EP2377911B1 - Method and device for creating fuel gas from a solid fuel - Google Patents

Method and device for creating fuel gas from a solid fuel Download PDF

Info

Publication number
EP2377911B1
EP2377911B1 EP10185292.9A EP10185292A EP2377911B1 EP 2377911 B1 EP2377911 B1 EP 2377911B1 EP 10185292 A EP10185292 A EP 10185292A EP 2377911 B1 EP2377911 B1 EP 2377911B1
Authority
EP
European Patent Office
Prior art keywords
gas
shaft
gasifier
zone
filter cartridges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10185292.9A
Other languages
German (de)
French (fr)
Other versions
EP2377911A3 (en
EP2377911A2 (en
Inventor
Björn Kuntze
Bruno Merz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Big Dutchman International GmbH
Original Assignee
Big Dutchman International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Big Dutchman International GmbH filed Critical Big Dutchman International GmbH
Publication of EP2377911A2 publication Critical patent/EP2377911A2/en
Publication of EP2377911A3 publication Critical patent/EP2377911A3/en
Application granted granted Critical
Publication of EP2377911B1 publication Critical patent/EP2377911B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/22Arrangements or dispositions of valves or flues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/34Grates; Mechanical ash-removing devices
    • C10J3/40Movable grates
    • C10J3/42Rotary grates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/09Mechanical details of gasifiers not otherwise provided for, e.g. sealing means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/156Sluices, e.g. mechanical sluices for preventing escape of gas through the feed inlet
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • C10J2300/092Wood, cellulose
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1223Heating the gasifier by burners

Definitions

  • the invention relates to a method and apparatus for producing fuel gas from a solid fuel in a shaft gasifier, which is designed as a fixed-bed gasifier.
  • a fuel gas is generated in a pyrolysis stage, which contains a high tar load.
  • the tar load together with the fuel gas by a high-temperature oxidation at a temperature of well above 1000 deg. C either thermally cracked and / or oxidized.
  • the oxidation state is operated with air or oxygen. In this case, temperatures above the ash melting point of the fuel used are achieved.
  • the process is generally substoichiometric.
  • the exhaust gas from the oxidation stage is then subjected to a reduction reaction with in-house produced coke (eg charcoal), whereby the combustion products (CO2 and H2O) with the coke to the combustible gas components CO and H2 react.
  • coke eg charcoal
  • CO2 and H2O combustion products
  • the generated combustible gas is intended for use in internal combustion engines and gas turbines.
  • the gas stream from the pyrolysis stage is passed through the oxidation stage and air or oxygen is used as the oxidizing agent, very high temperatures are required to destroy the tar constituents (> 1300 ° C.). Since the process proceeds clearly substoichiometric, the destruction is based more on a thermal splitting than on an oxidation.
  • the oxidation stage due to high dust loading of the pyrolysis gases procedural difficulties with the handling of the forming liquid slag, which also partially discharged with the gas stream and enters the reduction zone and hardens there.
  • the following reduction stage must be constructively designed for the high temperature level of the incoming gas stream.
  • a gasifier in which solids are gasified in a boiler to fuel gas and the fuel gas is passed through a filter assembly before it is led out of the gasifier through an outlet opening.
  • the filter assembly is in direct contact with the boiler wall towards the boiler.
  • the raw gas produced in carburetors has a more or less large amount of dust.
  • the load is essentially dependent on the design of the carburettor, the starting materials and the mode of operation.
  • Fixed bed gasifiers often have raw gas dust loadings of 2 - 8 g / Nm ⁇ 3>. The raw gas dust loadings of fluidized bed gasifiers are even higher.
  • the target values for clean gas dust loading are dependent on the requirements of the gas utilization facilities. In practice, for example, for applications with heat engines clean gas dust loads of up to 50 mg / NM ⁇ 3> is required. The target values for this application are 5 mg / Nm ⁇ 3>.
  • the well-known methods such. Cyclone, electrostatic filters, fabric filters, hot gas filtration, scrubbers, etc. to disposal.
  • the target values of 5 mg / Nm ⁇ 3> required above can be achieved, for example, with fabric filters or hot gas filters.
  • fabric filters When using fabric filters, the dust-laden raw gas is initially at the typical temperature range of the filter materials 80 - 250 deg. C to pre-cool. In terms of process technology, the dust load proves to be a hindrance.
  • the use of hot gas filtration is particularly advantageous, since here, without intermediate cooling in the typical temperature range of the raw gas of 400 to 800 ° C.
  • common filter elements such as e.g. Filter candles made of glass fiber, sintered metal or ceramic, can be used. These elements are arranged in corresponding independent filter apparatuses.
  • the problem of discharging the filter ash deposited in the filter is to be solved.
  • the high operating temperatures and other requirements serving for explosion protection lead to cost-intensive designs.
  • the object of the present invention is to provide a method and an apparatus for the simple and economic production of low-tar and dust-free fuel gas by multi-stage gasification of solid fuels.
  • the procedure is process-technically stable and has improved operating parameters.
  • the fuel gas produced is intended for use in heat engines.
  • Object of the present invention is also to provide measures for the dedusting of raw gas from a gasification plant, which takes place by the integration of the hot gas filtration in the carburetor in a manner that neither a separate filter housing nor an independent discharge of the filter ash is required.
  • the invention as characterized in the claims provides a method of producing fuel gas from a solid fuel, comprising the steps of: supplying the fuel into a pit gasifier formed as a descending fixed bed reactor; Degassing of the fuel in a degassing zone of the shaft gasifier by autothermal partial gasification with air supply from the outside; Supplying the pyrolysis gas thus obtained from the degassing zone into an oxidation stage located within the shaft and separated from the degassing zone, in which partial oxidation and thermal cracking of the raw gas take place with addition of an oxidizing agent; and reduction of the exhaust gas from the oxidation stage in a reduction zone downstream of the oxidation zone through the coke formed in the degassing zone with heat extraction to a fuel gas, wherein the Redutechnischskoks from the degassing zone is bypassing the oxidation stage of the reduction zone fed directly.
  • a further feature of the method according to the invention is that the gas produced is filtered before it leaves the shaft.
  • the filtering is carried out by arranged in front of the outlet opening filter cartridges, which are exposed to time-dependent or differential pressure controlled a pressure surge cleaning.
  • the process according to the invention has the advantage that the oxidation stage is charged with a low-pyrolysis gas and can be operated at a comparatively low oxidation temperature and thus also permits a low gas inlet temperature into the reduction stage, requires little reducing coke and allows easy transport of the uncut reducing coke from the degassing zone the reduction zone allows.
  • the integrated into the gas generation filtering of the raw gas increases the freedom from dust of the clean gas.
  • the invention also consists in a device for producing fuel gas from a solid fuel in a shaft gasifier, which is designed as a descending fixed bed reactor.
  • the device comprises a central oxidation chamber arranged in the fixed bed reactor, which is separated from the degassing zone and to which the pyrolysis gas produced in the degassing zone is supplied.
  • the oxidation chamber is connected to an oxidant supply line via which the oxidation chamber is supplied with an oxidizing agent, under the action of which partial oxidation and thermal cracking of the pyrolysis gas take place.
  • a reduction zone which receives the exhaust gas from the oxidation chamber and which is supplied to the resulting in the pyrolysis gas production Redutationskoks from the degassing zone directly and bypassing the oxidation chamber.
  • a reduction of the exhaust gas from the oxidation chamber by the supplied reducing coke with heat removal takes place to a fuel gas.
  • a filter arrangement which is arranged inside the shaft in front of a gas outlet opening.
  • the filter assembly comprises filter cartridges, which are arranged substantially horizontally or vertically in front of the gas outlet opening and which are exposed via jet pulse nozzles, the time-dependent or differential pressure controlled by a pressure surge cleaning.
  • FIG. 1 shows a schematic representation of a shaft carburetor, which is designed as a descending fixed-bed gasifier 1, which has an upright cylindrical shaft 2.
  • the fixed bed gasifier 1 is fed via a lock system 3 fuel from above.
  • This may be coal, wood or other woody biomasses.
  • the supplied fuel is crushed into pieces or chips.
  • the level of the shaft with fuel 4 is monitored by a level indicator 5.
  • a nozzle system which may comprise at least one or more nozzle planes, which comprises a plurality of distributed over the circumference of the shaft 2 nozzles 6, which are fed via a ring channel 7 with fresh air.
  • the annular channel 7 is supplied with an air stream 8 via an inlet connection 9, so that a partial flow of the air required for an autothermal partial gasification of the fuel is introduced into the shaft 2 through each of the nozzles.
  • energy is obtained by partial combustion under air supply.
  • the fixed-bed gasifier 1 has an oxidation stage separate from the degassing zone 10, in which a partial oxidation and a thermal cracking of the raw gas takes place with the addition of an oxidizing agent.
  • the oxidation stage is formed by an oxidation chamber 12, which is preferably arranged centrally in the carburettor shaft 2.
  • the oxidation chamber 12 has a cylindrical housing 13, which is arranged concentrically to the longitudinal axis 14 of the shaft and which is bounded above by a conical part 15 and which is open at the bottom.
  • the supply air duct 16 passes through the cover 17 of the shaft 2 and extends concentrically to the longitudinal axis 14 of the shaft 2.
  • it can also be arranged laterally outside the longitudinal axis or in the radial direction and parallel to this run.
  • radial openings 18 are arranged, which are distributed over the circumference of the housing 13.
  • the reducing coke 24 is generated in the space between the oxidation chamber 12 and the wall of the carburettor shaft 2 during the degassing of the fuel 4. Due to the central arrangement of the oxidation chamber 12 in the shaft 2 and the cylindrical housing 13 of the oxidation chamber 12 an annular space between the housing 13 and the shaft wall is formed, which is referred to herein as the annular gap 26 and the reducing coke 24 over the circumference of the annular gap 26th distributed to the reduction zone 23 is supplied. In this case, the reducing coke 24 can slip into the reduction zone 23 to replace the used reducing coke without the need for a mechanical conveying device. By reducing coke 24, the exhaust gas 22 is reduced in the reduction zone 23 under heat removal to fuel gas.
  • the reduction zone 23 is delimited by a grate which is designed as a movable grate and in particular as a rotary grate 28 and by means of which the ash produced during the reduction process is separated from the reduction zone 23 and disposed of via an exit opening 29.
  • a grate which is designed as a movable grate and in particular as a rotary grate 28 and by means of which the ash produced during the reduction process is separated from the reduction zone 23 and disposed of via an exit opening 29.
  • To drive the rotary grate 28 is an electric gear motor 30.
  • the shaft 2 is closed at the bottom by a bottom plate 31 and rests on columns, of which FIG. 1 only the columns 32 and 33 are shown.
  • the motor 30 is mounted below the bottom plate 31 on the columns or on the bottom plate and connected by a shaft 34 with the rotary grate 28.
  • the height extent of the reduction zone 23 can be changed, which is an optimization of the method in terms of ash quality, pressure loss in the reduction zone 23 and adaptation to fuel properties is advantageous.
  • the shaft 34 is arranged axially displaceable in the output shaft of the electric geared motor 30 designed as a hollow shaft and can be fixed in the respectively selected position against a further displacement by adjusting rings, not shown.
  • the height of the reduction zone 23 is dependent on a number of factors such as fuel ash content, particulate matter, gas generator load and coke reactivity.
  • the oxidation chamber 12 is arranged in the cylindrical shaft 2 concentric with its longitudinal axis 14.
  • the supply air duct 16 opens centrally from above into the oxidation chamber 12 and is extended in the direction of the center thereof, whereby a uniform combustion of the pyrolysis gas 20 supplied from the degassing zone 10 is promoted.
  • Alternatively, to achieve a uniform combustion process within the oxidation chamber of the supply air duct 16 may be provided at its outlet opening with a mixing chamber in which the pyrolysis gas 20 and the supply air 21 are intimately mixed.
  • the annular gap 26 filled with reducing coke 24 forms a flow resistance for the pyrolysis gas 20 produced in the degassing zone 10. Due to the flow resistance for the pyrolysis gas 20 prevailing in this coke charge, this preferably flows through the openings 18 arranged in the upper region into the oxidation chamber 12, which pure gas space has only a negligible flow resistance.
  • a flow through the annular gap 26 with pyrolysis gas 20 is also prevented by the inflowing through the lower nozzle levels supply air 8 generates a very low tarry fuel gas and thus a flow-related barrier represents for the pyrolysis gas formed in the region of the uppermost nozzle level.
  • the very low tar content of the fuel gas formed in the region of the lower nozzle levels is due to the fact that here already degassed fuel is present in the form of the reducing coke 24 and thus no tar is released.
  • the fuel gas 35 collected in the space 45 below the grate 28 is sucked downwards or laterally out of the reduction zone 23, depending on the dedusting concept used.
  • the removal of the fuel gas 35 takes place laterally through an arranged in the wall of the shaft 2 in the lower part of the outlet opening 36.
  • the fuel gas is after his Removal from the reduction zone 23 cooled and cleaned according to the requirements of use in heat engines.
  • the oxidation chamber 12 can also be operated with a significantly lowered oxidation temperature. This is always useful when using ash-rich fuels with low ash melting points required for the thermal destruction of long-chain hydrocarbons oxidation temperatures of 1000 deg. C or above are not permitted due to the danger of slagging.
  • the intended for the oxidation stage combustion air or the pyrolysis gas stream 20 steam is added.
  • flue gas from the heat engine or other combustion plants can be mixed.
  • the combustion temperatures are lowered. This process corresponds to the exhaust gas recirculation of internal combustion engines to reduce NOx emissions.
  • the water vapor content in the gas increases, which also has a destructive effect on the tar.
  • the admixture increases the mass flow in the oxidation chamber and thereby lowers the oxidation temperature with otherwise constant material flows.
  • the desired destruction of the long-chain hydrocarbons can be achieved if the amount of water vapor and / or flue gas admixed is determined such that even at stoichiometric ratios the oxidation temperature which is permissible to prevent the slagging is no longer exceeded.
  • the hydrocarbons are then oxidized at considerably lower temperatures to carbon dioxide and water vapor.
  • slightly superstoichiometric ratios can also be set, resulting in combustion with excess oxygen. This is fast and increases the reaction rate, which can lead to smaller sizes of apparatus.
  • the additionally introduced water vapor and / or the additionally introduced flue gas causes destruction of the tar constituents even at substoichiometric ratios, so that the oxidation temperature can be reduced at high partial pressures of water vapor.
  • the fixed-bed gasifier 1 is equipped with more than one nozzle plane with nozzles 6 for introducing the gasification air.
  • two nozzle levels are provided, each of which receives an air stream 8 is supplied.
  • the nozzle levels 6 can be charged with different mixtures of air, water vapor and flue gases from the heat engine. The enrichment of the air stream 8 with steam and / or flue gas causes a reduction of the combustion temperatures in the degassing zone 10 and allows the control of these combustion temperatures.
  • FIG. 2 a shaft carburetor based on FIG. 1 described type, which is equipped with an additional gasification zone.
  • the manhole carburetor of FIG. 1 corresponding components have in FIG. 2 the same reference numerals.
  • the shaft carburetor of FIG. 2 a degassing zone 10, which is supplied via an inlet port 9 air, a central oxidation chamber 12 with a supply air duct 16 and a reduction zone 23.
  • a further gasification zone 40 is provided, which is also referred to herein as Restkoksvergasungszone and which is operated with additional air as a countercurrent gasifier.
  • the additional air is supplied as under-air 41 via an inlet port 42, which is arranged below a movable grate 43.
  • the grate 43 is like the grate 28 of FIG. 1 designed as a rotating grate and is driven by an electric geared motor 44.
  • flue gas and / or water vapor can also be supplied for lowering and controlling the reaction temperatures.
  • the generated raw gas is collected in an annular gas collecting space 45, which is arranged at the level of the reduction zone 23 and is formed by a cylindrical wall 46 and a cover 47.
  • the gas collection chamber 45 is open at the bottom and is only through the bulk cone 48 of Reduction coke limited.
  • the raw gas 50 collected in the gas collecting space 45 is sucked off via a nozzle 51 arranged on the circumference of the shaft 2.
  • An advantage of in FIG. 2 illustrated device is that the separated with the grate 43 and disposed of via an outlet 49 ash contains only very small amounts of carbon.
  • FIGS. 3 and 4 A further embodiment of the device according to the invention is shown in FIG FIGS. 3 and 4 ,
  • the in FIG. 3 Shaft carburetor shown corresponds to that of FIG. 1 and additionally has an integration of the dedusting of the raw gas into the raw gas collecting space.
  • Dedusting takes place through a filter arrangement 55, which is arranged below the grate 28 in a correspondingly enlarged raw gas collecting space 54 in front of the gas outlet opening 36.
  • the filter arrangement 55 comprises filter cartridges 56 which are known per se and which are aligned transversely to the longitudinal axis 14 of the shaft, preferably horizontally, and are fastened to a filter plate 57 which separates a clean gas collecting space 58 from the raw gas collecting space 54.
  • the filter cartridges 56 are held by a support plate 59.
  • the filter cartridges 56 are arranged one above the other in front of the gas outlet opening 36, as shown in the sectional view of FIG. 4 seen.
  • the raw gas is passed through the filter cartridges 56, wherein the dust contained in the raw gas is deposited on the filter cartridges 56.
  • the separated dust collects together with the grate ash in the region 60 at the bottom of the shaft 2 and is discharged through the outlet opening 29.
  • the cleaning of the building up on the filter cartridges 56 filter cake is done according to the prior art time or differential pressure controlled by means of pressure surge cleaning (jet pulses).
  • the filter cartridges are fed via jet-pulse nozzles 61 compressed gas pulses for cleaning the filter cartridges.
  • jet-pulse nozzles 61 compressed gas pulses for cleaning the filter cartridges.
  • the jet pulse nozzles 61 are fed in the prior art with compressed inert gas (nitrogen or carbon dioxide) or with compressed natural gas (clean gas).
  • FIG. 5 is a modification of the gasification apparatus according to FIG. 2 represented, which is equipped with an integrated dedusting of the raw gas produced.
  • shaft carburetor 64 of FIG. 5 Dedusting is done by a filter assembly 65 which is arranged on the circumference of the carburettor.
  • the filter assembly 65 includes hot gas filter cartridges 67, which are aligned substantially parallel to the longitudinal axis 14 of the shaft.
  • the shaft carburetor 64 has an enlarged Rohgassammelraum 54, including the carburettor shaft is formed in two parts.
  • a downwardly open upper carburetor chute 68 projects into an enlarged outer chute 69 which forms the lower part of the carburettor shaft.
  • annular gap 70 Between the upper carburetor shaft 68 and the outer shaft 69 is an annular gap 70, the upper end of which is connected by a flange 71 to the upper carburetor shaft 68.
  • a gas outlet opening 72 is arranged at the upper end of the annular gap 70 in the outer shaft 69.
  • a filter plate 78 Below the gas outlet opening 72 is located in the annular gap 70, a filter plate 78, in which the filter cartridges 67 are mounted and which separates a clean gas collection chamber 73 from the raw gas collection chamber 54.
  • the filter cartridges 67 protrude in the annular gap 70 substantially parallel to the common longitudinal axis 14 of the wells 68 and 69 down.
  • the dust deposited on the filter candles falls within the scope of the cleaning described below as a filter cake on the bulk cone 74 of the Reduktionskokses 75.
  • the filter dust enters the further gasification zone for the residual coke.
  • the strongly carbonaceous filter dust is then largely gassed into ashes as part of the progressing gasification of the residual coke and discharged together with the grate ash via the outlet port 77.
  • the cleaning of the filter cartridges 67 by compressed gas pulses, which are supplied via jet-pulse nozzles 76 takes place.
  • the jet-pulse nozzles 76 are arranged in the flange 71 in association with the filter cartridges 67.
  • the pressure gas supplied through the nozzles 76 corresponds to that previously in connection with FIG FIG. 3 described.
  • dedusting into a shaft gasifier is not limited to shaft carburetor with an oxidation stage separate from the degasification zone in the form of a central oxidation chamber, but may also be applied to shaft carburetors of other types such as e.g. at carburetors, which work after the so-called double fire procedure.
  • a double firing type carburetor 80 is shown in FIG FIG. 6 shown schematically.
  • This carburetor corresponds in its outer structure of the shaft carburetor of FIG. 2 but without a separate from the degassing zone oxidation state in the form of a central oxidation chamber.
  • the supply air to the carburetor 80 is usually referred to with upper air and lower air and is in FIG. 6 represented by the air feeds 81 and 82.
  • the integrated dedusting is achieved in the carburetor 80 by a filter assembly 83 which is arranged on the circumference of a correspondingly enlarged Rohgassammelraum 84.
  • the filter assembly 83 contains hot gas filter cartridges 86, which are arranged substantially parallel to the longitudinal axis of the carburetor 80.
  • the enlargement of the Rohgassammelraums 84 and the arrangement of the filter cartridges 86 corresponds to that in conjunction with FIG. 5 described embodiment.
  • the filter cartridges 86 are arranged in an annular gap between a downwardly open shaft 90 and an outer shaft 91 comprising this shaft and lie in the flow direction in front of a gas outlet opening 92 which is located at the upper end of the annular gap.
  • the filter cartridges 86 are mounted in a filter plate 87 which separates a clean gas collecting space 85 from the raw gas collecting space 84.
  • the cleaning of the filter cartridges 86 is again carried out by compressed gas pulses via jet-pulse nozzles 93, which are arranged in a connection flange 94 of the outer shaft to the downwardly open shaft above the filter cartridges 86 are supplied.
  • the compressed gas supplied through the nozzles 93 is the same as that previously described in connection with FIG FIG. 3 described. As with the device after FIG.
  • the dust deposited on the filter cartridges precipitates as filter cake onto a pour cone 94 of the reduction coke 95. In this way, the filter dust passes into the further gasification zone for the residual coke.
  • the highly carbonaceous filter dust is then largely gassed into ashes in the context of progressing gasification of the coke and discharged together with the grate ash on the outlet port 96.

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Erzeugung von Brenngas aus einem festen Brennstoff in einem Schachtvergaser, der als Festbettvergaser ausgebildet ist.The invention relates to a method and apparatus for producing fuel gas from a solid fuel in a shaft gasifier, which is designed as a fixed-bed gasifier.

Zur Erzeugung von Brenngas aus einem festen Brennstoff sind mehrstufige Vergasungsverfahren bekannt, mit denen dem Problem der Teerfracht begegnet werden soll ( DE 198 46 805 A1 und DE 44 04 673 C2 ). Bei diesen verfahren wird in einer Pyrolysestufe ein Brenngas erzeugt, das eine hohe Teerfracht enthält. In einer nachgeschalteten Oxidationsstufe wird die Teerfracht zusammen mit dem Brenngas durch eine Hochtemperaturoxidation bei einer Temperatur von deutlich oberhalb von 1000 deg. C entweder thermisch gecrackt oder/und oxidiert. In der Regel wird die Oxidationsstufe mit Luft oder Sauerstoff betrieben. Hierbei werden Temperaturen oberhalb des Ascheschmelzpunktes des eingesetzten Brennstoffes erzielt. Der Vorgang verläuft im allgemeinen unterstöchiometrisch. Das Abgas aus der Oxidationsstufe wird anschliessend mit verfahrensintern produzierten Koks (z.B. Holzkohle) einer Reduktionsreaktion unterworfen, wobei die Verbrennungsprodukte (CO2 und H2O) mit dem Koks zu den brennbaren Gasbestandteilen CO und H2 reagieren. Dabei wird ein grosser Teil der im Abgas enthaltenen Wärmeenergie aufgezehrt. Das erzeugte brennbare Gas ist für den Einsatz in Verbrennungsmotoren und Gasturbinen bestimmt.For the production of fuel gas from a solid fuel multistage gasification processes are known, with which the problem of tar load to be met ( DE 198 46 805 A1 and DE 44 04 673 C2 ). In these methods, a fuel gas is generated in a pyrolysis stage, which contains a high tar load. In a downstream oxidation stage, the tar load together with the fuel gas by a high-temperature oxidation at a temperature of well above 1000 deg. C either thermally cracked and / or oxidized. In general, the oxidation state is operated with air or oxygen. In this case, temperatures above the ash melting point of the fuel used are achieved. The process is generally substoichiometric. The exhaust gas from the oxidation stage is then subjected to a reduction reaction with in-house produced coke (eg charcoal), whereby the combustion products (CO2 and H2O) with the coke to the combustible gas components CO and H2 react. In this case, a large part of the heat energy contained in the exhaust gas is consumed. The generated combustible gas is intended for use in internal combustion engines and gas turbines.

Wird jedoch wie bei den bekannten Verfahren der Gasstrom aus der Pyrolysestufe durch die Oxidationsstufe geleitet und Luft oder Sauerstoff als Oxidationsmittel eingesetzt, sind zur Zerstörung der Teerbestandteile sehr hohe Temperaturen erforderlich (>1300 deg. C). Da der Prozess deutlich unterstöchiometrisch abläuft, beruht die Zerstörung eher auf einer thermischen Aufspaltung als auf einer Oxidation. Gleichzeitig ergeben sich innerhalb der Oxidationsstufe auf Grund hoher Staubbeladung der Pyrolysegase verfahrenstechnische Schwierigkeiten mit der Handhabung der sich bildenden flüssigen Schlacke, die teilweise auch mit dem Gasstrom ausgetragen und in die Reduktionszone gelangt und dort erhärtet. Auch muss die folgende Reduktionsstufe konstruktiv auf das hohe Temperaturniveau des einströmenden Gasstromes ausgelegt sein.However, if, as in the known processes, the gas stream from the pyrolysis stage is passed through the oxidation stage and air or oxygen is used as the oxidizing agent, very high temperatures are required to destroy the tar constituents (> 1300 ° C.). Since the process proceeds clearly substoichiometric, the destruction is based more on a thermal splitting than on an oxidation. At the same time result within the oxidation stage due to high dust loading of the pyrolysis gases procedural difficulties with the handling of the forming liquid slag, which also partially discharged with the gas stream and enters the reduction zone and hardens there. Also, the following reduction stage must be constructively designed for the high temperature level of the incoming gas stream.

Gleichzeitig ist zur Aufheizung der gesamten Gasmenge aus der Pyrolysestufe die Zugabe einer entsprechend grossen Menge an Verbrennungsluft (oder Sauerstoff) erforderlich. Hieraus resultiert ein erheblicher Bedarf an Reduktionskohlenstoff, der zwar in der Regel verfahrensintern erzeugt wird, jedoch auch in die Reduktionsstufe transportiert werden muss und dort der erforderliche Reaktionsraum zur Verfügung gestellt werden muss. Der Transport des Reduktionskokses kann sowohl im Gasstrom erfolgen, wie dies bei dem in DE 198 46 805 A1 offenbarten Verfahren der Fall ist, als auch getrennt vom Gasstrom in dafür vorgesehenen Fördereinrichtungen, wie in DE 44 04 673 C2 offenbart. Der Transport in externen Fördereinrichtungen ist technisch aufwändig und mit Wärmeverlusten behaftet. Der Koks darf nicht grobstückig sein und muss gegebenenfalls mechanisch vorbehandelt werden. Dieser Vorgang wird durch im Koks enthaltene mineralische oder metallische Fremdkörper erheblich erschwert. Wegen der erforderlichen Zerkleinerung des Kokses ist eine Festbettausführung der Reduktionsstufe nur bedingt geeignet, während eine fluidisierte Reduktionsstufe einen höheren Aufwand erfordert.At the same time the addition of a correspondingly large amount of combustion air (or oxygen) is required to heat the entire amount of gas from the pyrolysis. This results in a considerable demand for reducing carbon, which is usually generated internally in the process, but must also be transported to the reduction stage and there the required reaction space must be made available. The transport of the Reduktionskokses can take place both in the gas stream, as in the in DE 198 46 805 A1 disclosed method, as well as separated from the gas flow in dedicated conveyors, as in DE 44 04 673 C2 disclosed. The transport in external conveyors is technically complex and subject to heat losses. The coke must not be coarse and may require mechanical pretreatment. This process is considerably more difficult due to mineral or metallic foreign bodies contained in the coke. Because of the required comminution of the coke, a fixed bed design of the reduction stage is only suitable to a limited extent, while a fluidized reduction stage requires a greater outlay.

Aus FR 979542 ist ein Vergaser bekannt, bei dem Feststoffe in einem Kessel zu Brenngas vergast werden und das Brenngas durch eine Filteranordnung geführt wird, bevor es durch eine Auslassöffnung aus dem Vergaser herausgeführt wird. Die Filteranordnung steht zum Kessel hin in direktem Kontakt zur Kesselwand.Out FR 979542 For example, a gasifier is known in which solids are gasified in a boiler to fuel gas and the fuel gas is passed through a filter assembly before it is led out of the gasifier through an outlet opening. The filter assembly is in direct contact with the boiler wall towards the boiler.

Ein anderer Weg für den Reduktionskoks aus der Pyrolysestufe in die Reduktionsstufe ist der zyklische Transport durch die Oxidationsstufe, wie in DE 198 46 805 A1 offenbart. ' Wegen der dabei auftretenden kurzfristigen Temperaturschwankungen kann diese Vorgehensweise zu Instabilitäten im Betrieb der Oxidationsstufe führen.Another way for the reducing coke from the pyrolysis stage to the reduction stage is the cyclic transport through the oxidation stage, as in DE 198 46 805 A1 disclosed. Because of the occurring short-term temperature fluctuations, this approach can lead to instabilities in the operation of the oxidation state.

Das in Vergasern erzeugte Rohgas weist eine mehr oder minder grosse Staubfracht auf. Die Beladung ist dabei im wesentlichen von der Bauart des Vergasers, den Einsatzstoffen und der Betriebsweise abhängig. Festbettvergaser weisen häufig Rohgasstaubbeladungen von 2 - 8 g/Nm<3> auf. Die Rohgasstaubbeladungen von Wirbelschichtvergasern liegen eher noch darüber.The raw gas produced in carburetors has a more or less large amount of dust. The load is essentially dependent on the design of the carburettor, the starting materials and the mode of operation. Fixed bed gasifiers often have raw gas dust loadings of 2 - 8 g / Nm <3>. The raw gas dust loadings of fluidized bed gasifiers are even higher.

Bedingt durch die hohe Staubbeladung sind Vergasungsrohgase für die weitere Verwendung zu entstauben. Die Zielwerte für die Reingasstaubbeladung sind dabei von den Anforderungen der Gasverwertungseinrichtungen abhängig. In der Praxis sind beispielsweise für Anwendungen mit Wärmekraftmaschinen Reingasstaubbeladungen von maximal 50 mg/NM<3> erforderlich. Die Zielwerte für diese Anwendung liegen bei 5 mg/Nm<3> .Due to the high dust load, gasification raw gases are to be dedusted for further use. The target values for clean gas dust loading are dependent on the requirements of the gas utilization facilities. In practice, for example, for applications with heat engines clean gas dust loads of up to 50 mg / NM <3> is required. The target values for this application are 5 mg / Nm <3>.

Für die Entstaubung des Rohgases stehen die allgemein bekannten verfahren wie z.B. Zyklon, elektrostatische Filter, Gewebefilter, Heissgasfiltration, Wäscher, u.a. zur Verfügung. Die oben geforderten Zielwerte von 5 mg/Nm<3> lassen sich beispielsweise mit Gewebefiltern oder Heissgasfiltern erreichen. Bei Einsatz von Gewebefiltern ist das staubbeladene Rohgas zunächst auf den typischen Temperatureinsatzbereich der Filtermaterialien von 80 - 250 deg. C vorzukühlen. Verfahrenstechnisch erweist sich dabei die Staubfracht als hinderlich.For the dedusting of the raw gas, the well-known methods such. Cyclone, electrostatic filters, fabric filters, hot gas filtration, scrubbers, etc. to disposal. The target values of 5 mg / Nm <3> required above can be achieved, for example, with fabric filters or hot gas filters. When using fabric filters, the dust-laden raw gas is initially at the typical temperature range of the filter materials 80 - 250 deg. C to pre-cool. In terms of process technology, the dust load proves to be a hindrance.

Besonders vorteilhaft ist dagegen der Einsatz der Heissgasfiltration, da hier ohne Zwischenkühlung im typischen Temperaturbereich des Rohgases von 400 - 800 deg. C marktgängige Filterelemente, wie z.B. Filterkerzen aus Glasfaser, Sintermetall oder Keramik, eingesetzt werden können. Diese Elemente sind in entsprechenden eigenständige Filterapparaten angeordnet. Neben dem Umstand, dass ein eigenständiger und für den Einsatztemperaturbereich entsprechend ausgestalteter Filterapparat benötigt wird, ist auch das Problem der Ausschleusung der im Filter abgeschiedenen Filterasche zu lösen. Hier führen insbesondere die hohen Betriebstemperaturen und weitere dem Explosionsschutz dienende Anforderungen zu kostenintensiven Ausführungen.On the other hand, the use of hot gas filtration is particularly advantageous, since here, without intermediate cooling in the typical temperature range of the raw gas of 400 to 800 ° C. C common filter elements, such as e.g. Filter candles made of glass fiber, sintered metal or ceramic, can be used. These elements are arranged in corresponding independent filter apparatuses. In addition to the fact that a separate and for the operating temperature range appropriately designed filter apparatus is needed, the problem of discharging the filter ash deposited in the filter is to be solved. In particular, the high operating temperatures and other requirements serving for explosion protection lead to cost-intensive designs.

Zusammenfassung der ErfindungSummary of the invention

Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren und eine Vorrichtung zur einfachen und wirtschaftlichen Erzeugung von teerarmen und staubfreien Brenngas durch mehrstufige Vergasung von festen Brennstoffen anzugeben. Das Verfahren ist prozesstechnisch stabil und weist verbesserte Betriebsparameter auf. Das erzeugte Brenngas ist zur Verwendung in Wärmekraftmaschinen bestimmt.The object of the present invention is to provide a method and an apparatus for the simple and economic production of low-tar and dust-free fuel gas by multi-stage gasification of solid fuels. The procedure is process-technically stable and has improved operating parameters. The fuel gas produced is intended for use in heat engines.

Aufgabe der vorliegenden Erfindung ist es auch, Massnahmen zur Entstaubung von Rohgas aus einer Vergasungsanlage anzugeben, bei dem durch die Integration der Heissgasfiltration in den Vergaser in einer Art und Weise erfolgt, dass weder ein eigenständiges Filtergehäuse noch eine eigenständige Ausschleusung der Filterasche erforderlich wird.Object of the present invention is also to provide measures for the dedusting of raw gas from a gasification plant, which takes place by the integration of the hot gas filtration in the carburetor in a manner that neither a separate filter housing nor an independent discharge of the filter ash is required.

Die Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, sieht ein Verfahren zur Erzeugung von Brenngas aus einem festen Brennstoff vor, das die Schritte umfasst: Zuführung des Brennstoffes in einen Schachtvergaser, der als absteigender Festbettreaktor ausgebildet ist; Entgasung des Brennstoffes in einer Entgasungszone des Schachtvergasers durch autotherme Teilvergasung unter Luftzufuhr von aussen; Zuführung des so gewonnenen Pyrolysegases aus der Entgasungszone in eine innerhalb des Schachts befindliche und von der Entgasungszone abgetrennte Oxidationsstufe, in der eine partielle Oxidation und ein thermisches Cracken des Rohgases unter Zusatz eines Oxidationsmittels erfolgt; und Reduktion des Abgases aus der Oxidationsstufe in einer der Oxidationsstufe nachgeschalteten Reduktionszone durch den in der Entgasungszone gebildeten Koks unter Wärmeentzug zu einem Brenngas, wobei der Reduktionskoks aus der Entgasungszone unter Umgehung der Oxidationsstufe der Reduktionszone direkt zugeführt wird.The invention as characterized in the claims provides a method of producing fuel gas from a solid fuel, comprising the steps of: supplying the fuel into a pit gasifier formed as a descending fixed bed reactor; Degassing of the fuel in a degassing zone of the shaft gasifier by autothermal partial gasification with air supply from the outside; Supplying the pyrolysis gas thus obtained from the degassing zone into an oxidation stage located within the shaft and separated from the degassing zone, in which partial oxidation and thermal cracking of the raw gas take place with addition of an oxidizing agent; and reduction of the exhaust gas from the oxidation stage in a reduction zone downstream of the oxidation zone through the coke formed in the degassing zone with heat extraction to a fuel gas, wherein the Reduktionskoks from the degassing zone is bypassing the oxidation stage of the reduction zone fed directly.

Ein weiteres Merkmal des erfindungsgemässen Verfahrens besteht darin, dass das erzeugte Gas vor dem Austritt aus dem Schacht gefiltert wird. Die Filterung erfolgt durch vor der Austrittsöffnung angeordnete Filterkerzen, die zeitabhängig oder differenzdruckgesteuert einer Druckstossreinigung ausgesetzt werden.A further feature of the method according to the invention is that the gas produced is filtered before it leaves the shaft. The filtering is carried out by arranged in front of the outlet opening filter cartridges, which are exposed to time-dependent or differential pressure controlled a pressure surge cleaning.

Das erfindungsgemässe Verfahren hat den Vorteil, dass die Oxidationsstufe mit einem staubarmen Pyrolysegas beaufschlagt wird und mit einer vergleichsweise niedrigen Oxidationstemperatur betrieben werden kann und damit auch eine niedrige Gaseintrittstemperatur in die Reduktionsstufe gestattet, wenig Reduktionskoks benötigt und einen einfachen Transport des unzerkleinerten Reduktionskokses aus der Entgasungszone in die Reduktionszone ermöglicht. Die in die Gaserzeugung integrierte Filterung des Rohgases erhöht die Staubfreiheit des Reingases.The process according to the invention has the advantage that the oxidation stage is charged with a low-pyrolysis gas and can be operated at a comparatively low oxidation temperature and thus also permits a low gas inlet temperature into the reduction stage, requires little reducing coke and allows easy transport of the uncut reducing coke from the degassing zone the reduction zone allows. The integrated into the gas generation filtering of the raw gas increases the freedom from dust of the clean gas.

Die Erfindung besteht auch in einer Vorrichtung zur Erzeugung von Brenngas aus einem festen Brennstoff in einem Schachtvergaser, der als absteigender Festbettreaktor ausgebildet ist. Wie in den Ansprüchen gekennzeichnet, umfasst die Vorrichtung eine im Festbettreaktor angeordnete zentrale Oxidationskammer, die von der Entgasungszone getrennt ist und der das in der Entgasungszone erzeugte Pyrolysegas zugeführt wird. Die Oxidationskammer ist an eine Oxidationsmittel-Zuleitung angeschlossen, über die der Oxidationskammer ein Oxidationsmittel zugeführt wird, unter dessen Einwirkung eine partielle Oxidation und ein thermisches Cracken des Pyrolysegases erfolgt. Unterhalb der Oxidationskammer ist eine Reduktionszone angeordnet, die das Abgas aus der Oxidationskammer aufnimmt und der der bei der Pyrolysegaserzeugung anfallende Reduktionskoks aus der Entgasungszone direkt und unter Umgehung der Oxidationskammer zugeführt wird. In der Reduktionszone erfolgt eine Reduktion des Abgases aus der Oxidationskammer durch den zugeführten Reduktionskoks unter Wämeentzug zu einem Brenngas.The invention also consists in a device for producing fuel gas from a solid fuel in a shaft gasifier, which is designed as a descending fixed bed reactor. As characterized in the claims, the device comprises a central oxidation chamber arranged in the fixed bed reactor, which is separated from the degassing zone and to which the pyrolysis gas produced in the degassing zone is supplied. The oxidation chamber is connected to an oxidant supply line via which the oxidation chamber is supplied with an oxidizing agent, under the action of which partial oxidation and thermal cracking of the pyrolysis gas take place. Below the oxidation chamber, a reduction zone is arranged, which receives the exhaust gas from the oxidation chamber and which is supplied to the resulting in the pyrolysis gas production Reduktionskoks from the degassing zone directly and bypassing the oxidation chamber. In the reduction zone, a reduction of the exhaust gas from the oxidation chamber by the supplied reducing coke with heat removal takes place to a fuel gas.

In den Schachtvergaser integriert ist eine Filteranordnung, die innerhalb des Schachts vor einer Gasaustrittsöffnung angeordnet ist. Die Filteranordnung umfasst Filterkerzen, die im wesentlichen horizontal oder vertikal vor der Gasaustrittsöffnung angeordnet sind und die über Jet-Pulse-Düsen die zeitabhängig oder differenzdruckgesteuert einer Druckstossreinigung ausgesetzt werden.Integrated into the shaft carburettor is a filter arrangement which is arranged inside the shaft in front of a gas outlet opening. The filter assembly comprises filter cartridges, which are arranged substantially horizontally or vertically in front of the gas outlet opening and which are exposed via jet pulse nozzles, the time-dependent or differential pressure controlled by a pressure surge cleaning.

Beschreibung der ZeichnungenDescription of the drawings

Nachfolgend sind Ausführungsbeispiele der Erfindung anhand von Zeichnungen erläutert. Es zeigen:

  • Figur 1: eine schematische Darstellung einer Vorrichtung gemäss der Erfindung anhand der die erfindungsgemässen Verfahrensschritte erläutert werden;
  • Figur 2: als weiteres Ausführungsbeispiel der Erfindung einen Schachtvergaser mit einer zusätzlichen Vergasungszone;
  • Figur 3: ein weiteres Ausführungsbeispiel der Erfindung, das einen Schachtvergaser mit einer integrierten Staubfilteranordnung umfasst;
  • Figur 4: einen Schnitt nach Linie A - A in Figur 3;
  • Figur 5: ein weiteres Ausführungsbeispiel der Erfindung, das einen Schachtvergaser mit einer abgewandelten Staubfilteranordnung umfasst; und
  • Figur 6: ein schematische Darstellung eines Schachtvergasers, der nach dem Doppelfeuerverfahren arbeitet und in dem erfindungsgemäss eine Staubfilteranordnung integriert ist.
Hereinafter, embodiments of the invention are explained with reference to drawings. Show it:
  • FIG. 1 a schematic representation of a device according to the invention with reference to the inventive method steps are explained;
  • FIG. 2 as a further embodiment of the invention, a shaft gasifier with an additional gasification zone;
  • FIG. 3 a further embodiment of the invention, comprising a shaft gasifier with an integrated dust filter assembly;
  • FIG. 4 : a section along line A - A in FIG. 3 ;
  • FIG. 5 a further embodiment of the invention, comprising a shaft carburetor with a modified dust filter assembly; and
  • FIG. 6 : A schematic representation of a shaft gasifier, which operates according to the double fire method and integrated in the present invention, a dust filter assembly is.

Detaillierte Beschreibung der AusführungsbeispieleDetailed description of the embodiments

Die Figur 1 zeigt in schematischer Darstellung einen Schachtvergaser, der als absteigender Festbettvergaser 1 ausgebildet ist, welcher einen aufrecht stehenden zylindrischen Schacht 2 aufweist. Dem Festbettvergaser 1 wird über ein Schleusensystem 3 Brennstoff von oben zugeführt.The FIG. 1 shows a schematic representation of a shaft carburetor, which is designed as a descending fixed-bed gasifier 1, which has an upright cylindrical shaft 2. The fixed bed gasifier 1 is fed via a lock system 3 fuel from above.

Dabei kann es sich um Kohle, Holz oder andere holzartige Biomassen handeln. Der zugeführte Brennstoff ist in Stücke oder Schnitzel zerkleinert. Der Füllstand des Schachtes mit Brennstoff 4 wird durch einen Füllstandsanzeiger 5 überwacht. Am Umfang des Schachts 2 befindet sich ein Düsensystem, das wenigstens eine oder mehrere Düsenebenen umfassen kann, die eine Vielzahl von über den Umfang des Schachts 2 verteilte Düsen 6 umfasst, die über einen Ringkanal 7 mit Frischluft beschickt werden. Dem Ringkanal 7 wird ein Luftstrom 8 über einen Einlassstutzen 9 zugeführt, so dass durch jede der Düsen ein Teilstrom der für eine autotherme Teilvergasung des Brennstoffes benötigten Luft in den Schacht 2 eingeleitet wird. Bei der autothermen Vergasung wird Prozessenergie durch Teilverbrennung unter Luftzuführung erhalten.This may be coal, wood or other woody biomasses. The supplied fuel is crushed into pieces or chips. The level of the shaft with fuel 4 is monitored by a level indicator 5. At the periphery of the shaft 2 there is a nozzle system, which may comprise at least one or more nozzle planes, which comprises a plurality of distributed over the circumference of the shaft 2 nozzles 6, which are fed via a ring channel 7 with fresh air. The annular channel 7 is supplied with an air stream 8 via an inlet connection 9, so that a partial flow of the air required for an autothermal partial gasification of the fuel is introduced into the shaft 2 through each of the nozzles. In the autothermal gasification process energy is obtained by partial combustion under air supply.

In der Brennstoffschüttung findet durch partielle Oxidation eine Wärmeentwicklung statt, die in der Folge während einer vorgegebenen Verweildauer in einer Entgasungszone 10 eine Entgasung des Brennstoffes 4 bewirkt. Das hierbei in der Entgasungszone 10 gebildete Pyrolysegas ist reich an langkettigen Kohlenwasserstoffen und Wasserdampf, der im wesentlichen vom Wassergehalt des Brennstoffes 4 und den Zersetzungsprodukten der Entgasungsreaktion herrührt. Der Festbettvergaser 1 weist eine von der Entgasungszone 10 getrennte Oxidationsstufe auf, in der eine partielle Oxidation und ein thermisches Cracken des Rohgases unter Zusatz eines Oxidationsmittels erfolgt. Die Oxidationsstufe wird durch eine Oxidationskammer 12 gebildet, die vorzugsweise zentral im Vergaserschacht 2 angeordnet ist. Die Oxidationskammer 12 weist ein zylindrisches Gehäuse 13 auf, das konzentrisch zur Längsachse 14 des Schachts angeordnet ist und das nach oben durch einen konischen Teil 15 begrenzt wird und das nach unten offen ist. Ein Zuluftkanal 16 mündet von oben in die Oxidationskammer 12. Im dargestellten Ausführungsbeispiel führt der Zuluftkanal 16 durch die Abdeckung 17 des Schachts 2 und verläuft konzentrisch zur Längsachse 14 des Schachts 2. Er kann aber auch ausserhalb der Längsachse oder in radialer Richtung seitlich angeordnet sein und parallel zu dieser verlaufen. Im oberen Teil der Oxidationskammer 12 sind radiale Öffnungen 18 angeordnet, die über den Umfang des Gehäuses 13 verteilt sind.In the fuel bed, partial evolution of heat causes heat to develop which, as a result, causes degassing of the fuel 4 in a degassing zone 10 for a given residence time. The pyrolysis gas formed here in the degassing zone 10 is rich in long-chain hydrocarbons and water vapor, which essentially results from the water content of the fuel 4 and the decomposition products of the degassing reaction. The fixed-bed gasifier 1 has an oxidation stage separate from the degassing zone 10, in which a partial oxidation and a thermal cracking of the raw gas takes place with the addition of an oxidizing agent. The oxidation stage is formed by an oxidation chamber 12, which is preferably arranged centrally in the carburettor shaft 2. The oxidation chamber 12 has a cylindrical housing 13, which is arranged concentrically to the longitudinal axis 14 of the shaft and which is bounded above by a conical part 15 and which is open at the bottom. In the illustrated embodiment, the supply air duct 16 passes through the cover 17 of the shaft 2 and extends concentrically to the longitudinal axis 14 of the shaft 2. However, it can also be arranged laterally outside the longitudinal axis or in the radial direction and parallel to this run. In the upper part of the oxidation chamber 12 radial openings 18 are arranged, which are distributed over the circumference of the housing 13.

Durch die Öffnungen 18 gelangt Pyrolysegas 20 auf Grund der örtlichen Druck- und Strömungsverhältnisse in die Oxidationskammer 12. Unter der Wirkung eines Oxidationsmittels in Form der über den Zuluftkanal 16 zugeführten Zuluft 21 erfolgt in der Oxidationskammer 12 eine unterstöchiometrische Verbrennung des Pyrolysegases 20. Hierbei werden durch thermisches Cracken und partielle Oxidation die langkettigen Kohlenwasserstoffe zerstört, und es wird ein Abgas 22 erzeugt, das nur einen geringen Heizwert aufweist. Das Abgas 22 gelangt aus der nach unten offenen Oxidationskammer 12 in eine unterhalb der Oxidationskammer 12 liegenden Reduktionszone 23, in der sich eine Schüttung aus Reduktionskoks 24 befindet, die im Bereich der nach unten offenen Oxidationskammer 12 einen Schüttkegel 25 bildet.Due to the local pressure and flow conditions in the oxidation chamber 12 passes through the openings 18 under the action of an oxidizing agent in the form of supply air via the supply air duct 16 21 takes place in the oxidation chamber 12 is a stoichiometric combustion of the pyrolysis gas 20 thermal cracking and partial oxidation destroys the long-chain hydrocarbons, and an exhaust gas 22 is produced which has only a low calorific value. The exhaust gas 22 passes from the downwardly open oxidation chamber 12 in a lying below the oxidation chamber 12 reduction zone 23 in which a bed of reducing coke 24 is that forms a bulk cone 25 in the region of the downwardly open oxidation chamber 12.

Der Reduktionskoks 24 wird im Raum zwischen der Oxidationskammer 12 und der Wandung des Vergaserschachts 2 bei der Entgasung des Brennstoffes 4 erzeugt. Auf Grund der zentralen Anordnung der Oxidationskammer 12 im Schacht 2 und dem zylindrischen Gehäuse 13 der Oxidationskammer 12 wird ein ringförmiger Raum zwischen dem Gehäuse 13 und der Schachtwandung gebildet, der hierin als Ringspalt 26 bezeichnet wird und durch den Reduktionskoks 24 über den Umfang des Ringspalts 26 verteilt der Reduktionszone 23 zugeführt wird. Hierbei kann der Reduktionskoks 24 zum Ersatz des verbrauchten Reduktionskokses in die Reduktionszone 23 nachrutschen, ohne dass es dazu einer mechanischen Fördereinrichtung bedarf. Durch den Reduktionskoks 24 wird das Abgas 22 in der Reduktionszone 23 unter Wärmeentzug zu Brenngas reduziert.The reducing coke 24 is generated in the space between the oxidation chamber 12 and the wall of the carburettor shaft 2 during the degassing of the fuel 4. Due to the central arrangement of the oxidation chamber 12 in the shaft 2 and the cylindrical housing 13 of the oxidation chamber 12 an annular space between the housing 13 and the shaft wall is formed, which is referred to herein as the annular gap 26 and the reducing coke 24 over the circumference of the annular gap 26th distributed to the reduction zone 23 is supplied. In this case, the reducing coke 24 can slip into the reduction zone 23 to replace the used reducing coke without the need for a mechanical conveying device. By reducing coke 24, the exhaust gas 22 is reduced in the reduction zone 23 under heat removal to fuel gas.

Die Reduktionszone 23 wird durch einen Rost begrenzt, der als beweglicher Rost und insbesondere als Drehrost 28 ausgebildet ist und durch den die beim Reduktionsvorgang entstehende Asche von der Reduktionszone 23 abgetrennt und über eine Austrittsöffnung 29 entsorgt wird. Zum Antrieb des Drehrosts 28 dient ein Elektrogetriebemotor 30. Der Schacht 2 ist nach unten durch eine Bodenplatte 31 abgeschlossen und ruht auf Säulen, von denen in Figur 1 nur die Säulen 32 und 33 dargestellt sind. Der Motor 30 ist unterhalb der Bodenplatte 31 an den Säulen oder an der Bodenplatte befestigt und durch eine Welle 34 mit dem Drehrost 28 verbunden.The reduction zone 23 is delimited by a grate which is designed as a movable grate and in particular as a rotary grate 28 and by means of which the ash produced during the reduction process is separated from the reduction zone 23 and disposed of via an exit opening 29. To drive the rotary grate 28 is an electric gear motor 30. The shaft 2 is closed at the bottom by a bottom plate 31 and rests on columns, of which FIG. 1 only the columns 32 and 33 are shown. The motor 30 is mounted below the bottom plate 31 on the columns or on the bottom plate and connected by a shaft 34 with the rotary grate 28.

Durch eine höhenverstellbare Anordnung des Drehrosts 28 kann die Höhenausdehnung der Reduktionszone 23 verändert werden, was für eine Optimierung des Verfahrens hinsichtlich Aschequalität, Druckverlust in der Reduktionszone 23 und Anpassung an Brennstoffeigenschaften vorteilhaft ist. Hierzu ist die Welle 34 in der als Hohlwelle ausgeführten Abtriebswelle des Elektrogetriebemotors 30 axial verschiebbar angeordnet und kann in der jeweils gewählten Stellung gegen eine weitere Verschiebung durch nicht dargestellte Stellringe fixiert werden. Die Höhe der Reduktionszone 23 ist von einer Reihe von Faktoren wie Brennstoffaschegehalt, Stückigkeit, Belastung des Gaserzeugers und Reaktivität des Kokses abhängig.By a height-adjustable arrangement of the rotary grate 28, the height extent of the reduction zone 23 can be changed, which is an optimization of the method in terms of ash quality, pressure loss in the reduction zone 23 and adaptation to fuel properties is advantageous. For this purpose, the shaft 34 is arranged axially displaceable in the output shaft of the electric geared motor 30 designed as a hollow shaft and can be fixed in the respectively selected position against a further displacement by adjusting rings, not shown. The height of the reduction zone 23 is dependent on a number of factors such as fuel ash content, particulate matter, gas generator load and coke reactivity.

Im dargestellten Ausführungsbeispiel ist die Oxidationskammer 12 im zylindrischen Schacht 2 konzentrisch zu dessen Längsachse 14 angeordnet. Der Zuluftkanal 16 mündet zentral von oben in die Oxidationskammer 12 und ist in Richtung von deren Mitte verlängert, wodurch eine gleichmässige Verbrennung des aus der Entgasungszone 10 zugeführten Pyrolysegases 20 gefördert wird. Alternativ kann zur Erreichung eines gleichmässigen Verbrennungsablaufs innerhalb der Oxidationskammer der Zuluftkanal 16 an dessen Austrittsöffnung mit einer Mischkammer versehen werden, in der das Pyrolysegas 20 und die Zuluft 21 innig miteinander vermischt werden. Der mit Reduktionskoks 24 gefüllte Ringspalt 26 bildet einen Strömungswiderstand für das in der Entgasungszone 10 erzeugte Pyrolysegas 20. Auf Grund des in dieser Koksschüttung herrschenden Strömungswiderstandes für das Pyrolysegas 20 strömt dieses vorzugsweise durch die im oberen Bereich angeordneten Öffnungen 18 in die Oxidationskammer 12, welche als reiner Gasraum nur einen vernachlässigbaren Strömungswiderstand aufweist.In the illustrated embodiment, the oxidation chamber 12 is arranged in the cylindrical shaft 2 concentric with its longitudinal axis 14. The supply air duct 16 opens centrally from above into the oxidation chamber 12 and is extended in the direction of the center thereof, whereby a uniform combustion of the pyrolysis gas 20 supplied from the degassing zone 10 is promoted. Alternatively, to achieve a uniform combustion process within the oxidation chamber of the supply air duct 16 may be provided at its outlet opening with a mixing chamber in which the pyrolysis gas 20 and the supply air 21 are intimately mixed. The annular gap 26 filled with reducing coke 24 forms a flow resistance for the pyrolysis gas 20 produced in the degassing zone 10. Due to the flow resistance for the pyrolysis gas 20 prevailing in this coke charge, this preferably flows through the openings 18 arranged in the upper region into the oxidation chamber 12, which pure gas space has only a negligible flow resistance.

Bei Verwendung von mehreren übereinander angeordneten Düsenebenen 6 für die Zuführung des Luftstroms 8 in die Entgasungszone 10 wird ein Durchströmen des Ringspaltes 26 mit Pyrolysegas 20 auch dadurch verhindert, dass die durch die unteren Düsenebenen einströmende Zuluft 8 ein sehr teerarmes Brenngas erzeugt und somit eine stömungsbedingte Barriere für das im Bereich der obersten Düsenebene gebildeten Pyrolysegas darstellt. Der sehr geringe Teergehalt des im Bereich der unteren Düsenebenen gebildeten Brenngases rührt daher, dass hier bereits entgaster Brennstoff in Form des Reduktionskokses 24 vorliegt und so kein Teer freigesetzt wird.When using a plurality of superimposed nozzle planes 6 for the supply of the air stream 8 in the degassing zone 10, a flow through the annular gap 26 with pyrolysis gas 20 is also prevented by the inflowing through the lower nozzle levels supply air 8 generates a very low tarry fuel gas and thus a flow-related barrier represents for the pyrolysis gas formed in the region of the uppermost nozzle level. The very low tar content of the fuel gas formed in the region of the lower nozzle levels is due to the fact that here already degassed fuel is present in the form of the reducing coke 24 and thus no tar is released.

Das im Raum 45 unterhalb des Rosts 28 gesammelte Brenngas 35 wird je nach dem zur Anwendung kommenden Entstaubungskonzept nach unten oder seitlich aus der Reduktionszone 23 abgesaugt. Bei dem in Figur 1 dargestellten Ausführungsbeispiel erfolgt die Entnahme des Brenngases 35 seitlich durch eine in der Wandung des Schachts 2 in dessen unteren Teil angeordnete Austrittsöffnung 36. Das Brenngas wird nach seiner Entnahme aus der Reduktionszone 23 entsprechend den Anforderungen einer Verwendung in Wärmekraftmaschinen gekühlt und gereinigt.The fuel gas 35 collected in the space 45 below the grate 28 is sucked downwards or laterally out of the reduction zone 23, depending on the dedusting concept used. At the in FIG. 1 illustrated embodiment, the removal of the fuel gas 35 takes place laterally through an arranged in the wall of the shaft 2 in the lower part of the outlet opening 36. The fuel gas is after his Removal from the reduction zone 23 cooled and cleaned according to the requirements of use in heat engines.

Weitere Ausgestaltungen der ErfindungFurther embodiments of the invention

Abweichend vom oben beschriebenen Ausführungsbeispiel kann die Oxidationskammer 12 auch mit einer deutlich herabgesetzen Oxidationstemperatur betrieben werden. Dies ist immer dann sinnvoll, wenn bei Einsatz aschereicher Brennstoffe mit niedrigen Ascheschmelzpunkten die für die thermische Zerstörung der langkettigen Kohlenwasserstoffe erforderlichen Oxidationstemperaturen von 1000 deg. C oder darüber aus Gründen der Verschlackungsgefahr nicht zulässig sind. In diesem Fall wird der für die Oxidationsstufe vorgesehenen Verbrennungsluft oder dem Pyrolysegasstrom 20 Wasserdampf zugemischt. Stattdessen oder zusätzlich kann in beiden Fällen Rauchgas aus der Wärmekraftmaschine oder anderen Feuerungsanlagen zugemischt werden. Durch eine gezielte zumischung von Rauchgas (gleich Abgas) werden die Verbrennungstemperaturen gesenkt. Dieser Vorgang entspricht der Abgasrückführung von Verbrennungsmotoren zur Reduzierung der NOx-Emissionen. Ferner erhöht sich der Wasserdampfgehalt im Gas, was ebenfalls eine zerstörende Wirkung auf den Teer hat. Die zumischung vergrössert den Massenstrom in der Oxidationskammer und senkt dadurch die Oxidationstemperatur bei sonst gleichbleibenden Stoffströmen.Notwithstanding the embodiment described above, the oxidation chamber 12 can also be operated with a significantly lowered oxidation temperature. This is always useful when using ash-rich fuels with low ash melting points required for the thermal destruction of long-chain hydrocarbons oxidation temperatures of 1000 deg. C or above are not permitted due to the danger of slagging. In this case, the intended for the oxidation stage combustion air or the pyrolysis gas stream 20 steam is added. Instead or in addition, in both cases flue gas from the heat engine or other combustion plants can be mixed. By a selective admixture of flue gas (equal to exhaust gas), the combustion temperatures are lowered. This process corresponds to the exhaust gas recirculation of internal combustion engines to reduce NOx emissions. Furthermore, the water vapor content in the gas increases, which also has a destructive effect on the tar. The admixture increases the mass flow in the oxidation chamber and thereby lowers the oxidation temperature with otherwise constant material flows.

Die gewünschte Zerstörung der langkettigen Kohlenwasserstoffe kann dann erreicht werden, wenn die Menge an zugemischten Wasserdampf und/oder Rauchgas derart bestimmt wird, dass selbst bei stöchiometrischen Verhältnissen die zur Verhinderung der verschlackung zulässige Oxidationstemperatur nicht mehr überschritten wird. Die Kohlenwasserstoffe werden dann auch bei erheblich niedrigeren Temperaturen zu Kohlendioxyd und Wasserdampf aufoxidiert. Damit dieser Vorgang in kurzer Zeit stattfindet, können auch leicht überstöchiometrische Verhältnisse eingestellt werden, so dass sich eine Verbrennung mit Sauerstoffüberschuss ergibt. Diese geht schnell vonstatten und erhöht die Reaktionsgeschwindigkeit, was zu kleineren Apparategrössen führen kann. Des weiteren bewirkt der zusätzlich eingebrachte Wasserdampf und/oder das zusätzlich eingebrachte Rauchgas auch bei unterstöchiometrischen Verhältnissen eine Zerstörung der Teerbestandteile, so dass bei hohen Wasserdampfpartialdrücken die Oxidationstemperatur herabgesetzt werden kann.The desired destruction of the long-chain hydrocarbons can be achieved if the amount of water vapor and / or flue gas admixed is determined such that even at stoichiometric ratios the oxidation temperature which is permissible to prevent the slagging is no longer exceeded. The hydrocarbons are then oxidized at considerably lower temperatures to carbon dioxide and water vapor. For this process to take place in a short time, slightly superstoichiometric ratios can also be set, resulting in combustion with excess oxygen. This is fast and increases the reaction rate, which can lead to smaller sizes of apparatus. Furthermore, the additionally introduced water vapor and / or the additionally introduced flue gas causes destruction of the tar constituents even at substoichiometric ratios, so that the oxidation temperature can be reduced at high partial pressures of water vapor.

Zur Erhöhung der Leistungsfähigkeit der Entgasungszone 10 wird der Festbettvergaser 1 mit mehr als einer Düsenebene mit Düsen 6 zur Einbringung der Vergasungsluft ausgestattet. Im Ausführungsbeispiel von Figur 1 sind zwei Düsenebenen vorgesehen, von denen jede einen Luftstrom 8 zugeführt erhält. Neben der in Verbindung mit Figur 1 beschriebenen Barrierewirkung ergibt dies den Vorteil, dass die Leistung des Festbettvergasers 1, die Entgasungstemperatur und die Verweildauer des Brennstoffes 4 in der Entgasungszone 10 erhöht werden kann. Zusätzlich können die Düsenebenen 6 mit unterschiedlichen Gemischen aus Luft, Wasserdampf und Rauchgasen aus der Wärmekraftmaschine beschickt werden. Die Anreicherung des Luftstroms 8 mit Wasserdampf und/oder Rauchgas bewirkt eine Reduzierung der Verbrennungstemperaturen in der Entgasungszone 10 und ermöglicht die Steuerung dieser Verbrennungstemperaturen. Dort wo die Vergasungsluft 8 durch die Düsen 6 in die Schüttung gelangt, entstehen sehr hohe Temperaturen, die durchaus verschlackungsprobleme hervorrufen können. Dem kann durch Zugabe von Dampf entgegengewirkt werden, wodurch eine Temperaturabsenkung erreicht werden kann. Auf diese Weise kann eine Verschlackung in der Entgasungszone 10 verhindert werden.To increase the efficiency of the degasification zone 10, the fixed-bed gasifier 1 is equipped with more than one nozzle plane with nozzles 6 for introducing the gasification air. In the embodiment of FIG. 1 two nozzle levels are provided, each of which receives an air stream 8 is supplied. In addition to in conjunction with FIG. 1 This has the advantage that the performance of the fixed-bed gasifier 1, the degassing temperature and the residence time of the fuel 4 in the degassing zone 10 can be increased. In addition, the nozzle levels 6 can be charged with different mixtures of air, water vapor and flue gases from the heat engine. The enrichment of the air stream 8 with steam and / or flue gas causes a reduction of the combustion temperatures in the degassing zone 10 and allows the control of these combustion temperatures. Where the gasification air 8 passes through the nozzles 6 in the bed, very high temperatures that can quite cause schlackungsprobleme arise. This can be counteracted by adding steam, whereby a temperature reduction can be achieved. In this way, slagging in the degassing zone 10 can be prevented.

Als weitere Ausführungsform der erfindungsgemässen Vorrichtung zeigt Figur 2 einen Schachtvergaser der anhand von Figur 1 beschriebenen Art, der mit einer zusätzlichen Vergasungszone ausgestattet ist. Die dem Schachtvergaser von Figur 1 entsprechenden Komponenten haben in Figur 2 die gleichen Bezugszeichen. Wie bei der Vorrichtung von Figur 1 weist der Schachtvergaser von Figur 2 eine Entgasungszone 10, der über einen Einlassstutzen 9 Luft zugeführt wird, eine zentrale Oxidationskammer 12 mit einem Zuluftkanal 16 sowie eine Reduktionszone 23 auf.As a further embodiment of the inventive device shows FIG. 2 a shaft carburetor based on FIG. 1 described type, which is equipped with an additional gasification zone. The manhole carburetor of FIG. 1 corresponding components have in FIG. 2 the same reference numerals. As with the device of FIG. 1 points the shaft carburetor of FIG. 2 a degassing zone 10, which is supplied via an inlet port 9 air, a central oxidation chamber 12 with a supply air duct 16 and a reduction zone 23.

Im Bereich unterhalb der Reduktionszone 23 ist eine weitere Vergasungszone 40 vorgesehen, die hierin auch als Restkoksvergasungszone bezeichnet wird und die mit zusätzlicher Luft als Gegenstromvergaser betrieben wird. Die zusätzliche Luft wird als Unterluft 41 über einen Einlassstutzen 42 zugeführt, der unterhalb eines beweglichen Rosts 43 angeordnet ist. Der Rost 43 ist wie der Rost 28 von Figur 1 als Drehrost ausgebildet und wird von einem Elektrogetriebemotor 44 angetrieben. Statt der Verwendung von Luft 41 kann auch zusätzlich Rauchgas und/oder Wasserdampf zur Senkung und Steuerung der Reaktionstemperaturen zugeführt werden. Das erzeugte Rohgas wird in einem ringförmigen Gassammelraum 45 gesammelt, der in Höhe der Reduktionszone 23 angeordnet ist und durch eine zylindrische Wandung 46 und eine Abdeckung 47 gebildet wird. Der Gassammelraum 45 ist nach unten offen und wird lediglich durch den Schüttkegel 48 des Reduktionskokses begrenzt. Das im Gassammelraum 45 gesammelte Rohgas 50 wird über einen am Umfang des Schachts 2 angeordneten Stutzen 51 abgesaugt. Ein Vorteil der in Figur 2 dargestellten Vorrichtung besteht darin, dass die mit dem Rost 43 abgetrennte und über einen Auslassstutzen 49 entsorgte Asche nur noch sehr geringe Mengen an Kohlenstoff enthält.In the area below the reduction zone 23, a further gasification zone 40 is provided, which is also referred to herein as Restkoksvergasungszone and which is operated with additional air as a countercurrent gasifier. The additional air is supplied as under-air 41 via an inlet port 42, which is arranged below a movable grate 43. The grate 43 is like the grate 28 of FIG. 1 designed as a rotating grate and is driven by an electric geared motor 44. Instead of using air 41, flue gas and / or water vapor can also be supplied for lowering and controlling the reaction temperatures. The generated raw gas is collected in an annular gas collecting space 45, which is arranged at the level of the reduction zone 23 and is formed by a cylindrical wall 46 and a cover 47. The gas collection chamber 45 is open at the bottom and is only through the bulk cone 48 of Reduction coke limited. The raw gas 50 collected in the gas collecting space 45 is sucked off via a nozzle 51 arranged on the circumference of the shaft 2. An advantage of in FIG. 2 illustrated device is that the separated with the grate 43 and disposed of via an outlet 49 ash contains only very small amounts of carbon.

Eine weitere Ausführungsform des erfindungsgemässen Vorrichtung zeigen die Figur 3 und 4. Der in Figur 3 dargestellte Schachtvergaser entspricht dem von Figur 1 und weist zusätzlich eine Integration der Entstaubung des Rohgases in den Rohgassammelraum auf. Die Entstaubung erfolgt durch eine Filteranordnung 55, die unterhalb des Rosts 28 in einem entsprechend vergrösserten Rohgassammelraum 54 vor der Gasaustrittsöffnung 36 angeordnet ist. Die Filteranordnung 55 umfasst für sich bekannte Filterkerzen 56, die quer zur Längsachse 14 des Schachts, vorzugsweise horizontal, ausgerichtet und an einer Filterplatte 57 befestigt sind, die einen Reingassammelraum 58 vom Rohgassammelraum 54 abtrennt. Auf der der Filterplatte 57 gegenüberliegenden Seite werden die Filterkerzen 56 von einer Stützplatte 59 gehalten. Die Filterkerzen 56 sind reihenweise übereinander vor der Gasaustrittsöffnung 36 angeordnet, wie aus der Schnittdarstellung von Figur 4 ersichtlich. Unter der Wirkung des an der Gasaustrittsöffnung 36 anliegenden Unterdrucks wird das Rohgas über die Filterkerzen 56 geführt, wobei der im Rohgas enthaltene Staub an den Filterkerzen 56 abgeschieden wird. Der abgeschiedene Staub sammelt sich zusammen mit der Rostasche im Bereich 60 am Boden des Schachts 2 und wird über die Austrittsöffnung 29 ausgetragen.A further embodiment of the device according to the invention is shown in FIG FIGS. 3 and 4 , The in FIG. 3 Shaft carburetor shown corresponds to that of FIG. 1 and additionally has an integration of the dedusting of the raw gas into the raw gas collecting space. Dedusting takes place through a filter arrangement 55, which is arranged below the grate 28 in a correspondingly enlarged raw gas collecting space 54 in front of the gas outlet opening 36. The filter arrangement 55 comprises filter cartridges 56 which are known per se and which are aligned transversely to the longitudinal axis 14 of the shaft, preferably horizontally, and are fastened to a filter plate 57 which separates a clean gas collecting space 58 from the raw gas collecting space 54. On the filter plate 57 opposite side, the filter cartridges 56 are held by a support plate 59. The filter cartridges 56 are arranged one above the other in front of the gas outlet opening 36, as shown in the sectional view of FIG. 4 seen. Under the action of the voltage applied to the gas outlet opening 36 vacuum, the raw gas is passed through the filter cartridges 56, wherein the dust contained in the raw gas is deposited on the filter cartridges 56. The separated dust collects together with the grate ash in the region 60 at the bottom of the shaft 2 and is discharged through the outlet opening 29.

Die Abreinigung des sich an den Filterkerzen 56 aufbauenden Filterkuchens erfolgt nach dem Stand der Technik zeit- oder differenzdruckgesteuert mittels Druckstossabreinigung (Jet-Pulse). Hierzu werden den Filterkerzen über Jet-Pulse-Düsen 61 Druckgasimpulse zur Reinigung der Filterkerzen zugeführt. Im Schachtvergaser von Figur 3 ist eine Jet-Pulse-Düse 61 für jede Filterkerze 56 angeordnet, von denen in Figur 3 nur eine dargestellt ist. Die Jet-Pulse-Düsen 61 werden nach dem Stand der Technik mit komprimiertem Inertgas (Stickstoff oder Kohlenstoffdioxid) oder mit komprimiertem Eigengas (Reingas) beschickt.The cleaning of the building up on the filter cartridges 56 filter cake is done according to the prior art time or differential pressure controlled by means of pressure surge cleaning (jet pulses). For this purpose, the filter cartridges are fed via jet-pulse nozzles 61 compressed gas pulses for cleaning the filter cartridges. In the shaft carburetor of FIG. 3 a jet-pulse nozzle 61 is arranged for each filter candle 56, of which in FIG. 3 only one is shown. The jet pulse nozzles 61 are fed in the prior art with compressed inert gas (nitrogen or carbon dioxide) or with compressed natural gas (clean gas).

Bei Anwendung der dargestellten Filteranordnung 55 in einem Vergaser mit Rohgastemperaturen, die sicher oberhalb der Selbstentzündungstemperatur des Rohgases liegen, kann vorteilhafterweise komprimierte Umgebungsluft anstelle von Inertgas oder Eigengas für die Beschickung der Jet-Pulse-Düsen 61 eingesetzt werden. Der dadurch eingebrachte Sauerstoff reagiert unmittelbar nach dem Ausströmen aus den Jet-Pulse-Düsen 61 mit dem umgebenen Vergasungsgas, indem er dieses partiell oxidiert. Somit besteht nicht die Gefahr der Bildung eines explosionsfähigen Gas-/Luftgemisches.When using the illustrated filter assembly 55 in a gasifier with raw gas temperatures, which are safe above the autoignition temperature of the raw gas, advantageously compressed ambient air can be used instead of inert gas or gas for the feed of the jet pulse nozzles 61. The introduced thereby Oxygen immediately after flowing out of the jet pulse nozzles 61 reacts with the surrounding gasification gas by partially oxidizing it. Thus, there is no danger of the formation of an explosive gas / air mixture.

In Figur 5 ist eine Abwandlung des Vergasungsapparats gemäss Figur 2 dargestellt, die mit einer integrierte Entstaubung des erzeugten Rohgases ausgestattet ist. Beim Schachtvergaser 64 von Figur 5 erfolgt die Entstaubung durch eine Filteranordnung 65, die am Umfang des Vergaserschachts angeordnet ist. Die Filteranordnung 65 umfasst Heissgasfilterkerzen 67, die im wesentlichen parallel zur Längsachse 14 des Schachts ausgerichtet sind. Der Schachtvergaser 64 weist in einem vergrösserten Rohgassammelraum 54 auf, wozu der Vergaserschacht zweiteilig ausgebildet ist. Ein nach unten offener oberer Vergaserschacht 68 ragt in einen vergrösserten äusseren Schacht 69, der den unteren Teil des Vergaserschachts bildet. Zwischen dem oberen Vergaserschacht 68 und dem äusseren Schacht 69 befindet sich ein Ringspalt 70, dessen oberes Ende durch einen Flansch 71 mit dem oberen Vergaserschacht 68 verbunden ist. Eine Gasaustrittsöffnung 72 ist am oberen Ende des Ringspalts 70 im äusseren Schacht 69 angeordnet. Unterhalb der Gasaustrittsöffnung 72 befindet sich im Ringspalt 70 eine Filterplatte 78, in der die Filterkerzen 67 montiert werden und die einen Reingassammelraum 73 vom Rohgassammelraum 54 abtrennt. Die Filterkerzen 67 ragen im Ringspalt 70 im wesentlichen parallel zur gemeinsamen Längsachse 14 der Schächte 68 und 69 nach unten. Durch einen Unterdruck wird das Rohgas aus dem Rohgassammelraum 54 über die Filterkerzen 67 dem Reingassammelraum 73 zugeführt und über die Gasaustrittsöffnung 72 weitergeleitet. Dabei fällt der an den Filterkerzen abgeschiedene Staub im Rahmen der unten beschriebenen Abreinigung als Filterkuchen auf den Schüttkegel 74 des Reduktionskokses 75. Auf diese Art und Weise gelangt der Filterstaub in die weitere Vergasungszone für den Restkoks. Der stark kohlenstoffhaltige Filterstaub wird dann im Rahmen der voranschreitenden Vergasung des Restkokses weitgehend zu Asche vergast und zusammen mit der Rostasche über den Auslassstutzen 77 ausgetragen.In FIG. 5 is a modification of the gasification apparatus according to FIG. 2 represented, which is equipped with an integrated dedusting of the raw gas produced. When shaft carburetor 64 of FIG. 5 Dedusting is done by a filter assembly 65 which is arranged on the circumference of the carburettor. The filter assembly 65 includes hot gas filter cartridges 67, which are aligned substantially parallel to the longitudinal axis 14 of the shaft. The shaft carburetor 64 has an enlarged Rohgassammelraum 54, including the carburettor shaft is formed in two parts. A downwardly open upper carburetor chute 68 projects into an enlarged outer chute 69 which forms the lower part of the carburettor shaft. Between the upper carburetor shaft 68 and the outer shaft 69 is an annular gap 70, the upper end of which is connected by a flange 71 to the upper carburetor shaft 68. A gas outlet opening 72 is arranged at the upper end of the annular gap 70 in the outer shaft 69. Below the gas outlet opening 72 is located in the annular gap 70, a filter plate 78, in which the filter cartridges 67 are mounted and which separates a clean gas collection chamber 73 from the raw gas collection chamber 54. The filter cartridges 67 protrude in the annular gap 70 substantially parallel to the common longitudinal axis 14 of the wells 68 and 69 down. By a negative pressure, the raw gas from the Rohgassammelraum 54 via the filter cartridges 67 to the clean gas collection chamber 73 and forwarded via the gas outlet opening 72. In this case, the dust deposited on the filter candles falls within the scope of the cleaning described below as a filter cake on the bulk cone 74 of the Reduktionskokses 75. In this way, the filter dust enters the further gasification zone for the residual coke. The strongly carbonaceous filter dust is then largely gassed into ashes as part of the progressing gasification of the residual coke and discharged together with the grate ash via the outlet port 77.

Auch bei dieser Anordnung erfolgt die Reinigung der Filterkerzen 67 durch Druckgasimpulse, die über Jet-Pulse-Düsen 76 zugeführt werden. Die Jet-Pulse-Düsen 76 sind im Flansch 71 angeordnet in Zuordnung zu den Filterkerzen 67. Das durch die Düsen 76 zugeführte Druckgas entspricht dem vorausgehend in Verbindung mit Figur 3 beschriebenen.Also in this arrangement, the cleaning of the filter cartridges 67 by compressed gas pulses, which are supplied via jet-pulse nozzles 76 takes place. The jet-pulse nozzles 76 are arranged in the flange 71 in association with the filter cartridges 67. The pressure gas supplied through the nozzles 76 corresponds to that previously in connection with FIG FIG. 3 described.

Die Integration der Entstaubung in einen Schachtvergasers ist nicht auf Schachtvergaser mit einer von der Entgasungszone getrennten Oxidationsstufe in Form einer zentralen Oxidationskammer beschränkt, sondern kann auch bei Schachtvergasern anderer Bauart angewendet werden wie z.B. bei Vergasern, die nach dem sogenannten Doppelfeuerverfahren arbeiten.The integration of dedusting into a shaft gasifier is not limited to shaft carburetor with an oxidation stage separate from the degasification zone in the form of a central oxidation chamber, but may also be applied to shaft carburetors of other types such as e.g. at carburetors, which work after the so-called double fire procedure.

Ein nach dem Doppelfeuerverfahren arbeitender Vergaser 80 ist in Figur 6 schematisch dargestellt. Dieser Vergaser entspricht in seinem äusseren Aufbau dem Schachtvergaser von Figur 2, jedoch ohne eine von der Entgasungszone getrennten Oxidationsstufe in Form einer zentralen Oxidationskammer. Die Zuluft zum Vergaser 80 wird üblicherweise mit Oberluft und Unterluft bezeichnet und ist in Figur 6 durch die Luftzuführungen 81 und 82 dargestellt. Hierdurch bilden sich zwei Feuer-/Glutzonen aus. Die integrierte Entstaubung wird beim Vergaser 80 durch eine Filteranordnung 83 erreicht, die am Umfang eines entsprechend vergrösserten Rohgassammelraum 84 angeordnet ist. Die Filteranordnung 83 enthält Heissgasfilterkerzen 86, die im wesentlichen parallel zur Längsachse des Vergasers 80 angeordnet sind. Die Vergrösserung des Rohgassammelraums 84 und die Anordnung der Filterkerzen 86 entspricht der in Verbindung mit Figur 5 beschriebenen Ausführung.A double firing type carburetor 80 is shown in FIG FIG. 6 shown schematically. This carburetor corresponds in its outer structure of the shaft carburetor of FIG. 2 but without a separate from the degassing zone oxidation state in the form of a central oxidation chamber. The supply air to the carburetor 80 is usually referred to with upper air and lower air and is in FIG. 6 represented by the air feeds 81 and 82. As a result, two fire / Glutzonen form. The integrated dedusting is achieved in the carburetor 80 by a filter assembly 83 which is arranged on the circumference of a correspondingly enlarged Rohgassammelraum 84. The filter assembly 83 contains hot gas filter cartridges 86, which are arranged substantially parallel to the longitudinal axis of the carburetor 80. The enlargement of the Rohgassammelraums 84 and the arrangement of the filter cartridges 86 corresponds to that in conjunction with FIG. 5 described embodiment.

Die Filterkerzen 86 sind in einem Ringspalt zwischen einem nach unten offenen Schacht 90 und einem diesen Schacht umfassenden äusseren Schacht 91 angeordnet und liegen in Stömungsrichtung vor einer Gasaustrittsöffnung 92, die sich am oberen Ende des Ringspalts befindet. Die Filterkerzen 86 sind in einer Filterplatte 87 montiert, die einen Reingassammelraum 85 vom Rohgassammelraum 84 abtrennt. Die Reinigung der Filterkerzen 86 erfolgt wiederum durch Druckgasimpulse über Jet-Pulse-Düsen 93, die in einem Anschlussflansch 94 des äusseren Schachts zum nach unten offenen Schacht über den Filterkerzen 86 angeordnet sind zugeführt werden. Das durch die Düsen 93 zugeführte Druckgas entspricht dem vorausgehend in Verbindung mit Figur 3 beschriebenen. Wie bei der Vorrichtung nach Figur 5 fällt beim Betrieb des Vergasers 80 der an den Filterkerzen abgeschiedene Staub bei der Abreinigung als Filterkuchen auf einen Schüttkegel 94 des Reduktionskokses 95. Auf diese Art und Weise gelangt der Filterstaub in die weitere Vergasungszone für den Restkoks. Der stark kohlenstoffhaltige Filterstaub wird dann im Rahmen der voranschreitenden Vergasung des Restkokses weitgehend zu Asche vergast und zusammen mit der Rostasche über den Auslassstutzen 96 ausgetragen.The filter cartridges 86 are arranged in an annular gap between a downwardly open shaft 90 and an outer shaft 91 comprising this shaft and lie in the flow direction in front of a gas outlet opening 92 which is located at the upper end of the annular gap. The filter cartridges 86 are mounted in a filter plate 87 which separates a clean gas collecting space 85 from the raw gas collecting space 84. The cleaning of the filter cartridges 86 is again carried out by compressed gas pulses via jet-pulse nozzles 93, which are arranged in a connection flange 94 of the outer shaft to the downwardly open shaft above the filter cartridges 86 are supplied. The compressed gas supplied through the nozzles 93 is the same as that previously described in connection with FIG FIG. 3 described. As with the device after FIG. 5 During operation of the carburettor 80, the dust deposited on the filter cartridges precipitates as filter cake onto a pour cone 94 of the reduction coke 95. In this way, the filter dust passes into the further gasification zone for the residual coke. The highly carbonaceous filter dust is then largely gassed into ashes in the context of progressing gasification of the coke and discharged together with the grate ash on the outlet port 96.

Während die Erfindung anhand bevorzugter Ausführungsformen beschrieben wurde, können Abwandlungen dieser Ausführungsformen und andere Ausführungsformen realisiert werden, ohne dass dadurch der Bereich der Erfindung, wie er durch die Ansprüche definiert ist, verlassen wird.While the invention has been described in terms of preferred embodiments, variations of these embodiments and other embodiments may be practiced without departing from the scope of the invention as defined by the claims.

Claims (12)

  1. Device for creating fuel gas from a solid fuel in a gasifier (80) which is configured as a top-down fixed-bed gasifier and has a gas outlet opening in the lower part of a gasifier shaft, characterised in that a filter arrangement (83) which has a plurality of filter cartridges (86) is arranged in a raw gas collecting space inside the gasifier shaft (81) upstream of a gas outlet opening (92).
  2. Device according to claim 1, characterized by jet pulse nozzles (93) which are designed to feed compressed gas pulses to the filter cartridges (86) in order to clean the filter cartridges.
  3. Device according to claim 1, characterized in that the filter cartridges are installed transversely to the longitudinal axis of the gasifier shaft in rows one above the other in a filter plate.
  4. Device according to claim 1, characterised in that the filter cartridges (86) are installed parallel to the longitudinal axis of the gasifier shaft at the periphery of the raw gas collecting space (84) in a filter plate (87) which separates the raw gas collecting space (84) from a clean gas collecting space (85).
  5. Device according to claim 1, characterised in that the gasifier (80) is designed to operate according to the double-fire method and has two fire/glow zones, between which the gas outlet opening (92) is located, and in that the filter arrangement is arranged in the raw gas collecting space (84) upstream of the gas outlet opening (92) in the direction of flow.
  6. Device according to claim 1, characterised in that the filter cartridges are arranged in an annular gap between a downwardly open shaft (90) and an outer shaft (91) surrounding said shaft, and in that the gas outlet opening (92) is located at the upper end of the annular gap.
  7. Device according to claim 6, characterised in that jet pulse nozzles (93) are arranged above the filter cartridges (86) in a connection flange (94) of the outer shaft which connects the latter to the downwardly open shaft (55), the compressed gas pulses of which jet pulse nozzles can be fed to the filter cartridges for cleaning purposes.
  8. Device according to any of the preceding claims, characterised in that
    - the oxidation chamber (12) has radial openings (18) for feeding to the oxidation chamber the pyrolysis gas (20) created in the degasification zone (10), and
    - a further degasification zone (40) is connected to the reduction zone (23) in order to largely gasify the fine residual coke from the reduction zone (23) by feeding further gasification agents (41) into the gasification zone (40), which is operated as a counter-current gasifier.
  9. Method for creating fuel gas from a solid fuel in a shaft gasifier (1), characterised by the steps:
    a) feeding the fuel into the shaft gasifier (1), which is configured as a top-down fixed-bed reactor;
    b) degasifying the fuel in a degasification zone (10) of the shaft gasifier by autothermal partial gasification with air being fed from outside;
    c) feeding the resulting pyrolysis gas (20) from the degasification zone (10) into an oxidation stage (12) which is located inside the shaft and is separate from the degasification zone and in which the raw gas is partially oxidized and thermally cracked by the addition of an oxidizing agent; and
    d) reducing the waste gas from the oxidation stage (12) in a reduction zone (23) downstream of the oxidation stage by means of the coke formed in the degasification zone, while withdrawing heat, so as to form a fuel gas (35),
    characterised in that, before leaving the shaft (2), the gas created is faltered thorough filter cartridges (56, 67) arranged upstream of the outlet opening (36, 72) .
  10. Method according to claim 9, characterised in that the filtering takes place in the region upstream of an outlet opening (36, 72).
  11. Method according to claim 9, Characterised in that filter cartridges (56, 67) are fed compressed gas pulses by jet pulse nozzles in order to clean the filter cartridges.
  12. Method according to claim 9, characterised in that
    - the reduction coke (24) created in the degasifica'tian zone (10) is fed to the reduction zone (13), bypassing the oxidation stage (12), and
    - steam is mixed with the feed air (21) that is fed to the oxidation stage (12), and/or
    - flue gas from a heat engine which is operated with the fuel gas (35) is mixed with the feed air (21) that is fed to the oxidation stage (12), and/or
    - steam and/or flue gas from a heat engine is mixed with the air stream (8) that is fed to the degasification zone (10).
EP10185292.9A 2006-06-08 2007-06-01 Method and device for creating fuel gas from a solid fuel Not-in-force EP2377911B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200620009174 DE202006009174U1 (en) 2006-06-08 2006-06-08 Apparatus for producing fuel gas from a solid fuel
EP07010863A EP1865046B1 (en) 2006-06-08 2007-06-01 Method and device for creating fuel gas from a solid fuel

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
EP07010863A Division-Into EP1865046B1 (en) 2006-06-08 2007-06-01 Method and device for creating fuel gas from a solid fuel
EP07010863A Division EP1865046B1 (en) 2006-06-08 2007-06-01 Method and device for creating fuel gas from a solid fuel
EP07010863.4 Division 2007-06-01

Publications (3)

Publication Number Publication Date
EP2377911A2 EP2377911A2 (en) 2011-10-19
EP2377911A3 EP2377911A3 (en) 2013-12-25
EP2377911B1 true EP2377911B1 (en) 2015-08-12

Family

ID=38508796

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07010863A Not-in-force EP1865046B1 (en) 2006-06-08 2007-06-01 Method and device for creating fuel gas from a solid fuel
EP10185292.9A Not-in-force EP2377911B1 (en) 2006-06-08 2007-06-01 Method and device for creating fuel gas from a solid fuel

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP07010863A Not-in-force EP1865046B1 (en) 2006-06-08 2007-06-01 Method and device for creating fuel gas from a solid fuel

Country Status (5)

Country Link
EP (2) EP1865046B1 (en)
DE (1) DE202006009174U1 (en)
DK (1) DK1865046T3 (en)
ES (2) ES2548984T3 (en)
SI (1) SI1865046T1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008036502A1 (en) * 2008-08-05 2010-02-11 Krones Ag Process and apparatus for producing synthesis gas from biomass
DE202010013745U1 (en) 2010-02-05 2010-12-30 Pyrox Gmbh Manhole carburetor for producing fuel gas from a solid fuel
DE102010033646B4 (en) 2010-02-05 2012-05-24 Pyrox Gmbh Method and shaft carburetor for producing fuel gas from a solid fuel
WO2011101022A1 (en) 2010-02-16 2011-08-25 Big Dutchman International Gmbh Gasification device and gasification method
KR101867803B1 (en) 2010-11-08 2018-06-18 가부시키가이샤 제트이 에너지 Gasification furnace, gasification system, reforming device, and reforming system
DE202011004328U1 (en) 2011-03-22 2012-06-25 Big Dutchman International Gmbh Manhole carburetor for operation in substoichiometric oxidation
DE102011075438A1 (en) 2011-05-06 2012-11-08 Bilfinger Berger Industrial Services Gmbh Process and apparatus for producing synthesis gas from carbon dioxide-containing educts by gasification
DE202012008777U1 (en) 2012-09-13 2015-10-06 Big Dutchman International Gmbh Apparatus for producing fuel gas from a solid fuel
CN103175222B (en) * 2013-03-19 2014-12-17 哈尔滨工程大学 Air combustion-supporting dual-fuel nozzle used for chemical regenerative cycle
CZ26592U1 (en) * 2013-12-18 2014-03-10 Tarpo Spol.S R.O. Apparatus for multistage gasification of carbonaceous fuels com
AT515649A1 (en) * 2014-04-04 2015-10-15 Leopold Dipl Ing Seirlehner Method and apparatus for producing fuel gas from carbonaceous solid substitutes
DE102021134191A1 (en) 2021-12-22 2023-06-22 BHYO GmbH Process and plant network for the production of synthesis gas

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US987195A (en) * 1911-03-21 Bruno Versen Gas-producer.
FR979452A (en) * 1942-04-22 1951-04-26 Improvements to wood gasifiers and the like
DE1037051B (en) * 1944-07-31 1958-08-21 Metallgesellschaft Ag Process for smoldering and gasifying solid fuels in shaft gas generators
US2821464A (en) * 1955-01-17 1958-01-28 Bleyer Karl Method and apparatus for making producer gas
NL167191C (en) * 1975-04-01 1981-11-16 Nii Slantsev & Slantseper OVEN FOR THERMAL TREATMENT RECOVERING HYDROCARBONS FROM A MASS SOLID FUEL, SUCH AS OIL SHALES.
DD150906A1 (en) * 1980-05-22 1981-09-23 Roscher Karl Dieter METHOD AND DEVICE FOR FIXED BED GASIFICATION
DE8328140U1 (en) * 1983-09-28 1991-04-25 Michel-Kim, Herwig, 1000 Berlin, De
DE3406307A1 (en) * 1984-02-22 1985-08-22 KPA Kiener Pyrolyse Gesellschaft für thermische Abfallverwertung mbH, 7000 Stuttgart METHOD FOR PRODUCING COMBUSTIBLE GASES FROM WASTE
SE446101B (en) * 1984-12-28 1986-08-11 Skf Steel Eng Ab SET AND DEVICE FOR GENERATING GAS
DE3528975A1 (en) * 1985-08-13 1987-02-26 Knut Kiener Plant for total gasification of biomass
DE3543424A1 (en) * 1985-12-09 1987-06-11 Deilmann Ag C Process and apparatus for generating gas
DE4404673C2 (en) * 1994-02-15 1995-11-23 Entec Recycling Und Industriea Process for the production of fuel gas
DE19618213A1 (en) * 1996-05-07 1997-11-13 Petersen Hugo Verfahrenstech Fuel gas production from e.g. organic waste matter in two stage process
IT1289003B1 (en) * 1996-10-16 1998-09-25 Tomadini Gino & C IMPROVED PROCEDURE FOR GASIFICATION OF FUELS AND RELATED GASIFICATION DEVICE
TR200000412T1 (en) * 1998-06-16 2000-10-23 Graveson Energy Management Ltd. Gasification reactor device.
DE19846805A1 (en) * 1998-10-10 2000-04-13 Clemens Kiefer Process for gasifying or degasifying dry or moist finely ground or bulky biomass and waste comprises passing pyrolysis gas and coke to a gasifier after passing through a crusher joined to the lower end of the degasifier
ATE269891T1 (en) * 2000-01-10 2004-07-15 Adrian Fuerst DEVICE AND METHOD FOR GENERATING FUEL GASES
DE10258640A1 (en) 2002-12-13 2004-06-24 Björn Dipl.-Ing. Kuntze Production of fuel gas from solid fuels involves gasification and partial gasification in fixed bed in first stage, using air to split gas into two partial streams
DE202004011213U1 (en) * 2004-07-16 2004-11-04 Kuntschar, Walter DC carburetor
AT505188B1 (en) * 2004-08-27 2009-06-15 Schiefer Erwin REACTOR FOR GASIFICATION OF BIOMASS

Also Published As

Publication number Publication date
DK1865046T3 (en) 2012-10-15
EP1865046A1 (en) 2007-12-12
EP1865046B1 (en) 2012-10-03
ES2548984T3 (en) 2015-10-22
DE202006009174U1 (en) 2007-10-11
ES2393408T3 (en) 2012-12-21
SI1865046T1 (en) 2013-01-31
EP2377911A3 (en) 2013-12-25
EP2377911A2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
EP2377911B1 (en) Method and device for creating fuel gas from a solid fuel
EP2536811B1 (en) Gasification device and gasification method
EP2380951A2 (en) Device and method for generating useful energy from bioenergy fuels and other organic materials
DE19608826C2 (en) DC gasification reactor
EP2641958B1 (en) Biomass gasifier
DE102005028377A1 (en) Wood gas generator for use as fuel for an internal combustion engine has moving grate over oxidation zone
EP2281864B1 (en) Method and apparatus for gasifying solid fuels
WO2010057458A2 (en) Apparatus in the form of a moving bed carburetor and method for operating the same in an arrangement for the thermal decomposition of waste products and waste materials
WO2001051591A1 (en) Device and method for the production of fuel gases
EP2356200B1 (en) Method for thermochemically gasifying solid fuels
EP2233551B1 (en) Method and device for introducing gas to organic material
DE102008028241A1 (en) Thermochemical transformation device for e.g. industrial waste, has snail reactor for drying and pyrolizing materials, and reactor wall with inlet openings for protecting against blockage of gas and/or outlet openings for passing fuel
DE102013015920B4 (en) Device in the form of a 3-zone carburetor and method for operating such a carburetor for the thermal conversion of waste products and wastes
WO2002083815A1 (en) Installation and method for producing energy using pyrolysis
AT506919B1 (en) METHOD AND DEVICE FOR GASIFICATION OF SOLID FUELS
EP3214155B1 (en) Process for the production of synthesis gas for running an internal combustion engine.
DE202007002014U1 (en) Unit for generating combustible gases from pieces of wood comprises reactor with oxidation zone, in which air or oxygen jets are mounted which have at least two gas outlets, one of which is at end of jet and other in its side
EP1167492A2 (en) Process and apparatus for the production of fuel gas from biomass
EP1134272A2 (en) Method and apparatus for gasification of combustible materials
AT514401B1 (en) reduction furnace
EP0531778A1 (en) Co-current gasifier
DE102005046347B4 (en) Apparatus and method for generating energy from bioenergy sources and other organic substances
DE102016207538A1 (en) Stainless high temperature wood gasifier
DE3145066A1 (en) Process for producing a comparatively higher-energy, nitrogen-rich gas and equipment for carrying out the process
DE2526947A1 (en) Fuel gas prodn. from household or industrial waste - by reacting waste pyrolysis gases with incandescent coke

Legal Events

Date Code Title Description
AC Divisional application: reference to earlier application

Ref document number: 1865046

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: C10J 3/64 20060101ALI20131118BHEP

Ipc: C10J 3/22 20060101AFI20131118BHEP

17P Request for examination filed

Effective date: 20140625

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1865046

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 742159

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007014152

Country of ref document: DE

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E010927

Country of ref document: EE

Effective date: 20150831

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151214

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007014152

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

REG Reference to a national code

Ref country code: LT

Ref legal event code: MM4D

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007014152

Country of ref document: DE

REG Reference to a national code

Ref country code: EE

Ref legal event code: MM4A

Ref document number: E010927

Country of ref document: EE

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: LT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160601

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170103

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 742159

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070601

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181204