-08-19 2014-07-29 Allegro Microsystems, Llc Circuits and methods for automatically adjusting a magnetic field sensor in accordance with a speed of rotation sensed by the magnetic field sensor
DE102012209232A1 (de) 2012-05-31 2013-12-05 Robert Bosch Gmbh Magnetfeldsensor
DE102012218609A1 (de) 2012-10-12 2014-04-17 Robert Bosch Gmbh Magnetfeld-Erfassungsvorrichtung und Magnetfeld-Erfassungsverfahren
DE102013212830A1 (de) 2013-07-02 2015-01-08 Robert Bosch Gmbh Mikrotechnisches Bauteil für eine magnetische Sensorvorrichtung oder einen magnetischen Aktor und Herstellungsverfahren für ein mikrotechnisches Bauteil für eine magnetische Sensorvorrichtung oder einen magnetischen Aktor
DE102013222538A1 (de) * 2013-11-06 2015-05-07 Robert Bosch Gmbh Magnetische Sensoreinrichtung und Herstellungsverfahren für eine magnetische Sensoreinrichtung
DE102014211311A1 (de) 2014-06-13 2015-12-17 Robert Bosch Gmbh Magnetfeldsensoranordnung, entsprechendes Herstellungsverfahren und Betriebsverfahren
CN104035135B (zh) * 2014-06-27 2015-12-09 中国地质大学(武汉) 一种地球天然脉冲电磁场甚低频接收传感器
US9650744B2 (en) 2014-09-12 2017-05-16 Stowe Woodward Licensco Llc Suction roll with sensors for detecting operational parameters
CN104614690B (zh) * 2014-12-18 2018-03-02 哈尔滨理工大学 一种微型阵列式磁通门传感器
CN104391337B (zh) * 2014-12-22 2016-02-10 中国地质大学(武汉) 用于接收地球天然脉冲电磁场信号的监测仪器
JP6810169B2 (ja) 2016-04-26 2021-01-06 ストウ・ウッドワード・ライセンスコ,リミテッド・ライアビリティ・カンパニー 陸上距離を向上させるスルーホールおよび盲ドリル穴のパターンを備えた吸込ロール
CN108717169B (zh) * 2018-06-22 2020-10-09 钱正洪 一种二维磁场传感器
DE102021201489A1 (de) * 2021-02-17 2022-09-01 Robert Bosch Gesellschaft mit beschränkter Haftung Magnetokoppler zur magnetischen Kopplung von Signalleitungen

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69925573T2 (de) * 1999-05-12 2006-04-27 Asulab S.A. Magnetischer F?hler hergestellt auf einem halbleitenden Substrat
JP2006023318A (ja) * 2000-10-16 2006-01-26 Dentsu Kiko Kk 3軸磁気センサ、全方位磁気センサおよびそれらを用いた方位測定方法
US6536123B2 (en) * 2000-10-16 2003-03-25 Sensation, Inc. Three-axis magnetic sensor, an omnidirectional magnetic sensor and an azimuth measuring method using the same
JP4177032B2 (ja) * 2002-06-04 2008-11-05 株式会社ワコー 三次元磁気センサおよびその製造方法
JP2004271481A (ja) * 2003-03-12 2004-09-30 Citizen Watch Co Ltd 3軸磁気センサー
FR2860594B1 (fr) * 2003-10-06 2005-12-23 Commissariat Energie Atomique Magnetometre a circuit magnetique ouvert et son procede de realisation.
JP4293922B2 (ja) * 2004-02-17 2009-07-08 シチズン電子株式会社 磁気方位検出装置
CN101427394B (zh) * 2006-04-28 2010-12-15 微门有限公司 薄膜三轴磁通门及其实施方法
FR2903812B1 (fr) * 2006-07-13 2008-10-31 Commissariat Energie Atomique Circuit integre reparti sur au moins deux plans non paralleles et son procede de realisation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010043433A1 *

Also Published As

Publication number Publication date
CN102187240A (zh) 2011-09-14
KR20110076923A (ko) 2011-07-06
US20110316531A1 (en) 2011-12-29
DE102008042800A1 (de) 2010-04-15
JP2012505420A (ja) 2012-03-01
TW201015097A (en) 2010-04-16
WO2010043433A1 (de) 2010-04-22

Similar Documents

Publication Publication Date Title
EP2384444A1 (de) Vorrichtung zur messung von richtung und/oder stärke eines magnetfeldes
DE102005047413B4 (de) Magnetoresistives Sensorelement und Verfaheren zum Durchführen eines On-Wafer-Funktionstests, sowie Verfahren zur Herstellung von Magnetfeldsensorelementen und Verfahren zur Herstellung von Magnetfeldsensorelementen mit On-Wafer-Funktionstest
DE102006022336B4 (de) Magnetfeldsensor und Sensoranordenung mit demselben
DE102006045141B3 (de) Magnetfeld-Sensor-Vorrichtung
EP2470920B1 (de) Magnetfeldsensor
DE102008061067B4 (de) Integrierte Schaltung, System und Verfahren, die magnetfeldempfindliche Elemente und Spulen umfassen und verwenden
DE102011088710B4 (de) Magnetorsistive winkelsensoren
US7098655B2 (en) Eddy-current sensor with planar meander exciting coil and spin valve magnetoresistive element for nondestructive testing
DE102012012759A1 (de) Anordnung zur Strommessung
US6191581B1 (en) Planar thin-film magnetic field sensor for determining directional magnetic fields
DE102013209514A1 (de) Dreidimensionaler Hallsensor zum Detektieren eines räumlichen Magnetfeldes
WO2016177490A1 (de) Verfahren zum messen eines elektrischen stroms und stromsensor
DE102015105902A1 (de) Magnetfeldstromsensoren, Sensorsysteme und Verfahren
US20120306487A1 (en) Electrical current sensing circuit, printed circuit board assembly and electrical current sensor device with the same
EP0188435B1 (de) Magnetoresistiver sensor zur messung von magnetfeldänderungen und verfahren zu seiner herstellung
US20170108559A1 (en) Magnetic field sensing apparatus
DE102017121467A1 (de) Magnetsensorbauelement und verfahren zum bestimmen einer rotationsgeschwindigkeit, einer rotationsrichtung und/oder eines rotationswinkels einer magnetischen komponente um eine rotationsachse
DE112017003532T5 (de) Magnetsensor und Detektionsvorrichtung, die ihn verwendet
DE102021101952A1 (de) Stromsensor, magnetsensor und schaltung
EP2992342B1 (de) Magnetfeldsensorvorrichtung
DE102013112760A1 (de) Leistungsmodul mit integrierter Strommessung
EP2031412B1 (de) Vorrichtung zur galvanisch getrennten Messung der elektrischen Leistungsaufnahme eines Zweipols
DE102005008724B4 (de) Sensor zum Messen eines Magnetfeldes
DE19819470B4 (de) Verfahren zum potentialfreien Messen von Strömen durch die Aufzeichnung des von ihnen verursachten Magnetfeldes sowie Vorrichtungen zur Durchführung des Verfahrens
EP1327891B1 (de) Vorrichtung zur Messung eines Magnetfeldes, Magnetfeldsensor und Strommesser

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110803

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130326

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140301