EP2379571A1 - Verfahren zur herstellung von gemischtsubstituierten dialkylphosphinsäuren, -estern und -salzen und ihre verwendung - Google Patents

Verfahren zur herstellung von gemischtsubstituierten dialkylphosphinsäuren, -estern und -salzen und ihre verwendung

Info

Publication number
EP2379571A1
EP2379571A1 EP09778843A EP09778843A EP2379571A1 EP 2379571 A1 EP2379571 A1 EP 2379571A1 EP 09778843 A EP09778843 A EP 09778843A EP 09778843 A EP09778843 A EP 09778843A EP 2379571 A1 EP2379571 A1 EP 2379571A1
Authority
EP
European Patent Office
Prior art keywords
acid
mixed
alkyl
salts
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09778843A
Other languages
English (en)
French (fr)
Inventor
Michael Hill
Werner Krause
Martin Sicken
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant Finance BVI Ltd
Original Assignee
Clariant International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant International Ltd filed Critical Clariant International Ltd
Publication of EP2379571A1 publication Critical patent/EP2379571A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/12Organic materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/30Phosphinic acids [R2P(=O)(OH)]; Thiophosphinic acids ; [R2P(=X1)(X2H) (X1, X2 are each independently O, S or Se)]
    • C07F9/301Acyclic saturated acids which can have further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/30Phosphinic acids [R2P(=O)(OH)]; Thiophosphinic acids ; [R2P(=X1)(X2H) (X1, X2 are each independently O, S or Se)]
    • C07F9/306Arylalkanephosphinic acids, e.g. Ar-(CH2)n-P(=X)(R)(XH), (X = O,S, Se; n>=1)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/30Phosphinic acids [R2P(=O)(OH)]; Thiophosphinic acids ; [R2P(=X1)(X2H) (X1, X2 are each independently O, S or Se)]
    • C07F9/32Esters thereof
    • C07F9/3205Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/3211Esters of acyclic saturated acids which can have further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/48Phosphonous acids [RP(OH)2] including [RHP(=O)(OH)]; Thiophosphonous acids including [RP(SH)2], [RHP(=S)(SH)]; Derivatives thereof
    • C07F9/4808Phosphonous acids [RP(OH)2] including [RHP(=O)(OH)]; Thiophosphonous acids including [RP(SH)2], [RHP(=S)(SH)]; Derivatives thereof the acid moiety containing a substituent or structure which is considered as characteristic
    • C07F9/4816Acyclic saturated acids or derivatices which can have further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/48Phosphonous acids [RP(OH)2] including [RHP(=O)(OH)]; Thiophosphonous acids including [RP(SH)2], [RHP(=S)(SH)]; Derivatives thereof
    • C07F9/4866Phosphonous acids [RP(OH)2] including [RHP(=O)(OH)]; Thiophosphonous acids including [RP(SH)2], [RHP(=S)(SH)]; Derivatives thereof the ester moiety containing a substituent or structure which is considered as characteristic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'

Definitions

  • the invention relates to a process for the preparation of mixed-substituted dialkylphosphinic acids, esters and salts and their use.
  • This object is achieved by a process for the preparation of mixed-substituted dialkylphosphinic acids, esters and salts, characterized in that a) a phosphinic acid source (I)
  • Catalyst systems which are composed of a transition metal and / or a transition metal compound and at least one ligand and wherein the catalyst B are peroxide-forming compounds and / or peroxo compounds and / or azo compounds.
  • step b Preference is given to the mixed-substituted dialkylphosphinic acid obtained according to step b), its salt or ester (III) subsequently in a step c) with metal compounds of Mg, Ca, Al, Sb, Sn, Ge, Ti, Fe, Zr, Zn, Ce, Bi , Sr, Mn, Li, Na, K and / or a protonated nitrogen base to the corresponding mixed-substituted Dialkylphosphinklad (III) of these metals and / or a nitrogen compound reacted.
  • metal compounds of Mg, Ca, Al, Sb, Sn, Ge, Ti, Fe, Zr, Zn, Ce, Bi , Sr, Mn, Li, Na, K and / or a protonated nitrogen base to the corresponding mixed-substituted Dialkylphosphinklad (III) of these metals and / or a nitrogen compound reacted.
  • the alkylphosphonous acid obtained according to step a), its salt or ester (II) and / or the mixed-substituted dialkylphosphinic acid obtained according to step b), its salt or ester (III) and / or the respectively resulting reaction solution thereof with an alkylene oxide or an alcohol is preferred M-OH and / or M'-OH esterified, and the resulting alkylphosphonous (II) and / or mixed-substituted Dialkylphosphin Acid Esteer (III) to the further reaction steps b) or c) subjected.
  • the groups are C 6 -Cis -aryl, C 6 -C 8 -aralkyl and C 6 -C 8 -alkyl-aryl with SO 3 X 2 , -C (O) CH 3 , OH, CH 2 OH, CH 3 SO 3 X 2 , PO 3 X 2 , NH 2 , NO 2 , OCH 3 , SH and / or OC (O) CH 3 substituted.
  • R 1 , R 2 , R 3 , R 4 , R 11 , R 12 , R 13 , R 14 are preferably identical or different and independently of one another are H, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert. Butyl and / or phenyl.
  • X is preferably H, Ca, Mg, Al, Zn, Ti, Fe, Ce, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert. Butyl, phenyl, ethylene glycol, propyl glycol, butyl glycol, pentyl glycol, hexyl glycol, allyl and / or glycerol.
  • the catalyst system A is preferably formed by reaction of a transition metal and / or a transition metal compound and at least one ligand.
  • the transition metals and / or transition metal compounds are preferably those from the seventh and eighth subgroups.
  • the transition metals and / or transition metal compounds are preferably rhodium, nickel, palladium, ruthenium and / or platinum.
  • Catalyst B is preferably hydrogen peroxide, sodium peroxide, lithium peroxide, potassium persulfate, sodium persulfate, ammonium persulfate, sodium peroxodisulfate, potassium peroxoborate, peracetic acid, benzoyl peroxide, di-t-butyl peroxide and / or peroxodisulfuric acid and / or azodiisobutyronitrile, 2,2'-azobis (2-amidinopropane) dihydrochloride and / or 2,2'-azobis (N, N'-dimethylene-isobutyramidine) dihydrochloride.
  • the alcohol of the general formula M-OH is linear or branched, saturated and unsaturated, monohydric organic alcohols having a carbon chain length of CrC 18 and in the alcohol of the general formula M'-OH to linear or branched, saturated and unsaturated , polyhydric organic alcohols having a carbon chain length of CiC-is.
  • the invention also relates to the use of mixed-substituted dialkylphosphinic acids, esters and salts (III), prepared according to one or more of claims 1 to 10 as an intermediate for further syntheses, as a binder, as a crosslinker or accelerator in the curing of epoxy resins, polyurethanes, unsaturated polyester resins, as polymer stabilizers, as crop protection agents, as a therapeutic agent or additive in therapeutics for humans and animals, as a sequestering agent, as a mineral oil additive, as
  • Corrosion inhibitors in detergent and cleaner applications and in electronic applications.
  • the invention also relates to the use of mixed-substituted dialkylphosphinic acids, salts and esters (III), which have been prepared according to one or more of claims 1 to 10, as flame retardants, in particular flame retardants for clearcoats and intumescent coatings, flame retardants for wood and other cellulosic products, as reactive and / or non-reactive flame retardant for polymers, for the production of flame-retardant polymer molding compositions, for the production of flame-retardant polymer moldings and / or for the flame-retardant finishing of polyester and cellulose pure and mixed fabrics by impregnation.
  • flame retardants in particular flame retardants for clearcoats and intumescent coatings, flame retardants for wood and other cellulosic products, as reactive and / or non-reactive flame retardant for polymers, for the production of flame-retardant polymer molding compositions, for the production of flame-retardant polymer moldings and / or for the flame-retardant
  • the invention also relates to a flame-retardant thermoplastic or thermosetting polymer molding composition containing 0.5 to 45 wt .-% of mixed-substituted dialkylphosphinic acids, salts or esters (III), which were prepared according to one or more of claims 1 to 10, 0.5 to 99% by weight of thermoplastic or thermosetting polymer or mixtures thereof, 0 to 55% by weight of additives and 0 to 55% by weight of filler or reinforcing materials, the sum of the components being 100% by weight.
  • a flame-retardant thermoplastic or thermosetting polymer molding composition containing 0.5 to 45 wt .-% of mixed-substituted dialkylphosphinic acids, salts or esters (III), which were prepared according to one or more of claims 1 to 10, 0.5 to 99% by weight of thermoplastic or thermosetting polymer or mixtures thereof, 0 to 55% by weight of additives and 0 to 55% by weight of filler or reinforcing materials, the sum of the
  • the invention further relates to flame-retardant thermoplastic or thermosetting polymer moldings, films, filaments and fibers containing 0.5 to 45 wt .-% of mixed-substituted dialkylphosphinic acids, salts or esters (III), which according to one or more of the claims 1 to 10, 0.5 to 99 wt .-% thermoplastic or thermosetting polymer or mixtures thereof, 0 to 55 wt .-% additives and 0 to 55 wt .-% filler or reinforcing materials, wherein the sum of the components 100 Wt .-% is.
  • III mixed-substituted dialkylphosphinic acids, salts or esters
  • the mixed-substituted dialkylphosphinic acid (III) is an ester after step b)
  • acidic or basic hydrolysis may preferably be carried out to obtain the free mixed-substituted dialkylphosphinic acid or its salt.
  • the mixed-substituted dialkylphosphinic acid is preferably ethylpropylphosphinic acid, ethyl-i-propylphosphinic acid, ethyl-butylphosphinic acid, ethyl-sec-butylphosphinic acid, ethyl-1-butylphosphinic acid, ethyl-2-phenylethylphosphinic acid, propyl-1-propylphosphinic acid, propylbutylphosphinic acid, propyl sec -butylphosphinic acid, propyl-i-butylphosphinic acid, propyl-2-phenylethylphosphinic acid, butyl-i-butylphosphinic acid, butyl-sec-butylphosphinic acid, butyl-2-phenylethylphosphinic acid, sec-butyl-i-butylphosphinic acid,
  • the mixed-substituted dialkylphosphinic ester is a propionic acid, methyl, ethyl; i-propyl; Butyl, phenyl; 2-hydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl, 4-hydroxybutyl and / or 2,3-dihydroxypropyl esters of the abovementioned mixed-substituted dialkylphosphinic acids.
  • the mixed-substituted dialkylphosphinic acid salt is an aluminum (III), calcium (II), magnesium (H), cerium (III), Ti (IV) and / or zinc (II) salt aforementioned mixed-substituted dialkylphosphinic acids.
  • the transition metals for the catalyst A are preferably elements of the seventh and eighth subgroups (according to modern nomenclature a metal of group 7, 8, 9 or 10), such as rhenium, ruthenium, cobalt, rhodium, iridium, nickel, palladium and platinum.
  • the metal salts used as the source of the transition metals and transition metal compounds are those of mineral acids containing the anions fluoride, chloride, bromide, iodide, fluorate, chlorate, bromate, iodate, fluorite, chlorite, bromite, iodite, hypofluorite, hypochlorite, hypobromite, hypoiodite, perfluorate, perchlorate, perbromate, periodate, Cyanide, cyanate, nitrate, nitride, nitrite, oxide, hydroxide, borate, sulfate, sulfite, sulfide, Persulfate, thiosulfate, sulfamate, phosphate, phosphite, hypophosphite, phosphide, carbonate and sulfonate such as methanesulfonate, chlorosulfonate, fluorosulfonate,
  • transition metals and transition metal compounds are salts of the transition metals with tetraphenylborate and halogenated tetraphenylborate anions, such as perfluorophenylborate.
  • Suitable salts also include double salts and complex salts consisting of one or more transition metal ions and independently one or more alkali metal, alkaline earth metal, ammonium, organic ammonium, phosphonium and organic phosphonium ions and independently one or more of the abovementioned anions.
  • Suitable double salts provide z.
  • a source of the transition metals is the transition metal as an element and / or a transition metal compound in its zero-valent state.
  • the transition metal is used metallically or used as an alloy with other metals, in which case boron, zirconium, tantalum, tungsten, rhenium, cobalt, iridium, nickel, palladium, platinum and / or gold is preferred.
  • the transition metal content in the alloy used is preferably 45-99.95% by weight.
  • the transition metal is microdispersed (particle size 0.1 mm - 100 microns) used.
  • the transition metal on a metal oxide such as alumina, silica, titania, zirconia, zinc oxide, nickel oxide, vanadium oxide, chromium oxide, magnesium oxide, Celite ®, diatomaceous earth, on a metal carbonate such as barium carbonate, calcium carbonate, strontium carbonate, on a metal sulfate such as barium sulfate, it is preferred Calcium sulfate, strontium sulfate, on a metal phosphate such as aluminum phosphate, vanadium phosphate, on a metal carbide such as silicon carbide, on a metal aluminate such as calcium aluminate, on a metal silicate such as aluminum silicate, chalks, zeolites, bentonite, montmorillonite, hectorite, on functionalized silicates, functionalized silica gels such as Silia Bond
  • Suitable sources of the metal salts and / or transition metals are preferably also their complex compounds.
  • Complex compounds of the metal salts and / or transition metals are composed of the metal salts or
  • Transition metals and one or more complexing agents together.
  • Suitable complexing agents are, for. B. olefins, diolefins, nitriles, dinitriles,
  • Complex compounds of the metal salts and / or transition metals may be supported on the above-mentioned support materials.
  • the content of said supported transition metals 0.01 to 20 wt .-%, preferably 0.1 to 10 wt .-%, in particular 0.2 to 5 wt .-%, based on the total mass of the support material.
  • Suitable sources of transition metals and transition metal compounds are, for example, palladium, platinum, nickel, rhodium; Palladium, platinum, nickel or rhodium on alumina, on silica, on barium carbonate, on barium sulfate, on calcium carbonate, on strontium carbonate, on carbon, on activated charcoal; Platinum-palladium-gold, aluminum-nickel, iron-nickel, lanthanoid-nickel, zirconium-nickel, platinum-iridium, platinum-rhodium; Raney ® nickel, nickel-zinc-iron oxide; Palladium (II), nickel (II), platinum (II), rhodium chloride, bromide, iodide, fluoride, hydride, oxide, peroxide, cyanide, sulfate, nitrate, phosphide, boride, chromium oxide, cobalt oxide, carbonate hydroxide, cyclohexane butyrate, hydrox
  • palladium (II) chloride dimer bis (dibenzylideneacetone) palladium (0), tris (di-benzylideneacetone) dipalladium (0), tetrakis (triphenylphosphine) palladium (0), tetrakis (tricyclohexylphosphine) palladium (0), bis [1, 2- bis (diphenylphosphine) eth an] -palladium (0), bis (3,5,3 ', 5'-dimethoxydibenzylidene acetone) palladium (O), bis (tri-tert-butylphosphine) palladium (0), meso-tetraphenyltetrabenzoporphine palladium,
  • the ligands are preferably phosphines of the formula (V)
  • phosphines (V) are trimethyl, triethyl, tripropyl, triisopropyl, tributyl, triisobutyl, triisopentyl, trihexyl, tricyclohexyl, trioctyl, tridecyl, triphenyl, diphenylmethyl, phenyldimethyl, tri (o-tolyl), tri (p-tolyl), ethyldiphenyl, dicyclohexylphenyl, 2-pyridyldiphenyl, bis (6-methyl-2-pyridyl) -phenyl, tri- (p -chlorophenyl) -, Th - (p-methoxyphenyl) -, diphenyl (2-sulfonatophenyl) phosphine; Potassium, sodium and ammonium salts of Diphenyl (3-sulfonatophenyl) phosphine, bis (4
  • the ligands are bidentate ligands of the general formula R 6 M "-ZM” R 6 (VI).
  • M independently represent N, P, As or Sb.
  • the two M are the same and more preferably M "is a phosphorus atom.
  • Each group R 6 independently of one another represents the radicals described under formula (V). Preferably, all groups R 6 are identical.
  • Z preferably represents a divalent bridging group which contains at least 1 bridging atom, preferably containing 2 to 6 bridging atoms.
  • Bridging atoms can be selected from C, N, O, Si, and S atoms.
  • Z is an organic bridging group containing at least one carbon atom.
  • Z is an organic bridging group containing from 1 to 6 bridging atoms of which at least two are carbon atoms which may be unsubstituted or substituted.
  • Preferred Z groups are -CH 2 -, -CH 2 -CH 2 -, -CH 2 -CH 2 -CH 2 -, -CH 2 -CH (CH 3 ) -CH 2 -, -CH 2 -C (CHa) 2 -CH 2 -, -CH 2 -C (C 2 Hs) -CH 2 -, -CH 2 -Si (CHs) 2 -CH 2 -, -CH 2 -O-CH 2 -, -CH 2 -CH 2 -CH 2 -CH 2 -, -CH 2 -CH (C 2 Hs) -CH 2 -, -CH 2 -CH (n-Pr) -CH and -CH 2 -CH (n-Bu) -CH 2 unsubstituted or substituted 1, 2-phenyl, 1, 2-cyclohexyl, 1, 1'- or 1, 2-ferrocenyl radicals, 2,2 '- (1, 1'-bipheny
  • Suitable bidentate phosphine ligands are, for example, 1, 2-bis (dimethyl), 1, 2-bis (diethyl), 1, 2-bis (dipropyl), 1, 2-bis (diisopropyl), 1, 2-bis (dibutyl), 1, 2-bis (di-tert-butyl), 1, 2-bis (dicyclohexyl) and 1, 2-bis (diphenylphosphino) ethane; 1, 3-bis (dicyclohexyl), 1, 3-bis (diisopropyl), 1, 3-bis (di-tert-butyl) and 1, 3-bis (diphenylphosphino) propane; 1, 4-bis (diisopropyl) and 1, 4-bis (diphenylphosphino) butane; 1, 5-bis (dicyclohexylphosphino) pentane; 1, 2-bis (di-tert-butyl), 1, 2-bis (di-phenyl), 1, 2-bis (di-cyclo
  • the catalyst system has a transition metal-ligand molar ratio of from 1: 0.01 to 1: 100, preferably from 1: 0.05 to 1:10 and in particular from 1: 1 to 1: 4.
  • the reactions in the process stages a), b) and c) are preferably carried out optionally in an atmosphere which contains further gaseous constituents such as, for example, nitrogen, oxygen, argon, carbon dioxide; the temperature is -20 to 340 0 C, in particular 20 to 180 0 C and the total pressure of 1 to 100 bar.
  • the isolation of the products and / or the transition metal and / or the transition metal compound and / or catalyst system and / or the ligand and / or the reactants according to process steps a), b) and c) is carried out optionally by distillation or rectification, by crystallization or precipitation , by filtration or centrifugation, by adsorption or chromatography or other known methods.
  • solvents, adjuvants and optionally other volatile components are replaced by, for. As distillation, filtration and / or extraction.
  • the reactions in the process stages a), b) and c) are preferably carried out optionally in absorption columns, spray towers, bubble columns, stirred kettles, trickle bed reactors, flow tubes, loop reactors and / or kneaders.
  • Suitable mixing elements are z. As anchor, blade, MIG, propeller, impeller, turbine, cross-stirrer, dispersing, hollow (gassing) - stirrer, rotor-stator mixers, static mixers, Venturi nozzles and / or lift pumps.
  • the reaction solutions A mixtures undergo a mixing intensity corresponding to a rotation Reynolds number of 1 to 1,000,000, preferably 100 to 100,000.
  • an intensive mixing of the respective reactants, etc. takes place under an energy input of 0.080 to 10 kW / m 3 , preferably 0.30 to 1.65 kW / m 3 .
  • the catalyst A preferably acts homogeneously and / or heterogeneously during the reaction. Therefore, the heterogeneous catalyst acts during the reaction as a suspension or bound to a solid phase.
  • the particular catalyst A is preferably generated in situ before the reaction and / or at the beginning of the reaction and / or during the reaction.
  • the particular reaction is preferably carried out in a solvent as a one-phase system in homogeneous or heterogeneous mixture and / or in the gas phase.
  • phase transfer catalyst can additionally be used.
  • the reactions according to the invention can be carried out in the liquid phase, in the gas phase or in the supercritical phase.
  • the catalyst A or B is preferably used homogeneously or as a suspension, while in gas-phase or supercritical operation a fixed-bed arrangement is advantageous.
  • Suitable solvents are water, alcohols such. Methanol, ethanol, i-propanol, n-propanol, n-butanol, i-butanol, t-butanol, n-amyl alcohol, i-amyl alcohol, t-amyl alcohol, n-hexanol, n-octanol, i-octanol, n-tridecanol, benzyl alcohol, etc. Preference is furthermore given to glycols such as.
  • Methylcyclohexane, etc . Ethers such as anisole (methyl phenyl ether), t-butyl methyl ether, dibenzyl ether, diethyl ether, dioxane, diphenyl ether, methyl vinyl ether, tetrahydrofuran, triisopropyl ether, etc .; Glycol ethers, such as diethylene glycol diethyl ether, diethylene glycol dimethyl ether (diglyme), diethylene glycol monobutyl ether, diethylene glycol monomethyl ether,
  • DME monoglyme 1,2-dimethoxyethane
  • ethylene glycol monobutyl ether 1,2-dimethoxyethane
  • triethylene glycol dimethyl ether 1,2-dimethoxyethane
  • Ketones such as acetone, diisobutyl ketone, methyl n-propyl ketone; Methyl ethyl ketone, methyl i-butyl ketone, etc .
  • Esters such as methyl formate, methyl acetate, ethyl acetate, n-propyl acetate and n-butyl acetate, etc .
  • Carboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, etc .; individually or in combination with each other.
  • Suitable solvents are also the olefins and phosphinic acid sources used. These offer advantages in the form of a higher space-time yield.
  • the reaction is carried out under its own vapor pressure of the olefin and / or the solvent.
  • R 1 , R 2 , R 3 , R 4 of the olefin (IV) are the same or different and are independently H, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl and / or phenyl.
  • olefins such as allyl isothiocyanate, allyl methacrylate, 2-allylphenol, N-allylthiourea, 2- (allylthio) -2-thiazoline, allyltrimethylsilane, allyl acetate, allylacetoacetate, allyl alcohol, allylamine, allylbenzene, allyl cyanide, allyl (cyanoacetate), allylanisole, trans-2-pentenal, cis-2-pentenenitrile, 1-penten-3-ol, 4-penten-1-ol, 4-penten-2-ol, trans-2-hexenal, trans-2-hexen-1-ol, cis-3-hexen-1-ol, 5-hexen-1-ol, styrene, methylstyrene, 4-methylstyrene, vinyl acetate, 9-vinylanthracene, 2-vinylpyridine, 4-viny
  • the reaction preferably takes place at a partial pressure of the olefin of 0.01-100 bar, more preferably at a partial pressure of the olefin of 0.1-10 bar.
  • the reaction is carried out in a phosphinic-olefin molar ratio of 1: 10,000 to 1: 0.001, more preferably in the ratio of 1: 30 to 1: 0.01.
  • the reaction preferably takes place in a phosphinic acid catalyst molar ratio of 1: 1 to 1: 0.00000001, more preferably 1: 0.01 to 1: 0.000001.
  • the reaction preferably takes place in a phosphinic acid / solvent molar ratio of 1: 10,000 to 1: 0, more preferably 1:50 to 1: 1.
  • a process according to the invention for the preparation of compounds of the formula (II) is characterized in that a phosphinic acid source is reacted with olefins in the presence of a catalyst and the product (II) (alkylphosphonous acid or salts, esters) of catalyst, transition metal or transition metal compound , Ligand, complexing agent, salts and by-products.
  • a phosphinic acid source is reacted with olefins in the presence of a catalyst and the product (II) (alkylphosphonous acid or salts, esters) of catalyst, transition metal or transition metal compound , Ligand, complexing agent, salts and by-products.
  • the catalyst, the catalyst system, the transition metal and / or the transition metal compound is separated by adding an adjuvant 1 and removing the catalyst, the catalyst system, the transition metal and / or the transition metal compound by extraction and / or filtration.
  • the ligand and / or complexing agent is separated by extraction with auxiliaries 2 and / or distillation with auxiliaries 2.
  • Auxiliary 1 is preferably water and / or at least one member of the family of metal scavengers.
  • Preferred metal scavengers are metal oxides such as alumina, silica, titania, zirconia, zinc oxide, nickel oxide, vanadium oxide, chromium oxide, magnesium oxide, Celite ®, diatomaceous earth;
  • Metal carbonates such as barium carbonate, calcium carbonate, strontium carbonate; Metal sulfates such as barium sulfate, calcium sulfate, strontium sulfate; Metal phosphates such as aluminum phosphate, vanadium phosphate, metal carbides such as silicon carbide; Metal aluminates such as calcium aluminate; Metal silicates such as aluminum silicate, chalks, zeolites, bentonite, montmorillonite, hectorite; functionalized silicates, functionalized silica gels, such as Silia Bond ®, QuadraSil TM; Polysiloxanes such as Deloxan ®; Metal nitrides, carbon, activated carbon, mullites, bauxites, antimonyites, scheelites, perovskites, hydrotalcites, functionalized and unfunctionalized cellulose, chitosan, keratin, heteropolyanions, ion exchangers such as Amberlite TM
  • Ambersep® TM Dowex ®, ® Lewatit, ScavNet ®; functionalized polymers such as Chelex ®, QuadraPure TM, Smopex ®, PolyOrgs® ®; polymer-bound phosphines, phosphine oxides, phosphinates, phosphonates, phosphates, amines, ammonium salts, amides, thioamides, ureas, thioureas, triazines, imidazoles, pyrazoles, pyridines, pyrimidines, pyrazines, thiols, thiol ethers, thiol esters, alcohols, alkoxides, ethers, esters, carboxylic acids , Acetates, acetals, peptides, hetarenes, polyethylenimine / silica and / or dendrimers.
  • Auxiliaries 1 are preferably added in quantities corresponding to a 0.1-40% by weight loading of the metal on the auxiliary 1.
  • Aid 1 at temperatures of 20 is preferred - 90 0 C.
  • the residence time of adjuvant 1 is preferably 0.5 to 360 minutes.
  • Auxiliary 2 is preferably the abovementioned solvent according to the invention, as is preferably used in process step a).
  • the esterification of the mixed-substituted dialkylphosphinic acid (III) or the Alkylphosphonigklarivate (II) and the Phosphin Acid Tarreattle (I) to the corresponding esters can be achieved for example by reaction with higher boiling alcohols with removal of the water formed by azeotropic distillation or by reaction with epoxides (alkylene oxides).
  • the alkylphosphonous acid (II) is directly esterified with an alcohol of the general formula M-OH and / or M'-OH or by reaction with alkylene oxides, as indicated below.
  • M-OH primary, secondary or tertiary alcohols having a carbon chain length of Ci-Ci 8 are particularly preferred.
  • Particularly preferred are methanol, ethanol, propanol, isopropanol, n-butanol, 2-butanol, tert-butanol, amyl alcohol and / or hexanol.
  • M'-OH ethylene glycol 1, 2-propylene glycol, 1, 3-propylene glycol, 1, 4-butanediol, 2,2-dimethylpropane-1,3-diol, neopentyl glycol, 1,6-hexanediol, 1, 4 Cyclohexanedimethanol, glycerol, trishydroxymethylethane, trishydroxymethylpropane, pentaerythritol, sorbitol, mannitol, ⁇ -naphthol,
  • Polyethylene glycols, polypropylene glycols and / or EO-PO block polymers are examples of polypropylene glycols and / or EO-PO block polymers.
  • M-OH and M'-OH are monohydric or polyhydric, unsaturated alcohols having a carbon chain length of C-i-C-is, such as n-buten-2-ol-1, 1, 4-butenediol and allyl alcohol.
  • M-OH and M'-OH are reaction products of monohydric alcohols with one or more molecules of alkylene oxides, preferably with ethylene oxide and / or 1, 2-propylene oxide.
  • reaction products of monohydric alcohols with one or more molecules of alkylene oxides preferably with ethylene oxide and / or 1, 2-propylene oxide.
  • M-OH and M'-OH are also preferably reaction products of polyhydric alcohols with one or more molecules of alkylene oxide, in particular diglycol and triglycol, and adducts of 1 to 6 molecules of ethylene oxide or propylene oxide with glycerol, trishydroxymethylpropane or pentaerythritol.
  • reaction products of water with one or more molecules of alkylene oxide Preference is given to polyethylene glycols and poly-1, 2-propylene glycols of various molecular sizes having an average molecular weight of 100-1,000 g / mol, particularly preferably 150-350 g / mol.
  • M-OH and M'-OH are reaction products of ethylene oxide with poly-1, 2-propylene glycols or fatty alcohol propylene glycols; also reaction products of 1, 2-propylene oxide with polyethylene glycols or fatty alcohol ethoxylates. Preference is given to those reaction products having an average molecular weight of from 100 to 1000 g / mol, more preferably from 150 to 450 g / mol.
  • M-OH and M'-OH are reaction products of alkylene oxides with ammonia, primary or secondary amines,
  • Hydrogen sulfide, mercaptans, oxygen acids of phosphorus and C 2 -CO-dicarboxylic acids are triethanolamine, methyldiethanolamine, n-butyldiethanolamine, n-dodecyldiethanolamine, dimethylethanolamine, n-butylmethylethanolamine, di-n-butylethanolamine, n-dodecylmethylethanolamine, tetrahydroxyethylethylenediamine or pentahydroxyethyldiethylenetriamine.
  • Preferred alkylene oxides are ethylene oxide, 1, 2-propylene oxide, 1, 2-epoxybutane, 1, 2-epoxyethylbenzene, (2,3-epoxypropyl) benzene, 2,3-epoxy-1-propanol and 3,4-epoxy-1 butene.
  • Suitable solvents are the solvents mentioned in process step a) and also the alcohols M-OH, M'-OH and the alkylene oxides used.
  • the reaction is preferably carried out under its own vapor pressure of the alcohol M-OH, M'-OH and alkylene oxide used and / or of the solvent.
  • the reaction preferably takes place at a partial pressure of the alcohol M-OH, M'-OH and alkylene oxide used of 0.01 to 100 bar, more preferably at a partial pressure of the alcohol of 0.1 to 10 bar.
  • the reaction is preferably carried out at a temperature of -20 to 340 ° C., more preferably at a temperature of 20 to 180 ° C.
  • the reaction takes place at a total pressure of 1 to 100 bar.
  • the reaction preferably takes place in a molar ratio of the alcohol or alkylene oxide component to the phosphinic acid source (I) or alkylphosphonous acid (II) or mixed-substituted dialkylphosphinic acid (III) of 10,000: 1 to 0.001: 1, particularly preferably in the ratio of 1,000: 1 to 0.01: 1.
  • the reaction preferably takes place in a molar ratio of the phosphinic acid source (I) or alkylphosphonous acid (II) or mixed-substituted
  • Preferred catalysts B are peroxo compounds such as peroxomonosulfuric acid, potassium monopersulfate (potassium peroxomonosulfate), Caroat TM, Oxone TM, peroxodisulfuric acid, potassium persulfate (potassium peroxodisulfate), sodium persulfate (sodium peroxodisulfate), ammonium persulfate (ammonium peroxodisulfate).
  • peroxo compounds such as peroxomonosulfuric acid, potassium monopersulfate (potassium peroxomonosulfate), Caroat TM, Oxone TM, peroxodisulfuric acid, potassium persulfate (potassium peroxodisulfate), sodium persulfate (sodium peroxodisulfate), ammonium persulfate (ammonium peroxodisulfate).
  • Preferred catalysts B are also compounds which can form peroxides in the solvent system, such as sodium peroxide, sodium peroxydipiperoxohydrate, sodium peroxide diperoxohydrate hydrate, sodium peroxide dihydrate, sodium peroxide octa hydrate, lithium peroxide,
  • Lithiumperoxidmonoperoxohydrattrihydrat calcium peroxide, strontium peroxide, barium peroxide, magnesium peroxide, zinc peroxide, potassium hyperoxide, Kaliumperoxiddiperoxohydrat, Natriumperoxoboratetetrahydrat, Natriumperoxoborattrihydrat, Natriumperoxoboratmonohydrat, anhydrous sodium perborate, Kaliumperoxoboratperoxohydrat, Magnesiumperoxoborat, Calciumperoxoborat, Bariumperoxoborat, Strontiumperoxoborat, Kaliumperoxoborat, Peroxomonophosphorklare, peroxodiphosphoric, potassium peroxodiphosphate, ammonium peroxodiphosphate, Kaliumammoniumperoxodiphosphate (double salt) Sodium carbonate peroxohydrate, urea peroxohydrate, ammonium oxalate peroxide, barium peroxide peroxohydrate, calcium hydrogen peroxide, calcium peroxide pe
  • Preferred catalysts B are also hydrogen peroxide, performic acid, peracetic acid, benzoyl peroxide, di-tert-butyl peroxide, dicumyl peroxide, 2,4-dichlorobenzoyl peroxide, decanoyl peroxide, lauryl peroxide, cumene hydroperoxide, pinene hydroperoxide, p-menthane hydroperoxide, tert-butyl hydroperoxide, acetylacetone peroxide, methyl ethyl ketone peroxide, succinic acid peroxide, dicetyl peroxydicarbonate , tert-butyl peroxyacetate, tert-butyl peroxymaleic acid, tert-butyl peroxybenzoate, acetylcyclohexylsulfonyl peroxide.
  • Preferred catalysts B are water-soluble azo compounds.
  • Particularly preferred azo initiators as VAZO ® 52 2,2'-azobis (2,4-dimethyl-valeronitrile), Vazo ® 64 (azo-bis (isobutyronitrile), AIBN), VAZO ® 67 2,2'-azobis (2 - methylbutyronitrile), VAZO ® 88 i .r-AzobisCcyclohexane-i-carbonitrile), VAZO ® 68 from the company.
  • azo initiators such as 2-tert-butylazo-2-cyanopropane, dimethylazo-diisobutyrate, azodiisobutyronitrile, 2-tert-butylazo-i-cyanocyclohexane, i-tert-amylazo-i-cyanocyclohexan.
  • alkyl perketals such as 2,2-bis (tert-butylperoxy) butane, ethyl 3,3-bis (tert-butylperoxy) butyrate, 1,1-di- (tert-butylperoxy) cyclohexane.
  • Preferred olefins are the olefins mentioned under process step a).
  • the catalyst B is used in amounts of 0.05 to 5 mol% relative to the respective olefin (IV).
  • the catalyst B is preferably used in amounts of from 0.001 to 10 mol%, based on the phosphorus-containing compound.
  • the catalyst B is added continuously during the reaction.
  • the catalyst B is added continuously during the reaction in the form of a solution in the olefin (IV).
  • the catalyst B is added continuously during the reaction in the form of a solution in the solvent used.
  • Suitable solvents are those as used further in process step a).
  • the implementation of the alkylphosphonous acids (II) with the olefin (IV) is preferably carried out at a temperature from 0 to 250 0 C, particularly preferably at a temperature of 20 to 200 0 C and in particular at a temperature of 50 to 150 0 C.
  • the atmosphere in the reaction with the olefin (IV) to 50 to 99.9 wt .-% of components of the solvent and the olefin (IV), preferably 70 - 95%.
  • the reaction preferably takes place during the addition of the olefin (IV) at a pressure of 1-20 bar.
  • the product mixture obtained after process stage a) and / or b) is worked up.
  • the product mixture obtained after process step a) is worked up and then the mixed-substituted dialkylphosphinic acids obtained according to process step b) and / or their esters and alkali metal salts are reacted in process step c).
  • the mixed-substituted dialkylphosphinic acid or its salt (III) can be subsequently converted into further metal salts.
  • the metal compounds used in process step c) are preferably compounds of the metals Mg 1 Ca, Al, Sb, Sn, Ge, Ti, Fe, Zr, Zn, Ce, Bi, Sr, Mn, Li, Na, K, more preferably Mg, Ca, Al, Ti, Zn, Sn, Ce, Fe.
  • Suitable solvents for process step c) are those which are used further up in process step a).
  • reaction is carried out in process step c) in an aqueous medium.
  • process stage c) obtained according to process stage b) mixed-substituted dialkylphosphinic acids, esters and / or alkali metal salts (III) with metal compounds of Mg, Ca, Al, Zn, Ti 1 Sn, Zr, Ce or Fe to give the mixed-substituted dialkylphosphinic acid salts ( III) of these metals.
  • the reaction takes place in a molar ratio of mixed-substituted dialkylphosphinic acid / ester / salt (III) to metal of 8: 1 to 1: 3 (for tetravalent metal ions or metals having a stable tetravalent oxidation state), from 6: 1 to 1: 3 (for trivalent metal ions or metals with stable trivalent oxidation state), from 4 to 1 to 1 to 4 (for divalent metal ions or metals with stable divalent oxidation state) and from 3 to 1 to 1 to 6 (for monovalent metal ions or metals with stable monovalent oxidation state) ,
  • step b) obtained mixed-substituted Dialkylphosphinklaer / -salz (III) in the corresponding dialkylphosphinic over and sets in process step c) with metal compounds of Mg, Ca, Al, Zn, Ti, Sn, Zr, Ce or Fe to the mixed-substituted Dialkylphosphinkladzen (III) of these metals.
  • the mixed-substituted dialkylphosphinic acid ester (III) obtained in process step b) is preferably converted into a dialkylphosphinic alkali metal salt and added in process step c) with metal compounds of Mg, Ca, Al, Zn, Ti, Sn, Zr, Ce or Fe the mixed-substituted Dialkylphosphinkladalzen (III) of these metals.
  • the metal compounds of Mg, Ca, Al, Zn, Ti, Sn, Zr, Ce or Fe for process step c) are preferably metals, metal oxides, hydroxides, oxide hydroxides, borates, carbonates, hydroxocarbonates, hydroxocarbonate hydrates, mixed hydroxocarbonates, mixed hydroxocarbonate hydrates, phosphates, sulfates, sulfate hydrates, hydroxysulfate hydrates, mixed hydroxysulfate hydrates, oxysulfates, acetates, nitrates, fluorides, fluoride hydrates, chlorides, chloride hydrates , -oxychloride, -bromide, -iodide, -iodidhydrate, -carboxylic acid derivatives and / or alkoxides.
  • the metal compounds are preferably aluminum chloride, aluminum hydroxide, aluminum nitrate, aluminum sulfate, titanyl sulfate, zinc nitrate, zinc oxide, zinc hydroxide and / or zinc sulfate.
  • metallic aluminum fluoride, hydroxychloride, bromide, iodide, sulfide, selenide; phosphide, hypophosphite, antimonide, nitride; carbide, hexafluorosilicate; hydride, calcium hydride, borohydride; chlorate; Sodium aluminum sulfate, aluminum potassium sulfate, aluminum ammonium sulfate, nitrate, metaphosphate, phosphate, silicate, magnesium silicate, carbonate, hydrotalcite, sodium carbonate, borate; thiocyanate; oxide, oxyhydroxide, their corresponding hydrates and / or polyaluminum hydroxy compounds, which preferably have an aluminum content of 9 to 40 wt .-%.
  • aluminum salts of mono-, di-, oligo-, polycarboxylic acids such as.
  • zinc halides zinc fluoride, zinc chlorides, zinc bromide, zinc iodide.
  • zinc borate carbonate, hydroxide carbonate, silicate,
  • hexafluorosilicate, stannate, hydroxide stannate, magnesium aluminum hydroxide carbonate; nitrate, nitrite, phosphate, pyrophosphate; sulfate, phosphide, selenide, telluride and zinc salts of oxo acids of the seventh main group Hypohalites, halides, halogenates, eg zinc iodate, perhalates, eg zinc perchlorate
  • Zinc salts of pseudohalides (zinc thiocyanate, cyanate, cyanide); Zinc oxides, peroxides, hydroxides or mixed zinc oxide hydroxides.
  • zinc salts of the oxo acids of the transition metals for example zinc chromate (VI) hydroxide, chromite, molybdate, permanganate, molybdate.
  • zinc salts of mono-, di-, oligo-, polycarboxylic acids such as. B. zinc formate, acetate, trifluoroacetate, propionate, butyrate, valerate, caprylate, oleate, stearate, oxalate, tartrate, citrate, benzoate, salicylate, lactate, acrylate, maleate, succinate, salts of amino acids (glycine), acidic hydroxy functions (zinc phenolate, etc.), zinc p-phenolsulfonate, acetylacetonate, stannate, dimethyldithiocarbamate, trifluoromethanesulfonate.
  • Titanium compounds include metallic titanium, as well as titanium (III) and / or (IV) chloride, nitrate, sulfate, formate, acetate, bromide, fluoride, oxychloride, oxysulfate, oxide, -n-propoxide, n-butoxide, isopropoxide, ethoxide, 2-ethylhexyloxid suitable.
  • metallic tin and tin salts tin (II) and / or (IV) chloride
  • Tin oxides and tin alkoxide such.
  • Tin (IV) tert-butoxide is also suitable.
  • cerium (III) fluoride is also suitable.
  • chloride is also suitable.
  • nitrate is also suitable.
  • zirconium compounds metallic zirconium and zirconium salts such as zirconium chloride, sulfate, zirconyl acetate, zirconyl chloride are preferred. Further preferred are zirconium oxides and zirconium (IV) tert-butoxide.
  • the reaction in process step c) preferably takes place at a solids content of the mixed-substituted dialkylphosphinic acid salts of from 0.1 to 70% by weight, preferably from 5 to 40% by weight.
  • the reaction preferably takes place in process stage c) at a temperature of 20 to 250 ° C., preferably at a temperature of 80 to 120 ° C.
  • the reaction in process step c) preferably takes place at a pressure between 0.01 and 1000 bar, preferably 0.1 to 100 bar.
  • the reaction takes place in process stage c) during a reaction time of 1 * 10 "7 to 1000 h.
  • the mixed-substituted dialkylphosphinic acid salt (III) removed from the reaction mixture by filtration and / or centrifuging after process step c) is dried.
  • the product mixture obtained after process step b) is reacted with the metal compounds without further purification.
  • Preferred solvents are the solvents mentioned in process step a).
  • reaction in process step b) and / or c) is preferably in the solvent system given by step a).
  • the reaction in process step c) is in a modified given solvent system.
  • acidic components, solubilizers, foam inhibitors, etc. are added.
  • the product mixture obtained after process stage a), b) and / or c) is worked up.
  • the product mixture obtained according to process step b) is worked up and then the mixed-substituted dialkylphosphinic acids and / or their salts or esters (III) obtained in process step b) are reacted with the metal compounds in process step c).
  • the product mixture according to process stage b) is worked up by isolating the mixed-substituted dialkylphosphinic acids and / or their salts or esters (III) by removing the solvent system, for. B. by evaporation.
  • the mixed-substituted dialkylphosphinic acid salt (III) of the metals Mg, Ca, Al, Zn, Ti, Sn, Zr, Ce or Fe preferably has a residual moisture content of from 0.01 to 10% by weight, preferably from 0.1 to 1% by weight. %, an average particle size of from 0.1 to 2,000 ⁇ m, preferably from 10 to 500 ⁇ m, a bulk density of from 80 to 800 g / l, preferably from 200 to 700 g / l, a pourability of 0.5 to 10 , preferably from 1 to 5, on.
  • the molded articles, films, filaments and fibers contain from 5 to 30% by weight of the mixed-substituted dialkylphosphinic acid / ester / salts prepared according to one or more of claims 1 to 10, from 5 to 80% by weight of polymer or mixtures thereof, from 5 to 40% by weight of additives and from 5 to 40% by weight of filler, the sum of the components always being 100% by weight.
  • the additives are preferably antioxidants, antistatics, blowing agents, other flame retardants, heat stabilizers, impact modifiers, process aids, lubricants, light stabilizers, anti-dripping agents, compatibilizers, reinforcing agents, fillers, nucleating agents, nucleating agents, additives for laser marking,
  • Hydrolysis stabilizers Hydrolysis stabilizers, chain extenders, color pigments, plasticizers and / or plasticizers.
  • a flame retardant containing from 0.1 to 90% by weight of the mixed-substituted dialkylphosphinic acid, esters and salts (III) and from 0.1 to 50% by weight of further additives, particularly preferably diols.
  • Preferred additives are also aluminum trihydrate, antimony oxide, brominated aromatic or cycloaliphatic hydrocarbons, phenols, ethers, chloroparaffin, hexachlorocyclopentadiene adducts, red phosphorus, melamine derivatives, melamine cyanurates, ammonium polyphosphates and magnesium hydroxide; as well as other flame retardants, in particular salts of dialkylphosphinic acids.
  • the invention relates to the use of the mixed-substituted dialkylphosphinic acid, esters and salts (III) according to the invention as flame retardants or as an intermediate for the preparation of
  • thermoplastic polymers such as polyester, polystyrene or polyamide
  • thermosetting polymers such as unsaturated polyester resins, epoxy resins, polyurethanes or acrylates.
  • Suitable polyesters are derived from dicarboxylic acids and their esters and diols and / or from hydroxycarboxylic acids or the corresponding lactones. Preference is given to using terephthalic acid and ethylene glycol, propane-1,3-diol and butane-1,3-diol.
  • Suitable polyesters include polyethylene terephthalate, polybutylene terephthalate (Celanex ® 2500, Celanex ® 2002, from Celanese;. Ultradur ®, BASF), poly-1, 4- dimethylolcyclohexane terephthalate, polyhydroxybenzoates, and also block polyether esters derived from polyethers having hydroxyl end groups derived; also with polycarbonates or MBS modified polyester.
  • Synthetic linear polyesters with permanent flame retardancy are composed of dicarboxylic acid components, diol components of the mixed-substituted dialkylphosphinic acids and esters according to the invention or of the mixed-substituted dialkylphosphinic acids and esters prepared by the process according to the invention as phosphorus-containing chain members.
  • the phosphorus-containing chain members make up 2 to 20% by weight of the dicarboxylic acid component of the polyester.
  • the resulting phosphorus content in the polyester 0.1 to 5 wt .-%, particularly preferably 0.5 to 3 wt .-%.
  • the preparation of the molding composition starting from the free dicarboxylic acid and diols is first esterified directly and then polycondensed.
  • conventional additives crosslinking agents, matting and stabilizing agents, nucleating agents, dyes and fillers, etc. may preferably be added during polyester production.
  • the esterification and / or transesterification takes place in the polyester production at temperatures of 100-300 ° C., more preferably at 150-250 ° C.
  • the polycondensation takes place in the polyester production at pressures between 0.1 to 1, 5 mbar and temperatures of 150 to 450 0 C, more preferably at 200 - 300 0 C.
  • the flame-retardant polyester molding compositions prepared according to the invention are preferably used in polyester moldings.
  • Preferred polyester moldings are threads, fibers, films and moldings which contain as the dicarboxylic acid component mainly terephthalic acid and as the diol component mainly ethylene glycol.
  • the resulting phosphorus content in threads and fibers produced from flame-retardant polyester is preferably 0.1-18, preferably 0.5-15, and for films 0.2-15, preferably 0.9-12 wt%.
  • Suitable polystyrenes are polystyrene, poly (p-methylstyrene) and / or poly (alphamethylstyrene).
  • the suitable polystyrenes are copolymers of styrene or alpha-methylstyrene with dienes or acrylic derivatives, such as. Styrene-butadiene, styrene-acrylonitrile, styrene-alkyl methacrylate, styrene-butadiene-alkyl acrylate and methacrylate, styrene-maleic anhydride, styrene-acrylonitrile-methyl acrylate; Blends of high impact strength of styrene copolymers and another polymer, such as.
  • styrene such as. Styrene-butadiene-styrene, styrene-isoprene-styrene, styrene-ethylene / butylene-styrene or styrene-ethylene / propylene-styrene.
  • the suitable polystyrenes are also graft copolymers of styrene or alpha-methylstyrene, such as. Styrene on polybutadiene, styrene on polybutadiene-styrene or polybutadiene-acrylonitrile
  • Copolymers styrene and acrylonitrile (or methacrylonitrile) on polybutadiene; Styrene, acrylonitrile and methyl methacrylate on polybutadiene; Styrene and maleic anhydride on polybutadiene; Styrene, acrylonitrile and maleic anhydride or maleimide on polybutadiene; Styrene and maleimide on polybutadiene, styrene and alkyl acrylates or alkyl methacrylates on polybutadiene, styrene and acrylonitrile on ethylene-propylene-diene terpolymers, styrene and acrylonitrile on polyalkyl acrylates or polyalkyl methacrylates, styrene and acrylonitrile on acrylate-butadiene copolymers, and mixtures thereof, such as they z. B. as so-called ABS, MBS, ASA or AES
  • the polymers are preferably polyamides and copolyamides which are derived from diamines and dicarboxylic acids and / or from aminocarboxylic acids or the corresponding lactams, such as polyamide 2,12, polyamide 4, Polyamide 4,6, polyamide 6, polyamide 6,6, polyamide 6,9, polyamide 6,10, polyamide 6,12, polyamide 6,66, polyamide 7,7, polyamide 8,8, polyamide 9,9, polyamide 10 , 9, polyamide 10, 10, polyamide 11, polyamide 12, etc.
  • Such polyamides are e.g. B under the tradename Nylon ®, DuPont, Ultramid ®, BASF, Akulon ® K122, from DSM, Zytel ® 7301, from DuPont....; Durethan ® B 29, Messrs. Bayer and Grillamid® ®, Fa. Ems Chemie.
  • aromatic polyamides starting from m-xylene, diamine and adipic acid; Polyamides prepared from hexamethylenediamine and isophthalic and / or terephthalic acid and optionally an elastomer as a modifier, for. B. poly-2,4,4-trimethylhexamethylene terephthalamide or poly-m-phenylene isophthalamide, block copolymers of the aforementioned polyamides with polyolefins, olefin copolymers, ionomers or chemically bonded or grafted elastomers, or with polyethers, such as. B. with polyethylene glycol, polypropylene glycol or polytetramethylene glycol. Further modified with EPDM or ABS polyamides or copolyamides; and during processing condensed polyamides ("RIM polyamide systems").
  • the mixed-substituted dialkylphosphinic acid / ester / salts prepared according to one or more of claims 1 to 10 are preferably used in molding compositions which are further used for the production of polymer moldings.
  • the flame-retardant molding composition contains 5 to 30 wt .-% mixed-substituted dialkylphosphinic acids, salts or esters, which were prepared according to one or more of claims 1 to 10, 5 to 80 wt .-% polymer or mixtures thereof, 5 to 40 Wt .-% of additives and 5 to 40 wt .-% filler, wherein the sum of the components is always 100 wt .-%.
  • the invention also relates to flame retardants containing the mixed-substituted dialkylphosphinic acids, salts or esters prepared according to one or more of claims 1 to 10.
  • the invention relates to polymer molding compositions and polymer moldings, films, filaments and fibers containing the mixed-substituted Dialkylphosphinklaresalze (III) according to the invention of the metals Mg, Ca, Al, Zn 1 Ti, Sn, Zr, Ce or Fe.
  • the flame retardant components are mixed with the polymer granules and any additives and on a twin-screw extruder (type Leistritz LSM ® 30/34) at temperatures of 230 to 260 0 C (PBT-GV) or from 260 to 280 0 C (PA 66 -GV) incorporated.
  • PBT-GV twin-screw extruder
  • PA 66 -GV twin-screw extruder
  • the molding compositions were processed in an injection molding machine (Aarburg Allrounder) at melt temperatures of 240-270 0 C (PBT-GV) and 260-290 0 C (PA 66-GV) into test specimens.
  • the specimens are tested and classified for flame retardance (flame retardance) using the UL 94 (Underwriter Laboratories) test.
  • VO no afterburning for more than 10 seconds, sum of the afterburning times for 10 flame treatments not more than 50 seconds, no burning dripping, no complete burning off of the sample, no afterglowing of the samples longer than 30 seconds after end of flame
  • V-1 no afterburning for more than 30 seconds after firing end, sum of afterburning times for 10 flame treatments not greater than 250 seconds, no afterglowing of samples longer than 60 seconds after flaming end, other criteria as in VO V-2: ignition of cotton wool due to burning Dripping, other criteria as for V-1 Not classifiable (nkl): does not meet fire class V-2.
  • the LOI value was also measured.
  • the LOI value (Limiting Oxygen Index) is determined according to ISO 4589. According to ISO 4589, the LOI corresponds to the lowest concentration by volume of oxygen in a mixture of oxygen and nitrogen that just keeps burning the plastic. The higher the LOI value, the harder the flammability of the tested material.
  • Example 4 Analogously to Example 1, 99 g of phosphinic acid, 156 g of styrene, 8.7 mg
  • Example 2 As in Example 1, 198 g of phosphinic acid, 198 g of water, 84 g of ethylene, 6.1 mg of palladium (II) sulfate and 25.8 mg of 9,9-dimethyl-4,5-bis (diphenylphosphino) -2,7- reacted sulfonato-xanthene disodium salt, then added to the purification over a charged with Deloxan ® THP II column and then added n-butanol. At a reaction temperature of 80-110 0 C, the water formed is removed by azeotropic distillation. The product (Ethylphosphonigklaklad) is purified by distillation at reduced pressure. Yield: 333 g (74% of theory).
  • Example 9 As in Example 9, 324 g (3 mol) of propylphosphonous acid (prepared as in Example 2) and 84 g (3 mol) of ethylene are reacted in 400 g of glacial acetic acid. Within 3 h 328 g of a 5% solution of AIBN in glacial acetic acid are added dropwise at about 100 0 C. 384 g (94% of theory) of ethylpropylphosphinic acid are obtained.
  • Example 9 As in Example 9, 324 g (3 mol) of i-butylphosphonous acid butyl ester (prepared analogously to Example 6) and 84 g (3 mol) of ethylene are reacted in 400 g of toluene. 260 g of a 10% solution of WakoV65 are added dropwise within 3 h in toluene at about 100 0 C. This gives 568 g (92% of theory) of ethyl butylbutyl phosphate butyl.
  • Example 9 510 g (3 mol) of 2-phenylethylphosphonous acid (prepared as in Example 4) and 84 g (3 mol) of ethylene are reacted in 400 g of glacial acetic acid. Within 3 h 328 g of a 5% solution of AIBN in glacial acetic acid are added dropwise at about 100 0 C. 384 g (96% of theory) of ethyl-2-phenylethylphosphinic acid are obtained.
  • a mixture of 50% by weight of polybutylene terephthalate, 20% by weight of ethylpropylphosphinic aluminum (III) salt (prepared as in Example 19) and 30% by weight of glass fibers are applied to a twin-screw extruder (type Leistritz LSM 30/34 ) at temperatures of 230 to 260 0 C to one
  • Polymer molding compound compounded The homogenized polymer strand was stripped off, cooled in a water bath and then granulated. After drying, the molding materials are processed on an injection molding machine (type Aarburg Allrounder) at 240 to 270 ° C to form polymer moldings and a UL-94 classification of V-O determined.
  • injection molding machine type Aarburg Allrounder
  • a mixture of 50% by weight of polybutylene terephthalate, 20% by weight of ethyl-2-phenylethylphosphinic zinc salt (prepared as in Example 21) and 30% by weight of glass fibers are added to a twin-screw extruder (Leistritz LSM 30/34 type) Temperatures of 230 to 260 0 C compounded to a polymer molding composition. The homogenized polymer strand was stripped off, cooled in a water bath and then granulated. After drying, the molding materials are processed on an injection molding machine (type Aarburg Allrounder) at 240 to 270 0 C to form polymer moldings and a UL-94 classification of V-1 determined.
  • a twin-screw extruder Leistritz LSM 30/34 type
  • a mixture of 53% by weight of polyamide 6.6, 30% by weight of glass fibers, 17% by weight of ethyl-i-butylphosphinic titanium salt (prepared as in Example 20) are applied to a twin-screw extruder (type Leistritz LSM 30/34). compounded into polymer molding compounds. The homogenized polymer strand was stripped off, cooled in a water bath and then granulated. After drying, the molding materials are processed on an injection molding machine (type Aarburg Allrounder) at 260 to 290 0 C to form polymer moldings and obtained a UL-94 classification of V-1.
  • a twin-screw extruder type Leistritz LSM 30/34

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Fireproofing Substances (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von zur Herstellung von gemischtsubstituierten Dialkylphosphinsäuren, -estern und -salzen, dadurch gekennzeichnet, dass man a) eine Phosphinsäurequelle (I) mit Olefinen (IV) in Gegenwart eines Katalysators A zu einer Alkylphosphonigsäure, deren Salz oder Ester (II) umsetzt, b) die so entstandene Alkylphosphonigsäure, deren Salz oder Ester (II) mit einem Olefin (IV) in Gegenwart eines Katalysators B zum gemischtsubstituierten Dialkylphosphinsäurederivat (III) umsetzt, wobei R1, R2, R3, R4, R11, R12, R13, R14 gleich oder verschieden sind und unabhängig voneinander u.a. H, C1-C18-Alkyl, C6-C18-Aryl, C6-C18-Aralkyl, C6-C18-Alkylaryl und X für H, C1-C18-Alkyl, C6-C18-Aryl, C6-C18-Aralkyl, C6-C18-Alkylaryl, Mg, Ca, AI, Sb, Sn, Ge, Ti, Fe, Zr, Zn, Ce, Bi, Sr, Mn, Cu, Ni, Li, Na, K und/oder eine protonierte Stickstoffbase steht und es sich bei dem Katalysator A um Übergangsmetalle und/oder Übergangsmetallverbindungen und/oder Katalysatorsysteme handelt, die sich aus einem Übergangsmetall und/oder einer Übergangsmetallverbindung und mindestens einem Liganden zusammensetzen und es sich bei dem Katalysator B um Peroxide bildende Verbindungen und/oder Peroxoverbindungen und/oder um Azo-Verbindungen handelt.

Description

Verfahren zur Herstellung von gemischtsubstituierten Dialkylphosphinsäuren, -estern und -salzen und ihre Verwendung
Die Erfindung betrifft ein Verfahren zur Herstellung von gemischtsubstituierten Dialkylphosphinsäuren, -estern und -salzen und ihre Verwendung.
Bisher fehlt es an Verfahren zur Herstellung von gemischtsubstituierten Dialkylphosphinsäuren, -estern und -salzen, die wirtschaftlich und großtechnisch zugänglich sind und die eine hohe RauπWZeitausbeute ermöglichen. Auch fehlt es an Verfahren, die ohne störende Halogenverbindungen als Edukte ausreichend effektiv sind und an solchen, bei denen die Endprodukte leicht erhalten bzw. isoliert werden können oder auch unter gezielten Reaktionsbedingungen (wie etwa einer Umesterung) gezielt hergestellt werden können.
Diese Aufgabe wird gelöst durch ein Verfahren zur Herstellung von gemischtsubstituierten Dialkylphosphinsäuren, -estern und -salzen, dadurch gekennzeichnet, dass man a) eine Phosphinsäurequelle (I)
mit Olefinen (IV)
in Gegenwart eines Katalysators A zu einer Alkylphosphonigsäure, deren Salz oder Ester (II)
umsetzt, b) die so entstandene Alkylphosphonigsäure, deren Salz oder Ester (II) mit obenstehendem Olefin (IV) in Gegenwart eines Katalysators B zum gemischtsubstituierten Dialkylphosphinsäurederivat (III)
umsetzt, wobei R1, R2, R3, R4, R11, R12, R13, R14 gleich oder verschieden sind und unabhängig voneinander H, CrC-is-Alkyl, Cβ-C-is-Aryl, C6-Ci8-Aralkyl, C6-C18-Alkyl- Aryl, CN, CHO, OC(O)CH2CN, CH(OH)C2H5, CH2CH(OH)CH3, 9-Anthracen, 2-Pyrrolidon, (CH2)mOH, (CH2)mNH2, (CH2)mNCS, (CH2)mNC(S)NH2, (CH2)mSH, (CH2)mS-2-thiazolin, (CH2)mSiMe3, C(O)R5, (CH2)mC(O)R5, CH=CH-R5, CH=CH-C(O)R5 bedeuten und wobei R5 für CrC8-Alkyl oder C6-C18-Aryl steht und m eine ganze Zahl von O bis 10 bedeutet und X für H, d-C-is-Alkyl, C6-Ci8-Aryl, Cβ-Ciβ-Aralkyl, C6-C18-Alkyl-Aryl, (CH2)kOH, CH2-CHOH-CH2OH, (CH2)kO(CH2)kH, (CH2)k-CH(OH)-(CH2)kH, (CH2-CH2O)kH, (CH2-C[CH3]HO)kH, (CH2-C[CH3]HO)k(CH2-CH2O)kH, (CH2-CH2OMCH2-C[CH3]HO)H, (CH2-CH2O)k- alkyl, (CH2-C[CH3]HO)k-alkyl, (CH2-C[CH3]HO)k(CH2-CH2O)k-alkyl,
(CH2-CH2O)k(CH2-C[CH3]HO)O-alkyl, (CH2)k-CH=CH(CH2)kH, (CH2)kNH2, (CH2)kN[(CH2)kH]2 steht wobei k eine ganze Zahl von O bis 10 ist und/oder für Mg, Ca, AI, Sb, Sn, Ge, Ti, Fe, Zr, Zn, Ce, Bi, Sr, Mn, Cu, Ni, Li, Na, K, H und/oder eine protonierte Stickstoffbase steht und es sich bei dem Katalysator A um Übergangsmetalle und/oder Übergangsmetallverbindungen und/oder
Katalysatorsysteme handelt, die sich aus einem Übergangsmetall und/oder einer Übergangsmetallverbindung und mindestens einem Liganden zusammensetzen und es sich bei dem Katalysator B um Peroxide bildende Verbindungen und/oder Peroxoverbindungen und/oder um Azo-Verbindungen handelt.
Bevorzugt wird die nach Schritt b) erhaltene gemischtsubstituierte Dialkylphosphinsäure, deren Salz oder Ester (III) anschließend in einem Schritt c) mit Metallverbindungen von Mg, Ca, AI, Sb, Sn, Ge, Ti, Fe, Zr, Zn, Ce, Bi, Sr, Mn, Li, Na, K und/oder einer protonierte Stickstoffbase zu den entsprechenden gemischtsubstituierten Dialkylphosphinsäuresalzen (III) dieser Metalle und/oder einer Stickstoffverbindung umgesetzt.
Bevorzugt wird die nach Schritt a) erhaltene Alkylphosphonigsäure, deren Salz oder Ester (II) und/oder die nach Schritt b) erhaltene gemischtsubstituierte Dialkylphosphinsäure, deren Salz oder Ester (III) und/oder die jeweils resultierende Reaktionslösung davon mit einem Alkylenoxid oder einem Alkohol M-OH und/oder M'-OH verestert, und der jeweils entstandene Alkylphosphonigsäureester (II) und/oder gemischtsubstituierte Dialkylphosphinsäureester (III) den weiteren Reaktionsschritten b) oder c) unterworfen.
Bevorzugt sind die Gruppen C6-Cis-Aryl, C6-Ci8-Aralkyl und C6-Ci8-Alkyl-Aryl mit SO3X2, -C(O)CH3, OH, CH2OH, CH3SO3X2, PO3X2, NH2, NO2, OCH3, SH und/oder OC(O)CH3 substituiert.
Bevorzugt sind R1, R2, R3, R4, R11, R12, R13, R14 gleich oder verschieden und bedeuten unabhängig voneinander H, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, tert. Butyl und/oder Phenyl.
Bevorzugt ist X H, Ca, Mg, AI, Zn, Ti, Fe, Ce, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, tert. Butyl, Phenyl, Ethylenglykol, Propylglykol, Butylglykol, Pentylglykol, Hexylglykol, AIIyI und/oder Glycerin.
Bevorzugt ist m = 1 bis 10 und k = 2 bis 10.
Bevorzugt wird das Katalysatorsystem A durch Umsetzung von einem Übergangsmetall und/oder einer Übergangsmetallverbindung und mindestens einem Liganden gebildet.
Bevorzugt handelt es sich bei den Übergangsmetallen und/oder Übergangsmetallverbindungen um solche aus der siebten und achten Nebengruppe. Bevorzugt handelt es sich bei den Übergangsmetallen und/oder Übergangsmetallverbindungen um Rhodium, Nickel, Palladium, Ruthenium und/oder Platin.
Bevorzugt hanelt es sich bei dem Katalysator B um Wasserstoffperoxid, Natriumperoxid, Lithiumperoxid, Kaliumpersulfat, Natriumpersulfat, Ammoniumpersulfat, Natriumperoxodisulfat, Kaliumperoxoborat, Peressigsäure, Benzoylperoxid, Di-t-butylperoxid und/oder Peroxodischwefelsäure und/oder um Azodiisobutyronitril, 2,2'-Azobis(2-amidinopropan)-dihydrochlorid und/oder 2,2'-Azobis(N,N'-dimethylen-isobutyramidin)-dihydrochlorid.
Bevorzugt handelt es bei dem Alkohol der allgemeinen Formel M-OH um lineare oder verzweigte, gesättigte und ungesättigte, einwertige organische Alkohole mit einer Kohlenstoffkettenlänge von CrC18 und es bei dem Alkohol der allgemeinen Formel M'-OH um lineare oder verzweigte, gesättigte und ungesättigte, mehrwertige organische Alkohole mit einer Kohlenstoffkettenlänge von C-i-C-is.
Die Erfindung betrifft auch die Verwendung von gemischtsubstituierten Dialkylphosphinsäuren, -estern und -salzen (III), hergestellt nach einem oder mehreren der Ansprüche 1 bis 10 als Zwischenprodukt für weitere Synthesen, als Binder, als Vernetzer bzw. Beschleuniger beim Aushärten von Epoxyharzen, Polyurethanen, ungesättigten Polyesterharzen, als Polymerstabilisatoren, als Pflanzenschutzmittel, als Therapeutikum oder Additiv in Therapeutika für Menschen und Tiere, als Sequestrierungsmittel, als Mineralöl-Additiv, als
Korrosionsschutzmittel, in Wasch- und Reinigungsmittelanwendungen und in. Elektronikanwendungen.
Die Erfindung betrifft ebenfalls die Verwendung von gemischtsubstituierten Dialkylphosphinsäuren, -salzen und -estern (III), die nach einem oder mehreren der Ansprüche 1 bis 10 hergestellt wurden, als Flammschutzmittel, insbesondere Flammschutzmittel für Klarlacke und Intumeszenzbeschichtungen, Flammschutzmittel für Holz und andere cellulosehaltige Produkte, als reaktives und/oder nicht reaktives Flammschutzmittel für Polymere, zur Herstellung von flammgeschützten Polymerformmassen, zur Herstellung von flammgeschützten Polymerformkörpern und/oder zum flammhemmend Ausrüsten von Polyester und Cellulose-Rein- und Mischgeweben durch Imprägnierung.
Die Erfindung betrifft auch eine flammgeschützte thermoplastische oder duroplastische Polymerformmasse, enthaltend 0,5 bis 45 Gew.-% gemischtsubstituierten Dialkylphosphinsäuren, -salze oder -ester (III), die nach einem oder mehreren der Ansprüche 1 bis 10 hergestellt wurden, 0,5 bis 99 Gew.-% thermoplastisches oder duroplastisches Polymer oder Mischungen derselben, 0 bis 55 Gew.-% Additive und 0 bis 55 Gew.-% Füllstoff bzw. Verstärkungsmaterialien, wobei die Summe der Komponenten 100 Gew.-% beträgt.
Schließlich betrifft die Erfindung zudem flammgeschützte thermoplastische oder duroplastische Polymer-Formkörper, -Filme,- Fäden und Fasern, enthaltend 0,5 bis 45 Gew.-% gemischtsubstituierten Dialkylphosphinsäuren, -salze oder -ester (III), die nach einem oder mehreren der Ansprüche 1 bis 10 hergestellt wurden, 0,5 bis 99 Gew.-% thermoplastisches oder duroplastisches Polymer oder Mischungen derselben, 0 bis 55 Gew.-% Additive und 0 bis 55 Gew.-% Füllstoff bzw. Verstärkungsmaterialien, wobei die Summe der Komponenten 100 Gew.-% beträgt.
Alle vorgenannten Umsetzungen können auch stufenweise ausgeführt werden; ebenso können in den verschiedenen Verfahrensschritten auch die jeweiligen resultierenden Reaktionslösungen eingesetzt werden.
Handelt es sich bei der gemischtsubstituierten Dialkylphosphinsäure (III) nach Schritt b) um einen Ester, so kann bevorzugt eine saure oder basische Hydrolyse durchgeführt werden, um die freie gemischtsubstituierte Dialkylphosphinsäure oder deren Salz zu erhalten. Bevorzugt handelt es sich bei der gemischtsubstituierten Dialkylphosphinsäure um Ethylpropylphosphinsäure, Ethyl-i-propylphosphinsäure, Ethylbutylphosphinsäure, Ethyl-sec-butylphosphinsäure, Ethyl-i-butylphosphinsäure, Ethyl-2- phenylethylphos-phinsäure, Propyl-i-propylphosphinsäure, Propylbutylphosphinsäure, Propyl-sec-butylphosphinsäure, Propyl-i- butylphosphinsäure, Propyl-2-phenylethylphosphin-säure, Butyl-i- butylphosphinsäure, Butyl-sec-butylphosphinsäure, Butyl-2- phenylethylphosphinsäure, sec-Butyl-i-Butylphosphinsäure, sec-Butyl-2- phenylethylphosphinsäure, i-Butyl-2-phenylethylphosphinsäure.
Bevorzugt handelt es sich bei dem gemischtsubstituierten Dialkylphosphinsäureester um einen Propionsäure-, Methyl-, Ethyl-; i-Propyl-; Butyl-, Phenyl-; 2-Hydroxyethyl-, 2-Hydroxypropyl-, 3-Hydroxypropyl-, 4-Hydroxybutyl- und/oder 2,3-Dihydroxypropylester der vorgenannten gemischtsubstituierten Dialkylphosphinsäuren.
Bevorzugt handelt es sich bei dem gemischtsubstituierten Dialkylphosphinsäure- SaIz um ein Aluminium(lll)-, Calcium(ll)-, Magnesium (H)-, Cer(lll)-, Ti(IV)- und/oder Zink(ll)salz der vorgenannten gemischtsubstituierten Dialkylphosphinsäuren.
Bevorzugt ist R1 = R11, R2 = R12, R3 = R13 und R4 = R14
Bevorzugt handelt es sich bei den Übergangsmetallen für den Katalysator A um Elemente der siebten und achten Nebengruppe (nach moderner Nomenklatur ein Metall der Gruppe 7, 8, 9 oder 10), wie etwa Rhenium, Ruthenium, Cobalt, Rhodium, Iridium, Nickel, Palladium und Platin.
Bevorzugt werden als Quelle der Übergangsmetalle und Übergangsmetallverbindungen deren Metallsalze verwendet. Geeignete Salze sind solche von Mineralsäuren, die die Anionen Fluorid, Chlorid, Bromid, lodid, Fluorat, Chlorat, Bromat, lodat, Fluorit, Chlorit, Bromit, lodit, Hypofluorit, Hypochlorit, Hypobromit, Hypoiodit, Perfluorat, Perchlorat, Perbromat, Periodat, Cyanid, Cyanat, Nitrat, Nitrid, Nitrit, Oxid, Hydroxid, Borat, Sulfat, Sulfit, Sulfid, Persulfat, Thiosulfat, Sulfamat, Phosphat, Phosphit, Hypophosphit, Phosphid, Carbonat und Sulfonat, wie etwa Methansulfonat, Chlorosulfonat, Fluorosulfonat, Trifluoromethansulfonat, Benzolsulfonat, Naphthylsulfonat, Toluolsulfonat, t-Butylsulfonat, 2-Hydroxypropansulfonat und sulfonierte lonentauscherharze; und/oder organische Salze, wie etwa Acetylacetonate und Salze einer Carbonsäure mit bis zu 20 Kohlenstoffatomen, wie etwa Format, Acetat, Propionat, Butyrat, Oxalat, Stearat und Zitrat einschließlich halogenierter Carbonsäuren mit bis zu 20 Kohlenstoffatomen, wie etwa Trifluoracetat, Trichloracetat, enthalten.
Eine weitere Quelle der Übergangsmetalle und Übergangsmetallverbindungen stellen Salze der Übergangsmetalle mit Tetraphenylborat- und halogenierten Tetraphenylboratanionen, wie etwa Perfluorophenylborat, dar.
Geeignete Salze beeinhalten ebenso Doppelsalze und Komplexsalze bestehend aus einem oder mehreren Übergangsmetallionen und unabhängig voneinander ein oder mehrere Alkalimetall-, Erdalkalimetall-, Ammonium-, organische Ammonium-, Phosphonium- und organische Phosphoniumionen und unabhängig voneinander ein oder mehrere oben genannter Anionen. Geeignete Doppelsalze stellen z. B. Ammoniumhexachloropalladat und Ammoniumtetrachloropalladat dar.
Bevorzugt ist eine Quelle der Übergangsmetalle das Übergangsmetall als Element und/oder eine Übergangsmetallverbindung in dessen null-wertigem Zustand.
Bevorzugt wird das Übergangsmetall metallisch eingesetzt oder als Legierung mit weiteren Metallen verwendet, wobei hier Bor, Zirconium, Tantal, Wolfram, Rhenium, Kobalt, Iridium, Nickel, Palladium, Platin und/oder Gold bevorzugt ist. Dabei ist der Übergangsmetallgehalt in der eingesetzten Legierung bevorzugt 45 - 99,95 Gew.-%.
Bevorzugt wird das Übergangsmetall mikrodispers (Teilchengröße 0,1 mm - 100 μm) eingesetzt. Bevorzugt wird das Übergangsmetall auf einem Metalloxid wie etwa Aluminiumoxid, Siliciumdioxid, Titandioxid, Zirkoniumdioxid, Zinkoxid, Nickeloxid, Vanadiumoxid, Chromoxid, Magnesiumoxid, Celite®, Kieselgur, auf einem Metallcarbonat wie etwa Bariumcarbonat, Calciumcarbonat, Strontiumcarbonat, auf einem Metallsulfat wie etwa Bariumsulfat, Calciumsulfat, Strontiumsulfat, auf einem Metallphosphat wie etwa Aluminiumphosphat, Vanadiumphosphat, auf einem Metallcarbid wie etwa Siliconcarbid, auf einem Metallaluminat wie etwa Calciumaluminat, auf einem Metallsilikat wie etwa Aluminiumsilikat, Kreiden, Zeolithe, Bentonit, Montmorillonit, Hectorit, auf funktionalisierten Silikaten, funktionalisierten Silikagelen wie etwa SiliaBond®, QuadraSil™, auf funktionalisierten Polysiloxanen wie etwa Deloxan®, auf einem Metallnitrid, auf Kohle, Aktivkohle, Mullite, Bauxite, Antimonite, Scheelite, Perovskite, Hydrotalcite, Heteropolyanionen, auf funktionalisierter und unfunktionalisierter Cellulose, Chitosan, Keratin, Heteropolyanionen, auf lonentauschern wie etwa Amberlite™, Amberjet™, Ambersep™, Dowex®, Lewatit®, ScavNet®, auf funktionalisierten Polymeren wie etwa Chelex®, QuadraPure™, Smopex®, PolyOrgs®, auf polymergebundenen Phosphanen, Phosphanoxiden, Phosphinaten, Phosphonaten, Phosphaten, Aminen, Ammoniumsalzen, Amiden, Thioamiden, Harnstoffen, Thioharnstoffen, Triazinen, Imidazolen, Pyrazolen, Pyridinen, Pyrimidinen, Pyrazinen, Thiolen, Thiolether, Thiolester, Alkoholen, Alkoxiden, Ether, Ester, Carbonsäuren, Acetaten, Acetalen, Peptiden, Hetarenen, Polyethylenimin/Siliciumdioxid und/oder Dendrimeren geträgert verwendet.
Geeignete Quellen der Metallsalze und/oder Übergangsmetalle stellen bevorzugt ebenfalls deren Komplexverbindungen dar. Komplexverbindungen der Metallsalze und/oder Übergangsmetalle setzen sich aus den Metallsalzen bzw.
Übergangsmetalle und einem oder mehreren Komplexbildnern zusammen.
Geeignete Komplexbildner sind z. B. Olefine, Diolefine, Nitrile, Dinitrile,
Kohlenmonoxid, Phosphine, Diphosphine, Phosphite, Diphosphite, Dibenzylidenaceton, Cyclopentadienyl, Indenyl oder Styrol. Geeignete
Komplexverbindungen der Metallsalze und/oder Übergangsmetalle können auf den oben genannten Trägermaterialien geträgert sein. Bevorzugt ist der Gehalt an den genannten geträgerten Übergangsmetallen 0,01 bis 20 Gew.-%, vorzugsweise 0,1 bis 10 Gew.-%, insbesondere 0,2 bis 5 Gew.-%, bezogen auf die Gesamtmasse des Trägermaterials.
Geeignete Quellen von Übergangsmetallen und Übergangsmetallverbindungen sind beispielsweise Palladium, Platin, Nickel, Rhodium; Palladium, Platin, Nickel oder Rhodium auf Alumina, auf Silika, auf Bariumcarbonat, auf Bariumsulfat, auf Calciumcarbonat, auf Strontiumcarbonat, auf Kohle, auf Aktivkohle; Platin- Palladium-Gold-, Aluminum-Nickel-, Eisen-Nickel-, Lanthanoid-Nickel, Zirconium- Nickel-, Platin-Iridium-, Platin-Rhodium-Legierung; Raney®-Nickel, Nickel-Zink- Eisen-Oxid; Palladium(ll)-, Nickel(ll)- ,Platin(ll)-, Rhodiumchlorid, -bromid, -iodid, -fluorid, -hydrid, -oxid, -peroxid, -cyanid, -sulfat, -nitrat, -phosphid, -borid, -chromoxid, -cobaltoxid, -carbonathydroxid, -cyclohexanbutyrat, -hydroxid, -molybdat, -octanoat, -oxalat, -Perchlorat, -phthalocyanin, -5,9,14,18,23,27,32,36- octabutoxy-2,3-naphthalocyanin, -sulfamat, -Perchlorat, -thiocyanat, -bis(2,2,6,6- tetramethyl-3,5-heptanedionat), -propionat, -acetat, -stearat, -2-ethylhexanoat, -acetylacetonat, -hexafluoroacetylacetonat, -tetrafluoroborat, -thiosulfat, -trifluoroacetat, -phthalocyanintetrasulfonsäure Tetranatriumsalz, -methyl, -cyclopenta-dienyl, -methylcyclopentadienyl, -ethylcyclopentadienyl, -pentamethylcyclopentadienyl. ^.S.T.δ.^.iS.I/.iδ-octaethyl^i H^SH-porphin, -5,10,15,20-tetraphenyl-21 H,23H-porphin, -bis(5-[[4-(dimethylamino)phenyl]imino]- 8(5H)-quinolinon), -2,11 , 20,29-tetra-tert-butyl-2,3-naphthalocyanin, -2,9,16,23- tetraphenoxy-29H,31 H-phthalocyanin, -5,10,15,20-tetrakis(pentafluorophenyl)- 21 H,23H-porphin und deren 1 ,4-Bis(diphenylphosphin)butan-, 1 ,3-Bis(diphenylphosphino)propan-, 2-(2'-Di-tert-butylphosphin)biphenyl-, Acetonitril-, Benzonitril-, Ethylendiamin-, Chloroform-, 1 ,2-Bis(phenylsulfinyl)ethan-, 1 ,3-Bis(2,6-diisopropylphenyl)imidazoliden)(3- chloropyridyl)-, 2'-(Dimethylamino)-2-biphenylyl-, Dinorbornylphosphin-, 2-(Dimethylaminomethyl)ferrocen-, AIIyI-, Bis(Diphenylphos-phino)butan-, (N-succinimidyl)bis-(triphenylphosphin)-, Dimethylphenylphosphin-, Methyldiphenylphosphin-, 1 ,10-Phenanthrolin-, 1.δ-Cyclooctadien-, N,N,N',N'-Tetra-methylethylendiamin-, Triphenylphosphin-, Tri-o-tolylphosphin-, Tricyclohexylphosphin-, Tributylphosphin-, Triethylphosphin-, 2,2'-Bis(diphenylphosphino)-1 ,r-binaphthyl-, 1 ,3-Bis(2,6- diisopropylphenyl)imidazol-2-yliden-, 1 ,3-Bis(mesityl)imidazol-2-yliden-, 1 ,1'-Bis(di- phenylphosphino)ferrocen-, 1 ,2-Bis(diphenylphosphino)ethan-, N-Methylimidazol-, 2,2'-Bipyridin-, (Bicyclo[2.2.1]-hepta-2,5-dien)-, Bis(di-tert-butyl(4- dimethylaminophenyl)phosphin)-, Bis(tert.-butylisocyanid)-, 2-Methoxyethylether-, Ethylenglycoldimethylether-, 1 ,2-Dimethoxyethan-, Bis(1 ,3-diamino-2-propanol)-, Bis(N .N-diethylethylendiamin)-, 1 ,2-Diaminocyclohexan-, Pyridin-, 2,21:6I,2"-terpyridin-, Diethylsulfid-, Ethylen-.Amin-Komplexe; Kalium-, Natrium-, Ammoniumhexachloro-palladat(IV), Kalium-, Natrium-, Ammoniumtetrachloropalladat(ll), Bromo(tri-tert-butylphosphin)palladium(l) Dimer, (2-Methyl-allyl)palladium(ll)chlorid Dimer, Bis(dibenzylidenaceton)palladium(0), Tris(di-benzylidenaceton)dipalladium(0), Tetrakis(triphenyIphosphin)palladium(0), Tetrakis-(tricyclohexylphosphin)palladium (0), Bis[1 ,2- bis(diphenylphosphiπ)ethan]-palladium(0), Bis(3,5,3',5'-dimethoxydibenzyliden- aceton)palladium(O), Bis(tri-tert-butylphosphin)palladium(0), meso- Tetraphenyltetra-benzoporphin Palladium,
Tetrakis(methyldipheπylphosphin)palladium(0), Tris(3,3',3"-phophinidyn- tris(benzolsulfonato)palladium(0) Nonanatriumsalz, 1 ,3-Bis(2,4,6-trimethylphenyl)- imidazol-2-yliden(1 ,4-naphthoquinon)palladium(0), 1 ,3-Bis(2,6-diisopropylphenyl)- imidazol-2-yliden(1 ,4-naphthoquinon)palladium(0), und deren Chloroform- Komplex;
Allylnickel(ll)chlorid Dimer, Ammoniumnickel(ll)sulfat, Bis(1 ,5-cyclooctadien)nickel(0), Bis(triphenylphosphin)dicarbonylnickel(0), Tetrakis(triphenylphosphin)nickel(0), Tetrakis(triphenylphosphit)nickel(0), Kaliumhexafluoronickelat(IV), Kaliumtetracyanonickelat(ll), Kaliumnickel(IV)paraperiodat, Dilithiumtetrabromonickelat(ll), Kaliumtetracyanonickelat(ll); Platin(IV)chlorid, -oxid, -sulfid, Kalium-, Natrium-, Ammoniumhexachloroplatinat(IV), Kalium-, Ammoniumtetrachloroplatinat(ll), Kaliumtetracyanoplatinat(ll), Trimethyl(methylcyclopentadienyl)platin(IV), cis-Diammintetrachloroplatin(IV), Kaliumtrichloro(ethylen)platinat(ll), Natriumhexahydroxyplatinat(IV), Tetraaminplatin-(ll)tetrachloroplatinat(ll), Tetrabutylammoniumhexachloroplatinat(IV), Ethylenbis- (triphenylphosphin)platin(O), Platin(0)-1 ,3-divinyl-1 ,1 ,3,3-tetramethyldisiloxan, Platin(0)-2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxan, Tetrakis(triphenyl- phosphin)platin(O), Platinoctaethylporphyrin, Chloroplatinsäure, Carboplatin; Chlorobis(ethylen)rhodium Dimer, Hexarhodiumhexadecacarbonyl, Chloro(1 ,5- cyclooctadien)rhodium Dimer, Chloro(norbomadien)rhodium Dimer, Chloro(1 ,5- hexadien)rhodium Dimer.
Bevorzugt handelt es sich bei den Liganden um Phosphine der Formel (V)
PR63 (V) in der die Reste R6 unabhängig voneinander für Wasserstoff, geradkettiges, verzweigtes oder cyclisches C-ι-C2o-Alkyl, C6-C20-Alkylaryl, C2-C2o-Alkenyl, C2-C2O- Alkinyl, CrC2o-Carboxylat, CrC2o-Alkoxy, C2-C2o-Alkenyloxy, C2-C2O-AI kinyloxy, C2-C2Q-Alkoxy-carbonyl, Ci-C2o-Alkylthio, CrC2o-Alkylsulfonyl, Ci-C20-Alkylsulfinyl, SiIyI und/oder deren Derivative und/oder durch wenigstens ein R7 substituiertes Phenyl- oder durch wenigstens ein R7 substituiertes Naphtyl stehen. R7 steht unabhängig voneinander für Wasserstoff, Fluor, Chlor, Brom, lod, NH2, Nitro, Hydroxy, Cyano, Formyl, geradkettiges, verzweigtes oder cyclisches C-ι-C2o-Alkyl, C1-C20-AIkOXy, HN(C1-C20-Alkyl), N(Ci-C20-Alkyl)2, -C02-(CrC2o-Alkyl), -CON(CrC2o-Alkyl)2, -OCO(d-C20-Alkyl), NHCO(CrC2o-Alkyl), C1-C20-ACyI1 -SO3M1 -SO2N(R8)M, -CO2M1 -PO3M2, -AsO3M2, -SiO2M, -C(CF3)2OM (M = H1 Li, Na oder K), wobei R8 Wasserstoff, Fluor, Chlor, Brom, lod, geradkettiges, verzweigtes oder cyclisches C1-C2o-Alkyl, C2-C20-Al kenyl, C2-C20-Al kinyl, C1-C20- Carboxylat, C1-C20-AIkOXy, C2-C2o-Alkenyloxy, C2-C20-Alkinyloxy, C2-C2O- Alkoxycarbonyl, CrC20-Alkylthio, CrC20-Alkyl-sulfonyl, Ci-C20-Alkylsulfinyl, SiIyI und/oder deren Derivative, Aryl, C6-C20-Arylalkyl, C6-C2o-Alkylaryl, Phenyl und/oder Biphenyl bedeutet. Vorzugsweise sind alle Gruppen R6 identisch.
Geeignete Phosphine (V) sind beispielsweise Trimethyl-, Triethyl-, Tripropyl-, Triisopropyl-, Tributyl-, Triisobutyl-, Triisopentyl-, Trihexyl-, Tricyclohexyl-, Trioctyl-, Tridecyl-, Triphenyl-, Diphenylmethyl-, Phenyldimethyl-, Tri(o-tolyl)-, Tri(p-tolyl)-, Ethyldiphenyl-, Dicyclohexyl-phenyl-, 2-Pyridyldiphenyl-, Bis(6-methyl-2pyridyl)- phenyl-, Tri-(p-chlorophenyl)-, Th-(p-methoxyphenyl)-, Diphenyl(2- sulfonatophenyl)phosphin; Kalium-, Natrium- und Ammoniumsalze von Diphenyl(3-sulfonatophenyl)phosphin, Bis(4,6-dimethyl-3-sulfonatophenyl)(2,4- dimethylphenyl)phosphin, Bis(3-sulfonatophenyl)phenylphosphinen, Tris(4,6- dimethyl-3-sulfonatophenyl)phosphinen, Tris(2-sulfonatophenyl)phosphinen, Tris(3-sulfonatophenyl)phosphinen; 2-Bis(diphenylphosphinoethyl)trimethyl- ammoniumiodid, 2'-Dicyclohexylphosphino-2,6-dimethoxy-3-sulfonato-1 ,1'- biphenyl Natriumsalz, Trimethylphosphit und/oder Triphenylphosphit.
Besonders bevorzugt handelt es sich bei den Liganden um bidentate Liganden der allgemeinen Formel R6M"-Z-M" R6 (VI).
In dieser Formel repräsentieren M" unabhängig voneinander N, P, As oder Sb. Bevorzugt sind die beiden M" gleich und besonders bevorzugt steht M" für ein Phosphoratom.
Jede Gruppe R6 repräsentiert unabhängig voneinander die unter Formel (V) beschrieben Reste. Vorzugsweise sind alle Gruppen R6 identisch.
Z stellt bevorzugt eine bivalente Überbrückungsgruppe dar, die wenigstens 1 Brückenatom enthält, wobei bevorzugt 2 bis 6 Brückenatome enthalten sind.
Brückenatome können ausgewählt werden aus C-, N-, O-, Si- und S-Atomen. Bevorzugt ist Z eine organische Überbrückungsgruppe, die wenigstens ein Kohlenstoffatom enthält. Bevorzugt ist Z eine organische Überbrückungsgruppe, die 1 bis 6 Brückenatome enthält, wovon wenigstens zwei Kohlenstoffatome sind, die unsubstituiert oder substituiert sein können.
Bevorzugte Gruppen Z sind -CH2-, -CH2-CH2-, -CH2-CH2-CH2-, -CH2-CH(CH3)-CH2-, -CH2-C(CHa)2-CH2-, -CH2-C(C2Hs)-CH2-, -CH2-Si(CHs)2-CH2-, -CH2-O-CH2-, -CH2-CH2-CH2-CH2-, -CH2-CH(C2Hs)-CH2-, -CH2-CH(n-Pr)-CH und -CH2-CH(n-Bu)-CH2-, unsubstituierte oder substituierte 1 ,2-Phenyl-, 1 ,2-Cyclohexyl-, 1 ,1'- oder 1 ,2-Ferrocenyl-Reste, 2,2'-(1 ,1 '-Biphenyl)-, 4,5-Xanthen- und/oder Oxydi-2,1-phenylen-Reste. Geeignete bidentate Phosphinliganden (VI) sind beispielsweise 1 ,2-Bis(dimethyl-), 1 ,2-Bis(diethyl-), 1 ,2-Bis(dipropyl-), 1 ,2-Bis(diisopropyl-), 1 ,2-Bis(dibutyl-), 1 ,2-Bis(di-tert.-butyl-), 1 ,2-Bis(dicyclohexyl-) und 1 ,2-Bis(diphenylphosphino)ethan; 1 ,3-Bis(dicyclohexyl-), 1 ,3-Bis(diisopropyl-), 1 ,3-Bis(di-tert.-butyl-) und 1 ,3-Bis(diphenylphosphino)propan; 1 ,4-Bis-(diisopropyl-) und 1 ,4-Bis(diphenyl- phosphino)butan; 1 ,5-Bis(dicyclohexylphos-phino)pentan; 1 ,2-Bis(di-tert.-butyl-), 1 ,2-Bis(di-phenyl-), 1 ,2-Bis(di-cyclohexyl-), 1 ,2-Bis(dicyclo-pentyl-), 1 ,3-Bis(di-tert.- butyl-), 1 ,3-Bis(diphenyl-), 1 ,3 Bis(di-cyclohexyl-) und 1 ,3-Bis(dicyclopentyl- phosphino)benzol; 9,9-Dimethyl-4,5-bis(diphenylphos-phino)xanthen, 9,9-Dimethyl-4,5-bis(diphenylphosphino)-2,7-di-tert.-butylxanthen, 9,9-Dimethyl- 4,5-bis(di-tert.-butylphosphino)xanthen, 1 ,1'-Bis(diphenylphosphino)-ferrocen, 2,2'-Bis(diphenyl-phosphino)-1 ,1'-binaphthyl, 2,2'-Bis(di-p-tolylphosphino)-1 ,1'- binaphthyl, (Oxydi-2,1-phenylen)bis(diphenylphosphin), 2,5-(Di-isopropylphos- pholano)benzol, 2,3-O-lso-propropyliden-2,3-dihydroxy-1 ,4- bis(diphenylphosphino)butan, 2,2'-Bis(di-tert.-butylphosphino)-1 ,1'-biphenyl, 2,2'-Bis(dicyclohexylphosphino)-1 ,1'-biphenyl, 2,2'-Bis(diphenylphosphino)-1 ,1'- biphenyl, 2-(Di-tert.-butylphosphino)-2'-(N,N-dimethylamino)biphenyl, 2-(Dicyclohexylphosphino)-2I-(N,N-dimethylamino)biphenyl, 2-(Diphenylphosphino)-2'-(N,N-dimethylamino)biphenyl, 2-(Diphenylphosphino)ethylamin, 2-[2-(Diphenylphosphino)ethyl]pyridin; Kalium-, Natrium- und Ammoniumsalze von 1 ,2-Bis(di-4-sulfonatophenylphosphino)-benzol, (2,2'-Bis [[bis(3-sulfonato-phenyl)phos-phino]methyl]-4,4',7,7I-tetrasulfonato-1 ,1 '- binapthyl, (2,21-Bis[[bis(3-sulfonatophenyl)phos-phino]methyl]-5,5I-tetrasulfonato- 1 ,1'-biphenyl, (2,2'-Bis [[bis(3-sulfonatophenyl)phos-phino]methyl]-1 ,1'-binapthyl, (2,2'-Bis[[bis(3-sulfonatophenyl)-phosphino]-methyl]-1 ,1l-biphenyl, 9,9-Dimethyl- 4,5-bis(diphenylphosphino)-2,7-sulfonatoxanthen, 9,9-Dimethyl-4,5-bis(di-tert- butylphosphino)-2,7-sulfonatoxanthen, 1 ,2-Bis(di-4-sulfonatophenylphosphino)- benzol, Meso-tetrakis(4-sulfonatophenyl)porphin, Meso-tetrakis(2,6-dichloro-3- sulfonato-phenyl)porphin, Meso-tetrakis(3-sulfonatomesityl)porphin, Tetrakis(4- carboxy-phenyl)porphin und 5,11 ,17,23-Sulfonato-25,26,27,28- tetrahydroxycalix[4]aren. Zudem können die Liganden der Formel (V) und (VI) durch die Reste R6 und/oder die Überbrückungsgruppe an ein geeignetes Polymer oder anorganisches Substrat gebunden sein.
• Das Katalysatorsystem hat ein Übergangsmetall-Ligand-Molverhältnis von 1 :0,01 bis 1 :100, bevorzugt von 1 :0,05 bis 1 :10 und insbesondere von 1 :1 bis 1 :4.
Bevorzugt erfolgen die Umsetzungen in den Verfahrensstufen a), b) und c) wahlweise in einer Atmosphäre, die weitere gasförmige Bestandteile wie zum Beispiel Stickstoff, Sauerstoff, Argon, Kohlendioxid enthält; die Temperatur beträgt -20 bis 340 0C, insbesondere 20 bis 180 0C und der Gesamtdruck von 1 bis 100 bar.
Die Isolierung der Produkte und/oder des Übergangsmetalls und/oder der Übergangsmetallverbindung und/oder Katalysatorsystems und/oder des Liganden und/oder der Edukte nach den Verfahrensstufen a), b) und c) erfolgt wahlweise durch Destillation oder Rektifikation, durch Kristallisation oder Fällen, durch Filtration oder Zentrifugieren, durch Adsorption oder Chromatographie oder anderen bekannten Methoden.
Erfindungsgemäß werden Lösungsmittel, Hilfsmittel und ggf. andere flüchtige Bestandteile durch z. B. Destillation, Filtration und/oder Extraktion abgetrennt.
Bevorzugt erfolgt die Umsetzungen in den Verfahrensstufen a), b) und c) wahlweise in Absorptionskolonnen, Sprühtürmen, Blasensäulen, Rührkesseln, Rieselbettreaktoren, Strömumgsrohren, Schlaufenreaktoren und/oder Knetern.
Geeignete Mischorgane sind z. B. Anker-, Blatt-, MIG-, Propeller-, Impeller-, Turbinen-, Kreuz-Rührer, Dispergierscheiben, Hohl-(Begasungs-)-Rührer, Rotor- Stator-Mischer, statische Mischer, Venturi-Düsen und/oder Mammutpumpen. Die ReaktionslösungenA-mischungen erfahren dabei eine Mischintensität, die einer Rotations-Reynolds-Zahl von 1 bis 1.000.000, bevorzugt von 100 bis 100.000 entspricht.
Bevorzugt erfolgt eine intensive Durchmischung der jeweiligen Reaktionspartner etc. unter einem Energieeintrag von 0,080 bis 10 kW/m3, bevorzugt 0,30 - 1 ,65 kW/m3.
Bevorzugt wirkt der Katalysator A während der Umsetzung homogen und/oder heterogen. Daher wirkt der jeweils heterogen wirkende Katalysator während der Umsetzung als Suspension oder an eine feste Phase gebunden.
Bevorzugt wird der jeweilige Katalysator A vor der Umsetzung und/oder zu Beginn der Umsetzung und/oder während der Umsetzung in situ generiert.
Bevorzugt erfolgt die jeweilige Umsetzung in einem Lösungsmittel als Ein-Phasen- System in homogener oder heterogener Mischung und/oder in der Gasphase.
Wird ein Mehr-Phasen-System verwendet kann zusätzlich ein Phasentransferkatalysor eingesetzt werden.
Die erfindungsgemäßen Reaktionen können in flüssiger Phase, in der Gasphase oder in überkritischer Phase durchgeführt werden. Dabei wird der Katalysator A oder B bei Flüssigkeiten vorzugsweise homogen oder als Suspension eingesetzt, während bei Gasphasen- oder überkritischer Fahrweise eine Festbettanordnung von Vorteil ist.
Geeignete Lösungsmittel sind Wasser, Alkohole wie z. B. Methanol, Ethanol, i-Propanol, n-Propanol, n-Butanol, i-Butanol, t-Butanol, n-Amylalkohol, i-Amylalkohol, t-Amylalkohol, n-Hexanol, n-Octanol, i-Octanol, n-Tridecanol, Benzylalkohol etc. Bevorzugt sind weiterhin Glycole wie z. B. Ethylenglycol, 1 ,2-Propandiol, 1 ,3-Propandiol, 1 ,3-Butandiol, 1 ,4-Butandiol, Diethylenglycol etc.; aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Heptan, Octan und Petrolether, Petroleumbenzin, Kerosin, Petroleum, Paraffinöl etc.; aromatische Kohlenwasserstoffe wie Benzol, Toluol, XyIoI, Mesitylen, Ethylbenzol, Diethylbenzol etc.; Halogenkohlenwasserstoffe wie Methylenchlorid, Chloroform, 1 ,2-Dichloroethan, Chlorobenzol, Tetrachlorkohlenstoff, Tetrabromoethylen etc.; alicyclische Kohlenwasserstoffe wie Cyclopentan, Cyclohexan und
Methylcyclohexan etc.; Ether wie Anisol (Methylphenylether), t-Butylmethylether, Dibenzylether, Diethylether, Dioxan, Diphenylether, Methylvinylether, Tetrahydrofuran, Triisopropylether etc.; Glycolether wie Diethylenglycoldiethylether, Diethylenglycoldimethylether (Diglyme), Diethylenglycolmonobutylether, Diethylenglycolmonomethylether,
1 ,2-Dimethoxyethan (DME Monoglyme), Ethylenglycolmonobutylether, Triethylenglycoldimethylether (Triglyme), Triethylenglycolmonomethylether etc.; Ketone wie Aceton, Diisobutylketon, Methyl-n-propylketon; Methylethylketon, Methyl-i-butylketon etc; Ester wie Methylformiat, Methylacetat, Ethylacetat, n-Propylacetat und n-Butylacetat etc.; Carbonsäuren wie Ameisensäure, Essigsäure, Propionsäure, Buttersäure etc.; einzeln oder in Kombination miteinander.
Geeignete Lösungsmittel sind auch die eingesetzten Olefine und Phosphinsäurequellen. Diese bieten Vorteile in Form einer höheren Raum-Zeit- Ausbeute.
Bevorzugt wird die Umsetzung unter dem eigenen Dampfdruck des Olefins und/oder des Lösungsmittels durchgeführt.
Bevorzugt sind R1, R2, R3, R4 des Olefins (IV) gleich oder verschieden und bedeuten, unabhängig voneinander, H, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, tert.-Butyl und/oder Phenyl.
Bevorzugt werden auch funktionalisierte Olefine wie Allylisothiocyanat, Allylmethacrylat, 2-Allylphenol, N-Allylthiohamstoff, 2-(Allylthio)-2-thiazolin, Allyltrimethylsillan, Allylacetat, Allylacetoacetat, Allylalkohol, Allylamin, Allylbenzol, Allylcyanid, Allyl-(cyanacetat), Allylanisol, trans-2-Pentenal, cis-2-Pentennitril, 1-Penten-3-ol, 4-Penten-1-ol, 4-Penten-2-ol, trans-2-Hexenal, trans-2-Hexen-1-ol, cis-3-Hexen-1-ol, 5-Hexen-1-ol, Styrol, -Methylstyrol, 4-Methylstyrol, Vinylacetat, 9-Vinylanthracen, 2-Vinylpyridin, 4-Vinylpyridin und 1-Vinyl-2-pyrrolidon eingesetzt.
Bevorzugt erfolgt die Umsetzung bei einem Partialdruck des Olefins von 0,01 - 100 bar, besonders bevorzugt bei einem Partialdruck des Olefins von 0,1 - 10 bar.
Bevorzugt erfolgt die Umsetzung in einem Phosphinsäure-Olefin-Molverhältnis von 1 :10.000 bis 1 :0,001 , besonders bevorzugt im Verhältnis von 1 :30 bis 1 :0,01.
Bevorzugt erfolgt die Umsetzung in einem Phosphinsäure-Katalysator- Molverhältnis von 1 :1 bis 1 :0,00000001 , besonders bevorzugt bei 1 :0,01 bis 1 :0,000001.
Bevorzugt erfolgt die Umsetzung in einem Phosphinsäure-Lösungsmittel- Molverhältnis von 1 :10.000 bis 1 :0, besonders bevorzugt bei 1 :50 bis 1 :1.
Ein erfindungsgemäßes Verfahren zur Herstellung von Verbindungen der Formel (II) ist dadurch gekennzeichnet, dass man eine Phosphinsäurequelle mit Olefinen in Gegenwart eines Katalysators umsetzt und das Produkt (II) (Alkylphosphonigsäure bzw. -salze, -ester) von Katalysator, Übergangsmetall bzw. Übergangsmetallverbindung, Ligand, Komplexbildner, Salzen und Nebenprodukten befreit wird.
Erfindungsgemäß wird der Katalysator, das Katalysatorsystem, das Übergangsmetall und/oder die Übergangsmetallverbindung abgetrennt durch Zugabe eines Hilfsmittels 1 und Entfernen des Katalysators, des Katalysatorsystems, des Übergangsmetalls und/oder der Übergangsmetallverbindung durch Extraktion und/oder Filtration.
Erfindungsgemäß wird der Ligand und/oder Komplexbildner durch Extraktion mit Hilfsmittel 2 und/oder Destillation mit Hilfsmittel 2 abgetrennt. Hilfsmittel 1 ist bevorzugt Wasser und/oder mindestens ein Vertreter der Familie der Metallfänger (Metal Scavenger). Bevorzugte Metallfänger sind Metalloxide wie etwa Aluminiumoxid, Siliciumdioxid, Titandioxid, Zirkoniumdioxid, Zinkoxid, Nickeloxid, Vanadiumoxid, Chromoxid, Magnesiumoxid, Celite®, Kieselgur;
Metallcarbonate wie etwa Bariumcarbonat, Calciumcarbonat, Strontiumcarbonat; Metallsulfate wie etwa Bariumsulfat, Calciumsulfat, Strontiumsulfat; Metallphosphate wie etwa Aluminiumphosphat, Vanadiumphosphat Metallcarbide wie etwa Siliconcarbid; Metallaluminate wie etwa Calciumaluminat; Metallsilikate wie etwa Aluminiumsilikat, Kreiden, Zeolithe, Bentonit, Montmorillonit, Hectorit; funktionalisierte Silikate, funktionalisierte Silikagele wie etwa SiliaBond®, QuadraSil™; funktionalisierte Polysiloxane wie etwa Deloxan®; Metallnitride, Kohle, Aktivkohle, Mullite, Bauxite, Antimonite, Scheelite, Perovskite, Hydrotalcite, funktionalisierte und unfunktionalisierte Cellulose, Chitosan, Keratin, Heteropolyanionen, lonentauscher wie etwa Amberlite™ , Amberjet™ ,
Ambersep™, Dowex®, Lewatit®, ScavNet®; funktionalisierte Polymere wie etwa Chelex®, QuadraPure™, Smopex®, PolyOrgs®; polymergebundene Phosphane, Phosphanoxide, Phosphinate, Phosphonate, Phosphate, Amine, Ammoniumsalze, Amide, Thioamide, Harnstoffe, Thioharnstoffe, Triazine, Imidazole, Pyrazole, Pyridine, Pyrimidine, Pyrazine, Thiole, Thiolether, Thiolester, Alkohole, Alkoxide, Ether, Ester, Carbonsäuren, Acetate, Acetale, Peptide, Hetarene, Polyethylenimin/Siliciumdioxid und/oder Dendrimere.
Bevorzugt wird Hilfsmittel 1 in Mengen zugesetzt, die einer 0,1 - 40 gew.-%igen Beladung des Metalls auf dem Hilfsmittel 1 entsprechen.
Bevorzugt wird Hilfsmittel 1 bei Temperaturen von 20 - 90 0C eingesetzt.
Bevorzugt beträgt die Verweilzeit von Hilfsmittel 1 0,5 - 360 Minuten.
Hilfsmittel 2 ist bevorzugt das vorgenannte, erfindungsgemäße Lösungsmittel, wie es bevorzugt in der Verfahrensstufe a) eingesetzt wird. Die Veresterung der gemischtsubstituierten Dialkylphosphinsäure (III) bzw. der Alkylphosphonigsäuredrivate (II) sowie der Phosphinsäurequelle (I) zu den entsprechenden Estern kann beispielsweise durch Umsetzung mit höhersiedenden Alkoholen unter Entfernung des gebildeten Wassers durch Azeotropdestillation oder durch Umsetzung mit Epoxiden (Alkylenoxiden) erreicht werden.
Bevorzugt wird hierbei nach Schritt a) die Alkylphosphonigsäure (II) mit einem Alkohol der allgemeinen Formel M-OH und/oder M'-OH oder durch Umsetzung mit Alkylenoxiden, wie nachfolgend angeführt, direkt verestert.
Bevorzugt sind M-OH primäre, sekundäre oder tertiäre Alkohole mit einer Kohlenstoffkettenlänge von Ci-Ci8. Besonders bevorzugt sind Methanol, Ethanol, Propanol, Isopropanol, n-Butanol, 2-Butanol, tert.-Butanol, Amylalkohol und/oder Hexanol.
Bevorzugt sind M'-OH Ethylenglykol, 1 ,2-Propylenglykol, 1 ,3-Propylenglykol, 1 ,4-Butandiol, 2,2-Dimethylpropan-1 ,3-diol, Neopentylglykol, 1 ,6-Hexandiol, 1 ,4-Cyclohexandimethanol, Glycerin, Trishydroxymethylethan, Trishydroxymethylpropan, Pentaerythrit, Sorbit, Mannit, α-Naphthol,
Polyethylenglykole, Polypropylenglykole und/oder EO-PO-Blockpolymere.
Geeignet sind als M-OH und M'-OH auch ein- oder mehrwertige, ungesättigte Alkohole mit einer Kohlenstoffkettenlänge von C-i-C-is, etwa n-Buten-2-ol-1 , 1 ,4-Butendiol und Allylalkohol.
Geeignet sind als M-OH und M'-OH auch Umsetzungsprodukte von einwertigen Alkoholen mit einem oder mehreren Molekülen von Alkylenoxiden, bevorzugt mit Ethylenoxid und/oder 1 ,2-Propylenoxid. Bevorzugt sind 2-Methoxyethanol, 2-Ethoxyethanol, 2-n-Butoxyethanol, 2-(2'-Ethylhexyloxy)-ethanol, 2-n-Dodecoxyethanol, Methyldiglykol, Ethyldiglykol, Isopropyldiglykol, Fettalkoholpolyglykolether und Arylpolyglykolether. Bevorzugt sind M-OH und M'-OH auch Umsetzungsprodukte von mehrwertigen Alkoholen mit einem oder mehreren Molekülen Alkylenoxid, insbesondere Diglykol und Triglykol sowie Addukte von 1 bis 6 Molekülen Ethylenoxid oder Propylenoxid an Glycerin, Trishydroxymethylpropan oder Pentaerythrit.
Als M-OH und M'-OH können auch Umsetzungsprodukte von Wasser mit einem oder mehreren Molekülen Alkylenoxid eingesetzt werden. Bevorzugt sind Polyethylenglykole und Poly-1 ,2-propylenglykole verschiedener Molekulargrößen mit einem mittleren Molgewicht von 100-1.000 g/mol, besonders bevorzugt von 150-350 g/mol.
Bevorzugt sind als M-OH und M'-OH auch Umsetzungsprodukte von Ethylenoxid mit Poly-1 ,2-propylen-glykolen oder Fettalkoholpropylenglykole; ebenso Umsetzungsprodukte von 1 ,2-Propylenoxid mit Polyethylenglykolen oder Fettalkoholethoxylaten. Bevorzugt sind solche Umsetzungsprodukte mit einem mittleren Molgewicht von 100-1.000 g/mol, besonders bevorzugt von 150- 450 g/mol.
Einsetzbar sind als M-OH und M'-OH auch Umsetzungsprodukte von Alkylenoxiden mit Ammoniak, primären oder sekundären Aminen,
Schwefelwasserstoff, Merkaptanen, Sauerstoffsäuren des Phosphors und C2-CO- Dicarbonsäuren. Geeignete Umsetzungsprodukte von Ethylenoxid mit Stickstoffverbindungen sind Triethanolamin, Methyldiethanolamin, n-Butyldiethanolamin, n-Dodecyldiethanolamin, Dimethylethanolamin, n-Butylmethylethanolamin, Di-n-butylethanolamin, n-Dodecylmethylethanolamin, Tetrahydroxyethylethylendiamin oder Pentahydroxyethyldiethylentriamin.
Bevorzugte Alkylenoxide sind Ethylenoxid, 1 ,2-Propylenoxid, 1 ,2-Epoxybutan, 1 ,2-Epoxyethylbenzol, (2,3-Epoxypropyl)benzol, 2,3-Epoxy-1-propanol und 3,4-Epoxy-1-buten. Geeignete Lösungsmittel sind die in Verfahrensschritt a) genannten Lösungsmittel und auch die eingesetzten Alkohole M-OH, M'-OH und die Alkylenoxide. Diese bieten Vorteile in Form einer höheren Raum-Zeit-Ausbeute.
Bevorzugt wird die Umsetzung unter dem eigenen Dampfdruck des eingesetzten Alkohols M-OH, M'-OH und Alkylenoxids und/oder des Lösungsmittels durchgeführt.
Bevorzugt erfolgt die Umsetzung bei einem Partialdruck des eingesetzten Alkohols M-OH, M'-OH und Alkylenoxids von 0,01 - 100 bar, besonders bevorzugt bei einem Partialdruck des Alkohols von 0,1 - 10 bar.
Bevorzugt wird die Umsetzung bei einer Temperatur von -20 bis 340 0C durchgeführt, besonders bevorzugt bei einer Temperatur von 20 bis 180 0C.
Bevorzugt erfolgt die Umsetzung bei einem Gesamtdruck von 1 bis 100 bar.
Bevorzugt erfolgt die Umsetzung in einem Molverhältnis der Alkohol- bzw. Alkylenoxidkomponente zu der Phosphinsäurequelle (I) bzw. Alkylphosphonigsäure (II) bzw. gemischtsubstituierten Dialkylphosphinsäure (III) von 10.000:1 bis 0,001 :1 , besonders bevorzugt im Verhältnis von 1.000:1 bis 0,01 :1.
Bevorzugt erfolgt die Umsetzung in einem Molverhältnis der Phosphinsäurequelle (I) bzw. Alkylphosphonigsäure (II) bzw. gemischtsubstituierten
Dialkylphosphinsäure (III) zum Lösungsmittel von 1 :10.000 bis 1 :0, besonders bevorzugt in einem Phosphinsäure-Lösungsmittel-Molverhältnis von 1 :50 bis 1 :1.
Bevorzugte Katalysatoren B , wie sie in der Verfahrensstufe b) eingesetzt werden, sind Peroxo-Verbindungen wie Peroxomonoschwefelsäure, Kaliummonopersulfat (Kaliumperoxomonosulfat), Caroat™, Oxone™, Peroxodischwefelsäure, Kaliumpersulfat (Kaliumperoxodisulfat), Natriumpersulfat (Natriumperoxodisulfat), Ammoniumpersulfat (Ammoniumperoxodisulfat). Bevorzugte Katalysatoren B sind zudem Verbindungen, die im Lösemittelsystem Peroxide bilden können wie Natriumperoxid, Natriumperoxidediperoxohydrat, Natriumperoxiddiper-oxohydrathydrat, Natriumperoxidedihydrat, Natriumperoxidocta-hydrat, Lithiumperoxid,
Lithiumperoxidmonoperoxohydrattrihydrat, Calciumperoxid, Strontiumperoxid, Bariumperoxid, Magnesiumperoxid, Zinkperoxid, Kaliumhyperoxid, Kaliumperoxiddiperoxohydrat, Natriumperoxoboratetetrahydrat, Natriumperoxoborattrihydrat, Natriumperoxoboratmonohydrat, wasserfreies Natrium peroxoborat, Kaliumperoxoboratperoxohydrat, Magnesiumperoxoborat, Calciumperoxoborat, Bariumperoxoborat, Strontiumperoxoborat, Kaliumperoxoborat, Peroxomonophosphorsäure, Peroxodiphosphorsäure, Kaliumperoxodiphosphat, Ammoniumperoxodiphosphat, Kaliumammoniumperoxodiphosphate (Doppelsalz), Natriumcarbonatperoxohydrat, Hamstoffperoxohydrat, Ammoniumoxalatperoxid, Bariumperoxidperoxohydrat, Calciumhydrogenperoxide, Calciumperoxidperoxohydrat, Ammoniumtriphosphatediperoxophosphathydrat, Kaliumfluoridperoxohydrat, Kaliumfluoridtriperoxohydrat, Kaliumfluoriddiperoxohydrat, Natriumpyrophosphatdiperoxohydrat, Natriumpyrophosphatdiperoxohydratoctahydrat, Kaliumacetatperoxohydrat, Natriumphosphatperoxohydrat, Natriumsilicatperoxohydrat.
Bevorzugte Katalysatoren B sind auch Wasserstoffperoxid, Perameisensäure, Peressigsäure, Benzoylperoxid, Di-tert-butylperoxid, Dicumylperoxid, 2,4-Dichlorobenzoylperoxid, Decanoylperoxid, Laurylperoxid, Cumolhydroperoxid, Pinenhydroperoxid, p-Menthanhydroperoxid, tert-Butylhydroperoxid, Acetylacetonperoxid, Methylethylketonperoxid, Bernsteinsäureperoxid, Dicetylperoxydicarbonat, tert-Butylperoxyacetat, tert-Butylperoxymaleinsäure, tert- Butylperoxybenzoat, Acetylcyclohexylsulfonylperoxid.
Bevorzugte Katalysatoren B sind wasserlösliche Azo-Verbindungen. Besonders bevorzugt sind Azoinitiatoren wie VAZO® 52 2,2'-Azobis(2,4-dimethyl-valeronitril), VAZO® 64 (Azo-bis-(isobutyronitril), AIBN), VAZO® 67 2,2'-Azobis(2- methylbutyronitril), VAZO® 88 i .r-AzobisCcyclohexane-i-carbonitril), VAZO® 68 der Fa. Dupont-Biesteritz, V-70 2,2'-Azobis(4-methoxy-2,4-climethyl valeronitril), V-65 2,21-Azobis(2,4-dimethyl-valeronitril)) V-601 Dimethyl 2,2'-azobis(2- methylpropionat), V-59 2,21-Azobis(2-methylbutyronitril), V-40 1.i'-Azobisfcyclohexane-i-carbonitril), VF-096 2,2'-Azobis[N-(2-propenyl)-2- methylpropionamid], V-30 1-[(cyano-1-methylethyl)azo]formamid, VAm-110 2>2'-Azobis(N-butyl-2-methyl-propionamid), VAm-111 2,2'-Azobis(N-cyclohexyl-2- methylpropionamid), VA-046B 2,2'-Azobis[2-(2-imidazolin-2-yl)propandisulfatedi- hydrate, VA-057 2,2'-Azobis[N-(2-carboxyethyl)-2- methylpropionamidin]tetrahydrat, VA-061 2,2'-Azobis[2-(2-imidazolin-2-yl)propan], VA-080 2,2l-Azobis{2-methyl-N-[1 ,1-bis(hydroxymethyl)-2-hydroxyethyl] propionamid, VA-085 2,2'-Azobis{2-methyl-N-[2-(1 -hydroxybuthyl)]propionamid}, VA-086 2,2'-Azobis[2-methyl-N-(2-hydroxyethyl)-propionamid] von Wako Chemicals.
Geeignet sind auch Azoinitiatoren wie 2-tert-Butylazo-2-cyanopropan, Dimethylazo-diisobutyrat, Azodiisobutyronitril, 2-tert-Butylazo-i-cyanocyclohexan, i-tert-Amylazo-i-cyanocyclohexan. Weiterhin sind bevorzugt Alkylperketale wie 2,2-Bis-(tert-butylper-oxy)butan, Ethyl-3,3-bis(tert-butylperoxy)butyrat, 1 ,1-Di-(tert- butylperoxy)cyclohexan.
Bevorzugte Olefine sind die unter Verfahrensschritt a) genannten Olefine.
Bevorzugt wird der Katalysator B in Mengen von 0,05 bis 5 mol-% bezüglich des jeweiligen Olefins (IV) eingesetzt.
Bevorzugt wird der Katalysator B in Mengen von 0,001 bis 10 mol-%, bezogen auf die phosphorhaltige Verbindung, eingesetzt.
Bevorzugt wird der Katalysator B während der Reaktion kontinuierlich zudosiert.
Bevorzugt wird der Katalysator B während der Reaktion in Form einer Lösung in dem Olefin (IV) kontinuierlich zudosiert. Bevorzugt wird der Katalysator B während der Reaktion in Form einer Lösung im verwendeten Lösungsmittel kontinuierlich zudosiert.
Geeignete Lösungsmittel sind die, wie sie weiter vorne in Verfahrensstufe a) eingesetzt werden.
Bevorzugt erfolgt die Umsetzung der Alkylphosphonigsäuren (II) mit dem Olefin (IV) bei einer Temperatur von 0 bis 250 0C, besonders bevorzugt bei einer Temperatur von 20 bis 200 0C und insbesondere bei einer Temperatur von 50 bis 150 0C.
Bevorzugt besteht die Atmosphäre bei der Umsetzung mit dem Olefin (IV) zu 50 bis 99,9 Gew.-% aus Bestandteilen des Lösungsmittels und dem Olefin (IV), bevorzugt 70 - 95 %.
Bevorzugt erfolgt die Umsetzung während des Zusatz des Olefins (IV) bei einem Druck von 1 - 20 bar.
In einer weiteren Ausführungsform des Verfahrens wird das nach Verfahrensstufe a) und/oder b) erhaltene Produktgemisch aufgearbeitet.
In einer weiteren Ausführungsform des Verfahrens wird das nach Verfahrensstufe a) erhaltene Produktgemisch aufgearbeitet und danach die nach Verfahrensstufe b) erhaltenen gemischtsubstituierten Dialkylphosphinsäuren und/oder deren Ester und Alkalisalze in Verfahrensstufe c) umgesetzt.
Die gemischtsubstituierten Dialkylphosphinsäure oder deren Salz (III) kann im Folgenden zu weiteren Metallsalzen umgesetzt werden.
Bevorzugt handelt es sich bei den eingesetzten Metallverbindungen der Verfahrensstufe c) um Verbindungen der Metalle Mg1 Ca, AI, Sb, Sn, Ge, Ti, Fe, Zr, Zn, Ce, Bi, Sr, Mn, Li, Na, K, besonders bevorzugt Mg, Ca, AI, Ti, Zn, Sn, Ce, Fe.
Geeignete Lösungsmittel für Verfahrensstufe c) sind die, wie sie weiter vorne in Verfahrensstufe a) eingesetzt werden.
Bevorzugt erfolgt die Umsetzung der in Verfahrensstufe c) in wässrigem Medium.
Bevorzugt setzt man in Verfahrensstufe c) die nach Verfahrensstufe b) erhaltenen gemischtsubstituierten Dialkylphosphinsäuren, deren Ester und/oder Alkalisalze (III) mit Metallverbindungen von Mg, Ca, AI, Zn, Ti1 Sn, Zr, Ce oder Fe zu den gemischtsubstituierten Dialkylphosphinsäuresalzen (III) dieser Metalle um.
Die Umsetzung erfolgt dabei in einem Molverhältnis von gemischtsubstituierten Dialkylphosphinsäure/-ester/-salz (III) zu Metall von 8 zu 1 bis 1 zu 3 (für vierwertige Metallionen oder Metalle mit stabiler vierwertiger Oxidationsstufe), von 6 zu 1 bis 1 zu 3 (für dreiwertige Metallionen oder Metalle mit stabiler dreiwertiger Oxidationsstufe), von 4 zu 1 bis 1 zu 4 (für zweiwertige Metallionen oder Metalle mit stabiler zweiwertiger Oxidationsstufe) und von 3 zu 1 bis 1 zu 6 (für einwertige Metallionen oder Metalle mit stabiler einwertiger Oxidationsstufe).
Bevorzugt führt man in Verfahrenstufe b) erhaltenes gemischtsubstituierte Dialkylphosphinsäureester/-salz (III) in die entsprechende Dialkylphosphinsäure über und setzt in Verfahrensstufe c) diese mit Metallverbindungen von Mg, Ca, AI, Zn, Ti, Sn, Zr, Ce oder Fe zu den gemischtsubstituierten Dialkylphosphinsäuresalzen (III) dieser Metalle um.
Bevorzugt wandelt man in Verfahrenstufe b) erhaltene gemischtsubstituierte Dialkylphosphinsäure/-ester (III) in ein Dialkylphosphinsäure-Alkalisalz um und setzt in Verfahrensstufe c) dieses mit Metallverbindungen von Mg, Ca, AI, Zn, Ti, Sn, Zr, Ce oder Fe zu den gemischtsubstituierten Dialkylphosphinsäuresalzen (III) dieser Metalle um. Bevorzugt handelt es sich bei den Metallverbindungen von Mg, Ca, AI, Zn, Ti, Sn, Zr, Ce oder Fe für Verfahrenstufe c) um Metalle, Metalloxide, -hydroxide, -oxidhydroxide, -borate, -carbonate, -hydroxocarbonate, -hydroxocarbonathydrate, gemischte -hydroxocarbonate, gemischte -hydroxocarbonathydrate, -phosphate, -sulfate, -sulfathydrate, -hydroxosulfat-hydrate, gemischte -hydroxosulfathydrate, -oxysulfate, -acetate, -nitrate, -fluoride, -fluorid-hydrate, -Chloride, -Chloridhydrate, -oxychloride, -bromide, -iodide, -iodidhydrate, -carbonsäurederivate und/oder -alkoxide.
Bevorzugt handelt es sich bei den Metallverbindungen um Aluminiumchlorid, Aluminiumhydroxid, Aluminiumnitrat, Aluminiumsulfat, Titanylsulfat, Zinknitrat, Zinkoxid, Zinkhydroxid und/oder Zinksulfat.
Geeignet sind auch metallisches Aluminium, -fluorid, -hydroxychlorid, -bromid, -iodid, -sulfid, -selenid; -phosphid, -hypophosphit, -antimonid, -nitrid; -carbid, -hexafluorosilicat; -hydrid, -calciumhydrid, -borhydrid; -chlorat; Natrium- Aluminiumsulfat, Aluminium-Kaliumsulfat, Aluminiumammoniumsulfat, -nitrat, -metaphosphat, -phosphat, -silicat, -magnesiumsilicat, -carbonat, -hydrotalcit, -natriumcarbonat, -borat; -thiocyanat; -oxid, -oxidhydroxid, ihre entsprechenden Hydrate und/oder Polyaluminiumhydroxyverbindungen, die vorzugsweise einen Aluminiumgehalt von 9 bis 40 Gew.-% besitzen.
Geeignet sind auch Aluminiumsalze von Mono-, Di-, Oligo-, Polycarbonsäuren wie z. B. Aluminiumdiacetat, -acetotartrat, -formiat, -lactat, -Oxalat, -tartrat, -oleat, -palmitat, -stearat, -trifluoromethansulfonat, -benzoat, -salicylat, -8-oxychinolat.
Geeignet sind ebenfalls elementares, metallisches Zink sowie Zinksalze wie z. B. Zinkhalogenide (Zinkfluorid, Zinkchloride, Zinkbromid, Zinkiodid).
Geeignet ist auch Zinkborat, -carbonat, -hydroxidcarbonat, -silicat,
-hexafluorosilicat, -stannat, -hydroxidstannat, -Magnesium-Aluminium- Hydroxidcarbonat; -nitrat, -nitrit, -phosphat, -pyrophosphat; -sulfat, -phosphid, -selenid, -tellurid und Zinksalze der Oxosäuren der siebten Hauptgruppe (Hypohalogenite, Halogenite, Halogenate, z. B. Zinkiodat, Perhalogenate, z. B. Zinkperchlorat); Zinksalze der Pseudohalogenide (Zinkthiocyanat, -cyanat, -cyanid); Zinkoxide, -peroxide, -hydroxide oder gemischte Zinkoxidhydroxide.
Bevorzugt sind Zinksalze der Oxosäuren der Übergangsmetalle (bspw. Zinkchromat(VI)hydroxyd, -chromit, -molybdat, -permanganat, -molybdat).
Geeignet sind auch Zinksalze von Mono-, Di-, Oligo-, Polycarbonsäuren, wie z. B. Zinkformiat, -acetat, -trifluoracetat, -propionat, -butyrat, -valerat, -caprylat, -oleat, -stearat, -Oxalat, -tartrat, -citrat, -benzoat, -salicylat, -lactat, -acrylat, -maleat, -succinat, Salze von Aminosäuren (Glyzin), von sauren Hydroxyfunktionen (Zinkphenolat etc.), Zink-p-phenolsulfonat, -acetylacetonat, -stannat, -dimethyldithiocarbamat, -trifluormethansulfonat.
Bei den Titan-Verbindungen ist metallisches Titan ebenso wie Titan(lll) und/oder (IV) -chlorid, -nitrat, -sulfat, -formiat, -acetat, -bromid, -fluorid, -oxychlorid, -oxysulfat, -oxid, -n-propoxid, -n-butoxid, -isopropoxid, -ethoxid, -2-ethylhexyloxid geeignet.
Geeignet ist auch metallisches Zinn sowie Zinnsalze (Zinn(ll) und /oder (IV)- chlorid); Zinnoxide und Zinn-Alkoxid wie z. B. Zinn-(IV)-tert-butoxid.
Geeignet sind auch Cer(lll)fluorid, -chlorid, -nitrat.
Bei den Zirkonium-Verbindungen ist metallisches Zirkonium sowie Zirkoniumsalze wie Zirkoniumchlorid, -sulfat, Zirconylacetat, Zirconylchlorid bevorzugt. Weiterhin bevorzugt sind Zirkonoxide sowie Zirkon-(IV)-tert-butoxid.
Bevorzugt erfolgt die Umsetzung in Verfahrensstufe c) bei einem Feststoffgehalt der gemischtsubstituierten Dialkylphosphinsäuresalze von 0,1 bis 70 Gew.-%, bevorzugt 5 bis 40 Gew.-%. Bevorzugt erfolgt die Umsetzung in Verfahrensstufe c) bei einer Temperatur von 20 bis 250 0C, bevorzugt bei einer Temperatur von 80 bis 120 0C.
Bevorzugt erfolgt die Umsetzung in Verfahrensstufe c) bei einem Druck zwischen 0,01 und 1.000 bar, bevorzugt 0,1 bis 100 bar.
Bevorzugt erfolgt die Umsetzung in Verfahrensstufe c) während einer Reaktionszeit von 1*10"7 bis 1.000 h.
Bevorzugt wird das nach der Verfahrensstufe c) durch Filtrieren und/oder Zentrifugieren aus dem Reaktionsgemisch abgetrennte gemischtsubtituierte Dialkylphosphinsäuresalz (III) getrocknet.
Bevorzugt wird das nach Verfahrensstufe b) erhaltene Produktgemisch ohne weitere Reinigung mit den Metallverbindungen umgesetzt.
Bevorzugte Lösungsmittel sind die in Verfahrensschritt a) genannten Lösungsmittel.
Bevorzugt ist die Umsetzung in Verfahrensstufe b) und/oder c) im durch Stufe a) gegebenen Lösungsmittelsystem.
Bevorzugt ist die Umsetzung in Verfahrensstufe c) in einem modifizierten gegebenen Lösungsmittelsystem. Hierfür werden acide Komponenten, Lösevermittler, Schauminhibitoren etc. zugegeben.
In einer weiteren Ausführungsform des Verfahrens wird das nach Verfahrensstufe a), b) und/oder c) erhaltene Produktgemisch aufgearbeitet.
In einer weiteren Ausführungsform des Verfahrens wird das nach Verfahrensstufe b) erhaltene Produktgemisch aufgearbeitet und danach die nach Verfahrensstufe b) erhaltenen gemischtsubstituierten Dialkylphosphinsäuren und/oder deren Salze oder Ester (III) in Verfahrensstufe c) mit den Metallverbindungen umgesetzt. Bevorzugt wird das Produktgemisch nach Verfahrensstufe b) aufgearbeitet, indem die gemischtsubstituierten Dialkylphosphinsäuren und/oder deren Salze oder Ester (III) durch Entfernen des Lösungsmittelsystems isoliert werden, z. B. durch Eindampfen.
Bevorzugt weist das gemischtsubstituierte Dialkylphosphinsäuresalz (III) der Metalle Mg, Ca, AI, Zn, Ti, Sn, Zr, Ce oder Fe wahlweise eine Restfeuchte von 0,01 bis 10 Gew.-%, bevorzugt von 0,1 bis 1 Gew.-%, eine mittlere Teilchengröße von 0,1 bis 2.000 μm, bevorzugt von 10 bis 500 μm, eine Schüttdichte von 80 bis 800 g/l, bevorzugt von 200 bis 700 g/l, eine Rieselfähigkeit nach Pfrengle von 0,5 bis 10, bevorzugt von 1 bis 5, auf.
Besonders bevorzugt enthalten die Formkörper, -Filme, -Fäden und -Fasern 5 bis 30 Gew.-% der gemischtsubstituierten Dialkylphosphinsäure/-ester/-salze, hergestellt nach einem oder mehreren der Ansprüche 1 bis 10, 5 bis 80 Gew.-% Polymer oder Mischungen derselben, 5 bis 40 Gew.-% Additive und 5 bis 40 Gew.-% Füllstoff, wobei die Summe der Komponenten immer 100 Gew.-% beträgt.
Bevorzugt handelt es sich bei den Additiven um Antioxidantien, Antistatica, Treibmittel, weitere Flammschutzmittel, Hitzestabilisatoren, Schlagzähmodifikatoren, Prozesshilfsmittel, Gleitmittel, Lichtschutzmittel, Antidrippingmittel, Compatibilizer, Verstärkungsstoffe, Füllstoffe, Keimbildungsmittel, Nukleierungsmittel, Additive zur Lasermarkierung,
Hydrolysestabilisatoren, Kettenverlängerer, Farbpigmente, Weichmacher und/oder Plastifizierungsmittel.
Bevorzugt ist ein Flammschutzmittel, enthaltend 0,1 bis 90 Gew.-% der gemischtsubstituierten Dialkylphosphinsäure, -ester und -salze (III) und 0,1 bis 50 Gew.-% weitere Additive, besonders bevorzugt Diole. Bevorzugte Additive sind auch Aluminiumtrihydrat, Antimonoxid, bromierte aromatische oder cycloaliphatische Kohlenwasserstoffe, Phenole, Ether, Chlorparaffin, Hexachlorocyclopentadien-Addukte, Roter Phosphor, Melaminderivate, Melamincyanurate, Ammoniumpolyphosphate und Magnesiumhydroxid; sowie weitere Flammschutzmittel, insbesondere Salze von Dialkylphosphinsäuren.
Insbesondere betrifft die Erfindung die Verwendung der erfindungsgemäßen gemischtsubstituierten Dialkylphosphinsäure, -ester und -salze (III) als Flammschutzmittel bzw. als Zwischenstufe zur Herstellung von
Flammschutzmitteln für thermoplastische Polymere wie Polyester, Polystyrol oder Polyamid und für duroplastische Polymere wie ungesättigte Polyesterharze, Epoxidharze, Polyurethane oder Acrylate.
Geeignete Polyester leiten sich von Dicarbonsäuren und deren Ester und Diolen und/oder von Hydroxycarbonsäuren oder den entsprechenden Lactonen ab. Bevorzugt wird Terephthalsäure und Ethylenglykol, Propan-1 ,3-diol und Butan-1 ,3- diol eingesetzt.
Geeignete Polyester sind u.a. Polyethylenterephthalat, Polybutylenterephthalat (Celanex® 2500, Celanex® 2002, Fa Celanese; Ultradur®, Fa. BASF), Poly-1 ,4- dimethylolcyclohexan-terephthalat, Polyhydroxybenzoate, sowie Block- Polyetherester, die sich von Polyethem mit Hydroxylendgruppen ableiten; ferner mit Polycarbonaten oder MBS modifizierte Polyester.
Synthetische lineare Polyester mit permanentem Flammschutz setzen sich aus Dicarbonsäure-Komponenten, Diol-Komponenten der erfindungsgemäßen gemischtsubstituierten Dialkylphosphinsäuren und -ester oder aus der nach dem erfindungsgemäßen Verfahren hergestellten gemischtsubstituierten Dialkylphosphinsäuren und -ester als Phosphor-enthaltende Kettenglieder zusammen. Die Phosphor- enthaltenden Kettenglieder machen 2 - 20 Gew.-% der Dicarbonsäure-Komponente des Polyesters aus. Bevorzugt beträgt der resultierende Phosphorgehalt im Polyester 0,1 - 5 Gew.-%, besonders bevorzugt 0,5 - 3 Gew.-%.
Die folgenden Schritte können mit oder unter Zugabe der erfindungsgemäß hergestellten Verbindungen ausgeführt werden.
Bevorzugt wird zur Herstellung der Formmasse ausgehend von den freien Dicarbonsäure und Diolen zunächst direkt verestert und dann polykondensiert.
Bevorzugt wird ausgehend von Dicarbonsäureestem, insbesondere
Dimethylestern, zunächst umgeestert und dann unter Verwendung der hierfür üblichen Katalysatoren polykondensiert.
Bevorzugt können bei der Polyesterherstellung neben den gängigen Katalysatoren auch übliche Additive (Vernetzungsmittel, Mattierungs- und Stabilisierungsmittel, Nukleierungsmittel, Färb- und Füllstoffe etc.) zugesetzt werden.
Bevorzugt findet die Veresterung und/oder Umesterung bei der Polyesterherstellung bei Temperaturen von 100 - 300 0C statt, besonders bevorzugt bei 150 - 250 0C.
Bevorzugt findet die Polykondensation bei der Polyesterherstellung bei Drücken zwischen 0,1 bis 1 ,5 mbar und Temperaturen von 150 - 450 0C statt, besonders bevorzugt bei 200 - 300 0C.
Die erfindungsgemäß hergestellten flammgeschützten Polyester-Formmassen werden bevorzugt in Polyester-Formkörpern eingesetzt.
Bevorzugte Polyester-Formkörper sind Fäden, Fasern, Folien und Formkörper, die als Dicarbonsäure-Komponente hauptsächlich Terephthalsäure und als Diolkomponente hauptsächlich Ethylenglykol enthalten. Bevorzugt beträgt der resultierende Phosphorgehalt in aus flammgeschützten Polyester hergestellten Fäden und Fasern 0,1 - 18, bevorzugt 0,5 - 15 und bei Folien 0,2 - 15, bevorzugt 0,9 - 12 Gew.-%.
Geeignete Polystyrole sind Polystyrol, Poly-(p-methylstyrol) und/oder Poly-(alpha- methylstyrol).
Bevorzugt handelt es sich bei den geeigneten Polystyrolen um Copolymere von Styrol oder alpha-Methylstyrol mit Dienen oder Acrylderivaten, wie z. B. Styrol- Butadien, Styrol-Acrylnitril, Styrol-Alkylmethacrylat, Styrol-Butadien-Alkylacrylat und -methacrylat, Styrol-Maleinsäureanhydrid, Styrol-Acrylnitril-Methylacrylat; Mischungen von hoher Schlagzähigkeit aus Styrol-Copolymeren und einem anderen Polymer, wie z. B. einem Polyacrylat, einem Dien-Polymeren oder einem Ethylen-Propylen-Dien-Terpolymeren; sowie Block-Copolymere des Styrols, wie z. B. Styrol-Butadien-Styrol, Styrol-Isopren-Styrol, Styrol-Ethylen/Butylen-Styrol oder Styrol-Ethylen/Propylen-Styrol.
Bevorzugt handelt es sich bei den geeeigneten Polystyrolen auch um Pfropfcopolymere von Styrol oder alpha-Methylstyrol, wie z. B. Styrol auf Polybutadien, Styrol auf Polybutadien-Styrol- oder Polybutadien-Acrylnitril-
Copolymere, Styrol und Acrylnitril (bzw. Methacrylnitril) auf Polybutadien; Styrol, Acrylnitril und Methylmethacrylat auf Polybutadien; Styrol und Maleinsäureanhydrid auf Polybutadien; Styrol, Acrylnitril und Maleinsäureanhydrid oder Maleinsäureimid auf Polybutadien; Styrol und Maleinsäureimid auf Polybutadien, Styrol und Alkylacrylate bzw. Alkylmethacrylate auf Polybutadien, Styrol und Acrylnitril auf Ethylen-Propylen-Dien-Terpolymeren, Styrol und Acrylnitril auf Polyalkylacrylaten oder Polyalkylmethacrylaten, Styrol und Acrylnitril auf Acrylat-Butadien-Copolymeren, sowie deren Mischungen, wie sie z. B. als so genannte ABS-, MBS-, ASA- oder AES-Polymere bekannt sind.
Bevorzugt handelt es sich bei den Polymeren um Polyamide und Copolyamide, die sich von Diaminen und Dicarbonsäuren und/oder von Aminocarbonsäuren oder den entsprechenden Lactamen ableiten, wie Polyamid 2,12, Polyamid 4, Polyamid 4,6, Polyamid 6, Polyamid 6,6, Polyamid 6,9, Polyamid 6,10, Polyamid 6,12, Polyamid 6,66, Polyamid 7,7, Polyamid 8,8, Polyamid 9,9, Polyamid 10,9, Polyamid 10,10 , Polyamid 11 , Polyamid 12, usw. Solche Polyamide sind z. B unter den Handelsnamen Nylon®, Fa. DuPont, Ultramid®, Fa. BASF, Akulon® K122, Fa. DSM, Zytel® 7301 , Fa. DuPont; Durethan® B 29, Fa. Bayer und Grillamid®, Fa. Ems Chemie bekannt.
Geeignet sind auch aromatische Polyamide ausgehend von m-Xylol, Diamin und Adipinsäure; Polyamide, hergestellt aus Hexamethylendiamin und Iso- und/oder Terephthalsäure und gegebenenfalls einem Elastomer als Modifikator, z. B. PoIy- 2,4,4-trimethylhexamethylen-terephthalamid oder Poly-m-phenylenisophthalamid, Blockcopolymere der vorstehend genannten Polyamide mit Polyolefinen, Olefin- Copolymeren, lonomeren oder chemisch gebundenen oder gepfropften Elastomeren, oder mit Polyethern, wie z. B. mit Polyethylenglykol, Polypropylenglykol oder Polytetramethylen-glykol. Ferner mit EPDM oder ABS modifizierte Polyamide oder Copolyamide; sowie während der Verarbeitung kondensierte Polyamide ("RIM-Polyamidsysteme").
Die gemischtsubstituierten Dialkylphosphinsäure /-ester/-salze, hergestellt nach einem oder mehreren der Ansprüche 1 bis 10 werden bevorzugt in Formmassen angewendet, die weiter zur Erzeugung von Polymer-Formkörpern eingesetzt werden.
Besonders bevorzugt enthält die flammgeschützte Formmasse 5 bis 30 Gew.-% gemischtsubstituierte Dialkylphosphinsäuren, -salze oder -ester, die nach einem oder mehreren der Ansprüche 1 bis 10 hergestellt wurden, 5 bis 80 Gew.-% Polymer oder Mischungen derselben, 5 bis 40 Gew.-% Additive und 5 bis 40 Gew.-% Füllstoff, wobei die Summe der Komponenten immer 100 Gew.-% beträgt.
Die Erfindung betrifft auch Flammschutzmittel, die die gemischtsubstituierten Dialkylphosphinsäuren, -salze oder -ester, die nach einem oder mehreren der Ansprüche 1 bis 10 hergestellt wurden enthalten. Außerdem betrifft die Erfindung Polymer-Formmassen sowie Polymer-Formkörper, -Filme, -Fäden und -Fasern, enthaltend die erfindungsgemäß hergestellten gemischtsubstituierten Dialkylphosphinsäuresalze (III) der Metalle Mg, Ca, AI, Zn1 Ti, Sn, Zr, Ce oder Fe.
Die Erfindung wird durch die nachstenden Beispiele erläutert.
Herstellung, Verarbeitung und Prüfung von flammgeschützten Polymerformmassen und flammgeschützten Polymerformkörpern
Die Flammschutzkomponenten werden mit dem Polymergranulat und evtl. Additiven vermischt und auf einem Doppelschnecken-Extruder (Typ Leistritz LSM® 30/34) bei Temperaturen von 230 bis 260 0C (PBT-GV) bzw. von 260 bis 280 0C (PA 66-GV) eingearbeitet. Der homogenisierte Polymerstrang wurde abgezogen, im Wasserbad gekühlt und anschließend granuliert.
Nach ausreichender Trocknung wurden die Formmassen auf einer Spritzgießmaschine (Typ Aarburg Allrounder) bei Massetemperaturen von 240 bis 270 0C (PBT-GV) bzw. von 260 bis 290 0C (PA 66-GV) zu Prüfkörpern verarbeitet. Die Prüfkörper werden anhand des UL 94-Tests (Underwriter Laboratories) auf Flammwidrigkeit (Flammschutz) geprüft und klassifiziert.
An Prüfkörpern aus jeder Mischung wurden die Brandklasse UL 94 (Underwriter Laboratories) an Probekörpem der Dicke 1 ,5 mm bestimmt.
Nach UL 94 ergeben sich folgende Brandklassen:
V-O: kein Nachbrennen länger als 10 sec, Summe der Nachbrennzeiten bei 10 Beflammungen nicht größer als 50 sec, kein brennendes Abtropfen, kein vollständiges Abbrennen der Probe, kein Nachglühen der Proben länger als 30 sec nach Beflammungsende V-1 : kein Nachbrennen länger als 30 sec nach Beflammungsende, Summe der Nachbrennzeiten bei 10 Beflammungen nicht größer als 250 sec, kein Nachglühen der Proben länger als 60 sec nach Beflammungsende, übrige Kriterien wie bei V-O V-2: Zündung der Watte durch brennendes Abtropfen, übrige Kriterien wie bei V-1 Nicht klassifizierbar (nkl): erfüllt nicht die Brandklasse V-2.
Bei einigen untersuchten Proben wurde außerdem der LOI-Wert gemessen. Der LOI-Wert (Limiting Oxygen Index) wird nach ISO 4589 bestimmt. Nach ISO 4589 entspricht der LOI der geringsten Sauerstoffkonzentration in Volumenprozent, die in einer Mischung von Sauerstoff und Stickstoff gerade noch die Verbrennung des Kunststoffs unterhält. Je höher der LOI-Wert, desto schwerer entflammbar ist das geprüfte Material.
LOI 23 brennbar
LOI 24-28 bedingt brennbar LLOOII 2299--3355 flammwidrig
LOI >36 besonders flammwidrig
Eingesetzte Chemikalien und Abkürzungen VE-Wasser voll-entsalztes Wasser AIBN Azo-bis-(isobutyronitril), (Fa. WAKO Chemicals GmbH)
WakoV65 2,2I-Azobis(2,4-dimethyl-valeronitril),
(Fa. WAKO Chemicals GmbH) Deloxan® THP Il Metallfänger (Fa. Evonik Industries AG)
Beispiel 1
Bei Raumtemperatur werden in einem Dreihalskolben mit Rührer und Intensivkühler 188 g Wasser vorgelegt und unter Rühren und Durchleiten von Stickstoff entgast. Dann werden unter Stickstoff 0,2 mg Palladium(ll)sulfat und 2,3 mg Tris(3-sulfo-phenyl)phosphin Trinatriumsalz hinzugegeben und gerührt, dann 66 g Phosphinsäure in 66 g Wasser zugegeben. Die Reaktionslösung wird in einen 2 I-Büchi-Reaktor überführt und unter Rühren und unter Druck mit Ethylen beschickt und das Reaktionsgemisch auf 80 0C geheizt. Nach einer Ethylenaufnahme von 28 g wird abgekühlt und das Reaktionsgemisch am Rotationsverdampfer vom Lösungsmittel befreit. Der Rückstand wird mit 100 g VE-Wasser versetzt und bei Raumtemperatur gerührt, dann filtriert und das Filtrat mit Toluol extrahiert, danach wird am Rotationsverdampfer vom Lösungsmittel befreit und die erhaltene Ethylphosphonigsäure aufgefangen. Ausbeute: 92 g (98 % der Theorie).
Beispiel 2
Analog Beispiel 1 werden 99 g Phosphinsäure, 63 g Propen, 6,9 mg Tris(dibenzylidenaceton)dipalladium und 9,5 mg 4,5-Bis(diphenylphosphino)-9,9- dimethylxanthen in 400 g Tetrahydrofuran reagiert. Man erhält 157 g (97 % der Theorie) Propylphosphonigsäure.
Beispiel 3
Analog Beispiel 1 werden 99 g Phosphinsäure, 84 g Buten, 8,7 mg Bis(dibenzylidenaceton)palladium und 9.1 mg 1 ,1'-Bis(diphenylphosphino)ferrocen in 400 g Butanol reagiert. Man erhält 173 g (96 % der Theorie) Butylphosphonigsäure.
Beispiel 4 Analog Beispiel 1 werden 99 g Phosphinsäure, 156 g Styrol, 8,7 mg
Bis(dibenzylidenaceton)palladium und 5,7 mg 4,6-Bis(diphenylphosphino)- phenoxazin in 400 g Acetonitri reagiert. Man erhält 240 g (94 % der Theorie) 2-Phenylethylphosphonigsäure.
Beispiel 5
Analog Beispiel 1 werden 99 g Phosphinsäure, 84 g i-Buten, 8,7 mg Bis(dibenzylidenaceton)palladium und 9,5 mg 4,5-Bis(diphenylphosphino)-9,9- dimethylxanthen in 400 g Butanol reagiert. Man erhält 151 g (84 % der Theorie) i-Butylphosphonigsäure.
Beispiel 6
Wie in Beispiel 1 werden 99 g Phosphinsäure, 396 g Butanol, 63 g Propen, 6,9 mg
Ths(dibenzylidenaceton)dipalladium und 9,5 mg 4,5-Bis(diphenylphosphino)-9,9- dimethylxanthen umgesetzt, dann zur Reinigung über eine mit Deloxan® THP Il beschickte Säule gegeben und danach nochmal n-Butanol zugegeben. Bei einer Reaktionstemperatur von 80 - 110 0C wird das gebildete Wasser durch Azeotropdestillation entfernt. Das Produkt (Ethylphosphonigsäurebutylester) wird durch Destillation bei vermindertem Druck gereinigt. Ausbeute: 171 g (76 % der Theorie).
Beispiel 7
Wie in Beispiel 1 werden 198 g Phosphinsäure, 198 g Wasser, 84 g Ethylen, 6,1 mg Palladium(ll)sulfat und 25,8 mg 9,9-Dimethyl-4,5-bis(diphenylphosphino)- 2,7-sulfonato-xanthen Dinatriumsalz umgesetzt, dann zur Reinigung über eine mit Deloxan® THP Il beschickte Säule gegeben und danach n-Butanol zugegeben. Bei einer Reaktionstemperatur von 80 - 110 0C wird das gebildete Wasser durch Azeotropdestillation entfernt. Das Produkt (Ethylphosphonigsäurebutylester) wird durch Destillation bei vermindertem Druck gereinigt. Ausbeute: 333 g (74 % der Theorie).
Beispiel 8
In einem 500 ml-Fünfhalskolben mit Gaseinleitungsrohr, Thermometer, Intensivrührer und Rückflusskühler mit Gasverbrennung werden 94 g (1 mol) Ethylphosphonigsäure vorgelegt. Bei Raumtemperatur wird Ethylenoxid eingeleitet. Unter Kühlung wird eine Reaktionstemperatur von 70 0C eingestellt und noch eine Stunde bei 80 0C nachreagiert. Die Ethylenoxidaufnahme beträgt 65,7 g. Die Säurezahl des Produktes ist kleiner 1 mg KOH/g. Man erhält 131 g (95 % der Theorie) Ethylphosphonigsäure-2-hydroxyethylester.
Beispiel 9
282 g (3 mol) Ethylphosphonigsäure werden in 430 g Wasser gelöst und in einen 2 I-Büchi-Reaktor überführt und unter Rühren und unter Druck mit Propen (Gesamtaufnahme: 126 g) beschickt und das Reaktionsgemisch auf 100 0C geheizt. Innerhalb von 3h werden 250 g einer 5 %igen Natriumperoxodisulfat- Lösung zugetropft. Freies Propen wird abgelassen. Dann wird das Wasser im Vakuum abdestilliert. Der Rückstand wird in Tetrahydrofuran aufgenommen und extrahiert. Die unlöslichen Salze werden abfiltriert. Das Lösungsmittel des Filtrats wird im Vakuum abgetrennt. Es werden 355 g (87 % der Theorie) Ethylpropylphosphinsäure als farbloses Öl erhalten.
Beispiel 10
Wie in Beispiel 9 werden 324 g (3 mol) Propylphosphonigsäure (hergestellt wie in Beispiel 2) und 84 g (3 mol) Ethylen in 400 g Eisessig reagiert. Innerhalb von 3 h werden bei ca. 100 0C 328 g einer 5 %-igen Lösung von AIBN in Eisessig zugetropft. Man erhält 384 g (94 % der Theorie) Ethylpropylphosphinsäure.
Beispiel 11
Wie in Beispiel 9 werden 324 g (3 mol) i-Butylphosphonigsäurebutylester (hergestellt analog Beispiel 6) und 84 g (3 mol) Ethylen in 400 g Toluol reagiert. Innerhalb von 3 h werden bei ca. 100 0C 260 g einer 10 %-igen Lösung von WakoV65 in Toluol zugetropft. Man erhält 568 g (92 % der Theorie) Ethyl-i- butylphosphinsäurebutylester.
Beispiel 12
Wie in Beispiel 9 werden 510 g (3 mol) 2-Phenylethylphosphonigsäure (hergestellt wie in Beispiel 4) und 84 g (3 mol) Ethylen in 400 g Eisessig reagiert. Innerhalb von 3 h werden bei ca. 100 0C 328 g einer 5 %-igen Lösung von AIBN in Eisessig zugetropft. Man erhält 384 g (96 % der Theorie) Ethyl-2- phenylethylphosphinsäure.
Beispiel 13
Wie in Beispiel 9 werden 360 g (3 mol) Butylphosphonigsäure (hergestellt wie in Beispiel 3) und 168 g (3 mol) i-Buten in 400 g Eisessig reagiert. Innerhalb von 3 h werden bei ca. 100 0C 328 g einer 5 %-igen Lösung von AIBN in Eisessig zugetropft. Man erhält 384 g (96 % der Theorie) Butyl-i-butylphosphinsäure.
Beispiel 14
Wie in Beispiel 9 werden 492 g (3 mol) Propylphosphonigsäurebutylester
(hergestellt analog Beispiel 6) und 168 g (3 mol) Buten in 400 g Toluol reagiert. Innerhalb von 3 h werden bei ca. 100 0C 260 g einer 10 %-igen Lösung von WakoV65 in Toluol zugetropft. Man erhält 587 g (89 % der Theorie) Propylbutylphosphinsäurebutylester.
Beispiel 15
204 g (1 ,5 mol) Ethylpropylphosphinsäure (hergestellt wie in Beispiel 10) werden bei 85 0C in 400 ml Toluol gelöst und mit 409 g (6,6 mol) Ethylenglykol versetzt und in einer Destillationsapparatur mit Wasserabscheider bei ca. 100 0C während 4 h verestert. Nach beendeter Veresterung wird das Toluol und überschüssiges Ethylglykol im Vakuum abgetrennt. Es werden 267 g (99 % der Theorie) Ethylpropylphosphinsäure-2-hydroxyethylester als farbloses Öl erhalten
Beispiel 16
Zu 220 g (1 mol) Propylbutylphosphinsäurebutylester (hergestellt wie in Beispiel 14) werden 155 g (2,5 mol) Ethylenglycol und 0,4 g Kaliumtitanyloxalat hinzugegeben und 2 h bei 200 0C gerührt. Durch langsames Evakuieren werden leicht flüchtige Anteile abdestilliert. Es werden 204 g (98 % der Theorie) Propylbutylphosphinsäurebutylester-2-hydroxyethylester erhalten.
Beispiel 17
In einem 500 ml-Fünfhalskolben mit Gaseinleitungsrohr, Thermometer, Intensivrührer und Rückflusskühler mit Gasverbrennung werden 198 g (1 mol) Ethyl-2-phenylethylphos-phinsäure (hergestellt wie in Beispiel 12) vorgelegt. Bei Raumtemperatur wird Ethylenoxid eingeleitet. Unter Kühlung wird eine Reaktionstemperatur von 70 0C eingestellt und noch eine Stunde bei 80 0C nachreagiert. Die Ethylenoxidaufnahme beträgt 64,8 g. Die Säurezahl des Produktes ist kleiner 1 mg KOH/g. Es werden 230 g (95 % der Theorie) Ethyl-2- phenylethylphosphinsäure-2-hydroxyethylester als farblose, wasserklare Flüssigkeit erhalten.
Beispiel 18
440 g (2 mol) Propylbutylphosphinsäurebutylester (hergestellt nach Beispiel 14) werden in einem 1 I-Fünfhalskolben mit Thermometer, Rückflusskühler, Intensivrührer und Tropftrichter vorgelegt. Bei 160 0C wird während 4 h 500 ml Wasser eindosiert und eine Butanol-Wasser Mischung abdestilliert. Der feste Rückstand wird aus Aceton umkristallisiert. Es werden 312 g (95 % der Theorie) Propylbutylphosphinsäure als farbloses Öl erhalten.
Beispiel 19
408 g (3 mol) Ethylpropylphosphinsäure (hergestellt wie in Beispiel 10) werden in 860 g Wasser gelöst und in einem 5 I-Fünfhalskolben mit Thermometer, Rückflusskühler, Intensivrührer und Tropftrichter vorgelegt und mit ca. 240 g (3 mol) 50 %ige Natriumhydroxid-Lösung neutralisiert. Bei 85 0C wird eine
Mischung von 1291 g einer 46 %igen wässrigen Lösung von AI2(SO4)3-14 H2O zugefügt. Anschließend wird der erhaltene Feststoff abfiltriert, mit heißem Wasser gewaschen und bei 130 0C im Vakuum getrocknet. Ausbeute: 405 g (95 % der Theorie) Ethylpropylphosphinsäure Aluminium(lll)salz als farbloses Salz.
Beispiel 20
150 g (1 mol) Ethyl-i-butylphosphinsäure (hergestellt analog Beispiel 18) und 85 g Titantetrabutylat werden in 500 ml Toluol 40 Stunden unter Rückfluss erhitzt. Dabei entstehendes Butanol wird mit Anteilen an Toluol von Zeit zu Zeit abdestilliert. Die entstandene Lösung wird anschließend vom Lösungsmittel befreit. Man erhält 159 g (98 % der Theorie) Ethyl-i-butylphosphinsäure Titansalz.
Beispiel 21
594 g (3 mol) Ethyl-2-phenylethylphosphinsäure (hergestellt wie in Beispiel 12) werden in 860 g Wasser gelöst und in einem 5 I-Fünfhalskolben mit Thermometer, Rückflusskühler, Intensivrührer und Tropftrichter vorgelegt und mit ca. 240 g (3 mol) 50 %ige Natriumhydroxid-Lösung neutralisiert. Bei 85 °C wird eine Mischung von 863 g einer 50 %igen wässrigen Lösung von ZnSO4 x 7 H2O zugefügt. Anschließend wird der erhaltene Feststoff abfiltriert, mit heißem Wasser gewaschen und bei 130 0C im Vakuum getrocknet. Ausbeute: 593 g (86% der Theorie) Ethyl-2-phenylethylphosphinsäure Zinksalz als farbloses Salz. Beispiel 22
Eine Mischung von 50 Gew.-% Polybutylenterephthalat, 20 Gew.-% Ethylpropylphos-phinsäure Aluminium(lll)salz (hergestellt wie in Beispiel 19) und 30 Gew.-% Glasfasern werden auf einem Doppelschnecken-Extruder (Typ Leistritz LSM 30/34) bei Temperaturen von 230 bis 260 0C zu einer
Polymerformmasse compoundiert. Der homogenisierte Polymerstrang wurde abgezogen, im Wasserbad gekühlt und anschließend granuliert. Nach Trocknung werden die Formmassen auf einer Spritzgießmaschine (Typ Aarburg Allrounder) bei 240 bis 270 °C zu Polymerformkörpern verarbeitet und eine UL-94 Klassifizierung von V-O bestimmt.
Beispiel 23
Eine Mischung von 50 Gew.-% Polybutylenterephthalat, 20 Gew.-% Ethyl-2- phenylethylphosphinsäure Zinksalz (hergestellt wie in Beispiel 21) und 30 Gew.-% Glasfasern werden auf einem Doppelschnecken-Extruder (Typ Leistritz LSM 30/34) bei Temperaturen von 230 bis 260 0C zu einer Polymerformmasse compoundiert. Der homogenisierte Polymerstrang wurde abgezogen, im Wasserbad gekühlt und anschließend granuliert. Nach Trocknung werden die Formmassen auf einer Spritzgießmaschine (Typ Aarburg Allrounder) bei 240 bis 270 0C zu Polymerformkörper verarbeitet und eine UL-94 Klassifizierung von V- 1 bestimmt.
Beispiel 24
Eine Mischung von 53 Gew.-% Polyamid 6.6, 30 Gew.-% Glasfasern, 17 Gew.-% Ethyl-i-butylphosphinsäure Titansalz (hergestellt wie in Beispiel 20) werden auf einem Doppelschnecken-Extruder (Typ Leistritz LSM 30/34) zu Polymerformmassen compoundiert. Der homogenisierte Polymerstrang wurde abgezogen, im Wasserbad gekühlt und anschließend granuliert. Nach Trocknung werden die Formmassen auf einer Spritzgießmaschine (Typ Aarburg Allrounder) bei 260 bis 290 0C zu Polymerformkörpern verarbeitet und eine UL-94 Klassifizierung von V- 1 erhalten.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Gemischtsubstituierten Dialkylphosphinsäuren, -estern und -salzen, dadurch gekennzeichnet, dass man a) eine Phosphinsäurequelle (I)
O
Il H-P-H
OX (|) mit Olefinen IV
in Gegenwart eines Katalysators A zu einer Alkylphosphonigsäure, deren Salz oder Ester (II)
umsetzt, b) die so entstandene Alkylphosphonigsäure, deren Salz oder Ester (II) mit obenstehendem Olefin (IV) in Gegenwart eines Katalysators B zum gemischtsubstituierten Dialkylphosphinsäurederivat (III)
umsetzt, wobei R1, R2, R3, R4, R11, R12, R13, R14 gleich oder verschieden sind und unabhängig voneinander H, C-i-C-iβ-Alkyl, C6-C18-Aryl, C6-Ci8-Aralkyl, C6-C-|8-Alkyl- Aryl, CN, CHO, OC(O)CH2CN, CH(OH)C2H5, CH2CH(OH)CH3, 9-Anthracen, 2-Pyrrolidon, (CH2)mOH, (CH2)mNH2, (CH2)mNCS, (CH2)mNC(S)NH2, (CH2)mSH, (CH2)mS-2-thiazolin, (CH2)mSiMe3, C(O)R5, (CH2)mC(O)R5, CH=CH-R5, CH=CH-C(O)R5 bedeuten und wobei R5 für CrC8-Alkyl oder C6-Ci8-Aryl steht und m eine ganze Zahl von O bis 10 bedeutet und X für H, C-ι-Ci8-Alkyl, Cβ-Ciβ-Aryl, C6-C18-Aralkyl, C6-C18-Alkyl-Aryl, (CH2)kOH, CH2-CHOH-CH2OH, (CH2)kO(CH2)kH, (CH2)k-CH(OHHCH2)kH, (CH2-CH2O)kH, (CH2-C[CH3]HO)kH, (CH2-C[CH3]HO)k(CH2-CH2O)kH, (CH2-CH2OMCH2-C[CH3]HO)H, (CH2-CH2O)k- alkyl, (CH2-C[CH3]HO)k-alkyl, (CH2-C[CH3]HO)k(CH2-CH2O)k-alkyl, (CH2-CH2O)k(CH2-C[CH3]HO)O-alkyl, (CH2)k-CH=CH(CH2)kH, (CH2)kNH2,
(CH2)kN[(CH2)kH]2 steht wobei k eine ganze Zahl von O bis 10 ist und/oder für Mg, Ca, AI, Sb, Sn1 Ge, Ti, Fe, Zr, Zn, Ce, Bi, Sr, Mn, Cu, Ni, Li, Na1 K, H und/oder eine protonierte Stickstoffbase steht und es sich bei dem Katalysator A um Übergangsmetalle und/oder Übergangsmetallverbindungen und/oder Katalysatorsysteme handelt, die sich aus einem Übergangsmetall und/oder einer Übergangsmetallverbindung und mindestens einem Liganden zusammensetzen und es sich bei dem Katalysator B um Peroxide bildende Verbindungen und/oder Peroxoverbindungen und/oder um Azo-Verbindungen handelt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man die nach Schritt b) erhaltene gemischtsubstituierte Dialkylphosphinsäure, deren Salz oder Ester (III) anschließend in einem Schritt c) mit Metallverbindungen von Mg, Ca1 AI, Sb, Sn, Ge, Ti, Fe, Zr, Zn, Ce, Bi, Sr, Mn1 Li, Na, K und/oder einer protonierte Stickstoffbase zu den entsprechenden gemischtsubstituierte Dialkylphosphinsäuresalzen (III) dieser Metalle und/oder einer Stickstoffverbindung umsetzt.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man die nach Schritt a) erhaltene Alkylphosphonigsäure, deren Salz oder Ester (II) und/oder die nach Schritt b) erhaltene gemischtsubstituierte Dialkylphosphinsäure, deren Salz oder Ester (III) und/oder die jeweils resultierende Reaktionslösung davon mit einem Alkylenoxid oder einem Alkohol M-OH und/oder M'-OH verestert, und den jeweils entstandenen Alkylphosphonigsäureester (II) und/oder gemischtsubstituierte Dialkylphosphinsäureester (III) den weiteren Reaktionsschritten b) oder c) unterwirft.
4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Gruppen C6-C18-Aryl, C6-C18-Araikyl und C6-Ci8-Alkyl- Aryl mit SO3X2, -C(O)CH3, OH1 CH2OH, CH3SO3X2, PO3X2, NH2, NO2, OCH3, SH und/oder OC(O)CH3 substituiert sind.
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass R1, R2, R3, R4, R11, R12, R13, R14 gleich oder verschieden sind und, unabhängig voneinander H1 Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, tert. Butyl und/oder Phenyl bedeuten.
6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass X H, Ca, Mg, AI, Zn, Ti, Mg, Ce, Fe, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, tert. Butyl, Phenyl, Ethylenglykol, Propylglykol, Butylglykol, Pentylglykol, Hexylglykol, AIIyI und/oder Glycerin bedeutet.
7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es sich bei den Übergangsmetallen und/oder
Übergangsmetallverbindungen um solche aus der siebten und achten Nebengruppe handelt.
8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass es sich bei den Übergangsmetallen und/oder
Übergangsmetallverbindungen um Rhodium, Nickel, Palladium, Platin und/oder Ruthenium handelt.
9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass es sich bei dem Katalysator B um Wasserstoffperoxid,
Natriumperoxid, Lithiumperoxid, Kaliumpersulfat, Natriumpersulfat, Ammoniumpersulfat, Natriumperoxodisulfat, Kaliumperoxoborat, Peressigsäure, Benzoylperoxid, Di-t-butylperoxid und/oder Peroxodischwefelsäure und/oder um Azodiisobutyronitril, 2,2'-Azobis(2-amidinopropan)-dihydrochlorid und/oder 2,2'-Azobis(N,N'-dimethylen-isobutyramidin)-dihydrochlorid handelt.
10. Verfahren nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass es bei dem Alkohol der allgemeinen Formel M-OH um lineare oder verzweigte, gesättigte und ungesättigte, einwertige organische Alkohole mit einer Kohlenstoffkettenlänge von CrCi8 und es bei dem Alkohol der allgemeinen Formel M'-OH um lineare oder verzweigte, gesättigte und ungesättigte, mehrwertige organische Alkohole mit einer Kohlenstoffkettenlänge von C-ι-C-18 handelt.
11. Verwendung von gemischtsubstituierten Dialkylphosphinsäuren, -estern und -salzen hergestellt nach einem oder mehreren der Ansprüche 1 bis 10 als Zwischenprodukt für weitere Synthesen, als Binder, als Vernetzer bzw. Beschleuniger beim Aushärten von Epoxyharzen, Polyurethanen und ungesättigten Polyesterharzen, als Polymerstabilisatoren, als Pflanzenschutzmittel, als Therapeutikum oder Additiv in Therapeutika für Menschen und Tiere, als Sequestrierungsmittel, als Mineralöl-Additiv, als Korrosionsschutzmittel, in Wasch- und Reinigungsmittelanwendungen und in Elektronikanwendungen.
12. Verwendung von gemischtsubstituierten Dialkylphosphinsäuren, -salzen und -estern, die nach einem oder mehreren der Ansprüche 1 bis 10 hergestellt wurden, als Flammschutzmittel, insbesondere Flammschutzmittel für Klarlacke und Intumeszenzbeschichtungen, Flammschutzmittel für Holz und andere cellulosehaltige Produkte, als reaktives und/oder nicht reaktives Flammschutzmittel für Polymere, zur Herstellung von flammgeschützten Polymerformmassen, zur Herstellung von flammgeschützten Polymerformkörpern und/oder zum flammhemmend Ausrüsten von Polyester und Cellulose-Rein- und Mischgeweben durch Imprägnierung.
13. Flammgeschützte thermoplastische oder duroplastische Polymerformmasse, enthaltend 0,5 bis 45 Gew.-% gemischtsubstituierte Dialkylphosphinsäuren, -salze oder -ester, die nach einem oder mehreren der Ansprüche 1 bis 10 hergestellt wurden, 0,5 bis 99 Gew.-% thermoplastisches oder duroplastisches Polymer oder Mischungen derselben, 0 bis 55 Gew.-% Additive und 0 bis 55 Gew.-% Füllstoff bzw. Verstärkungsmaterialien, wobei die Summe der Komponenten 100 Gew.-% beträgt.
14. Flammgeschützte thermoplastische oder duroplastische Polymer- Formkörper, -Filme,- Fäden und -Fasern, enthaltend 0,5 bis 45 Gew.-% gemischtsubstituierte Dialkylphosphinsäuren, -salze oder -ester, die nach einem oder mehreren der Ansprüche 1 bis 10 hergestellt wurden, 0,5 bis 99 Gew.-% thermoplastisches oder duroplastisches Polymer oder Mischungen derselben, 0 bis 55 Gew.-% Additive und 0 bis 55 Gew.-% Füllstoff bzw. Verstärkungsmaterialien, wobei die Summe der Komponenten 100 Gew.-% beträgt.
EP09778843A 2008-12-18 2009-10-06 Verfahren zur herstellung von gemischtsubstituierten dialkylphosphinsäuren, -estern und -salzen und ihre verwendung Withdrawn EP2379571A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008063640A DE102008063640A1 (de) 2008-12-18 2008-12-18 Verfahren zur Herstellung von gemischtsubstituierten Dialkylphosphinsäuren, -estern und -salzen und ihre Verwendung
PCT/EP2009/007143 WO2010069419A1 (de) 2008-12-18 2009-10-06 Verfahren zur herstellung von gemischtsubstituierten dialkylphosphinsäuren, -estern und -salzen und ihre verwendung

Publications (1)

Publication Number Publication Date
EP2379571A1 true EP2379571A1 (de) 2011-10-26

Family

ID=41559524

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09778843A Withdrawn EP2379571A1 (de) 2008-12-18 2009-10-06 Verfahren zur herstellung von gemischtsubstituierten dialkylphosphinsäuren, -estern und -salzen und ihre verwendung

Country Status (6)

Country Link
US (1) US20110245386A1 (de)
EP (1) EP2379571A1 (de)
JP (1) JP5641656B2 (de)
CN (1) CN102164930A (de)
DE (1) DE102008063640A1 (de)
WO (1) WO2010069419A1 (de)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008055916A1 (de) * 2008-11-05 2010-05-06 Clariant International Limited Verfahren zur Herstellung von mono-hydroxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Allylalkoholen und ihre Verwendung
ES2432386T3 (es) * 2008-11-05 2013-12-03 Clariant Finance (Bvi) Limited Procedimiento para la preparación de ácidos, ésteres y sales dialquilfosfínicos mono-carboxi-funcionalizados por medio de alcoholes alílicos/acroleínas y su uso
DE102008055914A1 (de) * 2008-11-05 2010-05-06 Clariant International Limited Verfahren zur Herstellung von mono-hydroxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Acroleinen und ihre Verwendung
DE102008056342A1 (de) * 2008-11-07 2010-05-12 Clariant International Limited Verfahren zur Herstellung von Dialkylphosphinsäuren, -estern und -salzen mittels Acrylnitrilen und ihre Verwendung
DE102008056341A1 (de) * 2008-11-07 2010-05-12 Clariant International Limited Verfahren zur Herstellung von monoaminofunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Acrylnitrilen und ihre Verwendung
DE102008056339A1 (de) * 2008-11-07 2010-05-12 Clariant International Limited Verfahren zur Herstellung von mono-aminofunktionalisierten Dialkylphosphinsäuren, -estern und -salzen und ihre Verwendung
CN102186864A (zh) * 2008-11-07 2011-09-14 科莱恩金融(Bvi)有限公司 利用丙烯酸衍生物制备二烷基次膦酸、二烷基次膦酸酯和二烷基次膦酸盐的方法,以及它们的用途
CN102171226B (zh) 2008-11-11 2015-02-11 科莱恩金融(Bvi)有限公司 利用烯丙基化合物制备单烯丙基官能化的二烷基次膦酸、其盐或酯的方法以及它们的用途
DE102008060036A1 (de) * 2008-12-02 2010-06-10 Clariant International Limited Verfahren zur Herstellung von mono-carboxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Vinylester einer Carbonsäure und ihre Verwendung
DE102008060035A1 (de) * 2008-12-02 2010-06-10 Clariant International Limited Verfahren zur Herstellung von mono-hydroxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Vinylester einer Carbonsäure und ihre Verwendung
DE102008060535A1 (de) 2008-12-04 2010-06-10 Clariant International Limited Verfahren zur Herstellung von mono-carboxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Vinylether und ihre Verwendung
DE102008063668A1 (de) 2008-12-18 2010-07-01 Clariant International Limited Verfahren zur Herstellung von Alkylphosponsäuren, -estern und -salzen mittels Oxidation von Alkylphosphonigsäuren und ihre Verwendung
DE102008063642A1 (de) 2008-12-18 2010-06-24 Clariant International Limited Verfahren zur Herstellung von monocarboxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Alkylenoxiden und ihre Verwendung
WO2010069545A2 (de) 2008-12-18 2010-06-24 Clariant International Ltd Verfahren zur herstellung von ethylendialkylphosphinsäuren, -estern und -salzen mittels acetylen und ihre verwendung
DE102008063627A1 (de) 2008-12-18 2010-06-24 Clariant International Limited Verfahren zur Herstellung von monohydroxyfunktionalisierten Dialkylphosphinsäuren,-estern und -salzen mittels Ethylenoxid und ihre Verwendung
DE102008064012A1 (de) 2008-12-19 2010-06-24 Clariant International Limited Halogenfreie Addukte von Alkylphosphonigsäurederivaten und diesterbildenden Olefinen, halogenfreie Verfahren zu deren Herstellung und ihre Verwendung
DE102008064003A1 (de) 2008-12-19 2010-06-24 Clariant International Limited Verfahren zur Herstellung von mono-funktionalisierten Dialkylphosphinsäuren, -estern und -salzen und ihre Verwendung
CN103172668A (zh) * 2013-03-04 2013-06-26 广州金凯新材料有限公司 一种单烷基/二烷基次膦酸盐及其制备方法
CN104250440A (zh) * 2013-06-28 2014-12-31 杜邦公司 阻燃的聚合物组合物
CN111057104A (zh) * 2013-08-22 2020-04-24 株式会社艾迪科 含磷化合物及含有该含磷化合物的固化性环氧树脂组合物
CN105683286B (zh) * 2013-10-28 2017-07-21 帝人杜邦薄膜日本有限公司 阻燃性双轴取向聚酯膜、由其形成的阻燃性聚酯膜层合体和柔性电路基板
CN103739623A (zh) * 2013-12-25 2014-04-23 陕西理工学院 磁性苯基次磷酸金属盐及其制备方法
DE102014014253A1 (de) * 2014-09-26 2016-03-31 Clariant International Ltd. Verfahren zur Herstellung von Ethylendialkylphosphinsäuren, -estern und -salzen sowie deren Verwendung
CN107343380B (zh) * 2015-01-29 2020-02-18 Adeka株式会社 阻燃性环氧树脂组合物、用该组合物形成的半固化片及层压板
JP7182601B2 (ja) 2017-07-24 2022-12-02 アイシーエル‐アイピー・アメリカ・インコーポレイテッド 反応性難燃剤を含む硬質ポリウレタン発泡体
EP3606971B1 (de) 2017-09-21 2022-01-12 ICL-IP America Inc. Reaktive flammhemmende gemische für flexiblen polyurethanschaumstoff
CN109319079B (zh) * 2018-09-29 2020-07-14 武汉船用机械有限责任公司 螺旋桨轴的保护方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2957931A (en) * 1949-07-28 1960-10-25 Socony Mobil Oil Co Inc Synthesis of compounds having a carbonphosphorus linkage

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594199A (en) * 1983-09-19 1986-06-10 E. R. Squibb & Sons, Inc. Method for making phosphinic acid intermediates
GB8728483D0 (en) * 1987-12-04 1988-01-13 Ciba Geigy Ag Chemical compounds
IL114631A (en) * 1990-06-22 1998-12-06 Novartis Ag Anti-epileptic preparations containing antagonists of BABAG
CA2311675C (en) * 1997-11-28 2009-03-17 Clariant Gmbh Method for producing salts of dialkylphosphinic acids
KR100707704B1 (ko) * 1997-11-28 2007-04-18 클라리안트 프로두크테 (도이칠란트) 게엠베하 디알킬포스핀산의 제조방법 및 이를 포함하는 제품
CA2442717A1 (en) * 2001-03-15 2002-09-26 Saegis Pharmaceuticals, Inc. Methods for restoring cognitive function following systemic stress
DE10359815A1 (de) * 2003-12-19 2005-07-28 Clariant Gmbh Verfahren zur Herstellung von Dialkylphosphinsäure-Salzen
DE10359814A1 (de) * 2003-12-19 2005-07-28 Clariant Gmbh Dialkylphosphinsäure-Salze
US20050187196A1 (en) * 2004-02-23 2005-08-25 Saegis Pharmaceuticals, Inc. Treatment of attention disorders
US7049463B2 (en) * 2004-10-25 2006-05-23 Rhodia Inc. Process for the preparation of highly purified, dialkyl phosphinic acids
DE102006010362A1 (de) * 2006-03-07 2007-09-13 Clariant International Limited Mischungen aus Mono-Carboxylfunktionalisierten Dialkylphosphinsäuren, ein Verfahren zu ihrer Herstellung und ihre Verwendung
DE102006045814A1 (de) * 2006-09-28 2008-04-03 Clariant International Limited Unsymmetrisch substituierte Phosphinsäuren
JP2008184591A (ja) * 2007-01-31 2008-08-14 Nitsukan Kogyo Kk 難燃性樹脂組成物およびそれを用いたフレキシブル銅張積層板、カバーレイフィルムならびに接着剤シート

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2957931A (en) * 1949-07-28 1960-10-25 Socony Mobil Oil Co Inc Synthesis of compounds having a carbonphosphorus linkage

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NIFANT'EV E E: "Acid catalysis in the hydrophosphorylation of olefins", JOURNAL OF GENERAL CHEMISTRY USSR, CONSULTANTS BUREAU, NEW YORK, NY, US, vol. 50, no. 8/01, 1 August 1980 (1980-08-01), pages 1416 - 1423, XP002093427, ISSN: 0022-1279 *
See also references of WO2010069419A1 *

Also Published As

Publication number Publication date
WO2010069419A1 (de) 2010-06-24
JP5641656B2 (ja) 2014-12-17
CN102164930A (zh) 2011-08-24
US20110245386A1 (en) 2011-10-06
JP2012512196A (ja) 2012-05-31
DE102008063640A1 (de) 2010-06-24

Similar Documents

Publication Publication Date Title
EP2352741B1 (de) Verfahren zur herstellung von mono-aminofunktionalisierten dialkylphophinsäuren, -estern und -salzen und ihre verwendung
EP2373668B1 (de) Verfahren zur herstellung von mono-hydroxyfunktionalisierten dialkylphosphinsäuren, -estern und -salzen mittels vinylester einer carbonsäure und ihre verwendung
EP2352740B1 (de) Verfahren zur herstellung von dialkylphosphinsäuren, -estern und -salzen mittels acrylsäurederivaten und ihre verwendung
EP2352735B1 (de) Verfahren zur herstellung von mono-hydroxyfunktionalisierten dialkylphosphinsäuren, -estern und -salzen mittels allylalkoholen und ihre verwendung
EP2367833B1 (de) Verfahren zur herstellung von mono-carboxyfunktionalisierten dialkylphosphinsäuren, -estern und -salzen mittels acrylnitrilen und ihre verwendung
EP2367835B1 (de) Verfahren zur herstellung von mono-allylfunktionalisierten dialkylphosphinsäuren, deren salze und ester mit allylischen verbindungen und ihre verwendung
EP2367834B1 (de) Verfahren zur herstellung von mono-hydroxyfunktionalisierten dialkylphosphinsäuren, -estern und -salzen mittels acroleinen und ihre verwendung
EP2373666B1 (de) Verfahren zur herstellung von mono-aminofunktionalisierten dialkylphosphinsäuren, -estern und -salzen mittels acrylnitrilen und ihre verwendung
EP2379574B1 (de) Verfahren zur herstellung von mono-hydroxyfunktionalisierten dialkylphosphinsäuren, -estern und -salzen mittels ethylenoxid und ihre verwendung
EP2373669B1 (de) Verfahren zur herstellung von mono-carboxyfunktionalisierten dialkylphosphinsäuren, -estern und -salzen mittels vinylether und ihre verwendung
EP2379571A1 (de) Verfahren zur herstellung von gemischtsubstituierten dialkylphosphinsäuren, -estern und -salzen und ihre verwendung
EP2379573A2 (de) Verfahren zur herstellung von ethylendialkylphosphinsäuren, -estern und -salzen mittels acetylen und ihre verwendung
WO2010051883A1 (de) Verfahren zur herstellung von dialkylphosphinsäuren, -estern und -salzen mittels allylalkoholen/acroleinen und ihre verwendung
EP2373667A1 (de) Verfahren zur herstellung von mono-carboxyfunktionalisierten dialkylphosphinsäuren, -estern und -salzen mittels vinylester einer carbonsäure und ihre verwendung
WO2010051890A2 (de) Verfahren zur herstellung von mono-vinylfunktionalisierten dialkylphosphinsäuren, deren salze und estern und ihre verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110718

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120928

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CLARIANT FINANCE (BVI) LIMITED

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20131227