EP2377200B1 - Rfid antenna circuit - Google Patents

Rfid antenna circuit Download PDF

Info

Publication number
EP2377200B1
EP2377200B1 EP09805691A EP09805691A EP2377200B1 EP 2377200 B1 EP2377200 B1 EP 2377200B1 EP 09805691 A EP09805691 A EP 09805691A EP 09805691 A EP09805691 A EP 09805691A EP 2377200 B1 EP2377200 B1 EP 2377200B1
Authority
EP
European Patent Office
Prior art keywords
turn
antenna
terminal
point
turns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09805691A
Other languages
German (de)
French (fr)
Other versions
EP2377200A2 (en
Inventor
Yves Eray
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eray Innovation SRL
Original Assignee
Eray Innovation SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eray Innovation SRL filed Critical Eray Innovation SRL
Publication of EP2377200A2 publication Critical patent/EP2377200A2/en
Application granted granted Critical
Publication of EP2377200B1 publication Critical patent/EP2377200B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop

Definitions

  • the invention relates to an RFID and NFC antenna circuit.
  • RFID is the abbreviation of radio frequency identification (in English: “radio frequency identification”).
  • NFC is the abbreviation for Near Field Communication (near field communication).
  • RFID / NFC technology is used in many areas, for example in mobile phones, personal organizers called PDAs, computers, contactless card readers, cards themselves to be read without contact, but also passports, identification tags of articles or description of articles (in English: "tag”), USB keys and SIM cards and (U) SIM cards called “SIM card RFID or NFC", thumbnails for Dual or Dual Interface card (the sticker itself having an RFID / NFC antenna), watches.
  • the antenna of a first RFID circuit radiates electromagnetically at a distance a radio frequency signal comprising data to be received by the antenna of a second RFID circuit (transponder), which can, if necessary, respond to the first circuit by data by load modulation.
  • Each RFID circuit has its antenna operating at its own resonant frequency.
  • the problem of the RFID antenna circuit relates to the efficiency of the magnetic antenna of the transponder and the reader, or, on the efficiency of the coupling by mutual inductance between the two magnetic antennas, on the transmission energy and information between the party electronics and its antenna, on the transmission of energy and information between the two antennas of the RFID system.
  • the main objective is to gain in radio efficiency (power of the emitted or captured magnetic field, coupling, mutual inductance %) by the antenna without losing on the quality of the signal (data distortions, bandwidth of the antenna ...) issued or received.
  • the document US-A-7,212,124 discloses a mobile phone information device comprising an antenna coil formed on a substrate, a sheet of a magnetic material, an integrated circuit and resonance capacitors connected to the antenna coil.
  • the integrated circuit communicates with an external device in that the antenna coil uses a magnetic field.
  • a vacuum serving as a battery receiving section is formed on a portion of the housing surface and is covered by a battery cover.
  • the battery, the antenna coil and the sheet of magnetic material are housed in the depression.
  • a vacuum evaporated metal film or coating of conductive material is applied to the housing, while no vacuum evaporated metal film or coating of conductive material is applied to the battery cover.
  • the antenna coil is disposed between the battery cover and the battery while the sheet of magnetic material is disposed between the antenna coil and the battery in the vacuum.
  • the antenna coil has an intermediate tap, the resonance capacitors are connected to both ends of the antenna coil, and the integrated circuit is connected in the middle between one end of the antenna coil and the intermediate tap. .
  • This device has many disadvantages.
  • the antenna must have a very high quality factor before integration. But a quality factor with such a high value is not suitable for RFID / NFC antenna circuits for readers or transponders (cards, labels, USB sticks). In a mobile phone, the reason for this very high value quality factor is that the electrical and mechanical constraints overwrite the original quality factor of the antenna.
  • this quality coefficient of the antenna would be too high and would then generate a bandwidth at -3 dB of the antenna very reduced, so a very severe filtering of the modulated RF signal emitted or received by load modulation (subcarrier 13.56 MHz ⁇ 847 kHz, ⁇ 424 MHz, ⁇ 212 MHz ...), and power transmitted or received too large.
  • the coupling with such an antenna would be such that at a short distance between the 2 antennas ( ⁇ 2 cm for example), the mutual inductance created would be such that it would detune totally tuning the frequency of the two antennas, would collapse the power radiated by the reader, could saturate the radio stages of the silicon chip or could lead to destruction transponder silicon, since silicon does not have an infinite heat dispersal capacity.
  • the document US-A1-2008 / 0450693 describes an antenna device essentially for drive mode operation.
  • the proposed embodiments impose in particular two different surfaces, one large and one small, on either the same inductance or on two inductances.
  • the purpose of the last two embodiments is to make it possible to amplify the signal emitted at the center of the antenna by a small parallel inductance and, in the third embodiment, to eliminate the radiation holes on a location between the arrangement of the two antenna surfaces.
  • the documents EP-A-1031 939 and FR-A-2777141 describe a device of an antenna circuit for transponder mode operation having two independently electrically independent antenna circuits
  • a first antenna circuit is composed of a conventional inductor and the transponder chip.
  • a second antenna circuit is composed of a coil winding forming an inductance associated with a planar capacitance called "resonator".
  • the objective of the two embodiments is to allow the amplification of the electromagnetic signal received by the arrangement of the "resonator" for the first antenna circuit comprising the transponder.
  • the document EP-A-1,970,840 describes a device comparable to the two previous devices described in the documents EP-A-1031 939 and FR-A-2777141 in the sense that 2 resonators are used for the amplification of the received electromagnetic field.
  • the constraints indicated for documents EP-A-1031 939 and FR-A-2777141 are all the higher and difficult to achieve that the two resonators are close to each other.
  • This VHF 3D antenna for aircraft is close to the wavelength or close to a quarter of the wavelength as the standard antennas at VHF frequencies to get as close as possible to the desired resonance frequency.
  • This VHF 3D antenna for aircraft is dedicated for high power and allows the improvement of the Electro-Magnetic radiation pattern compared to standard loop antennas or antenna stub or dipole antenna including increasing the length of the antenna.
  • This VHF antenna for aircraft therefore has no mechanical constraint on the planar embodiment or very low volume aspects to meet the constraints of integration in environments often very low thicknesses.
  • This VHF antenna for aircraft therefore has no electrical and radiofrequency constraints on coupling, mutual inductance, near magnetic field decay, modulated data filtering, self-feeding or external field power supply and finally load modulation. which are the criteria and constraints of the small RFID / NFC 13.56MHz antennas.
  • the object of the invention is generally to obtain an antenna circuit having a transmission efficiency and conditions for implementing improved transmissions.
  • a first object of the invention is an RFID antenna circuit, comprising an antenna formed by a number of at least three turns, the antenna having a first end terminal and a second end terminal, at least two access terminals for connecting a load, at least one tuning capacity at a prescribed tuning frequency having a first capacitance terminal and a second capacitance terminal, an intermediate socket connected to the antenna and distinct from the end terminals, first means for connecting the intermediate tap to a first of the two access terminals, second means for connecting the second end terminal to the second capacitance terminal, characterized in that it comprises third connection means of the first capacitance terminal and the second of the two access terminals to a first point of the antenna and at a second point of the antenna -the second point (P2) of the antenna being connected to the second end terminal (E) of the antenna (L) by at least one turn (S) of the antenna (L) and being connected at the first point of the antenna by at least one turn of the antenna.
  • said intermediate tap (A) is connected to the first end terminal (D) of the antenna (L) by at least one turn (S) of the antenna (L) said intermediate tap (A) being connected to the second end terminal (E) of the antenna (L) by at least one turn (S) of the antenna (L).
  • figures 13 , 14 , 15 , 16 the first point (P1) is connected to the intermediate point (A) by at least one turn of the antenna.
  • figures 13 , 14 , 15 , 16 the first point (P1) is located at the intermediate point (A).
  • the first point (P1) is connected to the first end terminal (D) of the antenna (L) by at least one turn (S) of the antenna (L).
  • the first point (P1) being connected to the second end terminal (E) of the antenna (L) by at least one turn (S) of the antenna (L).
  • the first point (P1) is located at the first end terminal (D).
  • the second point (P2) is located at the first end terminal (D) of the antenna.
  • the second point (P2) is located at the second end terminal (E) of the antenna.
  • the second point (P2) is connected to the intermediate tap (A) by at least one turn of the antenna.
  • the second point (P2) is connected to the first end terminal (D) of the antenna (L) by at least one turn (S) of the antenna (L) .
  • the first point (P1) is located at the intermediate point (A) of the antenna (L) and the second point (P2) is located at the first terminal (D) of end of the antenna (L).
  • said first and second points (P1, P2) are distinct from the first intermediate tap (A), the first point (P1) being connected to the first end terminal (D) of the antenna (L) by at least one turn (S) of the antenna (L), the first point (P1) being connected to the second end terminal (E) of the antenna (L) by at least a turn (S) of the antenna (L).
  • the second point (P2) is located at the first end terminal (D) of the antenna, the first point (P1) is connected to the intermediate tap (A) by at least one turn of the antenna.
  • said intermediate tap (A) forms a first intermediate tap (A), the first intermediate tap (A) being connected to the first end terminal (D) of the antenna (L). ) by at least one turn (S) of the antenna (L), the first intermediate tap (A) being connected to the second end terminal (E) of the antenna (L) by at least one turn (S ) of the antenna (L), the second point (P2) is located at a second intermediate point (P2) of the antenna (L), the second intermediate point (P2) being connected to the first terminal (D) of the end of the antenna (L) by at least one turn (S) of the antenna (L), the second intermediate tap (P2) being connected to the second end terminal (E) of the antenna (L) by at least one turn (S) of the antenna (L).
  • the capacitance comprises a first metal surface forming the first capacity terminal (C1X), a second metal surface forming the second capacitance terminal (C1E), at least one dielectric layer situated between the first metal surface and the second metal surface.
  • the capacitance comprises at least one dielectric layer having a first side and a second side remote from the first side, a first metal surface forming the first capacitance terminal (C1X) on the first side of the dielectric layer, a second metal surface forming the second capacitance terminal (C1E) on the second side of the dielectric layer, a third metal surface forming a third terminal (C1F) of capacitance remote from the first metal surface on the first side of the dielectric layer, the first capacitance terminal (C1X) defining a first capacitance value (C2) with the second capacitance terminal (C1E), the third capacitance terminal (C1F) defining a second capacitance value (C1) with the second capacitance terminal (C1E), the first capacitance terminal (C1X) defining a third capacitance value (C12) for coupling with the third capacitance terminal (C1F), means for connecting the third capacitance terminal (C1F) to one of the access
  • the antenna (L) comprises at least a first turn (S1), at least a second turn and at least a third turn, which are consecutive, the first turn (S1) going from the second end terminal (E) in a first winding direction at a cusp point (PR) connected to the second turn, the second and third turns (S2, S3) running from said cusp point (PR) to the first end terminal (D) in a second reverse winding direction of the first winding direction, the first point (P1) of the antenna (L) and the second point (P2) of the antenna (L) being located on the second and third turns (S2, S3).
  • the antenna (L) comprises at least a first turn (S1) and at least a second turn (S2, S3) consecutive between two third and fourth points (E; D) of the antenna, the first turn (S1) being connected to the second turn (S2, S3) by a cusp (PR), the first turn (S1) from the third point (E) to the point (PR) of creep in a first winding direction, the second turn (S2, S3) from said reversal point (PR) to the fourth point (D) in a second reverse winding direction of the first winding direction.
  • PR cusp
  • the antenna (L) has at least a first turn (S1) and at least a second turn (S2, S3) consecutive between two third and fourth points (E; D) of the antenna, the first turn (S1) being connected to the second turn (S2, S3) by a reversing point (PR), the first turn (S1) going from the third point (E) to the cusp point (PR) in a first direction of winding, the second turn (S2, S3) from said reversal point (PR) to the fourth point (D) in a second direction of reverse winding of the first direction of winding, the first point (P1) is located at the intermediate point (A) of the antenna (L) and the second point (P2) is located at the first terminal (D) of the end of the antenna (L).
  • PR reversing point
  • the antenna (L) comprises at least a first turn (S1) and at least a second turn (S2, S3) consecutive between two third and fourth points (E; D) of the antenna, the first turn (S1) being connected to the second turn (S2, S3) by a reversal point (PR), the first turn (S1) from the third point (E) to the cusp (PR) in a first winding direction, the second turn (S2, S3) from said reversal point (PR) to the fourth point (D) in a second direction of reverse winding of the first direction of winding, the first point (P1) is located at the first end terminal (D).
  • PR reversal point
  • At least one turn (S2) of the antenna comprises in series a winding (S2 ') of turns of smaller surface area surrounded with respect to the surface surrounded by the remainder (S2 ") of said turn (S2) or with respect to the surface surrounded by other turns of the antenna (3).
  • the turns (S) of the antenna (3) are distributed over several distinct physical planes.
  • the capacity (C1) of agreement comprises a second capacitance (ZZ) formed by at least a third turn (SC3) comprising two first and second ends (SC31, SC32) and by at least a fourth turn (SC4) having two first and second ends (SC41, SC42), the third turn (SC3) being electrically separated from the fourth turn (SC4) to define at least the capacity (C1) of agreement between the first end (SC31) of the third turn (SC3) and the second end (SC42) of the fourth turn (SC4), the first end (SC31) of the third turn being further away from the second end (SC42) of the fourth turn (SC4) than from the first end (SC41) of the fourth turn (SC4), the second end (SC32) of the third turn (SC3) being farther away from the first end (SC41) of the fourth turn (SC4) than from the second end (SC42) of the fourth turn (SC4), the second capacity being defined between the first end (SC31) ) of the third turn (SC3) and the second end
  • first coupling means are provided for coupling (COUPL12) by mutual inductance between on the one hand the at least one turn (S2) of the antenna connected electrically in parallel with the first and second terminals (1, 2) access and the other at least one turn (S1) of the antenna
  • second coupling means are provided to ensure coupling (COUPLZZ) by mutual inductance between said other at least one turn (S1) of the antenna and the at least one third and fourth turns (SC3, SC4) of the second capacitance (ZZ).
  • the first coupling means are made by the proximity between on the one hand the at least one turn (S2) of the antenna electrically connected in parallel with the first and second terminals (1, 2) and the other at least one turn (S1) of the antenna
  • the second coupling means are formed by the proximity between the other at least one turn (S1) of the antenna and the at least one third and fourth turns (SC3, SC4) of the second capacitance (ZZ).
  • the third turn (SC3) and the fourth turn (SC4) are interleaved.
  • the third turn (SC3) comprises at least a third section adjacent to a fourth section of the fourth turn (SC4).
  • the sections extend parallel to each other.
  • the tuning capacitor (C1) comprises a first capacitor (C1) having a dielectric between the first capacitance terminal (C1X) and the second capacitance terminal (C1E), the first capacitor (C1). (C1) being in the form of a wire element, engraved, discrete or printed.
  • figures 16 , 18 another capacitor (C30) is connected between the second end terminal (E) and a point (PC1) of the antenna, which is connected to the second point (P2) by at least one turn of the antenna.
  • the tuning capacity (C1) has a first capacitance (C30) in series with said second capacitance (Z).
  • figure 22 the first capacitor (C30) is connected between the second end terminal (E) of the antenna and the second point (P2), which is connected to the first terminal (SC31) of the third turn (SC3), the intermediate tap (A) being connected to the second terminal (SC42) of the fourth turn (SC4), which forms the first point (P1), the first terminal (SC41) of the fourth turn (SC4) forming the first terminal (D4) ) end of the antenna.
  • figure 20 the first capacitor (C30) is connected between the second end terminal (E) of the antenna and the second point (P2), which is connected to the first terminal (SC31) of the third turn (SC3) by at least one turn (S10), the intermediate tap (A) being connected to the second terminal (SC42) of the fourth turn (SC4), which forms the first point (P1), the first terminal (SC41) of the fourth turn ( SC4) forming the first end terminal (D) of the antenna.
  • figure 21 the first point (P1) is located at the intermediate point (A), the second point (P2) is located at the second end terminal (E) of the antenna.
  • figure 19 the first point (P1) is located at the first end terminal (D) and the second point (P2) is located at the second end terminal (E).
  • the at least one third turn (SC3) and the at least one fourth turn (SC4) define a second sub-circuit having a second natural resonance frequency, the first and second terminals (1). , 2) of access define with a module (M) connected to them and with at least one turn (S2) connected to said first and second terminals (1, 2) of access a first sub-circuit having a first resonance frequency the turns being arranged so that the frequency difference between the first natural resonance frequency and the second own resonance frequency is less than or equal to 10 MHz and for example less than or equal to 2 MHz.
  • the at least one third turn (SC3) and the at least one fourth turn (SC4) define a second sub-circuit having a second natural resonance frequency
  • the first and second terminals (1). , 2) of access define with a module (M) connected to them and with at least one turn (S2) connected to said first and second terminals (1, 2) of access a first sub-circuit having a first resonance frequency the turns being arranged so that the frequency difference between the first natural resonance frequency and the second natural resonance frequency is less than or equal to 500KHz.
  • the at least one third turn (SC3) and the at least one fourth turn (SC4) define a second sub-circuit having a second natural resonance frequency, the first and second terminals (1). , 2) of access define with a module (M) connected to them and with at least one turn (S2) connected to said first and second access terminals (1,2) a first sub-circuit having a first resonance frequency the turns being arranged so that the first natural resonance frequency and the second natural resonance frequency are substantially equal.
  • the antenna has a midpoint (PM) for setting a potential to a reference potential, with an equal number of turns on the section from the first end terminal (D) to the midpoint (PM) and on the section from the middle point (PM) to the second end terminal (E).
  • PM midpoint
  • the antenna is on a substrate.
  • the antenna is a wire.
  • said terminals (D, E, 1, 2, C1E, CIX), said tap (A), said points (P1, P2) and the capacitance (C1, ZZ) define a plurality at least three nodes, the nodes defining at least one first group (S1) of at least one turn between two first nodes (1, C1E) distinct from each other and at least one second group of at least one other turn ( S2) between two second nodes (1, 2) which are distinct from one another, at least one of the first nodes being different from at least one of the second nodes, first coupling means are provided for coupling (COUPL I 2) by mutual inductance between on the one hand the first group (S1) of at least one turn and on the other hand the second group of at least one other turn (S2) in that the first group (S1) of at least a turn is positioned near the second group of at least one other turn (S2).
  • said terminals (D, E, 1, 2, C1E, CIX), said tap (A), said points (P1, P2) and the capacitance (C1, ZZ) define a plurality at least three nodes, the nodes defining at least one first group (S1) of at least one turn between two first nodes (1, C1E) distinct from each other, and at least one second group of at least one other turn (S2) between two second nodes (1, 2) which are distinct from one another and at least one third group of at least one other turn (SC3, SC4) between two third nodes (E, C1X) which are distinct from each other, at least one of first nodes being different from at least one of the second nodes, at least one of the first nodes being different from at least one of the third nodes, at least one of the third nodes being different from at least one of the second nodes, first coupling means are provided for coupling (COUPL12) by mutual inductance between on the one hand the first group (S1) of at least one turn and
  • the first group (S1) of at least one turn is positioned between the second group of at least one other turn (S2) and the third group of at least one other turn ( SC3, SC3, SC4).
  • the spacing distance between the turns (S1, S2, SC3, SC4) belonging to different groups is less than or equal to 20 millimeters.
  • the spacing distance between the turns (S1, S2, SC3, SC4) belonging to different groups is less than or equal to 10 millimeters.
  • the spacing distance between the turns (S1, S2, SC3, SC4) belonging to different groups is less than or equal to 1 millimeter.
  • the spacing distance between the turns (S1, S2, SC3, SC4) belonging to different groups is greater than or equal to 80 micrometers.
  • At least one reader (LECT) as a load and / or at least one transponder (TRANS) as a load is connected to the access terminals (1, 2).
  • the circuit comprises a plurality of first distinct access terminals (1) and / or a plurality of second access terminals (2) which are distinct from each other.
  • said at least one first access terminal (1) and said at least one second access terminal (2) are connected to at least one first load (Z1) having a first frequency tuned in a high frequency band and at least a second load (Z2) having a second tuning frequency prescribed in another ultra high frequency band.
  • the invention it is possible to maintain a reasonable quality factor or limit its increase (the quality factor being equal to the resonance frequency divided by the bandwidth at -3 dB), in order to keep a reasonable bandwidth or slightly increased while maintaining or increasing the power radiated or received by the antenna and maintaining or decreasing the mutual inductance generated during coupling with the second external RFID antenna circuit.
  • the number of turns is imposed by the compromise between the surface of the antenna and the silicon capacitance and the desired tuning frequency (around 13.56 MHz to 20 MHz).
  • the desired tuning frequency around 13.56 MHz to 20 MHz.
  • the circuit according to the invention in transmission or reception, makes it possible in particular to reduce the mutual inductance with the second external RFID antenna circuit operating in reception or transmission, because the current density is mainly concentrated in the active part. the inductance of the antenna. Simplifying in a technical extension, the mutual inductance between two circuits is proportional to the number of turns of the circuits vis-à-vis. By decreasing the mutual inductance, the disturbing action is limited to the frequency agreements of the antenna circuits at short distances ( ⁇ 2 cm for example). This Decrease of the mutual inductance is not done to the detriment of the radiated or received power.
  • the magnetic field radiated or captured depends on the number of turns in the antenna. It is therefore necessary to increase the number of turns.
  • the coupling coefficient is inversely related to the inductances of the 2 antennas. By decreasing the inductance of the antennas, then the coupling coefficient between the 2 antennas increases. It is also necessary to either increase the mutual inductance or limit the loss on mutual inductance.
  • the mutual inductance is a function of the number of turns of the antennas. So by increasing the number of turns of the antenna, then the mutual inductance between the 2 antennas increases. Considering the coupling coefficient, ideally do not increase the inductances of the antennas.
  • the bandwidth is a function of the inductance of the antenna and inverse function of the resistance of the antenna. It is therefore ideally to reduce the inductance and increase the resistance of the antenna.
  • the mutual inductance must increase or be equal and / or the inductance of the antenna must decrease.
  • the inductance of the antenna must decrease or be equal and / or the resistance of the antenna must increase.
  • the solution according to the invention gives the possibility of parameterizing, by the method of the invention, the distribution of the current in the antenna such as for example to have a different current density in at least two turns constituting the antenna therefore of do not have a uniform current in the antenna and therefore a different current in at least 2 different turns.
  • the circuit includes means for making the distribution of current between the two ends of the antenna nonuniform.
  • the antenna circuit may be a circuit for emitting electromagnetic radiation by the antenna, as well as a circuit for receiving electromagnetic radiation by the antenna.
  • the RFID antenna circuit is of the transponder type, to operate as a portable card, tag (in English: "tag”), to be integrated in a paper document, such as for example a document issued by an official authority, such as a passport, USB keys and SIM cards and (U) SIM cards called "RFID or NFC SIM card", thumbnails for Dual or Dual Interface card (the sticker itself having an RFID antenna / NFC), watches.
  • the RFID antenna circuit is of the reader type to read, that is to say at least receive, the signal radiated by the RFID antenna of a transponder as defined in the first cases like mobile phones, personal organizers said "PDA", computers.
  • the circuit comprises an antenna 3 formed by at least three turns S of a conductor on an insulating substrate SUB.
  • the turns S have an arrangement defining an inductance L having a determined value between a first end terminal D of the antenna 3 and a second end terminal E of the antenna 3.
  • the antenna 3 is formed by three consecutive turns S1, S2, S3 from the outer end terminal E to the inner end terminal D.
  • a first access terminal 1 is connected by a conductor CON1A to an intermediate point or point A of the antenna 3 between its end terminals D, E.
  • a capacity C according to a prescribed tuning frequency that is to say at a resonance frequency, for example from 13.56 MHz up to 20 MHz, is provided in combination with the inductance L of the antenna 3.
  • the second end terminal E of the antenna 3 is connected by a conductor CON2E to the second terminal C1E of the capacitor C.
  • the first terminal C1X of the capacitor C is connected by a conductor CON31 to the intermediate tap A forming a first point P1 of the antenna 3.
  • a second access terminal 2 is connected by a conductor CON32 to the first end terminal D forming a second point P2 of the antenna 3.
  • the point P2 is different from the point A.
  • the two access terminals 1, 2 are used to connect a load.
  • the intermediate tap A, P1 is connected to the end terminal D by at least one turn S of the antenna L, ie a turn S3 at the figure 1 .
  • the intermediate tap A, P1 is connected to the second end terminal E of the antenna L by at least one turn S of the antenna L, ie two turns S1 and S2 on the figure 1 , where the intermediate tap A is located between the turns S3 and S2.
  • the points D, E, 1, 2, A, C1E, C1X, P1, P2 form electrical nodes of the circuit.
  • the points directly connected to each other form the same node, for example when the connection means are electrical conductors.
  • Two distinct nodes are connected by at least one turn.
  • the circuit of the Figure 1A has a first inductance L1, called active inductance, formed by the third turn S3, between the access terminals 1, 2.
  • a second inductor L2 called passive inductance, formed by the first turn S1 and the second turn S2.
  • the second inductance L2 is in parallel with the capacitor C between the intermediate tap A and the terminal E.
  • the sum of the first inductance L1 and the second inductor L2 is equal to the total inductance L of the antenna 3.
  • the antenna 3 has a resistance in series with its inductance L as well as inter-turn coupling capacitors, which however have not been shown in all the figures.
  • the capacity C can be of any type of technology and method of production.
  • the capacitor C is planar type being disposed on the free zone of the substrate, present in the middle of the turns S.
  • capacitance C is formed by a capacitor having a first metal surface SIX forming the first capacitance terminal C1X, a second metal surface S1E supported by the substrate and forming the second capacitance terminal C1E.
  • One or more dielectric layers are located between the first metal surface SIX and the second metal surface S1E.
  • FIG. 2A and 2B is a variant of the embodiment shown in Figures 1A and 1B .
  • the intermediate tap A, P1 is located between the turns S1 and S2.
  • the intermediate tap A, P1 is connected to the end terminal D by at least one turn S of the antenna L, two turns S2 and S3.
  • the intermediate tap A, P1 is connected to the second end terminal E of the antenna L by at least one turn S of the antenna L, a turn S1.
  • Capacity C is formed by a capacitor having one or more dielectric layers having a first side and a second side remote from the first side.
  • the first metal surface S1X forms the first capacitance terminal C1X on the first side of the dielectric layer.
  • a second metal surface S1E forms the second capacitance terminal C1E on the second side of the dielectric layer.
  • the first metal surface SIX defines with the second metal surface S1E a capacitance value C2.
  • a third metal surface S1F forms a third terminal C1F of the capacitance C.
  • the third metal surface S1F is located on the same first side of the dielectric layer at a distance as the first metal surface SIX but at a distance from this first metal surface SIX.
  • the third capacity terminal C1F is connected by a conductor CON33 to the end terminal D.
  • the third metal surface S1F defines with the second metal surface S1E a capacitance value C1.
  • the third metal surface S1F is coupled to the first metal surface S1X in that they share the same reference terminal C1E formed by the surface S1E, to form a coupling capacitance called C 12.
  • the circuit of the Figure 2A has a first inductance L1, called active inductance, formed by the second turn S2 and the third turn S3, between the access terminals 1, 2. Between the intermediate tap A and the terminal E is a second inductor L2, called inductance passive, formed by the first turn S1. The sum of the first inductance L1 and the second inductance L2 is equal to the total inductance L of the antenna 3.
  • the second inductor L2 is in parallel with the capacitor C2 between the intermediate socket A and the terminal E.
  • the first inductance L1 is in parallel with the coupling capacitance C12.
  • the capacitor C1 is connected on the one hand to the terminal D and on the other hand to the terminal E.
  • the embodiment shown in Figures 3A and 3B is a variant of the embodiment shown in Figures 2A and 2B .
  • the first point P1 is distinct from the first intermediate tap A and is spaced from this first intermediate tap A by at least one turn S.
  • the antenna 3 is formed by four consecutive turns S1, S2, S3, S4 of the terminal E from outer end to the inner end terminal D.
  • capacity C is of the type of Figures 2A and 2B .
  • the first intermediate tap A is located between turns S2 and S3.
  • the first intermediate tap A is connected to the end terminal D by at least one turn S of the antenna L, ie the two turns S3 and S4.
  • the intermediate tap A is connected to the second end terminal E of the antenna L by at least one turn S of the antenna L, ie the two turns S2 and S1.
  • the access terminal 1 is connected to the first intermediate socket A by the conductor CON1A.
  • the access terminal 2 is connected to the terminal D, which is not connected to the terminal C1F.
  • the load Z is for example a chip generally designated by "silicon”. This chip can also be present in general between the access terminals.
  • the terminal C1X is connected by the conductor CON31 to a first point P1 of the antenna 3, distinct from its terminals D, E.
  • the first point P1 is located between the turns S3 and S4.
  • the first point P1 is connected to the end terminal D by at least one turn S of the antenna L, ie the turn S4.
  • the first point P1 is connected to the second end terminal E of the antenna L by at least one turn S of the antenna L, ie the three turns S3, S2 and S1.
  • Terminal D forms the second point P2.
  • the third capacity terminal C1F is connected by a conductor CON33 to the access terminal 1.
  • the terminal C1E is connected by a conductor CON2E to the terminal E.
  • the circuit of the figure 3A has a first inductance L1, called active inductance, formed by the turn S4 between the terminal 2 and the point P1. Between the point P1 and the plug A is a second inductor L11, also called active, formed by the turn S3.
  • the sum of the first inductance L1, the second inductance L11 and the third inductance L3 is equal to the total inductance L of the antenna 3.
  • the third inductance L3 is in parallel with the capacitor C1 between the intermediate socket A and the terminal E.
  • the second inductor L11 is in parallel with the coupling capacitance C12.
  • the capacitor C2 is connected on the one hand to the point P1 and on the other hand to the terminal E.
  • the capacity C could be of the type of that of the Figure 1A , ie having instead of C1 and C12 only the capacitance C between P1 and E to Figures 3A and 3B .
  • the embodiment shown in Figures 4A and 4B is a variant of the embodiment shown in Figures 1A and 1B .
  • the antenna 3 is formed from the second end terminal E to the first terminal D by a first turn S1, a second turn S2 and a third turn S3, which are consecutive.
  • the turns S1 then S2 go from the second terminal E end to a point PR of creep in a first winding direction, corresponding to the Figure 4A clockwise.
  • the turn S3 goes from the reversal point PR to the first end terminal D in a second direction of winding opposite to the first direction of winding, and therefore reverses from the direction of the clockwise to the Figure 4A .
  • the turn S3 is reversed direction inward with respect to the outer turns S2 and S3.
  • the first point P1 forming the first intermediate tap A of the antenna connected to the access terminal 1, is located at the point PR of cusp.
  • the positive direction of the current in the antenna 3 is that going from the recoiling point PR to the terminal E, coinciding in this example with the greatest number of turns going in the same direction, as indicated by the arrows drawn on the antenna 3.
  • the arrows drawn on the turns S1 and S2 correspond to this positive direction of the current.
  • the circuit of the Figure 4A has a second positive inductance + L2, called passive inductance, formed by turns S2 and S1.
  • the sum of the first inductance L1 in absolute value and the second inductance L2 is equal to the total inductance L of the antenna 3.
  • the negative inductance -L1 makes it possible to further reduce the mutual inductance generated by the antenna 3.
  • the embodiment shown in Figures 5A and 5B is a variant of the embodiment shown in Figures 1A and 1B .
  • the antenna 3 is formed by three consecutive turns S1, S2, S3 of the end terminal E outside the inner end terminal D forming the first point P1 of the antenna.
  • a first access terminal 1 is connected by a connection means CON1A to a first intermediate socket A of the antenna 3 between its end terminals D, E.
  • the connection means CON1A is for example a capacitor C10.
  • the second access terminal 2 is connected by a connection means CON32 to a second intermediate socket P2 forming a second point P2 of the antenna 3.
  • the connection means CON32 is for example a capacitor C20.
  • a capacity C according to a prescribed tuning frequency that is to say at a resonance frequency, for example 13.56 MHz, is provided in combination with the inductance L of the antenna 3.
  • the second end terminal E of the antenna 3 is connected by a conductor CON2E to the second terminal C1E of the capacitor C.
  • the first terminal C1X of the capacitor C is connected by a conductor CON31 to the terminal D, P1 of the antenna 3.
  • the two access terminals 1, 2 are used to connect a load.
  • the intermediate tap A is located between the turns S3 and S2.
  • the intermediate plug P2 is located between the turns S1 and S2.
  • the intermediate terminal A is connected to the end terminal D by at least one turn S of the antenna L, ie the turn S3 in the embodiment shown.
  • the intermediate tap A is connected to the second end terminal E of the antenna L by at least one turn S of the antenna L, ie two turns S1 and S2 in the embodiment shown.
  • the intermediate plug P2 is connected to the end terminal D by at least one turn S of the antenna L, ie the turn S2 and the turn S3 in the embodiment shown.
  • the intermediate tap P2 is connected to the second end terminal E of the antenna L by at least one turn S of the antenna L, ie the turn S1 in the embodiment shown.
  • the circuit of the Figure 5A has a first inductance L1, called active inductance, formed by the second turn S2, between points A and P2. Between the intermediate tap P2 and the terminal E is a second inductor L2, called passive inductance, formed by the first turn S1. Between the intermediate tap A and the terminal D is a third inductor L3, called passive inductance, formed by the third turn S3.
  • the sum of the first inductance L1, the second inductance L2 and the third inductance L3 is equal to the total inductance L of the antenna 3.
  • the embodiment shown in Figures 6A and 6B is a variant of the embodiment shown in Figures 5A and 5B .
  • a fourth additional tuning capacitor C4 is connected between the intermediate tap A and the second tap P2 in parallel with the first inductor L1.
  • the fourth capacitor C4 participates in the frequency tuning with C, particularly on the second inductor L2.
  • the embodiment shown in Figures 6A and 6B makes it possible to increase the efficiency of the antenna 3.
  • the embodiment shown in Figures 7A and 7B is a variant of the embodiment shown in Figures 5A and 5B .
  • the antenna 3 is formed by four consecutive turns S1, S21, S22, S3 from the outer end terminal E to the inner end terminal D.
  • the first point P1 is formed by the end terminal D of the antenna.
  • Intermediate tap A is located between turns S3 and S22.
  • the intermediate plug P2 is located between the turns S1 and S21.
  • the intermediate terminal A is connected to the end terminal D by at least one turn S of the antenna L, ie the turn S3 in the embodiment shown.
  • the intermediate tap A is connected to the second end terminal E of the antenna L by at least one turn S of the antenna L, ie three turns S1, S21 and S22 in the embodiment shown.
  • the catch intermediate P2 is connected to the terminal D end by at least one turn S of the antenna L, three turns S21, S22 and S3 in the embodiment shown.
  • the intermediate tap P2 is connected to the second end terminal E of the antenna L by at least one turn S of the antenna L, ie the turn S1 in the embodiment shown.
  • the circuit of the Figure 5A has a first inductance L1, called active inductance, formed by the three second turns S21, S22 and S3, between points P1 and P2. Between the intermediate tap P2 and the terminal E is a second inductor L2, called passive inductance, formed by the first turn S1. Between the intermediate tap A and the terminal D is a third inductor L3, called passive inductance, formed by the third turn S3.
  • the sum of the first inductance L1, the second inductance L2 and the third inductance L3 is equal to the total inductance L of the antenna 3.
  • the embodiment shown in Figures 8A and 8B is a variant of the embodiment shown in Figures 5A and 5B .
  • the antenna 3 is formed by six consecutive turns S1, S2, S31, S32, S33 and S34 from the outer end terminal E to the inner end terminal D.
  • the first point P1 is formed by the end terminal D.
  • At least one turn S between the first point P1 and the second point P2 ie the turns S2, S31, S32, S33 and S34, that is to say five second turns in the mode. embodiment shown.
  • the intermediate tap A is located between the turns S2 and S31.
  • the intermediate plug P2 is located between the turns S1 and S2.
  • the intermediate tap A is connected to the end terminal D by at least one turn S of the antenna L, ie the four turns S31, S32, S33 and S34 in the embodiment shown.
  • the intermediate tap A is connected to the second end terminal E of the antenna L by at least one turn S of the antenna L, ie the two turns S1, S2 in the embodiment shown.
  • the intermediate tap P2 is connected to the end terminal D by at least one turn S of the antenna L, ie the five turns S2, S31, S32, S33 and S34 in the embodiment shown.
  • the intermediate tap P2 is connected to the second end terminal E of the antenna L by at least one turn S of the antenna L, ie the turn S1 in the embodiment shown.
  • the circuit of the figure 8A has a first inductance L1, called active inductance, formed by the second turns S2, S31, S32, S33 and S34, between points P1 and P2.
  • a first inductance L1 called active inductance
  • second inductor L2 called passive inductance
  • passive inductance formed by the first turn S1.
  • a third inductor L3, called passive inductance formed by the four turns S31, S32, S33 and S34.
  • the sum of the first inductance L1, the second inductance L2 and the third inductance L3 is equal to the total inductance L of the antenna 3.
  • the capacitor C is formed for example by a capacitor of the planar type as in the Figure 1A .
  • the capacitance C, C1, C2 is for example of the planar type described.
  • the capacitance C may be in the form of an added capacitor component, instead of being of the planar type.
  • the embodiment shown in Figures 9A and 9B is a variant of the embodiment shown in Figures 5A and 5B .
  • the antenna 3 is formed from the second end terminal E to the first terminal D by a first turn S1, a second turn S2 and a third turn S3, which are consecutive.
  • the turn S1 goes from the second terminal E end to a point PR of creep in a first direction of winding, corresponding to the Figure 9A clockwise.
  • the turns S2 and S3 go from the reversal point PR to the first end terminal D in a second direction of winding opposite to the first direction of winding, and therefore reverse the direction of the clockwise at the Figure 9A .
  • the turn S1 is of direction reversed outside with respect to the internal turns S2 and S3.
  • the first point P1 is formed by the terminal D.
  • the second point P2 forming the second intermediate point of the antenna connected to the access terminal 2 is located at the point PR of cusp.
  • the circuit of the Figure 9A has a first positive inductance L1, called active inductance, formed by the second turn S2, between points A and P2.
  • the sum of the first inductance L1, the second inductance L2 in absolute value and the third inductance L3 is equal to the total inductance L of the antenna 3.
  • the negative inductance -L2 makes it possible to further reduce the mutual inductance generated by the antenna 3.
  • FIG. 11A and 11B is a variant of the embodiment shown in Figures 5A and 5B .
  • connection means CON1A is for example an electrical conductor.
  • connection means CON32 is for example an electrical conductor.
  • the capacity C is of the type of that of the Figure 2A .
  • the second end terminal E of the antenna 3 is connected by a conductor CON2E to the second terminal C1E of the capacitor C.
  • the first terminal D is connected to the terminal C1F of the capacitor C by the conductor CON33.
  • the point P1 is formed by the terminal D.
  • the first terminal C1X of the capacitor C is connected by a conductor CON31 to the terminal D.
  • the terminal C1F is connected to the access terminal 2.
  • the capacitor C1 is in parallel with the inductance L2 between the terminal E and the point P2.
  • the capacitor C2 is connected between the terminals D and E.
  • the coupling capacitor C12 is connected between the second point P2 and the terminal D.
  • connection means such as CON1A, CON32, terminals 1, 2 of access to the antenna can be capacitance, conductor or other, such as for example active elements, in particular of the transistor or amplifier type.
  • any additional load or frequency or power matching circuit can be connected to the access terminals 1, 2, for example a chip, in particular a silicon-based chip, as well in the so-called transponder case. only in the case said reader.
  • connection means of the terminals 1, 2 for access to the antenna of the Figures 5A , 6A , 7A , 8A , 9A can also be drivers. It is also possible to add an active or passive element, such as for example a capacitance, to terminals 1, 2 of access to Figures 1A, 2A , 3A , 4A .
  • the antenna can be made of wired, engraved, printed (printed circuit board), copper, aluminum, silver particles or aluminum and any other electrical conductor and any other non-electrical conductor but chemically predicted to this effect.
  • the turns of the antenna can be made in multi-layers, superimposed or not, in whole or in part.
  • At least one turn S2 of the antenna may comprise in series a winding S2 'of turns of smaller area surrounded with respect to the surface surrounded by the remainder S2 "of the turn S2 or with respect to the surface surrounded by the others turns of the antenna 3, in order to increase the resistance or the inductance of the turn S2 without accentuating the coupling, the mutual inductance and the general radiation of the antenna 3.
  • the capacity (s) can be in discrete element (component) or made in planar technology.
  • the capacitance (s) can be added to the antenna during the manufacturing process of the windings of turns as an element outside the printed circuit board and the antenna, especially in wire technology.
  • the capacitance (s) can be integrated in a module, in particular silicon.
  • the capacitance (s) can be integrated and realized on a printed circuit board.
  • the turns S of the antenna 3 can be distributed over several different physical planes, for example parallel.
  • the turns are formed of sections, for example rectilinear but may also have any other shape.
  • the turns of the antenna may be in the form of a wire which will then be heated to be embedded on or in an insulating substrate.
  • the turns of the antenna can be etched on an insulating substrate.
  • the turns of the antenna may be on opposite sides of an insulating substrate.
  • the turns are for example in the form of parallel ribbons.
  • a load module M such as for example a chip, the module M being connected between the first access terminal 1 and the second terminal 2 access.
  • the antenna L is formed by the turns S1, S2 located between the first terminal D end and the second terminal E end.
  • the first terminal D is connected to the second access terminal 2 forming the second point P2.
  • the tuning capacity C1 at a prescribed tuning frequency has a first capacitance terminal C1X and a second capacitance terminal C1E.
  • the first capacitance terminal C1X is connected to the first terminal 1 by means CON31 at the first access terminal 1.
  • the second capacitance terminal C1E is connected to the second end E terminal.
  • the second point P2 is formed by the second access terminal 2.
  • the first point P1 of the antenna and the intermediate point A of the antenna are formed by the first terminal 1 access.
  • the second point P2, 2 of the antenna L is connected to the first point P1, 1, A of the antenna L by at least a first turn S1 of the antenna L.
  • the antenna L is formed by one or more second turns S1 between E and A, for example by two second turns S1, connected by point A to one or more turns S2 from point A to terminal D, for example three turns S2.
  • the tuning capacitor C1 is formed by one or more third turns SC3 (for example five turns SC3) having two first and second ends SC31, SC32 and by one or more fourth turns SC4 (for example five turns SC4) comprising two first and second ends SC41, SC42.
  • third turns SC3 for example five turns SC3
  • fourth turns SC4 for example five turns SC4
  • the at least one third turn SC3 is distinct from the turns S1, S2 forming the antenna L and is connected to one E of the end terminals of the antenna L.
  • the at least one fourth turn SC4 is distinct from the turns S1 , S2 forming the antenna L and is electrically separated from the third turns SC3, for example along the third turns SC3, so that the turns SC3 are arranged facing the turns SC4, for example by having parallel sections.
  • the end SC31 forms the terminal C1E and is connected to the terminal E.
  • the end SC32 is free and isolated from SC4.
  • the SC41 end is free and isolated from SC3.
  • the end SC42 forms the terminal C1X and is connected to the intermediate socket A, 1, P1.
  • the end SC31 is remote from the end SC42, while being close and isolated from the end SC41.
  • the end SC42 is remote from the end SC31, while being close and isolated from the end SC32.
  • the impedance ZZ located between the ends SC31, SC42 serving to connect the capacitor C1 to the rest of the circuit also bring back an inductor.
  • the impedance ZZ between the connection ends SC31, SC42 may for example be seen as comprising a resonant capacitive-inductive circuit parallel and / or series according to the figure 33 , having two parallel branches, in one of the branches the capacitance C1 and in the other branch a capacitance in series with an inductance. Therefore, the ZZ impedance seen between the connection ends SC31, SC42 has the capacitance C1.
  • the value of the capacitance C1 of the impedance ZZ depends on the relation between the turns SC3 and SC4, and in particular their mutual arrangement, for example adjacent.
  • the impedance ZZ formed by the at least one third turn SC3 and the at least one fourth turn SC4 is self-resonant, because a capacitance and a series and / or parallel inductance are contained in the impedance ZZ.
  • the equivalent circuit diagram of the circuit shown in figure 12 is represented at the figure 34 .
  • the at least one third turn SC3 and the at least one fourth turn SC4 make it possible to equalize the tuning frequency of the module M (for example chip) lying in parallel with an inductance (turn (s) S2) on the frequency of tuning the circuit formed by the at least a third turn SC3 and the at least a fourth turn SC4, for example to have the tuning frequency prescribed at 13.56 MHz.
  • the aim is to have the inductance contained in the self-resonant circuit ZZ, SC3, SC4 as small as possible in order to allow the integration of the antenna circuit into a small area ⁇ 16 cm 2, for example a tag (tag in English) or a sticker circuit (in English: sticker).
  • one of the advantages of the invention is the possibility of parameterizing the mutual inductance between the antenna circuits, for example, between, on the one hand, the antenna circuit comprising the transponder chip or reader and on the other hand a first and a second antenna part, so as to set the mutual final inductance of the transponder or reader system.
  • At least one electrical connection is provided between a first antenna circuit comprising the chip and at least one second (or more) antenna circuit comprising at least one capacitive element.
  • the devices according to the documents EP-A-1031 939 and FR-A-2777141 do not make it possible to produce two frequency agreements that are almost independent of each other or two frequency agreements that are very close to each other, for example ⁇ 10 MHz, ⁇ 2 MHz or ⁇ 500 KHz or 2 frequency agreements combined in each other. the same frequency range.
  • the greater the mutual inductance between the 2 antenna circuits the more the 2 so-called "natural" agreements of the 2 antenna circuits increase. If we want these 2 frequency agreements to be close, we must reduce the mutual, inductance in, for example, decreasing strongly one of the antenna circuit surfaces relative to the other which induces a considerable loss in the transponder efficiency.
  • Means are provided for coupling COUPL12 by mutual inductance between neighboring turns S1 and S2.
  • Means are provided for coupling COUPLZZ by mutual inductance between neighboring turns S1 and SC3, SC4 of the impedance ZZ.
  • This coupling by mutual inductance is for example due to the arrangement of S1 close to S2 and the arrangement of S1 close to SC3, SC4.
  • S2, S1, SC3, SC4 we successively from the periphery to the center: S2, S1, SC3, SC4.
  • the antenna circuit has at least two mutually intrinsic intrinsic inductances coupled between them: between S1 and S2, between S1 and ZZ.
  • the column AE indicates the number of turns S1 between A and E.
  • the column AD indicates the number of turns S2 between A and D.
  • the column P1-P2 indicates the number N12 equal to at least one turn S of the antenna L between points P1 and P2.
  • the last column on the right indicates either the presence of the impedance ZZ formed by the turns SC3 and SC4, indicating in this case the number of ZZ turns in parentheses, ie the presence of an additional capacitor C30, called the first capacitor, formed by a capacitive dielectric component between its terminals.
  • the term "dielectric capacitive component” means any embodiment allowing the arrangement of a capacity. If necessary, this capacitive component may be formed by another circuit ZZ.
  • the capacitance ZZ is formed by turns SC3, SC4 between SC42 and SC31 (for example 4 turns), with SC31 forming C1XZ.
  • another capacity C30 formed by a capacitive component is provided between E and C1XC1.
  • the terminal C1XC1 is connected to a point PC1 of the antenna L, which is at a distance of P2 from at least one turn, for example a turn in this figure.
  • ZZ is between C1XZ and C1E
  • C30 is a capacitive component between E and C1XC1.
  • two capacitors C30 and ZZ are provided in series between the terminal C1E, E and the terminal C1X, P1 formed by the end SC42.
  • the capacitance ZZ is formed by the turns SC3, SC4 between SC42 and SC31 (for example 4 turns), with SC31 forming PC1.
  • another capacity C30 formed by a capacitive component is provided between E and PC1.
  • Terminal PC1 is connected to point 2, P2 of antenna L.
  • Terminal C1E, E is formed by the end of coil (s) S1, remote from terminal 2.
  • two capacitors C30 and ZZ are provided in series between the terminal C1E, E and the terminal C1X, P1 formed by the end SC42.
  • the capacitance ZZ is formed by the turns SC3, SC4 between SC42 and SC31 (for example 4 turns), with SC31 connected in series with the point PC1 by one or more turns S10 (for example two turns S10).
  • another capacity C30 formed by a capacitive component is provided between E and PC1.
  • Terminal PC1 is connected to point 2, P2 of antenna L.
  • Terminal C1E, E is formed by the end of coil (s) S1, remote from terminal 2.
  • the point PR1 is away from A by at least one turn and E by at least one turn (for example two turns between A and PR1 and two turns between PR1 and E).
  • the point PR2 is away from A by at least one turn and E by at least one turn (for example a turn between A and PR2 and three turns between PR2 and E).
  • PR2 is away from P2 by at least one turn.
  • the point PR1 is located at A.
  • the point PR2 is away from A by at least one turn and E by at least one turn (for example a turn between A and PR2 and three turns between PR2 and E).
  • the point PR1 is located at A.
  • the point PR2 is away from A by at least one turn and E by at least one turn (for example a turn between A and PR2 and four turns between PR2 and E).
  • the point PR1 is away from A by at least one turn and D by at least one turn (for example a turn between A and PR1 and two turns between PR1 and D).
  • the point PR2 is away from A by at least one turn and D by at least one turn (for example two turns between A and PR2 and a turn between PR2 and D).
  • a midpoint PM for setting a potential to a reference potential is provided on the antenna midway between the two end terminals D and E of the antenna.
  • the midpoint PM is distant from the other points 1, A, 2, P2, C1E, E, C1X, P1, D by at least one turn of the antenna. 'antenna.
  • the midpoint PM is distant from the other points 1, A, 2, P2, C1E, E, C1X, P1, D by at least half a turn of the antenna and is for example on the other side with respect to the side having these points 1, A, 2, P2, C1E, E, C1X, P1, D.
  • the number of turns between the points mentioned on the antenna (1, A, 2, P2, C1E, E, C1X, P1, D, as well as the cusps or points) can be whatever, for example by being greater than or equal to one.
  • These numbers of turns may be integers, for example as shown in the figures, or not integers such as for example figures 31 and 32 .
  • a reversing point PR3 at point 1 A is provided, that is to say an inversion of the winding direction of the turns of the antenna at the passage of 1 A, going from D to E.
  • figures 15 , 16 , 17 , 18 , 22, 23 , 24 , 27 , 28, 29 , 30 , 31 and 32 we go through the point 1, A going from D to E keeping the same winding direction of the turns of the antenna.
  • PR1 other than 1, A to figures 23 , 24 , 26, 27 .
  • the first access terminal is distinct from the second access terminal in that the first access terminal is separated from the second access terminal by one or more turns.
  • Only one first access terminal 1 and only one second access terminal 2 are for example provided.
  • a transponder TRANS as load Z is connected to the first terminal 1 and the second terminal 2, for example to the figure 35 .
  • a reader LECT as load Z is connected to the first terminal 1 and the second terminal 2, for example to the figure 36 .
  • a transponder TRANS as the first load Z1 and a reader LECT as the second load Z2 can be connected to the same first terminal 1 and the same second terminal 2, as shown for example in FIGS. figures 37 and 38 , the TRANS transponder and the reader LECT being electrically in parallel with the figure 38 .
  • the antenna may comprise, for the connection of several separate loads, a plurality of first distinct access terminals 1 and / or a plurality of second access terminals 2 distinct from each other.
  • First distinct access terminals 1 are separated from each other by minus one turn of the antenna.
  • Separate second terminals 2 are separated from each other by at least one turn of the antenna.
  • a transponder TRANS as the first load Z1 is connected between the first access terminal 1 and the second access terminal 2
  • a reader LECT as the second load Z2 is connected between another first terminal 11d. access and another second terminal 12 access.
  • a transponder TRANS as the first load Z1 is connected between the first access terminal 1 and the second access terminal 2
  • a reader LECT as the second load Z2 is connected between another second terminal 12d. access and the second access terminal 2 (successive access terminals).
  • a plurality of RFID applications, and / or RFID reader and / or RFID transponder may be connected between the first and second identical access terminals 1, 2 or between first and second access terminals 1, 2 such as the applications designated by APPL1, APPL3 to the figure 41 between first and second terminals 1, 2, access distinct 1, 2, 12, 13 successive.
  • the role of the first access terminal 1 and the role of the second access terminal 2 can be inverted.
  • the load Z connected to the access terminals 1, 2 has, for example, a prescribed tuning frequency, as is shown in FIG. figure 42 .
  • This tuning frequency is fixed.
  • This prescribed tuning frequency is for example in a high frequency band (HF), the high frequency band covering frequencies greater than or equal to 30 kHz and less than 80 MHz.
  • This tuning frequency is for example 13.56 MHz.
  • the tuning frequency may also be in an ultra high frequency (UHF) band, the ultra high frequency band covering frequencies greater than or equal to 80 MHz and less than or equal to 5800 MHz.
  • UHF ultra high frequency
  • the tuning frequency is 868 MHz or 915 MHz.
  • said at least one first access terminal 1 and said at least one second access terminal 2 are connected to at least one first load Z1 having a first prescribed tuning frequency and at least one second charge Z2 having a second prescribed tuning frequency different from the first prescribed tuning frequency.
  • a first load Z1 having the first tuning frequency prescribed in the high frequency band and a second load Z2 having the second tuning frequency prescribed in the ultra high frequency band are connected to terminals 1, 2 d. 'access.
  • the first load Z1 having the first tuning frequency prescribed in the high frequency band and a second load Z2 having the second tuning frequency prescribed in the ultra high frequency band are connected to the same first access terminal 1 and the same second terminal 2 access.
  • the first load Z1 having the first tuning frequency prescribed in the high frequency band is connected between the first access terminal 1 and the second access terminal 2
  • the second load Z2 having the second tuning frequency prescribed in the ultra-high frequency band is connected between another first access terminal 11 and another second access terminal 12.
  • the first load Z1 having the first tuning frequency prescribed in the high frequency band is connected between the first access terminal 1 and the second access terminal 2
  • the second load Z2 having the second tuning frequency prescribed in the ultra-high frequency band is connected between another second access terminal 12 and the second access terminal 2 (successive access terminals), the number of turns between the terminals being different between the two figures.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Near-Field Transmission Systems (AREA)
  • Details Of Aerials (AREA)

Description

L'invention concerne un circuit d'antenne RFID et NFC.The invention relates to an RFID and NFC antenna circuit.

RFID est l'abréviation d'identification par radiofréquence (en anglais : « radio frequency identification »).RFID is the abbreviation of radio frequency identification (in English: "radio frequency identification").

NFC est l'abréviation de communication en champ proche (en anglais : « near field communication »).NFC is the abbreviation for Near Field Communication (near field communication).

C'est une technique qui permet d'identifier des objets en utilisant une puce mémoire ou un dispositif électronique capable, à l'aide d'une antenne radio, de transmettre des informations à un lecteur spécialisé.It is a technique that makes it possible to identify objects by using a memory chip or an electronic device capable, with the aid of a radio antenna, of transmitting information to a specialized reader.

La technologie RFID/NFC est utilisée dans de nombreux domaines, par exemple dans les téléphones portables, les organisateurs personnels dit « PDA », les ordinateurs, les lecteurs de cartes sans contact, les cartes elles-mêmes devant être lues sans contact, mais aussi les passeports, les étiquettes d'identification d'articles ou de description d'articles (en anglais : « tag »), les clés USB et cartes SIM et cartes (U)SIM dit « carte SIM RFID ou NFC », les vignettes pour carte Dual ou Dual Interface (la vignette possédant elle-même une antenne RFID/NFC), les montres.RFID / NFC technology is used in many areas, for example in mobile phones, personal organizers called PDAs, computers, contactless card readers, cards themselves to be read without contact, but also passports, identification tags of articles or description of articles (in English: "tag"), USB keys and SIM cards and (U) SIM cards called "SIM card RFID or NFC", thumbnails for Dual or Dual Interface card (the sticker itself having an RFID / NFC antenna), watches.

En technologie RFID/NFC, l'antenne d'un premier circuit RFID (Lecteur) rayonne de manière électromagnétique à une certaine distance un signal radiofréquence comportant des données qui doit être reçu par l'antenne d'un deuxième circuit RFID (transpondeur), qui peut le cas échéant répondre au premier circuit par des données par modulation de charge. Chaque circuit RFID a son antenne fonctionnant à sa propre fréquence de résonance.In RFID / NFC technology, the antenna of a first RFID circuit (Reader) radiates electromagnetically at a distance a radio frequency signal comprising data to be received by the antenna of a second RFID circuit (transponder), which can, if necessary, respond to the first circuit by data by load modulation. Each RFID circuit has its antenna operating at its own resonant frequency.

D'une manière générale, la problématique du circuit d'antenne RFID porte sur l'efficacité de l'antenne magnétique du transpondeur et du lecteur, soit, sur l'efficacité du couplage par mutuelle inductance entre les deux antennes magnétiques, sur la transmission de l'énergie et de l'information entre la partie électronique et son antenne, sur la transmission de l'énergie et de l'information entre les deux antennes du système RFID.In general, the problem of the RFID antenna circuit relates to the efficiency of the magnetic antenna of the transponder and the reader, or, on the efficiency of the coupling by mutual inductance between the two magnetic antennas, on the transmission energy and information between the party electronics and its antenna, on the transmission of energy and information between the two antennas of the RFID system.

L'objectif principal est de gagner en efficacité radio (puissance du champ magnétique émis ou capté, couplage, mutuelle inductance...) par l'antenne sans perdre sur la qualité du signal (distorsions des données, largeur de bande de l'antenne ...) émis ou reçu.The main objective is to gain in radio efficiency (power of the emitted or captured magnetic field, coupling, mutual inductance ...) by the antenna without losing on the quality of the signal (data distortions, bandwidth of the antenna ...) issued or received.

On voit de plus en plus apparaître des antennes à surfaces réduites (30×30mm), voire très réduite (5x5mm) pour des applications comme les cartes ou µCartes, étiquettes (en anglais : stickers), les petits lecteurs ou lecteur à option ou détachable, dans la téléphonie mobile, dans les clés USB, dans les cartes SIM.We can see more and more antennas with reduced surfaces (30 × 30mm), or even very small (5x5mm) for applications like cards or μCards, labels (in English: stickers), small readers or optional reader or detachable , in mobile telephony, in USB sticks, in SIM cards.

En plus de surface réduite (<16cm2) ou très réduite (<4cm2), on a très souvent des contraintes mécaniques ou électriques très fortes comme la présence d'une batterie, d'un écran ou afficheur, d'un support conducteur dans le champ très proche de l'antenne.In addition to reduced surface area (<16cm 2 ) or very small (<4cm 2 ), very often there are very strong mechanical or electrical constraints such as the presence of a battery, a screen or display, a conductive support in the field very close to the antenna.

Ces diverses contraintes sur la surface, électriques et mécaniques conduisent alors à une diminution de l'efficacité de l'antenne, à une perte de l'efficacité de couplage et à une perte de puissance dans le signal émis ou reçu par l'antenne, une diminution de la distance possible de communication ou de la transmission d'énergie ou d'information.These various constraints on the surface, electrical and mechanical then lead to a decrease in the efficiency of the antenna, a loss of the coupling efficiency and a loss of power in the signal transmitted or received by the antenna, a decrease in the possible distance of communication or the transmission of energy or information.

Pour les antennes de tailles raisonnables (>16 cm2) comme pour les antennes à surface réduite (<16cm2) ou très réduite (<4cm2), on voit apparaître des besoins toujours plus importants sur la nécessité de puissance sur le champ magnétique émis ou capté, sur la bande passante du canal radio afin de répondre aux exigences de débit des données toujours en augmentation et des normes en vigueur comme l'ISO14443 (exemple pour le transport, l'identité...), l'ISO15693 (exemple pour les étiquettes) et les spécifications pour le domaine bancaire RFID / NFC (EMVCO).For antennas of reasonable sizes (> 16 cm 2 ) as for antennas with reduced surface area (<16cm 2 ) or very small (<4cm 2 ) antennas, one sees appearing ever more important needs on the necessity of power on the magnetic field transmitted or captured, over the bandwidth of the radio channel in order to meet the ever increasing data flow requirements and standards in force such as ISO14443 (example for transport, identity ...), ISO15693 ( example for labels) and specifications for the RFID / NFC banking domain (EMVCO).

Ainsi, le document US-A-7 212 124 décrit un dispositif d'information pour téléphone portable, comportant une bobine d'antenne formée sur un substrat, une feuille d'un matériau magnétique, un circuit intégré et des condensateurs de résonance connectés à la bobine d'antenne. Le circuit intégré communique avec un appareil extérieur par le fait que la bobine d'antenne utilise un champ magnétique. Une dépression servant de section de réception de la batterie est formée sur une partie de la surface du boîtier et est couverte par un couvercle de la batterie. La batterie, la bobine d'antenne et la feuille de matériau magnétique sont logés dans la dépression. Un film à métal évaporé sous vide ou un revêtement de matériau conducteur est appliqué au boîtier, tandis qu'aucun film à métal évaporé sous vide ni revêtement de matériau conducteur est appliqué au couvercle de batterie. La bobine d'antenne est disposée entre le couvercle de batterie et la batterie, tandis que la feuille de matériau magnétique est disposée entre la bobine d'antenne et la batterie dans la dépression. La bobine d'antenne a une prise intermédiaire, les condensateurs de résonance sont connectés aux deux extrémités de la bobine d'antenne, et le circuit intégré est connecté au milieu entre l'une des extrémités de la bobine d'antenne et la prise intermédiaire.Thus, the document US-A-7,212,124 discloses a mobile phone information device comprising an antenna coil formed on a substrate, a sheet of a magnetic material, an integrated circuit and resonance capacitors connected to the antenna coil. The integrated circuit communicates with an external device in that the antenna coil uses a magnetic field. A vacuum serving as a battery receiving section is formed on a portion of the housing surface and is covered by a battery cover. The battery, the antenna coil and the sheet of magnetic material are housed in the depression. A vacuum evaporated metal film or coating of conductive material is applied to the housing, while no vacuum evaporated metal film or coating of conductive material is applied to the battery cover. The antenna coil is disposed between the battery cover and the battery while the sheet of magnetic material is disposed between the antenna coil and the battery in the vacuum. The antenna coil has an intermediate tap, the resonance capacitors are connected to both ends of the antenna coil, and the integrated circuit is connected in the middle between one end of the antenna coil and the intermediate tap. .

Ce dispositif présente de nombreux inconvénients.This device has many disadvantages.

Il ne fonctionne que dans des téléphones portables. Du fait de la présence d'une batterie, l'antenne doit présenter un facteur de qualité très grand avant son intégration. Mais un facteur de qualité ayant une valeur aussi grande ne convient pas pour les circuits d'antenne RFID / NFC pour lecteurs ou transpondeurs (cartes, étiquettes, clés USB). Dans un téléphone portable, la raison d'être de ce facteur de qualité de valeur très grande est que les contraintes électriques et mécaniques écrasent le facteur de qualité d'origine de l'antenne. Pour les applications classiques ou sans ces contraintes, ce coefficient de qualité de l'antenne serait trop élevé et engendrerait alors une bande passante à -3dB de l'antenne très réduite, donc un filtrage très sévère du signal HF modulé émis ou en réception par modulation de charge (sous-porteuse du 13.56MHz à ±847 kHz, ±424MHz, ±212MHz ...), et une puissance émise ou reçue trop grande. Par ailleurs, le couplage avec une telle antenne, toujours pour les applications classiques ou sans ces contraintes, serait tel qu'à une distance courte entre les 2 antennes (< 2 cm par exemple), la mutuelle inductance créée serait telle qu'elle désaccorderait totalement l'accord en fréquence des deux antennes, ferait s'écrouler la puissance rayonnée par le lecteur, pourrait saturer les étages radio de la puce silicium voire pourrait conduire à une destruction possible du silicium du transpondeur, le silicium n'ayant pas une capacité de dispersion calorifique infinie.It only works in mobile phones. Due to the presence of a battery, the antenna must have a very high quality factor before integration. But a quality factor with such a high value is not suitable for RFID / NFC antenna circuits for readers or transponders (cards, labels, USB sticks). In a mobile phone, the reason for this very high value quality factor is that the electrical and mechanical constraints overwrite the original quality factor of the antenna. For conventional applications or without these constraints, this quality coefficient of the antenna would be too high and would then generate a bandwidth at -3 dB of the antenna very reduced, so a very severe filtering of the modulated RF signal emitted or received by load modulation (subcarrier 13.56 MHz ± 847 kHz, ± 424 MHz, ± 212 MHz ...), and power transmitted or received too large. Furthermore, the coupling with such an antenna, still for conventional applications or without these constraints, would be such that at a short distance between the 2 antennas (<2 cm for example), the mutual inductance created would be such that it would detune totally tuning the frequency of the two antennas, would collapse the power radiated by the reader, could saturate the radio stages of the silicon chip or could lead to destruction transponder silicon, since silicon does not have an infinite heat dispersal capacity.

Ainsi, le document US-A1-2008/0450693 décrit un dispositif d'antenne essentiellement pour un fonctionnement en mode lecteur. On trouve un agencement classique d'une inductance série, un agencement de deux inductances parallèles et enfin un agencement de deux inductances séries avec une troisième inductance parallèle à une des deux inductances série. Les modes de réalisation proposés imposent notamment deux surfaces différentes, une grande et une petite, sur soit la même inductance soit sur deux inductances. L'objectif des deux derniers modes de réalisation est de permettre d'amplifier le signal émis au centre de l'antenne par une petite inductance parallèle et, dans le troisième mode de réalisation, d'éliminer les trous de rayonnement sur une localisation comprise entre l'agencement des deux surfaces d'antennes.Thus, the document US-A1-2008 / 0450693 describes an antenna device essentially for drive mode operation. There is a conventional arrangement of a series inductor, an arrangement of two parallel inductances and finally an arrangement of two series inductances with a third inductance parallel to one of the two series inductances. The proposed embodiments impose in particular two different surfaces, one large and one small, on either the same inductance or on two inductances. The purpose of the last two embodiments is to make it possible to amplify the signal emitted at the center of the antenna by a small parallel inductance and, in the third embodiment, to eliminate the radiation holes on a location between the arrangement of the two antenna surfaces.

L'un des inconvénients du dispositif d'antenne selon le document US-A1-2008/0450693 est qu'il n'est pas intégrable dans une carte à embossage Un autre inconvénient est que le couplage de ce dispositif en mode lecteur avec une autre antenne ne remplit pas les conditions idéales pour obtenir un couplage optimum avec un transpondeur.One of the disadvantages of the antenna device according to the document US-A1-2008 / 0450693 The disadvantage is that the coupling of this device in reader mode with another antenna does not fulfill the ideal conditions for obtaining optimum coupling with a transponder.

Ainsi, les documents EP-A-1031 939 et FR-A-2777141 décrivent un dispositif d'un circuit d'antenne pour un fonctionnement en mode transpondeur ayant deux circuits d'antenne indépendants électriquement entre eux Dans le dispositif décrit dans les documents EP-A-1031 939 et FR-A-2777141 , un premier circuit d'antenne est composé d'une inductance classique et de la puce transpondeur. Un deuxième circuit d'antenne est composé d'un enroulement de spire formant une inductance associé à une capacité planaire dit « résonateur ». L'objectif des deux modes de réalisation est de permettre l'amplification du signal électromagnétique reçu par l'agencement du «résonateur» pour le premier circuit d'antenne comportant le transpondeur.Thus, the documents EP-A-1031 939 and FR-A-2777141 describe a device of an antenna circuit for transponder mode operation having two independently electrically independent antenna circuits In the device described in the documents EP-A-1031 939 and FR-A-2777141 , a first antenna circuit is composed of a conventional inductor and the transponder chip. A second antenna circuit is composed of a coil winding forming an inductance associated with a planar capacitance called "resonator". The objective of the two embodiments is to allow the amplification of the electromagnetic signal received by the arrangement of the "resonator" for the first antenna circuit comprising the transponder.

Ces dispositif selon EP-1031 939 et FR 2 777 141 présentent l'inconvénient d'un couplage beaucoup trop fort, sans garantir l'efficacité d'augmentation de la distance de lecture. Pire, dans le cas d'une efficacité de couplage extrêmement grande, la communication RFID entre le lecteur et le transpondeur ne se fait pas.These device according EP-1031 939 and FR 2,777,141 have the disadvantage of a coupling much too strong, without guaranteeing the efficiency of increase of the reading distance. Worse, in the case of extremely high coupling efficiency, the RFID communication between the reader and the transponder is not done.

De plus , les mêmes remarques que celle faites pour le document US-A-7 212 124 peuvent être faites. En effet, avec un circuit classique de « résonateur » couplé par mutuelle inductance avec un premier circuit d'antenne comportant le transpondeur, il existe une relation quasiment linéaire, en vulgarisant, entre d'une part l'efficacité de distance de lecture ou l'efficacité de captation du champ électromagnétique et d'autre part la surface des 2 circuits d'antennes, leur proximité et leurs accords en fréquence.In addition, the same remarks as the one made for the document US-A-7,212,124 can be done. Indeed, with a conventional "resonator" circuit coupled by mutual inductance with a first antenna circuit comprising the transponder, there is an almost linear relationship, by popularizing, between on the one hand the efficiency of reading distance or the efficiency of capture of the electromagnetic field and secondly the surface of the 2 antenna circuits, their proximity and their frequency agreements.

L'intérêt des réalisations décrites dans les documents EP-A-1031 939 et FR-A-2777141 est d'obtenir le maximum d'efficacité entre les 2 circuits d'antennes, donc avoir un coefficient de qualité le plus grand possible. On retombe donc sur les mêmes remarques du document US-A-7 212 124 .The interest of the achievements described in the documents EP-A-1031 939 and FR-A-2777141 is to get the maximum efficiency between the 2 antenna circuits, so have a coefficient of quality as large as possible. We therefore fall back on the same remarks of the document US-A-7,212,124 .

Ainsi, le document EP-A-1 970 840 décrit un dispositif comparable aux deux précédents dispositifs décrites dans les documents EP-A-1031 939 et FR-A-2777141 , dans le sens oit 2 résonateurs sont utilisés pour l'amplification du champ électromagnétique reçu. On retrouve donc les mêmes remarques que précédemment. De plus, les contraintes indiquées pour les documents EP-A-1031 939 et FR-A-2777141 sont d'autant plus élevées et difficiles à réaliser que les deux résonateurs sont proches l'un de l'autre.Thus, the document EP-A-1,970,840 describes a device comparable to the two previous devices described in the documents EP-A-1031 939 and FR-A-2777141 in the sense that 2 resonators are used for the amplification of the received electromagnetic field. We thus find the same remarks as before. In addition, the constraints indicated for documents EP-A-1031 939 and FR-A-2777141 are all the higher and difficult to achieve that the two resonators are close to each other.

Par ailleurs, le document US-A-3,823,403 décrit une antenne boucle 3D notamment utilisée en VHF (de 30MHz à 300MHz) formée par une longueur de conducteur idéalement par des tubes, qui est bobinée en deux ou plus de deux spires et qui est montée et liée dans sa conception et fonctionnement intrinsèque « avion » par des courants extérieurs portés par son support et/ou sa structure dans ou au-dessus d'un plan de masse conducteur ou d'une structure métallique ou dans une cavité pouvant être remplie d'air ou chargée de ferrite ou d'un diélectrique, sur un avion.In addition, the document US Patent 3,823,403 describes a 3D loop antenna used in particular VHF (30MHz to 300MHz) formed by a length of conductor ideally tubes, which is wound in two or more turns and which is mounted and linked in its design and intrinsic operation "aircraft By external currents carried by its support and / or structure in or above a conductive ground plane or metal structure or in a cavity that can be filled with air or loaded with ferrite or a dielectric, on an airplane.

La longueur de cette antenne VHF 3D pour avion est proche de la longueur d'onde ou proche du quart de la longueur d'onde comme les antennes standard aux fréquences VHF pour se rapprocher le plus possible la fréquence de résonnance désirée. Cette antenne VHF 3D pour avion est dédiée pour les fortes puissances et permet l'amélioration du diagramme de rayonnement Electro-Magnétique par rapport aux antennes boucle standard ou antenne stub ou antenne dipôle notamment au augmentant la longueur de l'antenne.The length of this VHF 3D antenna for aircraft is close to the wavelength or close to a quarter of the wavelength as the standard antennas at VHF frequencies to get as close as possible to the desired resonance frequency. This VHF 3D antenna for aircraft is dedicated for high power and allows the improvement of the Electro-Magnetic radiation pattern compared to standard loop antennas or antenna stub or dipole antenna including increasing the length of the antenna.

Cette antenne VHF pour avion n'a donc pas de contrainte mécanique sur les aspects réalisation planaire ou de très faible volume pour respecter les contraintes d'intégration dans des environnements souvent de très faibles épaisseurs.This VHF antenna for aircraft therefore has no mechanical constraint on the planar embodiment or very low volume aspects to meet the constraints of integration in environments often very low thicknesses.

Cette antenne VHF pour avion n'a donc pas de contrainte électrique et radiofréquence sur le Couplage, Mutuel Inductance, décroissance du champs magnétique proche, filtrage de la Données modulées, d'auto-alimentation ou alimentation par champs extérieur et enfin de modulation de charge qui sont les critères et contraintes propres des petites antennes RFID/NFC 13.56MHz.This VHF antenna for aircraft therefore has no electrical and radiofrequency constraints on coupling, mutual inductance, near magnetic field decay, modulated data filtering, self-feeding or external field power supply and finally load modulation. which are the criteria and constraints of the small RFID / NFC 13.56MHz antennas.

Afin d'augmenter la transmission de l'énergie émise ou reçue par l'antenne, on peut rajouter un amplificateur dans la chaîne radio d'émission ou de réception, mais cela rajoute un coût financier et en énergie disponible ainsi qu'une probable distorsion sur le signal HF modulé.In order to increase the transmission of the energy transmitted or received by the antenna, it is possible to add an amplifier in the transmit or receive radio chain, but this adds a financial and energy cost available as well as a probable distortion on the modulated RF signal.

On peut aussi augmenter le niveau du signal émis par le silicium mais celui-ci est souvent limité par l'intégration, les choix technologique et sa taille.It is also possible to increase the level of the signal emitted by silicon but it is often limited by integration, technological choices and its size.

On peut aussi diminuer la consommation interne du silicium mais les besoins actuels en sécurité par cryptographie du signal, de capacité toujours plus grande en mémoire, et la vitesse d'exécution des tâches font que la tendance est plutôt à l'augmentation de la consommation d'énergie.It is also possible to reduce the internal consumption of silicon, but the current security needs by cryptography of the signal, of ever greater capacity in memory, and the speed of execution of the tasks make the tendency rather to increase the consumption of silicon. 'energy.

Afin d'augmenter le champ magnétique émis ou capté, le couplage, la mutuelle inductance, on pourrait augmenter considérablement le nombre de spires composant l'antenne. On augmenterait alors l'inductance de l'antenne, le nombre de spire en vis-à-vis avec l'antenne à coupler, et donc la mutuelle inductance et le couplage. En distances très rapprochées des 2 antennes (< 2cm), ce n'est pas non plus une solution idéale car la mutuelle inductance serait très élevée, et aboutirait à un dysfonctionnement des systèmes RFID, en introduisant un coefficient de qualité Q très élevé donc une bande passante très basse. En fonctionnement distance longue (> 15cm), ce serait finalement une solution quasi idéale, mais le signal HF modulé serait filtré, pour les systèmes RFID/NFC.In order to increase the magnetic field emitted or captured, the coupling, the mutual inductance, one could considerably increase the number of turns constituting the antenna. It would then increase the inductance of the antenna, the number of turns vis-à-vis with the antenna to be coupled, and therefore the mutual inductance and coupling. In distances very close to the 2 antennas (<2 cm), this is not an ideal solution either because the mutual inductance would be very high, and would lead to a malfunction of the RFID systems, by introducing a quality coefficient Q very high so a very low bandwidth. In operation long distance (> 15cm), it would finally be a near ideal solution, but the modulated HF signal would be filtered, for RFID / NFC systems.

Enfin, on peut jouer sur les dimensions de l'antenne mais c'est une variable rarement discutable et souvent une contrainte.Finally, we can play on the dimensions of the antenna but it is a rarely debatable variable and often a constraint.

L'invention vise d'une manière générale à obtenir un circuit d'antenne ayant une efficacité de transmission et des conditions de mise en oeuvre de transmissions améliorées.The object of the invention is generally to obtain an antenna circuit having a transmission efficiency and conditions for implementing improved transmissions.

A cet effet, un premier objet de l'invention est un circuit d'antenne RFID,
comportant
une antenne formée par un nombre d'au moins trois spires, l'antenne ayant une première borne d'extrémité et une deuxième borne d'extrémité,
au moins deux bornes d'accès pour la connexion d'une charge,
au moins une capacité d'accord à une fréquence d'accord prescrite, ayant une première borne de capacité et une deuxième borne de capacité,
une prise intermédiaire reliée à l'antenne et distincte des bornes d'extrémité,
un premier moyen de connexion de la prise intermédiaire à une première des deux bornes d'accès,
un deuxième moyen de connexion de la deuxième borne d'extrémité à la deuxième borne de capacité,
caractérisé en ce qu'il comporte
des troisièmes moyens de connexion de la première borne de capacité et de la deuxième des deux bornes d'accès à respectivement un premier point de l'antenne et à un deuxième point de l'antenne -le deuxième point (P2) de l'antenne étant relié à la deuxième borne (E) d'extrémité de l'antenne (L) par au moins une spire (S) de l'antenne (L) et étant relié, au premier point de l'antenne par au moins une spire de l'antenne.
For this purpose, a first object of the invention is an RFID antenna circuit,
comprising
an antenna formed by a number of at least three turns, the antenna having a first end terminal and a second end terminal,
at least two access terminals for connecting a load,
at least one tuning capacity at a prescribed tuning frequency having a first capacitance terminal and a second capacitance terminal,
an intermediate socket connected to the antenna and distinct from the end terminals,
first means for connecting the intermediate tap to a first of the two access terminals,
second means for connecting the second end terminal to the second capacitance terminal,
characterized in that it comprises
third connection means of the first capacitance terminal and the second of the two access terminals to a first point of the antenna and at a second point of the antenna -the second point (P2) of the antenna being connected to the second end terminal (E) of the antenna (L) by at least one turn (S) of the antenna (L) and being connected at the first point of the antenna by at least one turn of the antenna.

Suivant un mode de réalisation de l'invention, ladite prise intermédiaire (A) est reliée à la première borne (D) d'extrémité de l'antenne (L) par au moins une spire (S) de l'antenne (L), ladite prise intermédiaire (A) étant reliée à la deuxième borne (E) d'extrémité de l'antenne (L) par au moins une spire (S) de l'antenne (L).According to one embodiment of the invention, said intermediate tap (A) is connected to the first end terminal (D) of the antenna (L) by at least one turn (S) of the antenna (L) said intermediate tap (A) being connected to the second end terminal (E) of the antenna (L) by at least one turn (S) of the antenna (L).

Suivant un mode de réalisation de l'invention, (figures 13, 14, 15, 16) le premier point (P1) est relié à la prise intermédiaire (A) par au moins une spire de l'antenne.According to one embodiment of the invention, figures 13 , 14 , 15 , 16 ) the first point (P1) is connected to the intermediate point (A) by at least one turn of the antenna.

Suivant un mode de réalisation de l'invention, (figures 13, 14, 15, 16) le premier point (P1) est situé à la prise intermédiaire (A).According to one embodiment of the invention, figures 13 , 14 , 15 , 16 ) the first point (P1) is located at the intermediate point (A).

Suivant un mode de réalisation de l'invention, le premier point (P1) est relié à la première borne (D) d'extrémité de l'antenne (L) par au moins une spire (S) de l'antenne (L), le premier point (P1) étant relié à la deuxième borne (E) d'extrémité de l'antenne (L) par au moins une spire (S) de l'antenne (L).According to one embodiment of the invention, the first point (P1) is connected to the first end terminal (D) of the antenna (L) by at least one turn (S) of the antenna (L). , the first point (P1) being connected to the second end terminal (E) of the antenna (L) by at least one turn (S) of the antenna (L).

Suivant un mode de réalisation de l'invention, le premier point (P1) est situé à la première borne (D) d'extrémité.According to one embodiment of the invention, the first point (P1) is located at the first end terminal (D).

Suivant un mode de réalisation de l'invention, le deuxième point (P2) est situé à la première borne (D) d'extrémité de l'antenne.According to one embodiment of the invention, the second point (P2) is located at the first end terminal (D) of the antenna.

Suivant un mode de réalisation de l'invention, le deuxième point (P2) est situé à la deuxième borne (E) d'extrémité de l'antenne.According to one embodiment of the invention, the second point (P2) is located at the second end terminal (E) of the antenna.

Suivant un mode de réalisation de l'invention, le deuxième point (P2) est relié à la prise d'intermédiaire (A) par au moins une spire de l'antenne.According to one embodiment of the invention, the second point (P2) is connected to the intermediate tap (A) by at least one turn of the antenna.

Suivant un mode de réalisation de l'invention, le deuxième point (P2) est relié à la première borne (D) d'extrémité de l'antenne (L) par au moins une spire (S) de l'antenne (L).According to one embodiment of the invention, the second point (P2) is connected to the first end terminal (D) of the antenna (L) by at least one turn (S) of the antenna (L) .

Suivant un mode de réalisation de l'invention, le premier point (P1) est situé à la prise intermédiaire (A) de l'antenne (L) et le deuxième point (P2) est situé à la première borne (D) d'extrémité de l'antenne (L).According to one embodiment of the invention, the first point (P1) is located at the intermediate point (A) of the antenna (L) and the second point (P2) is located at the first terminal (D) of end of the antenna (L).

Suivant un mode de réalisation de l'invention, lesdits premiers et deuxièmes points (P1, P2) sont distincts de la première prise intermédiaire (A), le premier point (P1) étant relié à la première borne (D) d'extrémité de l'antenne (L) par au moins une spire (S) de l'antenne (L), le premier point (P1) étant relié à la deuxième borne (E) d'extrémité de l'antenne (L) par au moins une spire (S) de l'antenne (L).According to one embodiment of the invention, said first and second points (P1, P2) are distinct from the first intermediate tap (A), the first point (P1) being connected to the first end terminal (D) of the antenna (L) by at least one turn (S) of the antenna (L), the first point (P1) being connected to the second end terminal (E) of the antenna (L) by at least a turn (S) of the antenna (L).

Suivant un mode de réalisation de l'invention, (figures 13, 14) le deuxième point (P2) est situé à la première borne (D) d'extrémité de l'antenne, le premier point (P1) est relié à la prise intermédiaire (A) par au moins une spire de l'antenne.According to one embodiment of the invention, figures 13 , 14 ) the second point (P2) is located at the first end terminal (D) of the antenna, the first point (P1) is connected to the intermediate tap (A) by at least one turn of the antenna.

Suivant un mode de réalisation de l'invention, ladite prise intermédiaire (A) forme une première prise intermédiaire (A), la première prise intermédiaire (A) étant reliée à la première borne (D) d'extrémité de l'antenne (L) par au moins une spire (S) de l'antenne (L), la première prise intermédiaire (A) étant reliée à la deuxième borne (E) d'extrémité de l'antenne (L) par au moins une spire (S) de l'antenne (L),
le deuxième point (P2) est situé en une deuxième prise intermédiaire (P2) de l'antenne (L), la deuxième prise intermédiaire (P2) étant reliée à la première borne (D) d'extrémité de l'antenne (L) par au moins une spire (S) de l'antenne (L), la deuxième prise intermédiaire (P2) étant reliée à la deuxième borne (E) d'extrémité de l'antenne (L) par au moins une spire (S) de l'antenne (L).
According to one embodiment of the invention, said intermediate tap (A) forms a first intermediate tap (A), the first intermediate tap (A) being connected to the first end terminal (D) of the antenna (L). ) by at least one turn (S) of the antenna (L), the first intermediate tap (A) being connected to the second end terminal (E) of the antenna (L) by at least one turn (S ) of the antenna (L),
the second point (P2) is located at a second intermediate point (P2) of the antenna (L), the second intermediate point (P2) being connected to the first terminal (D) of the end of the antenna (L) by at least one turn (S) of the antenna (L), the second intermediate tap (P2) being connected to the second end terminal (E) of the antenna (L) by at least one turn (S) of the antenna (L).

Suivant un mode de réalisation de l'invention, la capacité comporte une première surface métallique formant la première borne (C1X) de capacité, une deuxième surface métallique formant la deuxième borne (C1E) de capacité, au moins une couche de diélectrique située entre la première surface métallique et la deuxième surface métallique.According to one embodiment of the invention, the capacitance comprises a first metal surface forming the first capacity terminal (C1X), a second metal surface forming the second capacitance terminal (C1E), at least one dielectric layer situated between the first metal surface and the second metal surface.

Suivant un mode de réalisation de l'invention, la capacité comporte au moins une couche de diélectrique ayant un premier côté et un deuxième côté éloigné du premier côté,
une première surface métallique formant la première borne (C1X) de capacité sur le premier côté de la couche de diélectrique,
une deuxième surface métallique formant la deuxième borne (C1E) de capacité sur le deuxième côté de la couche de diélectrique,
une troisième surface métallique formant une troisième borne (C1F) de capacité à distance de la première surface métallique sur le premier côté de la couche de diélectrique,
la première borne (C1X) de capacité définissant une première valeur (C2) de capacité avec la deuxième borne (C1E) de capacité,
la troisième borne (C1F) de capacité définissant une deuxième valeur (C1) de capacité avec la deuxième borne (C1E) de capacité,
la première borne (C1X) de capacité définissant une troisième valeur (C12) de capacité de couplage avec la troisième borne (C1F) de capacité,
un moyen de connexion de la troisième borne (C1F) de capacité à l'une des bornes (1, 2) d'accès.
According to one embodiment of the invention, the capacitance comprises at least one dielectric layer having a first side and a second side remote from the first side,
a first metal surface forming the first capacitance terminal (C1X) on the first side of the dielectric layer,
a second metal surface forming the second capacitance terminal (C1E) on the second side of the dielectric layer,
a third metal surface forming a third terminal (C1F) of capacitance remote from the first metal surface on the first side of the dielectric layer,
the first capacitance terminal (C1X) defining a first capacitance value (C2) with the second capacitance terminal (C1E),
the third capacitance terminal (C1F) defining a second capacitance value (C1) with the second capacitance terminal (C1E),
the first capacitance terminal (C1X) defining a third capacitance value (C12) for coupling with the third capacitance terminal (C1F),
means for connecting the third capacitance terminal (C1F) to one of the access terminals (1, 2).

Suivant un mode de réalisation de l'invention, l'antenne (L) comporte au moins une première spire (S1), au moins une deuxième spire et au moins une troisième spire, qui sont consécutives, la première spire (S1) allant de la deuxième borne (E) d'extrémité dans un premier sens d'enroulement à un point (PR) de rebroussement connecté à la deuxième spire, les deuxième et troisièmes spires (S2, S3) allant dudit point (PR) de rebroussement à la première borne (D) d'extrémité dans un deuxième sens d'enroulement inverse du premier sens d'enroulement,
le premier point (P1) de l'antenne (L) et le deuxième point (P2) de l'antenne (L) étant situés sur les deuxième et troisièmes spires (S2, S3).
According to one embodiment of the invention, the antenna (L) comprises at least a first turn (S1), at least a second turn and at least a third turn, which are consecutive, the first turn (S1) going from the second end terminal (E) in a first winding direction at a cusp point (PR) connected to the second turn, the second and third turns (S2, S3) running from said cusp point (PR) to the first end terminal (D) in a second reverse winding direction of the first winding direction,
the first point (P1) of the antenna (L) and the second point (P2) of the antenna (L) being located on the second and third turns (S2, S3).

Suivant un mode de réalisation de l'invention, l'antenne (L) comporte au moins une première spire (S1) et au moins une deuxième spire (S2, S3) consécutives entre deux troisième et quatrième points (E ; D) de l'antenne, la première spire (S1) étant connectée à la deuxième spire (S2, S3) par un point (PR) de rebroussement, la première spire (S1) allant du troisième point (E) au point (PR) de rebroussement dans un premier sens d'enroulement, la deuxième spire (S2, S3) allant dudit point (PR) de rebroussement au quatrième point (D) dans un deuxième sens d'enroulement inverse du premier sens d'enroulement.According to one embodiment of the invention, the antenna (L) comprises at least a first turn (S1) and at least a second turn (S2, S3) consecutive between two third and fourth points (E; D) of the antenna, the first turn (S1) being connected to the second turn (S2, S3) by a cusp (PR), the first turn (S1) from the third point (E) to the point (PR) of creep in a first winding direction, the second turn (S2, S3) from said reversal point (PR) to the fourth point (D) in a second reverse winding direction of the first winding direction.

Suivant un mode de réalisation de l'invention, (figures 12, 31, 32) l'antenne (L) comporte au moins une première spire (S1) et au moins une deuxième spire (S2, S3) consécutives entre deux troisième et quatrième points (E ; D) de l'antenne, la première spire (S1) étant connectée à la deuxième spire (S2, S3) par un point (PR) de rebroussement, la première spire (S1) allant du troisième point (E) au point (PR) de rebroussement dans un premier sens d'enroulement, la deuxième spire (S2, S3) allant dudit point (PR) de rebroussement au quatrième point (D) dans un deuxième sens d'enroulement inverse du premier sens d'enroulement,
le premier point (P1) est situé à la prise intermédiaire (A) de l'antenne (L) et le deuxième point (P2) est situé à la première borne (D) d'extrémité de l'antenne (L).
According to one embodiment of the invention, figures 12 , 31 , 32 ) the antenna (L) has at least a first turn (S1) and at least a second turn (S2, S3) consecutive between two third and fourth points (E; D) of the antenna, the first turn (S1) being connected to the second turn (S2, S3) by a reversing point (PR), the first turn (S1) going from the third point (E) to the cusp point (PR) in a first direction of winding, the second turn (S2, S3) from said reversal point (PR) to the fourth point (D) in a second direction of reverse winding of the first direction of winding,
the first point (P1) is located at the intermediate point (A) of the antenna (L) and the second point (P2) is located at the first terminal (D) of the end of the antenna (L).

Suivant un mode de réalisation de l'invention, (figures 15, 17) l'antenne (L) comporte au moins une première spire (S1) et au moins une deuxième spire (S2, S3) consécutives entre deux troisième et quatrième points (E ; D) de l'antenne, la première spire (S1) étant connectée à la deuxième spire (S2, S3) par un point (PR) de rebroussement, la première spire (S1) allant du troisième point (E) au point (PR) de rebroussement dans un premier sens d'enroulement, la deuxième spire (S2, S3) allant dudit point (PR) de rebroussement au quatrième point (D) dans un deuxième sens d'enroulement inverse du premier sens d'enroulement,
le premier point (P1) est situé à la première borne (D) d'extrémité.
According to one embodiment of the invention, figures 15 , 17 ) the antenna (L) comprises at least a first turn (S1) and at least a second turn (S2, S3) consecutive between two third and fourth points (E; D) of the antenna, the first turn (S1) being connected to the second turn (S2, S3) by a reversal point (PR), the first turn (S1) from the third point (E) to the cusp (PR) in a first winding direction, the second turn (S2, S3) from said reversal point (PR) to the fourth point (D) in a second direction of reverse winding of the first direction of winding,
the first point (P1) is located at the first end terminal (D).

Suivant un mode de réalisation de l'invention, au moins une spire (S2) de l'antenne comprend en série un enroulement (S2') de spires de plus petite surface entourée par rapport à la surface entourée par le reste (S2") de ladite spire (S2) ou par rapport à la surface entourée par d'autres spires de l'antenne (3).According to one embodiment of the invention, at least one turn (S2) of the antenna comprises in series a winding (S2 ') of turns of smaller surface area surrounded with respect to the surface surrounded by the remainder (S2 ") of said turn (S2) or with respect to the surface surrounded by other turns of the antenna (3).

Suivant un mode de réalisation de l'invention, les spires (S) de l'antenne (3) sont réparties sur plusieurs plans physiques distincts.According to one embodiment of the invention, the turns (S) of the antenna (3) are distributed over several distinct physical planes.

Suivant un mode de réalisation de l'invention, la capacité (C1) d'accord comporte une seconde capacité (ZZ) formée par au moins une troisième spire (SC3) comportant deux première et deuxième extrémités (SC31, SC32) et par au moins une quatrième spire (SC4) comportant deux première et deuxième extrémité (SC41, SC42), la troisième spire (SC3) étant séparée électriquement par rapport à la quatrième spire (SC4) pour définir au moins la capacité (C1) d'accord entre la première extrémité (SC31) de la troisième spire (SC3) et la deuxième extrémité (SC42) de la quatrième spire (SC4),
la première extrémité (SC31) de la troisième spire étant plus éloignée de la deuxième extrémité (SC42) de la quatrième spire (SC4) que de la première extrémité (SC41) de la quatrième spire (SC4), la deuxième extrémité (SC32) de la troisième spire (SC3) étant plus éloignée de la première extrémité (SC41) de la quatrième spire (SC4) que de la deuxième extrémité (SC42) de la quatrième spire (SC4), la seconde capacité étant définie entre la première extrémité (SC31) de la troisième spire (SC3) et la deuxième extrémité (SC42) de la quatrième spire (SC4).
According to one embodiment of the invention, the capacity (C1) of agreement comprises a second capacitance (ZZ) formed by at least a third turn (SC3) comprising two first and second ends (SC31, SC32) and by at least a fourth turn (SC4) having two first and second ends (SC41, SC42), the third turn (SC3) being electrically separated from the fourth turn (SC4) to define at least the capacity (C1) of agreement between the first end (SC31) of the third turn (SC3) and the second end (SC42) of the fourth turn (SC4),
the first end (SC31) of the third turn being further away from the second end (SC42) of the fourth turn (SC4) than from the first end (SC41) of the fourth turn (SC4), the second end (SC32) of the third turn (SC3) being farther away from the first end (SC41) of the fourth turn (SC4) than from the second end (SC42) of the fourth turn (SC4), the second capacity being defined between the first end (SC31) ) of the third turn (SC3) and the second end (SC42) of the fourth turn (SC4).

Suivant un mode de réalisation de l'invention, il y a au moins une spire (S1) de l'antenne entre la prise intermédiaire (A) et la seconde capacité.According to one embodiment of the invention, there is at least one turn (S1) of the antenna between the intermediate tap (A) and the second capacitor.

Suivant un mode de réalisation de l'invention, des premiers moyens de couplage sont prévus pour assurer un couplage (COUPL12) par mutuelle inductance entre d'une part la au moins une spire (S2) de l'antenne connectée électriquement en parallèle avec les première et deuxième bornes (1, 2) d'accès et d'autre part l'autre au moins une spire (S1) de l'antenne, des deuxièmes moyens de couplage sont prévus pour assurer un couplage (COUPLZZ) par mutuelle inductance entre ladite autre au moins une spire (S1) de l'antenne et les au moins une troisième et quatrième spires (SC3, SC4) de la seconde capacité (ZZ).According to one embodiment of the invention, first coupling means are provided for coupling (COUPL12) by mutual inductance between on the one hand the at least one turn (S2) of the antenna connected electrically in parallel with the first and second terminals (1, 2) access and the other at least one turn (S1) of the antenna, second coupling means are provided to ensure coupling (COUPLZZ) by mutual inductance between said other at least one turn (S1) of the antenna and the at least one third and fourth turns (SC3, SC4) of the second capacitance (ZZ).

Suivant un mode de réalisation de l'invention, les premiers moyens de couplage sont réalisés par la proximité entre d'une part la au moins une spire (S2) de l'antenne connectée électriquement en parallèle avec les première et deuxième bornes (1, 2) d'accès et d'autre part l'autre au moins une spire (S1) de l'antenne, les deuxièmes moyens de couplage sont réalisés par la proximité entre ladite autre au moins une spire (S1) de l'antenne et les au moins une troisième et quatrième spires (SC3, SC4) de la seconde capacité (ZZ).According to one embodiment of the invention, the first coupling means are made by the proximity between on the one hand the at least one turn (S2) of the antenna electrically connected in parallel with the first and second terminals (1, 2) and the other at least one turn (S1) of the antenna, the second coupling means are formed by the proximity between the other at least one turn (S1) of the antenna and the at least one third and fourth turns (SC3, SC4) of the second capacitance (ZZ).

Suivant un mode de réalisation de l'invention, la troisième spire (SC3) et la quatrième spire (SC4) sont entrelacées.According to one embodiment of the invention, the third turn (SC3) and the fourth turn (SC4) are interleaved.

Suivant un mode de réalisation de l'invention, la troisième spire (SC3) comporte au moins un troisième tronçon adjacent à un quatrième tronçon de la quatrième spire (SC4).According to one embodiment of the invention, the third turn (SC3) comprises at least a third section adjacent to a fourth section of the fourth turn (SC4).

Suivant un mode de réalisation de l'invention, les tronçons s'étendent parallèlement entre eux.According to one embodiment of the invention, the sections extend parallel to each other.

Suivant un mode de réalisation de l'invention, la capacité (C1) d'accord comporte une première capacité (C1) comportant un diélectrique entre la première borne (C1X) de capacité et la deuxième borne (C1E) de capacité, la première capacité (C1) étant réalisée sous la forme d'un élément filaire, gravé, discret ou imprimé.According to one embodiment of the invention, the tuning capacitor (C1) comprises a first capacitor (C1) having a dielectric between the first capacitance terminal (C1X) and the second capacitance terminal (C1E), the first capacitor (C1). (C1) being in the form of a wire element, engraved, discrete or printed.

Suivant un mode de réalisation de l'invention, (figures 16, 18) une autre capacité (C30) est connectée entre la deuxième borne (E) d'extrémité et un point (PC1) de l'antenne, qui est reliée au deuxième point (P2) par au moins une spire de l'antenne.According to one embodiment of the invention, figures 16 , 18 ) another capacitor (C30) is connected between the second end terminal (E) and a point (PC1) of the antenna, which is connected to the second point (P2) by at least one turn of the antenna.

Suivant un mode de réalisation de l'invention, (figures 20, 22) la capacité (C1) d'accord comporte une première capacité (C30) en série avec ladite seconde capacité (Z).According to one embodiment of the invention, figures 20 , 22 the tuning capacity (C1) has a first capacitance (C30) in series with said second capacitance (Z).

Suivant un mode de réalisation de l'invention, (figure 22) la première capacité (C30) est reliée entre la deuxième borne (E) d'extrémité de l'antenne et le deuxième point (P2), qui est relié à la première borne (SC31) de la troisième spire (SC3), la prise intermédiaire (A) étant reliée à la deuxième borne (SC42) de la quatrième spire (SC4), qui forme le premier point (P1), la première borne (SC41) de la quatrième spire (SC4) formant la première borne (D) d'extrémité de l'antenne.According to one embodiment of the invention, figure 22 ) the first capacitor (C30) is connected between the second end terminal (E) of the antenna and the second point (P2), which is connected to the first terminal (SC31) of the third turn (SC3), the intermediate tap (A) being connected to the second terminal (SC42) of the fourth turn (SC4), which forms the first point (P1), the first terminal (SC41) of the fourth turn (SC4) forming the first terminal (D4) ) end of the antenna.

Suivant un mode de réalisation de l'invention, (figure 20) la première capacité (C30) est reliée entre la deuxième borne (E) d'extrémité de l'antenne et le deuxième point (P2), qui est relié à la première borne (SC31) de la troisième spire (SC3) par au moins une spire (S10), la prise intermédiaire (A) étant reliée à la deuxième borne (SC42) de la quatrième spire (SC4), qui forme le premier point (P1), la première borne (SC41) de la quatrième spire (SC4) formant la première borne (D) d'extrémité de l'antenne.According to one embodiment of the invention, figure 20 ) the first capacitor (C30) is connected between the second end terminal (E) of the antenna and the second point (P2), which is connected to the first terminal (SC31) of the third turn (SC3) by at least one turn (S10), the intermediate tap (A) being connected to the second terminal (SC42) of the fourth turn (SC4), which forms the first point (P1), the first terminal (SC41) of the fourth turn ( SC4) forming the first end terminal (D) of the antenna.

Suivant un mode de réalisation de l'invention, (figure 21) le premier point (P1) est situé à la prise intermédiaire (A), le deuxième point (P2) est situé à la deuxième borne (E) d'extrémité de l'antenne.According to one embodiment of the invention, figure 21 ) the first point (P1) is located at the intermediate point (A), the second point (P2) is located at the second end terminal (E) of the antenna.

Suivant un mode de réalisation de l'invention, (figure 19) le premier point (P1) est situé à la première borne (D) d'extrémité et le deuxième point (P2) est situé à la deuxième borne (E) d'extrémité.According to one embodiment of the invention, figure 19 ) the first point (P1) is located at the first end terminal (D) and the second point (P2) is located at the second end terminal (E).

Suivant un mode de réalisation de l'invention, la au moins une troisième spire (SC3) et la au moins une quatrième spire (SC4) définissent un second sous-circuit ayant une seconde fréquence de résonance propre, les première et deuxième bornes (1, 2) d'accès définissent avec un module (M) connecté à elles et avec au moins une spire (S2) connectée auxdites première et deuxième bornes (1, 2) d'accès un premier sous-circuit ayant une première fréquence de résonance propre, les spires étant agencées pour que l'écart de fréquence entre la première fréquence de résonance propre et la seconde fréquence de résonance propre soit inférieur ou égal à 10 MHz et par exemple inférieur ou égal à 2 MHz.According to one embodiment of the invention, the at least one third turn (SC3) and the at least one fourth turn (SC4) define a second sub-circuit having a second natural resonance frequency, the first and second terminals (1). , 2) of access define with a module (M) connected to them and with at least one turn (S2) connected to said first and second terminals (1, 2) of access a first sub-circuit having a first resonance frequency the turns being arranged so that the frequency difference between the first natural resonance frequency and the second own resonance frequency is less than or equal to 10 MHz and for example less than or equal to 2 MHz.

Suivant un mode de réalisation de l'invention, la au moins une troisième spire (SC3) et la au moins une quatrième spire (SC4) définissent un second sous-circuit ayant une seconde fréquence de résonance propre, les première et deuxième bornes (1, 2) d'accès définissent avec un module (M) connecté à elles et avec au moins une spire (S2) connectée auxdites première et deuxième bornes (1, 2) d'accès un premier sous-circuit ayant une première fréquence de résonance propre, les spires étant agencées pour que l'écart de fréquence entre la première fréquence de résonance propre et la seconde fréquence de résonance propre soit inférieur ou égal à 500KHz.According to one embodiment of the invention, the at least one third turn (SC3) and the at least one fourth turn (SC4) define a second sub-circuit having a second natural resonance frequency, the first and second terminals (1). , 2) of access define with a module (M) connected to them and with at least one turn (S2) connected to said first and second terminals (1, 2) of access a first sub-circuit having a first resonance frequency the turns being arranged so that the frequency difference between the first natural resonance frequency and the second natural resonance frequency is less than or equal to 500KHz.

Suivant un mode de réalisation de l'invention, la au moins une troisième spire (SC3) et la au moins une quatrième spire (SC4) définissent un second sous-circuit ayant une seconde fréquence de résonance propre, les première et deuxième bornes (1, 2) d'accès définissent avec un module (M) connecté à elles et avec au moins une spire (S2) connectée auxdites première et deuxième bornes (1,2) d'accès un premier sous-circuit ayant une première fréquence de résonance propre, les spires étant agencées pour que la première fréquence de résonance propre et la seconde fréquence de résonance propre soient sensiblement égales.According to one embodiment of the invention, the at least one third turn (SC3) and the at least one fourth turn (SC4) define a second sub-circuit having a second natural resonance frequency, the first and second terminals (1). , 2) of access define with a module (M) connected to them and with at least one turn (S2) connected to said first and second access terminals (1,2) a first sub-circuit having a first resonance frequency the turns being arranged so that the first natural resonance frequency and the second natural resonance frequency are substantially equal.

Suivant un mode de réalisation de l'invention, (figures 29, 30) l'antenne comporte un point milieu (PM) de fixation d'un potentiel à un potentiel de référence, avec un nombre égal de spires sur le tronçon allant de la première borne (D) d'extrémité au point milieu (PM) et sur le tronçon allant du point milieu (PM) à la deuxième borne (E) d'extrémité.According to one embodiment of the invention, figures 29 , 30 ) the antenna has a midpoint (PM) for setting a potential to a reference potential, with an equal number of turns on the section from the first end terminal (D) to the midpoint (PM) and on the section from the middle point (PM) to the second end terminal (E).

Suivant un mode de réalisation de l'invention, l'antenne se trouve sur un substrat.According to one embodiment of the invention, the antenna is on a substrate.

Suivant un mode de réalisation de l'invention, l'antenne est un fil.According to one embodiment of the invention, the antenna is a wire.

Suivant un mode de réalisation de l'invention, lesdites bornes (D, E, 1, 2, C1E, CIX), ladite prise (A), lesdits points (P1, P2) et la capacité (C1, ZZ) définissent une pluralité d'au moins trois noeuds, les noeuds définissant au moins un premier groupe (S1) d'au moins une spire entre deux premiers noeuds (1, C1E) distincts entre eux et au moins un deuxième groupe d'au moins une autre spire (S2) entre deux deuxièmes noeuds (1, 2) distincts entre eux, au moins un des premiers noeuds étant différent d'au moins un des deuxièmes noeuds, des premiers moyens de couplage sont prévus pour assurer un couplage (COUPL I 2) par mutuelle inductance entre d'une part le premier groupe (S1) d'au moins une spire et d'autre part le deuxième groupe d'au moins une autre spire (S2) par le fait que le premier groupe (S1) d'au moins une spire est positionné à proximité du deuxième groupe d'au moins une autre spire (S2).According to one embodiment of the invention, said terminals (D, E, 1, 2, C1E, CIX), said tap (A), said points (P1, P2) and the capacitance (C1, ZZ) define a plurality at least three nodes, the nodes defining at least one first group (S1) of at least one turn between two first nodes (1, C1E) distinct from each other and at least one second group of at least one other turn ( S2) between two second nodes (1, 2) which are distinct from one another, at least one of the first nodes being different from at least one of the second nodes, first coupling means are provided for coupling (COUPL I 2) by mutual inductance between on the one hand the first group (S1) of at least one turn and on the other hand the second group of at least one other turn (S2) in that the first group (S1) of at least a turn is positioned near the second group of at least one other turn (S2).

Suivant un mode de réalisation de l'invention, lesdites bornes (D, E, 1, 2, C1E, CIX), ladite prise (A), lesdits points (P1, P2) et la capacité (C1, ZZ) définissent une pluralité d'au moins trois noeuds, les noeuds définissant au moins un premier groupe (S1) d'au moins une spire entre deux premiers noeuds (1, C1E) distincts entre eux, et au moins un deuxième groupe d'au moins une autre spire (S2) entre deux deuxièmes noeuds (1, 2) distincts entre eux et au moins un troisième groupe d'au moins une autre spire (SC3, SC4) entre deux troisièmes noeuds (E, C1X) distincts entre eux, au moins un des premiers noeuds étant différent d'au moins un des deuxièmes noeuds, au moins un des premiers noeuds étant différent d'au moins un des troisièmes noeuds, au moins un des troisièmes noeuds étant différent d'au moins un des deuxièmes noeuds,
des premiers moyens de couplage sont prévus pour assurer un couplage (COUPL12) par mutuelle inductance entre d'une part le premier groupe (S1) d'au moins une spire et d'autre part le deuxième groupe d'au moins une autre spire (S2) par le fait que le premier groupe (S1) d'au moins une spire est positionné à proximité du deuxième groupe d'au moins une autre spire (S2),
des deuxièmes moyens de couplage sont prévus pour assurer un couplage (COUPLZZ) par mutuelle inductance entre d'une part le premier groupe (S1) d'au moins une spire et d'autre part le troisième groupe d'au moins une autre spire (SC3, SC4) par le fait que le premier groupe (S1) d'au moins une spire est positionné à proximité du troisième groupe d'au moins une autre spire (SC3, SC4).
According to one embodiment of the invention, said terminals (D, E, 1, 2, C1E, CIX), said tap (A), said points (P1, P2) and the capacitance (C1, ZZ) define a plurality at least three nodes, the nodes defining at least one first group (S1) of at least one turn between two first nodes (1, C1E) distinct from each other, and at least one second group of at least one other turn (S2) between two second nodes (1, 2) which are distinct from one another and at least one third group of at least one other turn (SC3, SC4) between two third nodes (E, C1X) which are distinct from each other, at least one of first nodes being different from at least one of the second nodes, at least one of the first nodes being different from at least one of the third nodes, at least one of the third nodes being different from at least one of the second nodes,
first coupling means are provided for coupling (COUPL12) by mutual inductance between on the one hand the first group (S1) of at least one turn and on the other hand the second group of at least one other turn ( S2) in that the first group (S1) of at least one turn is positioned near the second group of at least one other turn (S2),
second coupling means are provided for coupling (COUPLZZ) by mutual inductance between on the one hand the first group (S1) of at least one turn and on the other hand the third group of at least one other turn ( SC3, SC4) in that the first group (S1) of at least one turn is positioned near the third group of at least one other turn (SC3, SC4).

Suivant un mode de réalisation de l'invention, le premier groupe (S1) d'au moins une spire est positionné entre le deuxième groupe d'au moins une autre spire (S2) et le troisième groupe d'au moins une autre spire (SC3, SC3, SC4).According to one embodiment of the invention, the first group (S1) of at least one turn is positioned between the second group of at least one other turn (S2) and the third group of at least one other turn ( SC3, SC3, SC4).

Suivant un mode de réalisation de l'invention, la distance d'écartement entre les spires (S1, S2, SC3, SC4) appartenant à des groupes différents est inférieure ou égale à 20 millimètres.According to one embodiment of the invention, the spacing distance between the turns (S1, S2, SC3, SC4) belonging to different groups is less than or equal to 20 millimeters.

Suivant un mode de réalisation de l'invention, la distance d'écartement entre les spires (S1, S2, SC3, SC4) appartenant à des groupes différents est inférieure ou égale à 10 millimètres.According to one embodiment of the invention, the spacing distance between the turns (S1, S2, SC3, SC4) belonging to different groups is less than or equal to 10 millimeters.

Suivant un mode de réalisation de l'invention, la distance d'écartement entre les spires (S1, S2, SC3, SC4) appartenant à des groupes différents est inférieure ou égale à 1 millimètres.According to one embodiment of the invention, the spacing distance between the turns (S1, S2, SC3, SC4) belonging to different groups is less than or equal to 1 millimeter.

Suivant un mode de réalisation de l'invention, la distance d'écartement entre les spires (S1, S2, SC3, SC4) appartenant à des groupes différents est supérieure ou égale à 80 micromètres.According to one embodiment of the invention, the spacing distance between the turns (S1, S2, SC3, SC4) belonging to different groups is greater than or equal to 80 micrometers.

Il s'agit de la distance d'écartement entre les groupes de spires (S1,S2).This is the distance between the groups of turns (S1, S2).

Suivant un mode de réalisation de l'invention, au moins un lecteur (LECT) en tant que charge et/ou au moins un transpondeur (TRANS) en tant que charge est connecté aux bornes (1, 2) d'accès.According to one embodiment of the invention, at least one reader (LECT) as a load and / or at least one transponder (TRANS) as a load is connected to the access terminals (1, 2).

Suivant un mode de réalisation de l'invention, le circuit comporte plusieurs premières bornes (1) d'accès distinctes entre elles et/ou plusieurs deuxièmes bornes (2) d'accès distinctes entre elles.According to one embodiment of the invention, the circuit comprises a plurality of first distinct access terminals (1) and / or a plurality of second access terminals (2) which are distinct from each other.

Suivant un mode de réalisation de l'invention, ladite au moins une première borne (1) d'accès et ladite au moins une deuxième borne (2) d'accès sont connectées à au moins une première charge (Z1) ayant une première fréquence d'accord prescrite dans une bande haute fréquence et à au moins une deuxième charge (Z2) ayant une deuxième fréquence d'accord prescrite dans une autre bande ultra haute fréquence.According to one embodiment of the invention, said at least one first access terminal (1) and said at least one second access terminal (2) are connected to at least one first load (Z1) having a first frequency tuned in a high frequency band and at least a second load (Z2) having a second tuning frequency prescribed in another ultra high frequency band.

Grâce à l'invention, on parvient à garder un facteur de qualité raisonnable ou limiter son augmentation (le facteur de qualité étant égal à la fréquence de résonance divisée par la bande passante à -3 dB), afin de garder une bande passante raisonnable ou peu augmentée, tout en maintenant ou en augmentant la puissance rayonnée ou reçue par l'antenne et en maintenant ou diminuant la mutuelle inductance généré lors du couplage avec le deuxième circuit d'antenne RFID extérieur.Thanks to the invention, it is possible to maintain a reasonable quality factor or limit its increase (the quality factor being equal to the resonance frequency divided by the bandwidth at -3 dB), in order to keep a reasonable bandwidth or slightly increased while maintaining or increasing the power radiated or received by the antenna and maintaining or decreasing the mutual inductance generated during coupling with the second external RFID antenna circuit.

En particulier, on s'affranchit du fait de devoir limiter l'antenne à une ou deux spires comme dans l'état de la technique des lecteurs RFID/NFC de tailles raisonnable (>16cm2) et se limiter à 3 ou 4 spires pour les antennes de tailles réduits (<16cm2). En effet, dans l'état de la technique des lecteurs RFID/NFC, on prévoyait au maximum une ou deux spires pour les antennes de taille raisonnable (>16cm2) et au maximum trois ou quatre spires pour les antennes de tailles réduites (<16cm2) pour garantir à la fois une puissance, rayonnée ou reçue, supérieure à une puissance minimum et une bande passante supérieure à une bande minimum. Dans l'état de la technique des transpondeurs, le nombre de spires est imposé par le compromis entre la surface de l'antenne et la capacité du silicium et la fréquence d'accord désirée (autour de 13.56MHz jusqu'à 20MHz). Pour le transpondeur, il y a donc peu de liberté sur le nombre de spires composant l'antenne donc peu de liberté sur l'efficacité radio de l'antenne, donc peu de liberté d'action sur le facteur de qualité, le champ magnétique capté, le couplage et la mutuelle inductance générée lors du couplage avec le deuxième circuit d'antenne RFID extérieur.In particular, it eliminates the fact of having to limit the antenna to one or two turns as in the state of the art of RFID / NFC readers of reasonable sizes (> 16cm 2 ) and be limited to 3 or 4 turns for antennas of reduced size (<16cm 2 ). Indeed, in the state of the art of the RFID / NFC readers, a maximum of one or two turns was envisaged for the antennas of reasonable size (> 16cm 2 ) and at most three or four turns for the antennas of reduced size (< 16cm 2 ) to ensure both a power, radiated or received, greater than a minimum power and a bandwidth greater than a minimum band. In the state of the art of transponders, the number of turns is imposed by the compromise between the surface of the antenna and the silicon capacitance and the desired tuning frequency (around 13.56 MHz to 20 MHz). For the transponder, there is little freedom on the number of turns forming the antenna so little freedom on the radio efficiency of the antenna, so little freedom of action on the quality factor, the magnetic field captured, the coupling and the mutual inductance generated during coupling with the second external RFID antenna circuit.

Le circuit suivant l'invention, en émission ou en réception, permet notamment de réduire la mutuelle inductance avec le deuxième circuit d'antenne RFID extérieur fonctionnant en réception ou en émission, du fait que la densité de courant est surtout concentrée dans la partie active de l'inductance de l'antenne. En simplifiant dans un souci de vulgarisation technique, la mutuelle inductance entre deux circuits est proportionnelle au nombre de spires des circuits en vis-à-vis. En diminuant la mutuelle inductance, on limite l'action perturbatrice sur les accords en fréquence des circuits d'antennes aux courtes distances (<2 cm par exemple). Cette diminution de la mutuelle inductance ne se fait pas au détriment de la puissance rayonnée ou reçue.The circuit according to the invention, in transmission or reception, makes it possible in particular to reduce the mutual inductance with the second external RFID antenna circuit operating in reception or transmission, because the current density is mainly concentrated in the active part. the inductance of the antenna. Simplifying in a technical extension, the mutual inductance between two circuits is proportional to the number of turns of the circuits vis-à-vis. By decreasing the mutual inductance, the disturbing action is limited to the frequency agreements of the antenna circuits at short distances (<2 cm for example). This Decrease of the mutual inductance is not done to the detriment of the radiated or received power.

Considérons ces 3 règles, régissant un système d'antenne RFID/NFC HF à enroulement de spires, connues de l'homme du métier :

  • ➢ Le champ magnétique (H) est défini par H = I N R 2 2 R 2 + x 2 3
    Figure imgb0001

    pour les antennes circulaires. N est le nombre de spires de l'antenne, R est le rayon l'antenne et x est la distance du centre de l'antenne dans la direction x normale à l'antenne.
  • ➢ La mutuelle inductance (M) est définie par M 21 = μ 0 N 1 R 1 2 N 2 R 2 2 π 2 R 2 2 + x 2 3
    Figure imgb0002

    où N1 est le nombre de spires d'une première antenne et N2 est le nombre de spires d'une seconde antenne. La mutuelle inductance est une description quantitative du flux couplant deux boucles de conducteurs.
  • ➢ Le coefficient de qualité de l'antenne (Q) est défini par Q = L * 2 π * Fo / Ra = Fo / Bande Passante à - 3 dB
    Figure imgb0003
  • ➢ Le coefficient de couplage (K) est défini par k = M L 1 L 2
    Figure imgb0004

    Le coefficient de couplage (K) introduit une prédiction qualitative sur le couplage des antennes indépendamment de leurs dimensions géométriques. L1 est l'inductance d'une première antenne et L2 est l'inductance d'une seconde antenne.
Consider these 3 rules, governing a RFID / NFC RF winding antenna system, known to those skilled in the art:
  • ➢ The magnetic field (H) is defined by H = I NOT R 2 2 R 2 + x 2 3
    Figure imgb0001

    for circular antennas. N is the number of turns of the antenna, R is the radius of the antenna and x is the distance from the center of the antenna in the direction x normal to the antenna.
  • ➢ The mutual inductance (M) is defined by M 21 = μ 0 NOT 1 R 1 2 NOT 2 R 2 2 π 2 R 2 2 + x 2 3
    Figure imgb0002

    where N1 is the number of turns of a first antenna and N2 is the number of turns of a second antenna. The mutual inductance is a quantitative description of the flux coupling two loops of conductors.
  • ➢ The quality coefficient of the antenna (Q) is defined by Q = The * 2 π * Fo / Ra = Fo / Bandwidth to - 3 dB
    Figure imgb0003
  • ➢ The coupling coefficient (K) is defined by k = M The 1 The 2
    Figure imgb0004

    The coupling coefficient (K) introduces a qualitative prediction on the coupling of the antennas irrespective of their geometrical dimensions. L1 is the inductance of a first antenna and L2 is the inductance of a second antenna.

On traite ci-dessous des possibilités d'augmenter l'efficacité radio d'une antenne magnétique.Below are discussed possibilities of increasing the radio efficiency of a magnetic antenna.

Pour augmenter le champ magnétique (H) émis ou reçu, si on considère le rayon R et le courant dans l'antenne 1 comme imposés, il faut augmenter N, le nombre de spires de l'antenne.To increase the magnetic field (H) transmitted or received, if we consider the radius R and the current in the antenna 1 as imposed, it is necessary to increase N, the number of turns of the antenna.

Pour augmenter la mutuelle inductance (M) entre les 2 antennes, si on considère R1 et R2 comme imposés, il faut augmenter N1 et/ou N2.To increase the mutual inductance (M) between the 2 antennas, if we consider R1 and R2 as imposed, we must increase N1 and / or N2.

Pour diminuer le coefficient de qualité (Q) de l'antenne, il faut diminuer l'inductance (L) de l'antenne et/ou augmenter la résistance (Ra) de l'antenne.To decrease the quality coefficient (Q) of the antenna, it is necessary to decrease the inductance (L) of the antenna and / or to increase the resistance (Ra) of the antenna.

Pour augmenter le couplage (k) entre les 2 antennes, il faut augmenter la mutuelle inductance (M) et/ou diminuer l'inductance L1 et L2 des 2 antennes sans diminuer la mutuelle inductance (M).To increase the coupling (k) between the 2 antennas, it is necessary to increase the mutual inductance (M) and / or to decrease the inductance L1 and L2 of the 2 antennas without decreasing the mutual inductance (M).

La problématique et les paramètres liés sont donc les suivants.The problem and the related parameters are as follows.

Il est difficile d'augmenter l'efficacité radio globale de l'antenne sans agir au détriment du champ magnétique émis ou capté, du couplage, de la mutuelle inductance et de la bande passante. Pour exemple, en augmentant le nombre de spires, on augmente favorablement l'inductance, le champ magnétique et la mutuelle inductance, mais on diminue la bande passante par l'augmentation du coefficient de qualité.It is difficult to increase the overall radio efficiency of the antenna without acting to the detriment of the magnetic field emitted or captured, the coupling, the mutual inductance and the bandwidth. For example, by increasing the number of turns, the inductance, the magnetic field and the mutual inductance are favorably increased, but the bandwidth is decreased by the increase in the coefficient of quality.

En résumé sur les choix possibles :In summary about the possible choices:

Le champ magnétique rayonné ou capté dépend du nombre de spires dans l'antenne. Il faut donc idéalement augmenter le nombre de spires.The magnetic field radiated or captured depends on the number of turns in the antenna. It is therefore necessary to increase the number of turns.

Le coefficient de couplage est en fonction inverse des inductances des 2 antennes. En diminuant l'inductance des antennes, alors le coefficient de couplage entre les 2 antennes augmente. Il faut aussi idéalement soit augmenter la mutuelle inductance, soit limiter la perte sur la mutuelle inductance.The coupling coefficient is inversely related to the inductances of the 2 antennas. By decreasing the inductance of the antennas, then the coupling coefficient between the 2 antennas increases. It is also necessary to either increase the mutual inductance or limit the loss on mutual inductance.

La mutuelle inductance est fonction des nombres de spires des antennes. Donc, en augmentant le nombre de spires de l'antenne, alors la mutuelle inductance entre les 2 antennes augmente. En considérant le coefficient de couplage, il faut idéalement ne pas augmenter les inductances des antennes.The mutual inductance is a function of the number of turns of the antennas. So by increasing the number of turns of the antenna, then the mutual inductance between the 2 antennas increases. Considering the coupling coefficient, ideally do not increase the inductances of the antennas.

La bande passante est fonction de l'inductance de l'antenne et fonction inverse de la résistance de l'antenne. Il faut donc idéalement diminuer l'inductance et augmenter la résistance de l'antenne.The bandwidth is a function of the inductance of the antenna and inverse function of the resistance of the antenna. It is therefore ideally to reduce the inductance and increase the resistance of the antenna.

En conclusion sur le champ magnétique, le nombre de spires doit augmenter ou être égal.In conclusion on the magnetic field, the number of turns must increase or be equal.

En conclusion sur le coefficient de couplage, la mutuelle inductance doit augmenter ou être égale et/ou l'inductance de l'antenne doit diminuer.In conclusion on the coupling coefficient, the mutual inductance must increase or be equal and / or the inductance of the antenna must decrease.

En conclusion sur la mutuelle inductance, le nombre de spires doit augmenter ou être égal.In conclusion on the mutual inductance, the number of turns must increase or be equal.

En conclusion sur le coefficient de qualité, l'inductance de l'antenne doit diminuer ou être égale et/ou la résistance de l'antenne doit augmenter.In conclusion on the coefficient of quality, the inductance of the antenna must decrease or be equal and / or the resistance of the antenna must increase.

La solution suivant l'invention donne la possibilité de paramétrer, par le procédé de l'invention, la distribution du courant dans l'antenne comme par exemple d'avoir une densité de courant différente dans au moins 2 spires constituant l'antenne donc de ne pas avoir un courant uniforme dans l'antenne et donc un courant différent dans au moins 2 spires différentes.The solution according to the invention gives the possibility of parameterizing, by the method of the invention, the distribution of the current in the antenna such as for example to have a different current density in at least two turns constituting the antenna therefore of do not have a uniform current in the antenna and therefore a different current in at least 2 different turns.

Le fait de ne pas avoir un courant uniforme dans l'antenne permet d'obtenir une variation sur la valeur de l'inductance et de résistance entre au moins 2 spires constituant l'antenne. On peut alors idéalement favoriser ou limiter la valeur générale de l'inductance de l'antenne par rapport à la valeur de la résistance générale de l'antenne ou inversement.The fact of not having a uniform current in the antenna makes it possible to obtain a variation on the value of the inductance and of resistance between at least two turns constituting the antenna. One can then ideally favor or limit the general value of the inductance of the antenna with respect to the value of the general resistance of the antenna or vice versa.

Par la distribution non uniforme du courant et les variations des paramètres directs, on peut alors idéalement favoriser ou limiter les paramètres indirects comme le champ magnétique généré ou reçu, la mutuelle inductance et le couplage et leurs distributions dans l'espace de l'antenne.By the non-uniform distribution of the current and the variations of the direct parameters, it is then possible to favor or limit the indirect parameters such as the magnetic field generated or received, the mutual inductance and the coupling and their distributions in the space of the antenna.

Ainsi, dans des modes de réalisation, le circuit comporte des moyens pour rendre non uniforme la distribution du courant entre les deux extrémités de l'antenne.Thus, in embodiments, the circuit includes means for making the distribution of current between the two ends of the antenna nonuniform.

On comprend donc bien la différence fondamentale avec la technique de l'art antérieur des antennes boucles « classiques » où l'antenne est composée de N enroulements de spires. Dans l'antenne boucle classique, le courant est considéré comme fortement uniforme. Il y a donc peu de moyens de paramétrer ou de faire varier de manière croisée les paramètres directs (inductance, résistance de l'antenne, bande passante) avec les paramètres indirects (champ magnétique émis ou capté, couplage, mutuelle inductance).The fundamental difference with the prior art technique of "conventional" loop antennas is therefore well understood, where the antenna is composed of N windings of turns. In the conventional loop antenna, the current is considered as strongly uniform. There is therefore little way to parameterize or cross-vary the direct parameters (inductance, antenna resistance, bandwidth) with the indirect parameters (magnetic field emitted or sensed, coupling, mutual inductance).

La solution suivant l'invention et les modes de réalisation possibles introduisent alors le concept d'agencement particulier d'inductance et de capacités, de borne de connexion, d'inductance dite « active », d'inductance dite « passive », d'inductance dite « négative » permettant une mise en oeuvre idéale du champ magnétique émis ou capté, du couplage, de la mutuelle inductance et de la bande passante.The solution according to the invention and the possible embodiments then introduce the concept of a particular arrangement of inductance and capacitances, of connection terminal, of so-called "active" inductance, of so-called "passive" inductance, of so-called "negative" inductance allowing an ideal implementation of the emitted or sensed magnetic field, the coupling, the mutual inductance and the bandwidth.

Enfin, un agencement particulier de capacités avec la charge ou avec la charge plus les inductances ou avec les inductances ou avec un circuit d'accord en fréquence participent à obtenir l'objectif proposé.Finally, a particular arrangement of capacitances with the load or with the load plus the inductances or with the inductances or with a frequency tuning circuit participate in obtaining the proposed objective.

L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple non limitatif en référence aux dessins annexés, sur lesquels :

  • les figures 1A, 2A, 3A, 4A représentent des modes de réalisation du circuit d'antenne en transpondeur suivant l'invention,
  • les figures 1B, 2B, 3B, 4B représentent des schémas électriques équivalents des circuits des figures 1A, 2A, 3A, 4A,
  • les figures 5A, 6A, 7A, 8A, 9A, 11A représentent des modes de réalisation du circuit d'antenne en lecteur suivant l'invention,
  • les figures 5B, 6B, 7B, 8B, 9B, 11B représentent des schémas électriques équivalents des circuits des figures 5A, 6A, 7A, 8A, 9A, 11A,
  • la figure 10 est une vue d'une antenne dans un mode de réalisation,
  • les figures 12 à 46 représentent des modes de réalisation du circuit suivant l'invention.
The invention will be better understood on reading the description which follows, given solely by way of non-limiting example with reference to the accompanying drawings, in which:
  • the Figures 1A, 2A , 3A , 4A represent embodiments of the transponder antenna circuit according to the invention,
  • the Figures 1B, 2B , 3B , 4B represent equivalent electrical diagrams of the circuits of Figures 1A, 2A , 3A , 4A ,
  • the Figures 5A , 6A , 7A , 8A , 9A , 11A represent embodiments of the reader antenna circuit according to the invention,
  • the Figures 5B , 6B , 7B , 8B , 9B , 11B represent equivalent electrical diagrams of the circuits of Figures 5A , 6A , 7A , 8A , 9A , 11A ,
  • the figure 10 is a view of an antenna in one embodiment,
  • the Figures 12 to 46 represent embodiments of the circuit according to the invention.

Dans ce qui suit, le circuit d'antenne peut aussi bien être un circuit d'émission d'un rayonnement électromagnétique par l'antenne, qu'un circuit de réception d'un rayonnement électromagnétique par l'antenne.In what follows, the antenna circuit may be a circuit for emitting electromagnetic radiation by the antenna, as well as a circuit for receiving electromagnetic radiation by the antenna.

Dans un premier cas d'application, le circuit d'antenne RFID est du type transpondeur, pour fonctionner en carte portative, étiquette (en anglais : « tag »), être intégré à un document en papier, comme par exemple un document délivré par une autorité officielle, telle qu'un passeport, les clés USB et cartes SIM et cartes (U)SIM dit « carte SIM RFID ou NFC », les vignettes pour carte Dual ou Dual Interface (la vignette possédant elle-même une antenne RFID/NFC), les montres.In a first case of application, the RFID antenna circuit is of the transponder type, to operate as a portable card, tag (in English: "tag"), to be integrated in a paper document, such as for example a document issued by an official authority, such as a passport, USB keys and SIM cards and (U) SIM cards called "RFID or NFC SIM card", thumbnails for Dual or Dual Interface card (the sticker itself having an RFID antenna / NFC), watches.

Dans un deuxième cas d'application, le circuit d'antenne RFID est du type lecteur pour lire, c'est-à-dire au moins recevoir, le signal rayonné par l'antenne RFID d'un transpondeur tel que défini dans le premier cas comme les téléphones portables, les organisateurs personnels dit « PDA », les ordinateurs.In a second case of application, the RFID antenna circuit is of the reader type to read, that is to say at least receive, the signal radiated by the RFID antenna of a transponder as defined in the first cases like mobile phones, personal organizers said "PDA", computers.

D'une manière générale, le circuit comporte une antenne 3 formée par au moins trois spires S d'un conducteur sur un substrat isolant SUB. Les spires S ont un agencement définissant une inductance L ayant une valeur déterminée entre une première borne D d'extrémité de l'antenne 3 et une deuxième borne E d'extrémité de l'antenne 3.In general, the circuit comprises an antenna 3 formed by at least three turns S of a conductor on an insulating substrate SUB. The turns S have an arrangement defining an inductance L having a determined value between a first end terminal D of the antenna 3 and a second end terminal E of the antenna 3.

Dans le mode de réalisation représenté aux figures 1A et 1B, l'antenne 3 est formée par trois spires S1, S2, S3 consécutives de la borne E d'extrémité extérieure à la borne D d'extrémité intérieure.In the embodiment shown in Figures 1A and 1B the antenna 3 is formed by three consecutive turns S1, S2, S3 from the outer end terminal E to the inner end terminal D.

Une première borne 1 d'accès est connectée par un conducteur CON1A à une prise ou point intermédiaire A de l'antenne 3 entre ses bornes d'extrémité D, E.A first access terminal 1 is connected by a conductor CON1A to an intermediate point or point A of the antenna 3 between its end terminals D, E.

Une capacité C d'accord à une fréquence d'accord prescrite, c'est-à-dire à une fréquence de résonance, par exemple de 13.56 MHz jusqu'à 20MHz, est prévue en combinaison avec l'inductance L de l'antenne 3.A capacity C according to a prescribed tuning frequency, that is to say at a resonance frequency, for example from 13.56 MHz up to 20 MHz, is provided in combination with the inductance L of the antenna 3.

La deuxième borne E d'extrémité de l'antenne 3 est reliée par un conducteur CON2E à la deuxième borne C1E de la capacité C.The second end terminal E of the antenna 3 is connected by a conductor CON2E to the second terminal C1E of the capacitor C.

La première borne C1X de la capacité C est reliée par un conducteur CON31 à la prise intermédiaire A formant un premier point P1 de l'antenne 3.The first terminal C1X of the capacitor C is connected by a conductor CON31 to the intermediate tap A forming a first point P1 of the antenna 3.

Une deuxième borne 2 d'accès est connectée par un conducteur CON32 à la première borne D d'extrémité formant un deuxième point P2 de l'antenne 3. Le point P2 est différent du point A.A second access terminal 2 is connected by a conductor CON32 to the first end terminal D forming a second point P2 of the antenna 3. The point P2 is different from the point A.

Les deux bornes 1, 2 d'accès servent à la connexion d'une charge.The two access terminals 1, 2 are used to connect a load.

Suivant l'invention, il y a au moins une spire S entre le premier point A, P1 et le deuxième point P2.According to the invention, there is at least one turn S between the first point A, P1 and the second point P2.

La prise intermédiaire A, P1 est reliée à la borne D d'extrémité par au moins une spire S de l'antenne L, soit une spire S3 à la figure 1. La prise intermédiaire A, P1 est reliée à la deuxième borne E d'extrémité de l'antenne L par au moins une spire S de l'antenne L, soit deux spires S1 et S2 à la figure 1, où la prise intermédiaire A est située entre les spires S3 et S2.The intermediate tap A, P1 is connected to the end terminal D by at least one turn S of the antenna L, ie a turn S3 at the figure 1 . The intermediate tap A, P1 is connected to the second end terminal E of the antenna L by at least one turn S of the antenna L, ie two turns S1 and S2 on the figure 1 , where the intermediate tap A is located between the turns S3 and S2.

D'une manière générale, suivant l'invention, les points D, E, 1, 2, A, C1E, C1X, P1, P2 forment des noeuds électriques du circuit. Les points directement connectés entre eux forment le même noeud, par exemple lorsque les moyens de connexion sont des conducteurs électriques. Deux noeuds distincts sont reliés par au moins une spire.In a general manner, according to the invention, the points D, E, 1, 2, A, C1E, C1X, P1, P2 form electrical nodes of the circuit. The points directly connected to each other form the same node, for example when the connection means are electrical conductors. Two distinct nodes are connected by at least one turn.

Dans le schéma équivalent de la figure 1B, le circuit de la figure 1A possède une première inductance L1, dite inductance active, formée par la troisième spire S3, entre les bornes d'accès 1, 2. Entre la prise intermédiaire A et la borne E se trouve une deuxième inductance L2, dite inductance passive, formée par la première spire S1 et la deuxième spire S2. La deuxième inductance L2 est en parallèle avec la capacité C entre la prise A intermédiaire et la borne E. La somme de la première inductance L1 et de la deuxième inductance L2 est égale à l'inductance totale L de l'antenne 3. Il va de soi que l'antenne 3 possède une résistance en série avec son inductance L ainsi que des capacités de couplage inter-spires, qui n'ont toutefois pas été représentée sur toutes les figures.In the equivalent diagram of the Figure 1B , the circuit of the Figure 1A has a first inductance L1, called active inductance, formed by the third turn S3, between the access terminals 1, 2. Between the intermediate tap A and the terminal E is a second inductor L2, called passive inductance, formed by the first turn S1 and the second turn S2. The second inductance L2 is in parallel with the capacitor C between the intermediate tap A and the terminal E. The sum of the first inductance L1 and the second inductor L2 is equal to the total inductance L of the antenna 3. It is of course, the antenna 3 has a resistance in series with its inductance L as well as inter-turn coupling capacitors, which however have not been shown in all the figures.

La capacité C peut être de tout type de technologie et de procédé de réalisation. Dans l'exemple de la figure 1A, la capacité C est de type planaire en étant disposée sur la zone libre du substrat, présente au milieu des spires S. A la figure 1A, la capacité C est formée par un condensateur ayant une première surface métallique SIX formant la première borne C1X de capacité, une deuxième surface métallique S1E supportée par le substrat et formant la deuxième borne C1E de capacité. Une ou plusieurs couches de diélectriques sont situées entre la première surface métallique SIX et la deuxième surface métallique S1E.The capacity C can be of any type of technology and method of production. In the example of the Figure 1A , the capacitor C is planar type being disposed on the free zone of the substrate, present in the middle of the turns S. At the Figure 1A capacitance C is formed by a capacitor having a first metal surface SIX forming the first capacitance terminal C1X, a second metal surface S1E supported by the substrate and forming the second capacitance terminal C1E. One or more dielectric layers are located between the first metal surface SIX and the second metal surface S1E.

Le mode de réalisation représenté aux figures 1A et 1B permet d'augmenter l'efficacité de l'antenne 3.The embodiment shown in Figures 1A and 1B makes it possible to increase the efficiency of the antenna 3.

Le mode de réalisation représenté aux figures 2A et 2B est une variante du mode de réalisation représenté aux figures 1A et 1B.The embodiment shown in Figures 2A and 2B is a variant of the embodiment shown in Figures 1A and 1B .

Aux figures 2A et 2B, la prise intermédiaire A, P1 est située entre les spires S1 et S2. La prise intermédiaire A, P1 est reliée à la borne D d'extrémité par au moins une spire S de l'antenne L, soit deux spires S2 et S3. La prise intermédiaire A, P1 est reliée à la deuxième borne E d'extrémité de l'antenne L par au moins une spire S de l'antenne L, soit une spire S1.To the Figures 2A and 2B , the intermediate tap A, P1 is located between the turns S1 and S2. The intermediate tap A, P1 is connected to the end terminal D by at least one turn S of the antenna L, two turns S2 and S3. The intermediate tap A, P1 is connected to the second end terminal E of the antenna L by at least one turn S of the antenna L, a turn S1.

La capacité C est formée par un condensateur ayant une ou plusieurs couche de diélectrique ayant un premier côté et un deuxième côté éloigné du premier côté. La première surface métallique S1X forme la première borne C1X de capacité sur le premier côté de la couche de diélectrique. Une deuxième surface métallique S1E forme la deuxième borne C1E de capacité sur le deuxième côté de la couche de diélectrique. La première surface métallique SIX définit avec la deuxième surface métallique S1E une valeur de capacité C2.Capacity C is formed by a capacitor having one or more dielectric layers having a first side and a second side remote from the first side. The first metal surface S1X forms the first capacitance terminal C1X on the first side of the dielectric layer. A second metal surface S1E forms the second capacitance terminal C1E on the second side of the dielectric layer. The first metal surface SIX defines with the second metal surface S1E a capacitance value C2.

Une troisième surface métallique S1F forme une troisième borne C1F de la capacité C. La troisième surface métallique S1F est située sur le même premier côté de la couche de diélectrique à distance que la première surface métallique SIX mais à distance de cette première surface métallique SIX. La troisième borne C1F de capacité est reliée par un conducteur CON33 à la borne D d'extrémité. La troisième surface métallique S1F définit avec la deuxième surface métallique S1E une valeur de capacité C1.A third metal surface S1F forms a third terminal C1F of the capacitance C. The third metal surface S1F is located on the same first side of the dielectric layer at a distance as the first metal surface SIX but at a distance from this first metal surface SIX. The third capacity terminal C1F is connected by a conductor CON33 to the end terminal D. The third metal surface S1F defines with the second metal surface S1E a capacitance value C1.

La troisième surface métallique S1F est couplée à la première surface métallique S1X par le fait qu'elles partagent la même borne de référence C1E formée par la surface S1E, pour former une capacité de couplage appelée C 12.The third metal surface S1F is coupled to the first metal surface S1X in that they share the same reference terminal C1E formed by the surface S1E, to form a coupling capacitance called C 12.

Dans le schéma équivalent de la figure 2B, le circuit de la figure 2A possède une première inductance L1, dite inductance active, formée par la deuxième spire S2 et la troisième spire S3, entre les bornes d'accès 1, 2. Entre la prise intermédiaire A et la borne E se trouve une deuxième inductance L2, dite inductance passive, formée par la première spire S1. La somme de la première inductance L1 et de la deuxième inductance L2 est égale à l'inductance totale L de l'antenne 3.In the equivalent diagram of the Figure 2B , the circuit of the Figure 2A has a first inductance L1, called active inductance, formed by the second turn S2 and the third turn S3, between the access terminals 1, 2. Between the intermediate tap A and the terminal E is a second inductor L2, called inductance passive, formed by the first turn S1. The sum of the first inductance L1 and the second inductance L2 is equal to the total inductance L of the antenna 3.

La deuxième inductance L2 est en parallèle avec la capacité C2 entre la prise A intermédiaire et la borne E.The second inductor L2 is in parallel with the capacitor C2 between the intermediate socket A and the terminal E.

La première inductance L1 est en parallèle avec la capacité de couplage C12.The first inductance L1 is in parallel with the coupling capacitance C12.

La capacité C1 est reliée d'une part à la borne D et d'autre part à la borne E.The capacitor C1 is connected on the one hand to the terminal D and on the other hand to the terminal E.

Le mode de réalisation représenté aux figures 2A et 2B permet d'augmenter encore l'efficacité radio de l'antenne 3, du fait de l'agencement des capacités C1 et C2 et du couplage entre les capacités C1 et C2.The embodiment shown in Figures 2A and 2B makes it possible to further increase the radio efficiency of the antenna 3, because of the arrangement of the capacitors C1 and C2 and the coupling between the capacitors C1 and C2.

Le mode de réalisation représenté aux figures 3A et 3B est une variante du mode de réalisation représenté aux figures 2A et 2B. Dans le mode de réalisation représenté aux figures 3A et 3B, le premier point P1 est distinct de la première prise intermédiaire A et est éloigné de cette première prise intermédiaire A par au moins une spire S. L'antenne 3 est formée par quatre spires S1, S2, S3, S4 consécutives de la borne E d'extrémité extérieure à la borne D d'extrémité intérieure. En outre, par exemple, aux figures 3A et 3B, la capacité C est du type de celle des figures 2A et 2B.The embodiment shown in Figures 3A and 3B is a variant of the embodiment shown in Figures 2A and 2B . In the embodiment shown in Figures 3A and 3B , the first point P1 is distinct from the first intermediate tap A and is spaced from this first intermediate tap A by at least one turn S. The antenna 3 is formed by four consecutive turns S1, S2, S3, S4 of the terminal E from outer end to the inner end terminal D. In addition, for example, Figures 3A and 3B , capacity C is of the type of Figures 2A and 2B .

La première prise intermédiaire A est située entre les spires S2 et S3. La première prise intermédiaire A est reliée à la borne D d'extrémité par au moins une spire S de l'antenne L, soit les deux spires S3 et S4. La prise intermédiaire A est reliée à la deuxième borne E d'extrémité de l'antenne L par au moins une spire S de l'antenne L, soit les deux spires S2 et S1.The first intermediate tap A is located between turns S2 and S3. The first intermediate tap A is connected to the end terminal D by at least one turn S of the antenna L, ie the two turns S3 and S4. The intermediate tap A is connected to the second end terminal E of the antenna L by at least one turn S of the antenna L, ie the two turns S2 and S1.

La borne 1 d'accès est reliée à la première prise intermédiaire A par le conducteur CON1A.The access terminal 1 is connected to the first intermediate socket A by the conductor CON1A.

La borne 2 d'accès est reliée à la borne D, qui n'est pas reliée à la borne C1F.The access terminal 2 is connected to the terminal D, which is not connected to the terminal C1F.

Entre les bornes 1, 2 d'accès se trouve une charge Z. La charge Z est par exemple une puce désignée globalement par « silicium ». Cette puce peut également être présente d'une manière générale entre les bornes d'accès.Between the access terminals 1, 2 is a load Z. The load Z is for example a chip generally designated by "silicon". This chip can also be present in general between the access terminals.

La borne C1X est reliée par le conducteur CON31 à un premier point P1 de l'antenne 3, distinct de ses bornes D, E.The terminal C1X is connected by the conductor CON31 to a first point P1 of the antenna 3, distinct from its terminals D, E.

Le premier point P1 est situé entre les spires S3 et S4. Le premier point P1 est relié à la borne D d'extrémité par au moins une spire S de l'antenne L, soit la spire S4. Le premier point P1 est relié à la deuxième borne E d'extrémité de l'antenne L par au moins une spire S de l'antenne L, soit les trois spires S3, S2 et S1.The first point P1 is located between the turns S3 and S4. The first point P1 is connected to the end terminal D by at least one turn S of the antenna L, ie the turn S4. The first point P1 is connected to the second end terminal E of the antenna L by at least one turn S of the antenna L, ie the three turns S3, S2 and S1.

La borne D forme le deuxième point P2.Terminal D forms the second point P2.

Suivant l'invention, il y a au moins une spire S entre le premier point P1 et le deuxième point P2, soit la spire S4.According to the invention, there is at least one turn S between the first point P1 and the second point P2, ie the turn S4.

La troisième borne C1F de capacité est reliée par un conducteur CON33 à la borne 1 d'accès.The third capacity terminal C1F is connected by a conductor CON33 to the access terminal 1.

La borne C1E est reliée par un conducteur CON2E à la borne E.The terminal C1E is connected by a conductor CON2E to the terminal E.

Dans le schéma équivalent de la figure 3B, le circuit de la figure 3A possède une première inductance L1, dite inductance active, formée par la spire S4 entre la borne 2 et le point P1. Entre le point P1 et la prise A se trouve une deuxième inductance L11, dite également active, formée par la spire S3.In the equivalent diagram of the figure 3B , the circuit of the figure 3A has a first inductance L1, called active inductance, formed by the turn S4 between the terminal 2 and the point P1. Between the point P1 and the plug A is a second inductor L11, also called active, formed by the turn S3.

Entre la prise intermédiaire A et la borne E se trouve une troisième inductance L3, dite inductance passive, formée par les deux spires S2 et S1. La somme de la première inductance L1, de la deuxième inductance L11 et de la troisième inductance L3 est égale à l'inductance totale L de l'antenne 3.Between the intermediate tap A and the terminal E is a third inductance L3, called passive inductance, formed by the two turns S2 and S1. The sum of the first inductance L1, the second inductance L11 and the third inductance L3 is equal to the total inductance L of the antenna 3.

La troisième inductance L3 est en parallèle avec la capacité C1 entre la prise A intermédiaire et la borne E.The third inductance L3 is in parallel with the capacitor C1 between the intermediate socket A and the terminal E.

La deuxième inductance L11 est en parallèle avec la capacité de couplage C12.The second inductor L11 is in parallel with the coupling capacitance C12.

La capacité C2 est reliée d'une part au point P1 et d'autre part à la borne E.The capacitor C2 is connected on the one hand to the point P1 and on the other hand to the terminal E.

Bien entendu, la capacité C pourrait être du type de celle de la figure 1A, c'est-à-dire en ayant au lieu de C1 et C12 seulement la capacité C entre P1 et E aux figures 3A et 3B.Of course, the capacity C could be of the type of that of the Figure 1A , ie having instead of C1 and C12 only the capacitance C between P1 and E to Figures 3A and 3B .

Le mode de réalisation représenté aux figures 3A et 3B permet d'augmenter l'efficacité de l'antenne 3 du fait de l'agencement et de la combinaison des inductances « actives » et « passives » et des capacités.The embodiment shown in Figures 3A and 3B makes it possible to increase the efficiency of the antenna 3 because of the arrangement and the combination of "active" and "passive" inductors and capacitors.

Le mode de réalisation représenté aux figures 4A et 4B est une variante du mode de réalisation représenté aux figures 1A et 1B. Aux figures 4A et 4B, l'antenne 3 est formée de la deuxième borne E d'extrémité à la première borne D par une première spire S1, une deuxième spire S2 et une troisième spire S3, qui sont consécutives. Les spires S1 puis S2 vont de la deuxième borne E d'extrémité à un point PR de rebroussement dans un premier sens d'enroulement, correspondant à la figure 4A au sens des aiguilles d'une montre. La spire S3 va du point PR de rebroussement à la première borne D d'extrémité dans un deuxième sens d'enroulement opposé au premier sens d'enroulement, et donc inverse du sens des aiguilles d'une montre à la figure 4A. Par exemple, la spire S3 est de sens inversé en intérieur par rapport aux spires S2 et S3 extérieures.The embodiment shown in Figures 4A and 4B is a variant of the embodiment shown in Figures 1A and 1B . To the Figures 4A and 4B , the antenna 3 is formed from the second end terminal E to the first terminal D by a first turn S1, a second turn S2 and a third turn S3, which are consecutive. The turns S1 then S2 go from the second terminal E end to a point PR of creep in a first winding direction, corresponding to the Figure 4A clockwise. The turn S3 goes from the reversal point PR to the first end terminal D in a second direction of winding opposite to the first direction of winding, and therefore reverses from the direction of the clockwise to the Figure 4A . For example, the turn S3 is reversed direction inward with respect to the outer turns S2 and S3.

Le premier point P1 formant première prise intermédiaire A de l'antenne connectée à la borne 1 d'accès, est situé au point PR de rebroussement.The first point P1 forming the first intermediate tap A of the antenna connected to the access terminal 1, is located at the point PR of cusp.

Suivant l'invention, il y a au moins une spire S entre le premier point P1, A et le deuxième point P2.According to the invention, there is at least one turn S between the first point P1, A and the second point P2.

On considère que le sens positif du courant dans l'antenne 3 est celui allant du point PR de rebroussement à la borne E, coïncidant dans cet exemple au plus grand nombre de spires allant dans le même sens, ainsi que cela est indiqué par les flèches dessinées sur l'antenne 3. Les flèches dessinées sur les spires S1 et S2 correspondent à ce sens positif du courant.It is considered that the positive direction of the current in the antenna 3 is that going from the recoiling point PR to the terminal E, coinciding in this example with the greatest number of turns going in the same direction, as indicated by the arrows drawn on the antenna 3. The arrows drawn on the turns S1 and S2 correspond to this positive direction of the current.

Dans le schéma équivalent de la figure 4B, le circuit de la figure 4A possède une deuxième inductance positive +L2, dite inductance passive, formée par les spires S2 et S1.In the equivalent diagram of the Figure 4B , the circuit of the Figure 4A has a second positive inductance + L2, called passive inductance, formed by turns S2 and S1.

Du fait du point PR de rebroussement, apparaît entre la prise intermédiaire A, P1 et la borne D une première inductance négative -L1, dite inductance active, formée par la troisième spire S3, entre les points P1 et P2.Due to the recoil point PR, there appears between the intermediate tap A, P1 and the terminal D a first negative inductance -L1, called active inductance, formed by the third turn S3, between the points P1 and P2.

La somme de la première inductance L1 en valeur absolue et de la deuxième inductance L2 est égale à l'inductance totale L de l'antenne 3.The sum of the first inductance L1 in absolute value and the second inductance L2 is equal to the total inductance L of the antenna 3.

L'inductance négative -L1 permet de diminuer encore davantage la mutuelle inductance engendrée par l'antenne 3.The negative inductance -L1 makes it possible to further reduce the mutual inductance generated by the antenna 3.

Le mode de réalisation représenté aux figures 5A et 5B est une variante du mode de réalisation représenté aux figures 1A et 1B. Aux figures 5A et 5B, l'antenne 3 est formée par trois spires S1, S2, S3 consécutives de la borne E d'extrémité extérieure à la borne D d'extrémité intérieure formant le premier point P1 de l'antenne.The embodiment shown in Figures 5A and 5B is a variant of the embodiment shown in Figures 1A and 1B . To the Figures 5A and 5B , the antenna 3 is formed by three consecutive turns S1, S2, S3 of the end terminal E outside the inner end terminal D forming the first point P1 of the antenna.

Une première borne 1 d'accès est connectée par un moyen de connexion CON1A à une première prise intermédiaire A de l'antenne 3 entre ses bornes d'extrémité D, E. Le moyen de connexion CON1A est par exemple une capacité C10.A first access terminal 1 is connected by a connection means CON1A to a first intermediate socket A of the antenna 3 between its end terminals D, E. The connection means CON1A is for example a capacitor C10.

La deuxième borne 2 d'accès est connectée par un moyen de connexion CON32 à une deuxième prise intermédiaire P2 formant un deuxième point P2 de l'antenne 3. Le moyen de connexion CON32 est par exemple une capacité C20.The second access terminal 2 is connected by a connection means CON32 to a second intermediate socket P2 forming a second point P2 of the antenna 3. The connection means CON32 is for example a capacitor C20.

Une capacité C d'accord à une fréquence d'accord prescrite, c'est-à-dire à une fréquence de résonance, par exemple de 13.56 MHz, est prévue en combinaison avec l'inductance L de l'antenne 3.A capacity C according to a prescribed tuning frequency, that is to say at a resonance frequency, for example 13.56 MHz, is provided in combination with the inductance L of the antenna 3.

La deuxième borne E d'extrémité de l'antenne 3 est reliée par un conducteur CON2E à la deuxième borne C1E de la capacité C.The second end terminal E of the antenna 3 is connected by a conductor CON2E to the second terminal C1E of the capacitor C.

La première borne C1X de la capacité C est reliée par un conducteur CON31 à la borne D, P1 de l'antenne 3.The first terminal C1X of the capacitor C is connected by a conductor CON31 to the terminal D, P1 of the antenna 3.

Les deux bornes 1, 2 d'accès servent à la connexion d'une charge.The two access terminals 1, 2 are used to connect a load.

Suivant l'invention, il y a au moins une spire S entre le premier point P1 et le deuxième point P2, soit la spire S3 et la spire S2 dans le mode de réalisation représenté.According to the invention, there is at least one turn S between the first point P1 and the second point P2, the turn S3 and the turn S2 in the embodiment shown.

La prise intermédiaire A est située entre les spires S3 et S2. La prise intermédiaire P2 est située entre les spires S1 et S2. La prise intermédiaire A est reliée à la borne D d'extrémité par au moins une spire S de l'antenne L, soit la spire S3 dans le mode de réalisation représenté. La prise intermédiaire A est reliée à la deuxième borne E d'extrémité de l'antenne L par au moins une spire S de l'antenne L, soit deux spires S1 et S2 dans le mode de réalisation représenté.The intermediate tap A is located between the turns S3 and S2. The intermediate plug P2 is located between the turns S1 and S2. The intermediate terminal A is connected to the end terminal D by at least one turn S of the antenna L, ie the turn S3 in the embodiment shown. The intermediate tap A is connected to the second end terminal E of the antenna L by at least one turn S of the antenna L, ie two turns S1 and S2 in the embodiment shown.

La prise intermédiaire P2 est reliée à la borne D d'extrémité par au moins une spire S de l'antenne L, soit la spire S2 et la spire S3 dans le mode de réalisation représenté. La prise intermédiaire P2 est reliée à la deuxième borne E d'extrémité de l'antenne L par au moins une spire S de l'antenne L, soit la spire S1 dans le mode de réalisation représenté.The intermediate plug P2 is connected to the end terminal D by at least one turn S of the antenna L, ie the turn S2 and the turn S3 in the embodiment shown. The intermediate tap P2 is connected to the second end terminal E of the antenna L by at least one turn S of the antenna L, ie the turn S1 in the embodiment shown.

Dans le schéma équivalent de la figure 5B, le circuit de la figure 5A possède une première inductance L1, dite inductance active, formée par la deuxième spire S2, entre les points A et P2. Entre la prise intermédiaire P2 et la borne E se trouve une deuxième inductance L2, dite inductance passive, formée par la première spire S1. Entre la prise intermédiaire A et la borne D se trouve une troisième inductance L3, dite inductance passive, formée par la troisième spire S3.In the equivalent diagram of the Figure 5B , the circuit of the Figure 5A has a first inductance L1, called active inductance, formed by the second turn S2, between points A and P2. Between the intermediate tap P2 and the terminal E is a second inductor L2, called passive inductance, formed by the first turn S1. Between the intermediate tap A and the terminal D is a third inductor L3, called passive inductance, formed by the third turn S3.

La somme de la première inductance L1, de la deuxième inductance L2 et de la troisième inductance L3 est égale à l'inductance totale L de l'antenne 3.The sum of the first inductance L1, the second inductance L2 and the third inductance L3 is equal to the total inductance L of the antenna 3.

Le mode de réalisation représenté aux figures 5A et 5B permet d'augmenter l'efficacité de l'antenne 3.The embodiment shown in Figures 5A and 5B makes it possible to increase the efficiency of the antenna 3.

Le mode de réalisation représenté aux figures 6A et 6B est une variante du mode de réalisation représenté aux figures 5A et 5B. Aux figures 6A et 6B, une quatrième capacité C4 d'accord supplémentaire est connectée entre la prise intermédiaire A et le deuxième point P2, en parallèle avec la première inductance L1. La quatrième capacité C4 participe à l'accord en fréquence avec C, particulièrement sur la deuxième inductance L2. Le mode de réalisation représenté aux figures 6A et 6B permet d'augmenter l'efficacité de l'antenne 3.The embodiment shown in Figures 6A and 6B is a variant of the embodiment shown in Figures 5A and 5B . To the Figures 6A and 6B a fourth additional tuning capacitor C4 is connected between the intermediate tap A and the second tap P2 in parallel with the first inductor L1. The fourth capacitor C4 participates in the frequency tuning with C, particularly on the second inductor L2. The embodiment shown in Figures 6A and 6B makes it possible to increase the efficiency of the antenna 3.

Le mode de réalisation représenté aux figures 7A et 7B est une variante du mode de réalisation représenté aux figures 5A et 5B. Aux figures 7A et 7B, l'antenne 3 est formée par quatre spires S1, S21, S22, S3 consécutives de la borne E d'extrémité extérieure à la borne D d'extrémité intérieure.The embodiment shown in Figures 7A and 7B is a variant of the embodiment shown in Figures 5A and 5B . To the Figures 7A and 7B the antenna 3 is formed by four consecutive turns S1, S21, S22, S3 from the outer end terminal E to the inner end terminal D.

Suivant l'invention, il y a au moins une spire S entre le premier point P1 et le deuxième point P2, soit la spire S21, la spire S22 et la spire S3, c'est-à-dire trois deuxièmes spires dans le mode de réalisation représenté. Le premier point P1 est formé par la borne D d'extrémité de l'antenne.According to the invention, there is at least one turn S between the first point P1 and the second point P2, ie the turn S21, the turn S22 and the turn S3, that is to say three second turns in the mode. embodiment shown. The first point P1 is formed by the end terminal D of the antenna.

La prise intermédiaire A est située entre les spires S3 et S22. La prise intermédiaire P2 est située entre les spires S1 et S21. La prise intermédiaire A est reliée à la borne D d'extrémité par au moins une spire S de l'antenne L, soit la spire S3 dans le mode de réalisation représenté. La prise intermédiaire A est reliée à la deuxième borne E d'extrémité de l'antenne L par au moins une spire S de l'antenne L, soit trois spires S1, S21 et S22 dans le mode de réalisation représenté. La prise intermédiaire P2 est reliée à la borne D d'extrémité par au moins une spire S de l'antenne L, soit trois spires S21, S22 et S3 dans le mode de réalisation représenté. La prise intermédiaire P2 est reliée à la deuxième borne E d'extrémité de l'antenne L par au moins une spire S de l'antenne L, soit la spire S1 dans le mode de réalisation représenté.Intermediate tap A is located between turns S3 and S22. The intermediate plug P2 is located between the turns S1 and S21. The intermediate terminal A is connected to the end terminal D by at least one turn S of the antenna L, ie the turn S3 in the embodiment shown. The intermediate tap A is connected to the second end terminal E of the antenna L by at least one turn S of the antenna L, ie three turns S1, S21 and S22 in the embodiment shown. The catch intermediate P2 is connected to the terminal D end by at least one turn S of the antenna L, three turns S21, S22 and S3 in the embodiment shown. The intermediate tap P2 is connected to the second end terminal E of the antenna L by at least one turn S of the antenna L, ie the turn S1 in the embodiment shown.

Dans le schéma équivalent de la figure 7B, le circuit de la figure 5A possède une première inductance L1, dite inductance active, formée par les trois deuxièmes spires S21, S22 et S3, entre les points P1 et P2. Entre la prise intermédiaire P2 et la borne E se trouve une deuxième inductance L2, dite inductance passive, formée par la première spire S1. Entre la prise intermédiaire A et la borne D se trouve une troisième inductance L3, dite inductance passive, formée par la troisième spire S3.In the equivalent diagram of the Figure 7B , the circuit of the Figure 5A has a first inductance L1, called active inductance, formed by the three second turns S21, S22 and S3, between points P1 and P2. Between the intermediate tap P2 and the terminal E is a second inductor L2, called passive inductance, formed by the first turn S1. Between the intermediate tap A and the terminal D is a third inductor L3, called passive inductance, formed by the third turn S3.

La somme de la première inductance L1, de la deuxième inductance L2 et de la troisième inductance L3 est égale à l'inductance totale L de l'antenne 3.The sum of the first inductance L1, the second inductance L2 and the third inductance L3 is equal to the total inductance L of the antenna 3.

Le mode de réalisation représenté aux figures 7A et 7B permet d'augmenter l'efficacité de l'antenne 3 avec un plus grand nombre de spires.The embodiment shown in Figures 7A and 7B allows to increase the efficiency of the antenna 3 with a larger number of turns.

Le mode de réalisation représenté aux figures 8A et 8B est une variante du mode de réalisation représenté aux figures 5A et 5B. Aux figures 8A et 8B, l'antenne 3 est formée par six spires S1, S2, S31, S32, S33 et S34 consécutives de la borne E d'extrémité extérieure à la borne D d'extrémité intérieure. Le premier point P1 est formé par la borne D d'extrémité.The embodiment shown in Figures 8A and 8B is a variant of the embodiment shown in Figures 5A and 5B . To the Figures 8A and 8B the antenna 3 is formed by six consecutive turns S1, S2, S31, S32, S33 and S34 from the outer end terminal E to the inner end terminal D. The first point P1 is formed by the end terminal D.

Suivant l'invention, il y a au moins une spire S entre le premier point P1 et le deuxième point P2, soit les spires S2, S31, S32, S33 et S34, c'est-à-dire cinq deuxièmes spires dans le mode de réalisation représenté.According to the invention, there is at least one turn S between the first point P1 and the second point P2, ie the turns S2, S31, S32, S33 and S34, that is to say five second turns in the mode. embodiment shown.

La prise intermédiaire A est située entre les spires S2 et S31. La prise intermédiaire P2 est située entre les spires S1 et S2. La prise intermédiaire A est reliée à la borne D d'extrémité par au moins une spire S de l'antenne L, soit les quatre spires S31, S32, S33 et S34 dans le mode de réalisation représenté. La prise intermédiaire A est reliée à la deuxième borne E d'extrémité de l'antenne L par au moins une spire S de l'antenne L, soit les deux spires S1, S2 dans le mode de réalisation représenté. La prise intermédiaire P2 est reliée à la borne D d'extrémité par au moins une spire S de l'antenne L, soit les cinq spires S2, S31, S32, S33 et S34 dans le mode de réalisation représenté. La prise intermédiaire P2 est reliée à la deuxième borne E d'extrémité de l'antenne L par au moins une spire S de l'antenne L, soit la spire S1 dans le mode de réalisation représenté.The intermediate tap A is located between the turns S2 and S31. The intermediate plug P2 is located between the turns S1 and S2. The intermediate tap A is connected to the end terminal D by at least one turn S of the antenna L, ie the four turns S31, S32, S33 and S34 in the embodiment shown. The intermediate tap A is connected to the second end terminal E of the antenna L by at least one turn S of the antenna L, ie the two turns S1, S2 in the embodiment shown. The intermediate tap P2 is connected to the end terminal D by at least one turn S of the antenna L, ie the five turns S2, S31, S32, S33 and S34 in the embodiment shown. The intermediate tap P2 is connected to the second end terminal E of the antenna L by at least one turn S of the antenna L, ie the turn S1 in the embodiment shown.

Dans le schéma équivalent de la figure 8B, le circuit de la figure 8A possède une première inductance L1, dite inductance active, formée par les deuxièmes spires S2, S31, S32, S33 et S34, entre les points P1 et P2. Entre la prise intermédiaire P2 et la borne E se trouve une deuxième inductance L2, dite inductance passive, formée par la première spire S1. Entre la prise intermédiaire A et la borne D se trouve une troisième inductance L3, dite inductance passive, formée par les quatre spires S31, S32, S33 et S34.In the equivalent diagram of the Figure 8B , the circuit of the figure 8A has a first inductance L1, called active inductance, formed by the second turns S2, S31, S32, S33 and S34, between points P1 and P2. Between the intermediate tap P2 and the terminal E is a second inductor L2, called passive inductance, formed by the first turn S1. Between the intermediate tap A and the terminal D is a third inductor L3, called passive inductance, formed by the four turns S31, S32, S33 and S34.

La somme de la première inductance L1, de la deuxième inductance L2 et de la troisième inductance L3 est égale à l'inductance totale L de l'antenne 3.The sum of the first inductance L1, the second inductance L2 and the third inductance L3 is equal to the total inductance L of the antenna 3.

Le mode de réalisation représenté aux figures 8A et 8B permet d'augmenter l'efficacité de l'antenne 3 avec encore davantage de spires.The embodiment shown in Figures 8A and 8B allows to increase the efficiency of the antenna 3 with even more turns.

La capacité C est formée par exemple par un condensateur du type planaire comme à la figure 1A.The capacitor C is formed for example by a capacitor of the planar type as in the Figure 1A .

Dans les applications de transpondeur, la capacité C, C1, C2 est par exemple du type planaire décrit. Dans les applications de lecteur, la capacité C peut être sous la forme d'un composant de condensateur ajouté, au lieu d'être du type planaire.In transponder applications, the capacitance C, C1, C2 is for example of the planar type described. In reader applications, the capacitance C may be in the form of an added capacitor component, instead of being of the planar type.

Le mode de réalisation représenté aux figures 9A et 9B est une variante du mode de réalisation représenté aux figures 5A et 5B. Aux figures 9A et 9B, l'antenne 3 est formée de la deuxième borne E d'extrémité à la première borne D par une première spire S1, une deuxième spire S2 et une troisième spire S3, qui sont consécutives. La spire S1 va de la deuxième borne E d'extrémité à un point PR de rebroussement dans un premier sens d'enroulement, correspondant à la figure 9A au sens des aiguilles d'une montre. Les spires S2 puis S3 vont du point PR de rebroussement à la première borne D d'extrémité dans un deuxième sens d'enroulement opposé au premier sens d'enroulement, et donc inverse du sens des aiguilles d'une montre à la figure 9A. Par exemple, la spire S1 est de sens inversé en extérieur par rapport aux spires S2 et S3 intérieures.The embodiment shown in Figures 9A and 9B is a variant of the embodiment shown in Figures 5A and 5B . To the Figures 9A and 9B the antenna 3 is formed from the second end terminal E to the first terminal D by a first turn S1, a second turn S2 and a third turn S3, which are consecutive. The turn S1 goes from the second terminal E end to a point PR of creep in a first direction of winding, corresponding to the Figure 9A clockwise. The turns S2 and S3 go from the reversal point PR to the first end terminal D in a second direction of winding opposite to the first direction of winding, and therefore reverse the direction of the clockwise at the Figure 9A . For example, the turn S1 is of direction reversed outside with respect to the internal turns S2 and S3.

Le premier point P1 est formé par la borne D.The first point P1 is formed by the terminal D.

Le deuxième point P2 formant deuxième prise intermédiaire de l'antenne connectée à la borne 2 d'accès, est situé au point PR de rebroussement.The second point P2 forming the second intermediate point of the antenna connected to the access terminal 2, is located at the point PR of cusp.

Suivant l'invention, il y a au moins une spire S entre le premier point P1 et le deuxième point P2, soit la spire S2 et la spire S3 dans le mode de réalisation représenté.According to the invention, there is at least one turn S between the first point P1 and the second point P2, ie the turn S2 and the turn S3 in the embodiment shown.

Dans le schéma équivalent de la figure 9B, le circuit de la figure 9A possède une première inductance positive L1, dite inductance active, formée par la deuxième spire S2, entre les points A et P2.In the equivalent diagram of the Figure 9B , the circuit of the Figure 9A has a first positive inductance L1, called active inductance, formed by the second turn S2, between points A and P2.

Du fait du point PR de rebroussement, apparaît entre la prise intermédiaire P2, PR et la borne E une deuxième inductance négative -L2, dite inductance passive, formée par la première spire S1, en considérant que le sens positif du courant dans l'antenne 3 est celui allant du point PR, P2 au point A, coïncidant dans cet exemple avec le plus grand nombre de spires allant dans le même sens, ainsi que cela est indiqué par les flèches dessinées sur l'antenne 3. Les flèches dessinées sur les spires S2 et S3 correspondent à ce sens positif du courant.Due to the recoiling point PR, there appears between the intermediate tap P2, PR and the terminal E a second negative inductance -L2, called passive inductance, formed by the first turn S1, considering that the positive direction of the current in the antenna 3 is the one going from the point PR, P2 to the point A, coinciding in this example with the greatest number of turns going in the same direction, as indicated by the arrows drawn on the antenna 3. The arrows drawn on the turns S2 and S3 correspond to this positive direction of the current.

Entre la prise intermédiaire A et la borne D se trouve une troisième inductance +L3 positive, dite inductance passive, formée par la troisième spire S3.Between the intermediate tap A and the terminal D is a third inductance + L3 positive, called passive inductance, formed by the third turn S3.

La somme de la première inductance L1, de la deuxième inductance L2 en valeur absolue et de la troisième inductance L3 est égale à l'inductance totale L de l'antenne 3.The sum of the first inductance L1, the second inductance L2 in absolute value and the third inductance L3 is equal to the total inductance L of the antenna 3.

L'inductance négative -L2 permet de diminuer encore davantage la mutuelle inductance engendrée par l'antenne 3.The negative inductance -L2 makes it possible to further reduce the mutual inductance generated by the antenna 3.

Le mode de réalisation représenté aux figures 11A et 11B est une variante du mode de réalisation représenté aux figures 5A et 5B.The embodiment shown in Figures 11A and 11B is a variant of the embodiment shown in Figures 5A and 5B .

Le moyen de connexion CON1A est par exemple un conducteur électrique.The connection means CON1A is for example an electrical conductor.

Le moyen de connexion CON32 est par exemple un conducteur électrique.The connection means CON32 is for example an electrical conductor.

La capacité C est du type de celle de la figure 2A.The capacity C is of the type of that of the Figure 2A .

La deuxième borne E d'extrémité de l'antenne 3 est reliée par un conducteur CON2E à la deuxième borne C1E de la capacité C.The second end terminal E of the antenna 3 is connected by a conductor CON2E to the second terminal C1E of the capacitor C.

La première borne D est reliée à la borne C1F de la capacité C par le conducteur CON33.The first terminal D is connected to the terminal C1F of the capacitor C by the conductor CON33.

Le point P1 est formé par la borne D.The point P1 is formed by the terminal D.

La première borne C1X de la capacité C est reliée par un conducteur CON31 à la borne D.The first terminal C1X of the capacitor C is connected by a conductor CON31 to the terminal D.

La borne C1F est reliée à la borne 2 d'accès.The terminal C1F is connected to the access terminal 2.

Suivant l'invention, il y a au moins une spire S entre le premier point P1 et le deuxième point P2, soit la spire S3 et la spire S2 dans le mode de réalisation représenté.According to the invention, there is at least one turn S between the first point P1 and the second point P2, the turn S3 and the turn S2 in the embodiment shown.

Dans le schéma équivalent de la figure 11B, la capacité C1 est en parallèle avec l'inductance L2 entre la borne E et le point P2. La capacité C2 est connectée entre les bornes D et E. La capacité C12 de couplage est connectée entre le deuxième point P2 et la borne D.In the equivalent diagram of the Figure 11B , the capacitor C1 is in parallel with the inductance L2 between the terminal E and the point P2. The capacitor C2 is connected between the terminals D and E. The coupling capacitor C12 is connected between the second point P2 and the terminal D.

Le mode de réalisation représenté aux figures 11A et 11B permet d'augmenter encore l'efficacité de l'antenne 3, du fait du couplage entre les capacités C1 et C2.The embodiment shown in Figures 11A and 11B makes it possible to further increase the efficiency of the antenna 3, because of the coupling between the capacitors C1 and C2.

Bien entendu, un ou plusieurs des modes de réalisation ci-dessus peuvent être combinés en ce qui concerne l'agencement et la disposition des inductances, des capacités, le ou les points de rebroussement, le nombre de spires.Of course, one or more of the above embodiments may be combined with respect to the arrangement and arrangement of the inductors, capacitors, the one or more cusps, the number of turns.

En particulier, les moyens de connexion, tels que CON1A, CON32, des bornes 1, 2 d'accès à l'antenne peuvent être par capacité, par conducteur ou autres, comme par exemple des éléments actifs, notamment du type transistor ou amplificateur.In particular, the connection means, such as CON1A, CON32, terminals 1, 2 of access to the antenna can be capacitance, conductor or other, such as for example active elements, in particular of the transistor or amplifier type.

D'une manière générale, toute charge ou circuit supplémentaire d'accord en fréquence ou en puissance peut être connecté aux bornes 1, 2 d'accès, comme par exemple une puce, notamment à base de silicium, aussi bien dans le cas dit transpondeur que dans le cas dit lecteur.In general, any additional load or frequency or power matching circuit can be connected to the access terminals 1, 2, for example a chip, in particular a silicon-based chip, as well in the so-called transponder case. only in the case said reader.

En particulier, les moyens de connexion des bornes 1, 2 d'accès à l'antenne des figures 5A, 6A, 7A, 8A, 9A peuvent être également des conducteurs. On peut également ajouter un élément actif ou passif, tel que par exemple une capacité, aux bornes 1, 2 d'accès aux figures 1A, 2A, 3A, 4A.In particular, the connection means of the terminals 1, 2 for access to the antenna of the Figures 5A , 6A , 7A , 8A , 9A can also be drivers. It is also possible to add an active or passive element, such as for example a capacitance, to terminals 1, 2 of access to Figures 1A, 2A , 3A , 4A .

Il peut être prévu un nombre de spires égal à un, deux ou plus entre le premier point P1 et le deuxième point P2. Il peut être prévu un nombre de spires égal à un, deux ou plus entre la première prise A et l'extrémité D. Il peut être prévu un nombre de spires égal à un, deux ou plus entre la première prise A et l'extrémité E. Il peut être prévu un nombre de spires égal à un, deux ou plus entre le premier point P1 et l'extrémité D. Il peut être prévu un nombre de spires égal à un, deux ou plus entre le premier point P1 et l'extrémité E. Il peut être prévu un nombre de spires égal à un, deux ou plus entre le deuxième point P2 et l'extrémité D. Il peut être prévu un nombre de spires égal à un, deux ou plus entre le deuxième point P2 et l'extrémité E.It can be provided a number of turns equal to one, two or more between the first point P1 and the second point P2. It can be expected a number of turns equal one, two or more between the first tap A and the end D. There may be provided a number of turns equal to one, two or more between the first tap A and the end E. A number of taps may be provided. turns equal to one, two or more between the first point P1 and the end D. It may be provided a number of turns equal to one, two or more between the first point P1 and the end E. It may be provided a number of turns equal to one, two or more between the second point P2 and the end D. It may be provided a number of turns equal to one, two or more between the second point P2 and the end E.

L'antenne peut être réalisée en technologie filaire, gravée, imprimée (plaque de circuit imprimé), en cuivre, en aluminium, à particules d'argent ou d'aluminium et tout autre conducteur électrique et tout autre conducteur non électrique mais prévue chimiquement à cet effet.The antenna can be made of wired, engraved, printed (printed circuit board), copper, aluminum, silver particles or aluminum and any other electrical conductor and any other non-electrical conductor but chemically predicted to this effect.

Les spires de l'antenne peuvent être réalisées en multi-couches, superposées ou non, dans sa totalité ou partiellement.The turns of the antenna can be made in multi-layers, superimposed or not, in whole or in part.

Ainsi que représenté à la figure 10, au moins une spire S2 de l'antenne peut comprendre en série un enroulement S2' de spires de plus petite surface entourée par rapport à la surface entourée par le reste S2" de la spire S2 ou par rapport à la surface entourée par les autres spires de l'antenne 3, afin d'augmenter la résistance ou l'inductance de la spire S2 sans accentuer le couplage, la mutuelle inductance et le rayonnement général de l'antenne 3.As represented in figure 10 at least one turn S2 of the antenna may comprise in series a winding S2 'of turns of smaller area surrounded with respect to the surface surrounded by the remainder S2 "of the turn S2 or with respect to the surface surrounded by the others turns of the antenna 3, in order to increase the resistance or the inductance of the turn S2 without accentuating the coupling, the mutual inductance and the general radiation of the antenna 3.

Le(s) capacités peuvent être en élément discret (composant) ou réalisés en technologie planaire.The capacity (s) can be in discrete element (component) or made in planar technology.

Le(s) capacités peuvent être rajoutées à l'antenne pendant le processus de fabrication des enroulements de spires comme un élément extérieur à la plaque de circuit imprimé et de l'antenne, notamment en technologie filaire.The capacitance (s) can be added to the antenna during the manufacturing process of the windings of turns as an element outside the printed circuit board and the antenna, especially in wire technology.

Le(s) capacités peuvent être intégrées dans un module, notamment celui du silicium.The capacitance (s) can be integrated in a module, in particular silicon.

Le(s) capacités peuvent être intégrées et réalisées sur une plaque de circuit imprimé.The capacitance (s) can be integrated and realized on a printed circuit board.

Les spires S de l'antenne 3 peuvent être réparties sur plusieurs plans physiques distincts, par exemple parallèles.The turns S of the antenna 3 can be distributed over several different physical planes, for example parallel.

Les spires sont formées de tronçons par exemple rectilignes mais pouvant également avoir toute autre forme.The turns are formed of sections, for example rectilinear but may also have any other shape.

Les spires de l'antenne peuvent être sous la forme d'un fil qui sera ensuite chauffé pour être incorporé sur ou dans un substrat isolant.The turns of the antenna may be in the form of a wire which will then be heated to be embedded on or in an insulating substrate.

Les spires de l'antenne peuvent être gravées sur un substrat isolant.The turns of the antenna can be etched on an insulating substrate.

Les spires de l'antenne peuvent être sur des faces opposées d'un substrat isolant.The turns of the antenna may be on opposite sides of an insulating substrate.

Les spires sont par exemple sous la forme de rubans parallèles.The turns are for example in the form of parallel ribbons.

Aux figures suivantes est représenté un module M de charge, tel que par exemple une puce, le module M étant connecté entre la première borne 1 d'accès et la deuxième borne 2 d'accès.In the following figures is shown a load module M, such as for example a chip, the module M being connected between the first access terminal 1 and the second terminal 2 access.

Dans le mode de réalisation représenté à la figure 12, l'antenne L est formée par les spires S1, S2 situées entre la première borne D d'extrémité et la deuxième borne E d'extrémité.In the embodiment shown at figure 12 , the antenna L is formed by the turns S1, S2 located between the first terminal D end and the second terminal E end.

La première borne D est reliée à la deuxième borne 2 d'accès formant le deuxième point P2.The first terminal D is connected to the second access terminal 2 forming the second point P2.

La capacité C1 d'accord à une fréquence d'accord prescrite comporte une première borne C1X de capacité et une deuxième borne C1E de capacité.The tuning capacity C1 at a prescribed tuning frequency has a first capacitance terminal C1X and a second capacitance terminal C1E.

La première borne C1X de capacité est reliée à la première borne 1 par le moyen CON31 à la première borne 1 d'accès.The first capacitance terminal C1X is connected to the first terminal 1 by means CON31 at the first access terminal 1.

La deuxième borne C1E de capacité est reliée à la deuxième borne E d'extrémité.The second capacitance terminal C1E is connected to the second end E terminal.

Le deuxième point P2 est formé par la deuxième borne 2 d'accès.The second point P2 is formed by the second access terminal 2.

Le premier point P1 de l'antenne et la prise intermédiaire A de l'antenne sont formés par la première borne 1 d'accès.The first point P1 of the antenna and the intermediate point A of the antenna are formed by the first terminal 1 access.

Le deuxième point P2, 2 de l'antenne L est relié au premier point P1, 1, A de l'antenne L par au moins une première spire S1 de l'antenne L.The second point P2, 2 of the antenna L is connected to the first point P1, 1, A of the antenna L by at least a first turn S1 of the antenna L.

L'antenne L est formée par une ou plusieurs deuxièmes spires S1 entre E et A, à savoir par exemple par deux deuxièmes spires S1, reliées par le point A à une ou plusieurs spires S2 allant du point A à la borne D, par exemple trois spires S2.The antenna L is formed by one or more second turns S1 between E and A, for example by two second turns S1, connected by point A to one or more turns S2 from point A to terminal D, for example three turns S2.

Il y a au moins une spire de l'antenne L entre le premier point P1 et le deuxième point P2, à savoir la au moins une spire S2 entre P1 et P2.There is at least one turn of the antenna L between the first point P1 and the second point P2, namely the at least one turn S2 between P1 and P2.

La capacité C1 d'accord est formée par une ou plusieurs troisièmes spires SC3 (par exemple cinq spires SC3) comportant deux première et deuxième extrémités SC31, SC32 et par une ou plusieurs quatrièmes spires SC4 (par exemple cinq spires SC4) comportant deux première et deuxième extrémités SC41, SC42.The tuning capacitor C1 is formed by one or more third turns SC3 (for example five turns SC3) having two first and second ends SC31, SC32 and by one or more fourth turns SC4 (for example five turns SC4) comprising two first and second ends SC41, SC42.

La au moins une troisième spire SC3 est distincte des spires S1, S2 formant l'antenne L et est reliée à l'une E des bornes d'extrémité de l'antenne L. La au moins une quatrième spire SC4 est distincte des spires S1, S2 formant l'antenne L et est séparée électriquement par rapport aux troisièmes spires SC3, par exemple en longeant les troisièmes spires SC3, pour que les spires SC3 soient disposées face aux spires SC4, par exemple en ayant des tronçons parallèles. L'extrémité SC31 forme la borne C1E et est reliée à la borne E. L'extrémité SC32 est libre et isolée de SC4. L'extrémité SC41 est libre et isolée de SC3. L'extrémité SC42 forme la borne C1X et est reliée à la prise intermédiaire A, 1, P1. L'extrémité SC31 est éloignée de l'extrémité SC42, tout en étant proche et isolée de l'extrémité SC41. L'extrémité SC42 est éloignée de l'extrémité SC31, tout en étant proche et isolée de l'extrémité SC32.The at least one third turn SC3 is distinct from the turns S1, S2 forming the antenna L and is connected to one E of the end terminals of the antenna L. The at least one fourth turn SC4 is distinct from the turns S1 , S2 forming the antenna L and is electrically separated from the third turns SC3, for example along the third turns SC3, so that the turns SC3 are arranged facing the turns SC4, for example by having parallel sections. The end SC31 forms the terminal C1E and is connected to the terminal E. The end SC32 is free and isolated from SC4. The SC41 end is free and isolated from SC3. The end SC42 forms the terminal C1X and is connected to the intermediate socket A, 1, P1. The end SC31 is remote from the end SC42, while being close and isolated from the end SC41. The end SC42 is remote from the end SC31, while being close and isolated from the end SC32.

Les tronçons des troisièmes spires SC3 situés en face des quatrièmes spires SC4, qui ne sont pas connectées électriquement aux quatrièmes spires SC4, définissent la capacité C1. Du fait des troisièmes spires SC3 et des quatrièmes spires SC4 amenant en elles-mêmes une inductance du fait de l'enroulement des spires, l'impédance ZZ située entre les extrémités SC31, SC42 servant à la connexion de la capacité C1 au reste du circuit ramènent également une inductance. L'impédance ZZ entre les extrémités SC31, SC42 de connexion peut par exemple être vue comme comportant un circuit capacitif - inductif résonant parallèle et/ou série selon la figure 33, comportant deux branches parallèles, avec dans l'une des branches la capacité C1 et dans l'autre branche une capacité en série avec une inductance. Par conséquent, l'impédance ZZ vue entre les extrémités SC31, SC42 de connexion comporte la capacité C1.The sections of the third turns SC3 located in front of the fourth turns SC4, which are not electrically connected to the fourth turns SC4, define the capacitor C1. Due to the third turns SC3 and the fourth turns SC4 bringing in themselves an inductance due to the winding of the turns, the impedance ZZ located between the ends SC31, SC42 serving to connect the capacitor C1 to the rest of the circuit also bring back an inductor. The impedance ZZ between the connection ends SC31, SC42 may for example be seen as comprising a resonant capacitive-inductive circuit parallel and / or series according to the figure 33 , having two parallel branches, in one of the branches the capacitance C1 and in the other branch a capacitance in series with an inductance. Therefore, the ZZ impedance seen between the connection ends SC31, SC42 has the capacitance C1.

La valeur de la capacité C1 de l'impédance ZZ dépend de la relation entre les spires SC3 et SC4, et notamment de leur disposition réciproque, par exemple adjacente.The value of the capacitance C1 of the impedance ZZ depends on the relation between the turns SC3 and SC4, and in particular their mutual arrangement, for example adjacent.

A la figure 12, il y a au moins une spire S1 entre la prise intermédiaire A reliée à la borne 1 d'accès du module et l'impédance ZZ formée par la au moins une troisième spire SC3 et la au moins une quatrième spire SC4.To the figure 12 there is at least one turn S1 between the intermediate tap A connected to the access terminal 1 of the module and the impedance ZZ formed by the at least one third turn SC3 and the at least one fourth turn SC4.

L'impédance ZZ formée par la au moins une troisième spire SC3 et par la au moins une quatrième spire SC4 est auto-résonante, du fait qu'une capacité et une inductance en série et/ou parallèle sont contenues dans l'impédance ZZ.The impedance ZZ formed by the at least one third turn SC3 and the at least one fourth turn SC4 is self-resonant, because a capacitance and a series and / or parallel inductance are contained in the impedance ZZ.

Le schéma électrique équivalent du circuit représenté à la figure 12 est représenté à la figure 34. La au moins une troisième spire SC3 et la au moins une quatrième spire SC4 permettent d'égaliser la fréquence d'accord du module M (par exemple puce) se trouvant en parallèle avec une inductance (spire(s) S2) sur la fréquence d'accord du circuit formé par la au moins une troisième spire SC3 et la au moins une quatrième spire SC4, par exemple pour avoir la fréquence d'accord prescrite à 13,56 MHz.The equivalent circuit diagram of the circuit shown in figure 12 is represented at the figure 34 . The at least one third turn SC3 and the at least one fourth turn SC4 make it possible to equalize the tuning frequency of the module M (for example chip) lying in parallel with an inductance (turn (s) S2) on the frequency of tuning the circuit formed by the at least a third turn SC3 and the at least a fourth turn SC4, for example to have the tuning frequency prescribed at 13.56 MHz.

On parvient ainsi à obtenir un couplage grand entre le circuit auto-résonant ZZ, SC3, SC4 et le circuit formé par le module M se trouvant en parallèle avec la ou les spires S2, en diminuant la mutuelle inductance entre ces deux circuits. L'inductance formée par la ou les spires S1 située(s) entre le module M et les spires SC3, SC4 formant le circuit auto-résonant ZZ permet de jouer sur cette mutuelle inductance entre le circuit auto-résonant ZZ, SC3, SC4 et le circuit formé par le module M se trouvant en parallèle avec la ou les spires S2.It is thus possible to obtain a large coupling between the self-resonant circuit ZZ, SC3, SC4 and the circuit formed by the module M being in parallel with the or turns S2, decreasing the mutual inductance between these two circuits. The inductance formed by the one or more turns S1 located between the module M and the turns SC3, SC4 forming the self-resonant circuit ZZ makes it possible to play on this mutual inductance between the self-resonant circuit ZZ, SC3, SC4 and the circuit formed by the module M being in parallel with the or turns S2.

On parvient ainsi, par un agencement astucieux de la valeur des courants et inductances intrinsèques des spires, à paramétrer les valeurs de mutuelles inductances entre les deux circuits d'antennes précités (M, S2) et (ZZ, S1) et à obtenir deux accords en fréquence quasi indépendants l'un de l'autre ou deux accords en fréquence très proches l'un de l'autre, par exemple avec des écarts de fréquence d'accord < 10 MHz, < 2 MHz ou < 500 KHz ou 2 accords en fréquence confondus dans une même plage de fréquence, ce qui permet d'obtenir une grande largeur de bande passante par rapport au canal de transmission RFID, tout en gardant une grande efficacité de couplage et donc de transmission d'énergie, alors même que la surface d'intégration du circuit d'antenne peut être très réduite, par exemple < 16cm2 ou < 8 cm2.Thus, by a clever arrangement of the value of the intrinsic currents and inductances of the turns, it is possible to parameterize the values of mutual inductances between the two aforementioned antenna circuits (M, S2) and (ZZ, S1) and to obtain two chords in frequency quasi-independent of one another or two frequency agreements very close to one another, for example with tuning frequency differences <10 MHz, <2 MHz or <500 KHz or 2 chords frequency in the same frequency range, which makes it possible to obtain a large bandwidth with respect to the RFID transmission channel, while keeping a high efficiency of coupling and therefore energy transmission, even though the integration surface of the antenna circuit can be very small, for example <16cm 2 or <8 cm 2 .

On cherche notamment à avoir la plus grande possible l'inductance des spires S2 se trouvant en parallèle avec le module M afin d'obtenir un accord en fréquence au plus proche de la fréquence utile, pour exemple 13.56MHz.One seeks in particular to have as much as possible the inductance of the turns S2 lying in parallel with the module M in order to obtain a tuning frequency closest to the useful frequency, for example 13.56 MHz.

On cherche notamment à avoir la plus petite possible l'inductance contenue dans le circuit auto-résonant ZZ, SC3, SC4 afin de permettre l'intégration du circuit d'antenne dans une petite surface < 16 cm2 comme par exemple une étiquette (tag en anglais) ou un circuit autocollant (en anglais : sticker).In particular, the aim is to have the inductance contained in the self-resonant circuit ZZ, SC3, SC4 as small as possible in order to allow the integration of the antenna circuit into a small area <16 cm 2, for example a tag (tag in English) or a sticker circuit (in English: sticker).

De plus, on voit que l'un des intérêts de l'invention est la possibilité de paramétrer la mutuelle inductance entre les circuits d'antennes, par exemple, entre d'une part le circuit d'antenne comportant la puce transpondeur ou lecteur et d'autre part une première et une seconde partie d'antenne, de façon à paramétrer la mutuelle inductance finale du système transpondeur ou lecteur. De plus, contrairement aux documents de l'état de la technique indiqués ci-dessus, on parvient à produire deux accords en fréquence quasi indépendants l'un de l'autre ou deux accords en fréquence très proches l'un de l'autre, par exemple < 10 MHz, < 2 MHz ou < 500KHz ou 2 accords en fréquence confondus dans une même plage de fréquence.In addition, it can be seen that one of the advantages of the invention is the possibility of parameterizing the mutual inductance between the antenna circuits, for example, between, on the one hand, the antenna circuit comprising the transponder chip or reader and on the other hand a first and a second antenna part, so as to set the mutual final inductance of the transponder or reader system. Moreover, unlike the documents of the state of the art indicated above, it is possible to produce two frequency agreements that are almost independent of one another or two frequency agreements that are very close to one another, for example <10 MHz, <2 MHz or <500KHz or 2 frequency agreements combined in the same frequency range.

Suivant des modes de réalisation de l'invention, il est prévu au moins une connexion électrique entre un premier circuit d'antenne comportant la puce et au moins un second (ou plus) circuit d'antenne comportant au moins un élément capacitif.According to embodiments of the invention, at least one electrical connection is provided between a first antenna circuit comprising the chip and at least one second (or more) antenna circuit comprising at least one capacitive element.

En particulier, les dispositifs selon les documents EP-A-1031 939 et FR-A-2777141 ne permettent pas de produire deux accords en fréquence quasi indépendants l'un de l'autre ou deux accords en fréquence très proches l'un de l'autre par exemple < 10 MHz, < 2MHz ou < 500KHz ou 2 accords en fréquence confondus dans une même plage de fréquence. En effet, plus la mutuelle inductance entre les 2 circuits d'antennes est grande, plus les 2 accords dit « naturels » des 2 circuits d'antennes augmentent. Si on veut que ces 2 accords en fréquence soient proches, il faut donc diminuer la mutuelle, inductance en, par exemple, diminuant fortement l'une des surfaces de circuit d'antenne par rapport à l'autre ce qui induit une perte considérable dans l'efficacité du transpondeur.In particular, the devices according to the documents EP-A-1031 939 and FR-A-2777141 do not make it possible to produce two frequency agreements that are almost independent of each other or two frequency agreements that are very close to each other, for example <10 MHz, <2 MHz or <500 KHz or 2 frequency agreements combined in each other. the same frequency range. In fact, the greater the mutual inductance between the 2 antenna circuits, the more the 2 so-called "natural" agreements of the 2 antenna circuits increase. If we want these 2 frequency agreements to be close, we must reduce the mutual, inductance in, for example, decreasing strongly one of the antenna circuit surfaces relative to the other which induces a considerable loss in the transponder efficiency.

Des moyens sont prévus pour assurer un couplage COUPL12 par mutuelle inductance entre les spires voisines S1 et S2. Des moyens sont prévus pour assurer un couplage COUPLZZ par mutuelle inductance entre les spires voisines S1 et SC3, SC4 de l'impédance ZZ. Ce couplage par mutuelle inductance est par exemple dû à la disposition de S1 proche de S2 et à la disposition de S1 proche de SC3, SC4. Par exemple, à la figure 12, on a successivement de la périphérie vers le centre : S2, S1, SC3, SC4.Means are provided for coupling COUPL12 by mutual inductance between neighboring turns S1 and S2. Means are provided for coupling COUPLZZ by mutual inductance between neighboring turns S1 and SC3, SC4 of the impedance ZZ. This coupling by mutual inductance is for example due to the arrangement of S1 close to S2 and the arrangement of S1 close to SC3, SC4. For example, at the figure 12 , we successively from the periphery to the center: S2, S1, SC3, SC4.

Le circuit d'antenne possède au mois deux mutuelles inductances intrinsèques propres couplées entre elles : entre S1 et S2, entre S1 et ZZ.The antenna circuit has at least two mutually intrinsic intrinsic inductances coupled between them: between S1 and S2, between S1 and ZZ.

On parvient ainsi à augmenter la distance de lecture du circuit de la figure 12.It is thus possible to increase the reading distance of the circuit of the figure 12 .

Ci-dessous sont indiqués d'autres modes de réalisation de l'invention dans le tableau ci-dessous, en référence aux figures ci-dessous mentionnées. Dans ce tableau sont indiqués les points connectés électriquement ensemble dans les quatre colonnes correspondantes (1, A), (C1E, E), (C1X, P1) et (2, P2), ainsi que les nombres de spires. Dans les figures 12 et suivantes mentionnées ci-dessous, le moyen de connexion CON1A de la prise intermédiaire A avec la première borne 1 d'accès, le moyen CON2E de connexion de la deuxième borne E d'extrémité à la deuxième borne C1E de capacité, le moyen CON31 de connexion de la première borne C1X de capacité au premier point P1 de l'antenne L et le moyen CON32 de connexion de la deuxième borne 2 d'accès au deuxième point P2 sont mis en oeuvre par des conducteurs électriques, sans être forcément indiqués aux figures ni dans le tableau ci-dessous. La colonne A-E indique le nombre de spires S1 entre A et E. La colonne A-D indique le nombre de spires S2 entre A et D. La colonne P1-P2 indique le nombre N12 égal à au moins une spire S de l'antenne L entre les points P1 et P2. La dernière colonne à droite indique soit la présence de l'impédance ZZ formée par les spires SC3 et SC4 en indiquant dans ce cas le nombre de spires de ZZ entre parenthèses, soit la présence d'une capacité C30 supplémentaire, dite première capacité, formée par un composant capacitif à diélectrique entre ses bornes. On entend par composant capacitif diélectrique toute réalisation permettant l'agencement d'une capacité. Le cas échéant, ce composant capacitif peut être formé par un autre circuit ZZ. Fig N° 1, A C1E, E C1X, P1 2, P2 A-E A-D P1-P2 Z et/ou C1 1A P1, C1X C1E, E 1, A D ≥ 1 ≥ 1 ≥ 1 C1 2A P1, C1X C1E, E 1, A D, C1F ≥ 1 ≥ 1 ≥ 1 C1 3A C1F C1E, E C1X, P1 D ≥ 1 ≥ 1 ≥ 1 C1 4A P1, C1X, PR C1E, E 1, A, PR D ≥ 1 ≥ 1 ≥ 1 C1 5A 1, A C1E, E D 2, P2 ≥ 1 ≥ 1 ≥ 1 C1 6A 1, A C1E, E D 2, P2 ≥ 1 ≥ 1 ≥ 1 C1 7A 1, A C1E, E D 2, P2 ≥ 1 ≥ 1 ≥ 1 C1 8A 1, A C1E, E D 2, P2 ≥ 1 ≥ 1 ≥ 1 C1 9A 1, A C1E, E D 2, P2, PR ≥ 1 ≥ 1 ≥ 1 C1 11A P1 C1E, E 1, A 2, P2, C1F ≥ 1 ≥ 1 ≥ 1 C1 12 P1, C1X, SC42 SC31 1, A, SC42 D 2 3 3 Z (5) 13 1, A C1E, E P1≠A D 5 3 4 C1 14 1, A C1E, E P1≠A D 6 3 5 C1 15 1, A SC42 D 2, P2 1 4 3 Z (4) 16 1, A SC42 D, C1XZ 2, P2 1 4 3 Z et C30 17 1, A SC42 D 2, P2 1 2 1 Z(4) 18 1, A SC42 D, C1XZ 2, P2 1 2 1 Z (4) et C30 19 1, A SC42 D, SC31 E 3 2 5 Z(4) 20 C1X, P1, SC42 C1E, E (avec D=SC41) 1, A, SC42 PC1 3 4 3 Z (5) et C30 21 C1X, SC31, P1 2, P2, SC42 SC31, 1, A E (avec D=SC3 2) 3 4 3 Z(4) 22 C1X, P1, SC42 C1E, E (avec D=SC41) 1, A, SC42 PC1, SC31 3 4 3 Z (4) et C30 23 1, A C1E, E D 2, P2 4 1 4 C1 24 1, A C1E, E D PR2 4 1 3 C1 25 C1X, P1, PR1 C1E, E 1, A D 4 1 1 C1 26 C1X, P1, PR1 C1E, E 1, A D 3 2 2 C1 27 C1X, P1, C1E, E 1, A D 2 3 3 C1 28 1, A C1E, E C1X, P1≠A D 2 2 1 C1 29 1, A C1E, E D 2, P2 5 1 5 C1 30 1, A C1E, E D 2, P2 2 1 2 C1 31 C1X, P1, SC42 C1E, E, SC31 1, A, SC42 D 2.5 4 4 Z (17) 32 C1X, P1, SC42 C1E, E, SC31 1, A, SC42 D 5.5 3 4 Z(17) Other embodiments of the invention are given in the table below, with reference to the figures below mentioned. In this table are indicated the electrically connected points together in the four corresponding columns (1, A), (C1E, E), (C1X, P1) and (2, P2), as well as the numbers of turns. In the figures 12 and following mentioned below, the connecting means CON1A of the intermediate tap A with the first access terminal 1, the connecting means CON2E of the second end terminal E to the second terminal C1E capacity, the means CON31 connection of the first capacitance terminal C1X to the first point P1 of the antenna L and the connecting means CON32 of the second terminal 2 to access the second point P2 are implemented by electrical conductors, without necessarily being indicated to the figures or in the table below. The column AE indicates the number of turns S1 between A and E. The column AD indicates the number of turns S2 between A and D. The column P1-P2 indicates the number N12 equal to at least one turn S of the antenna L between points P1 and P2. The last column on the right indicates either the presence of the impedance ZZ formed by the turns SC3 and SC4, indicating in this case the number of ZZ turns in parentheses, ie the presence of an additional capacitor C30, called the first capacitor, formed by a capacitive dielectric component between its terminals. The term "dielectric capacitive component" means any embodiment allowing the arrangement of a capacity. If necessary, this capacitive component may be formed by another circuit ZZ. Fig N ° 1, A C1E, E C1X, P1 2, P2 AE AD P1-P2 Z and / or C1 1A P1, C1X C1E, E 1, A D ≥ 1 ≥ 1 ≥ 1 C1 2A P1, C1X C1E, E 1, A D, C1F ≥ 1 ≥ 1 ≥ 1 C1 3A C1F C1E, E C1X, P1 D ≥ 1 ≥ 1 ≥ 1 C1 4A P1, C1X, PR C1E, E 1, A, PR D ≥ 1 ≥ 1 ≥ 1 C1 5A 1, A C1E, E D 2, P2 ≥ 1 ≥ 1 ≥ 1 C1 6A 1, A C1E, E D 2, P2 ≥ 1 ≥ 1 ≥ 1 C1 7A 1, A C1E, E D 2, P2 ≥ 1 ≥ 1 ≥ 1 C1 8A 1, A C1E, E D 2, P2 ≥ 1 ≥ 1 ≥ 1 C1 9A 1, A C1E, E D 2, P2, PR ≥ 1 ≥ 1 ≥ 1 C1 11A P1 C1E, E 1, A 2, P2, C1F ≥ 1 ≥ 1 ≥ 1 C1 12 P1, C1X, SC42 SC31 1, A, SC42 D 2 3 3 Z (5) 13 1, A C1E, E P1 ≠ A D 5 3 4 C1 14 1, A C1E, E P1 ≠ A D 6 3 5 C1 15 1, A SC42 D 2, P2 1 4 3 Z (4) 16 1, A SC42 D, C1XZ 2, P2 1 4 3 Z and C30 17 1, A SC42 D 2, P2 1 2 1 Z (4) 18 1, A SC42 D, C1XZ 2, P2 1 2 1 Z (4) and C30 19 1, A SC42 D, SC31 E 3 2 5 Z (4) 20 C1X, P1, SC42 C1E, E (with D = SC41) 1, A, SC42 PC1 3 4 3 Z (5) and C30 21 C1X, SC31, P1 2, P2, SC42 SC31, 1, A E (with D = SC3 2) 3 4 3 Z (4) 22 C1X, P1, SC42 C1E, E (with D = SC41) 1, A, SC42 PC1, SC31 3 4 3 Z (4) and C30 23 1, A C1E, E D 2, P2 4 1 4 C1 24 1, A C1E, E D PR2 4 1 3 C1 25 C1X, P1, PR1 C1E, E 1, A D 4 1 1 C1 26 C1X, P1, PR1 C1E, E 1, A D 3 2 2 C1 27 C1X, P1, C1E, E 1, A D 2 3 3 C1 28 1, A C1E, E C1X, P1 ≠ A D 2 2 1 C1 29 1, A C1E, E D 2, P2 5 1 5 C1 30 1, A C1E, E D 2, P2 2 1 2 C1 31 C1X, P1, SC42 C1E, E, SC31 1, A, SC42 D 2.5 4 4 Z (17) 32 C1X, P1, SC42 C1E, E, SC31 1, A, SC42 D 5.5 3 4 Z (17)

Aux figures 16 et 18, deux capacités C30 et ZZ sont prévues. La capacité ZZ est formée par les spires SC3, SC4 entre SC42 et SC31 (par exemple 4 spires), avec SC31 formant C1XZ. En plus de Z, une autre capacité C30 formée par un composant capacitif est prévue entre E et C1XC1. La borne C1XC1 est reliée à un point PC1 de l'antenne L, qui est distant de P2 d'au moins une spire, par exemple une spire à cette figure. Aux figures 16 et 18, ZZ est entre C1XZ et C1E, et C30 est un composant capacitif entre E et C1XC1.To the figures 16 and 18 , two capacities C30 and ZZ are provided. The capacitance ZZ is formed by turns SC3, SC4 between SC42 and SC31 (for example 4 turns), with SC31 forming C1XZ. In addition to Z, another capacity C30 formed by a capacitive component is provided between E and C1XC1. The terminal C1XC1 is connected to a point PC1 of the antenna L, which is at a distance of P2 from at least one turn, for example a turn in this figure. To the figures 16 and 18 , ZZ is between C1XZ and C1E, and C30 is a capacitive component between E and C1XC1.

A la figure 22, deux capacités C30 et ZZ sont prévues en série entre la borne C1E, E et la borne C1X, P1 formée par l'extrémité SC42. La capacité ZZ est formée par les spires SC3, SC4 entre SC42 et SC31 (par exemple 4 spires), avec SC31 formant PC1. En plus de Z, une autre capacité C30 formée par un composant capacitif est prévue entre E et PC1. La borne PC1 est reliée au point 2, P2 de l'antenne L. La borne C1E, E est formée par l'extrémité de la ou des spires S1, éloignée de la borne 2.To the figure 22 two capacitors C30 and ZZ are provided in series between the terminal C1E, E and the terminal C1X, P1 formed by the end SC42. The capacitance ZZ is formed by the turns SC3, SC4 between SC42 and SC31 (for example 4 turns), with SC31 forming PC1. In addition to Z, another capacity C30 formed by a capacitive component is provided between E and PC1. Terminal PC1 is connected to point 2, P2 of antenna L. Terminal C1E, E is formed by the end of coil (s) S1, remote from terminal 2.

A la figure 20, deux capacités C30 et ZZ sont prévues en série entre la borne C1E, E et la borne C1X, P1 formée par l'extrémité SC42. La capacité ZZ est formée par les spires SC3, SC4 entre SC42 et SC31 (par exemple 4 spires), avec SC31 en relié en série avec le point PC1 par une ou plusieurs spires S10 (par exemple deux spires S 10). En plus de Z, une autre capacité C30 formée par un composant capacitif est prévue entre E et PC1. La borne PC1 est reliée au point 2, P2 de l'antenne L. La borne C1E, E est formée par l'extrémité de la ou des spires S1, éloignée de la borne 2.To the figure 20 two capacitors C30 and ZZ are provided in series between the terminal C1E, E and the terminal C1X, P1 formed by the end SC42. The capacitance ZZ is formed by the turns SC3, SC4 between SC42 and SC31 (for example 4 turns), with SC31 connected in series with the point PC1 by one or more turns S10 (for example two turns S10). In addition to Z, another capacity C30 formed by a capacitive component is provided between E and PC1. Terminal PC1 is connected to point 2, P2 of antenna L. Terminal C1E, E is formed by the end of coil (s) S1, remote from terminal 2.

Aux figures 23, 24 sont prévus deux points PR1 et PR2 de rebroussement dans les spires S1 entre A et E. Le point PR1 est éloigné de A par au moins une spire et de E par au moins une spire (par exemple deux spires entre A et PR1 et deux spires entre PR1 et E). Le point PR2 est éloigné de A par au moins une spire et de E par au moins une spire (par exemple une spire entre A et PR2 et trois spires entre PR2 et E).To the figures 23 , 24 are provided two points PR1 and PR2 of creep in the turns S1 between A and E. The point PR1 is away from A by at least one turn and E by at least one turn (for example two turns between A and PR1 and two turns between PR1 and E). The point PR2 is away from A by at least one turn and E by at least one turn (for example a turn between A and PR2 and three turns between PR2 and E).

A la figure 23, PR2 est éloigné de P2 par au moins une spire.To the figure 23 , PR2 is away from P2 by at least one turn.

A la figure 25 sont prévus deux points PR1 et PR2 de rebroussement dans les spires S1 entre A et E. Le point PR1 est situé en A. Le point PR2 est éloigné de A par au moins une spire et de E par au moins une spire (par exemple une spire entre A et PR2 et trois spires entre PR2 et E).To the figure 25 two points PR1 and PR2 are provided for reversing in the turns S1 between A and E. The point PR1 is located at A. The point PR2 is away from A by at least one turn and E by at least one turn (for example a turn between A and PR2 and three turns between PR2 and E).

A la figure 26 sont prévus deux points PR1 et PR2 de rebroussement dans les spires S1 entre A et E. Le point PR1 est situé en A. Le point PR2 est éloigné de A par au moins une spire et de E par au moins une spire (par exemple une spire entre A et PR2 et quatre spires entre PR2 et E).To the figure 26 two points PR1 and PR2 are provided for reversing in the turns S1 between A and E. The point PR1 is located at A. The point PR2 is away from A by at least one turn and E by at least one turn (for example a turn between A and PR2 and four turns between PR2 and E).

A la figure 27 sont prévus deux points PR1 et PR2 de rebroussement dans les spires S1 entre A et D. Le point PR1 est éloigné de A par au moins une spire et de D par au moins une spire (par exemple une spire entre A et PR1 et deux spires entre PR1 et D). Le point PR2 est éloigné de A par au moins une spire et de D par au moins une spire (par exemple deux spires entre A et PR2 et une spire entre PR2 et D).To the figure 27 are provided two points PR1 and PR2 of creep in the turns S1 between A and D. The point PR1 is away from A by at least one turn and D by at least one turn (for example a turn between A and PR1 and two turns between PR1 and D). The point PR2 is away from A by at least one turn and D by at least one turn (for example two turns between A and PR2 and a turn between PR2 and D).

Aux figures 29 et 30, un point milieu PM de fixation d'un potentiel à un potentiel de référence est prévu sur l'antenne à mi-chemin entre les deux bornes d'extrémité D et E de l'antenne. A la figure 29, où le nombre de spires de l'antenne entre D et E est pair, le point milieu PM est éloigné des autres points 1, A, 2, P2, C1E, E, C1X, P1, D par au moins une spire de l'antenne. A la figure 30, où le nombre de spires de l'antenne entre D et E est impair, le point milieu PM est éloigné des autres points 1, A, 2, P2, C1E, E, C1X, P1, D par au moins une demi-spire de l'antenne et se trouve par exemple de l'autre côté par rapport au côté ayant ces points 1, A, 2, P2, C1E, E, C1X, P1, D.To the figures 29 and 30 a midpoint PM for setting a potential to a reference potential is provided on the antenna midway between the two end terminals D and E of the antenna. To the figure 29 where the number of turns of the antenna between D and E is even, the midpoint PM is distant from the other points 1, A, 2, P2, C1E, E, C1X, P1, D by at least one turn of the antenna. 'antenna. To the figure 30 where the number of turns of the antenna between D and E is odd, the midpoint PM is distant from the other points 1, A, 2, P2, C1E, E, C1X, P1, D by at least half a turn of the antenna and is for example on the other side with respect to the side having these points 1, A, 2, P2, C1E, E, C1X, P1, D.

Bien entendu, dans ce qui précède, le nombre de spires entre les points mentionnés sur l'antenne (1, A, 2, P2, C1E, E, C1X, P1, D, ainsi que le ou les points de rebroussement) peut être quelconque, par exemple en étant supérieur ou égal à un. Ces nombres de spires peuvent être entiers, par exemple ainsi que représenté aux figures, ou non entiers comme par exemple aux figures 31 et 32.Of course, in the foregoing, the number of turns between the points mentioned on the antenna (1, A, 2, P2, C1E, E, C1X, P1, D, as well as the cusps or points) can be whatever, for example by being greater than or equal to one. These numbers of turns may be integers, for example as shown in the figures, or not integers such as for example figures 31 and 32 .

Aux figures 12, 13, 14, 19, 21, 25, 26 est prévu un point PR3 de rebroussement au point 1, A, c'est-à-dire une inversion du sens d'enroulement des spires de l'antenne au passage de 1, A en allant de D vers E. Aux figures 15, 16, 17, 18, 22, 23, 24, 27, 28, 29, 30, 31 et 32, on passe par le point 1, A en allant de D vers E en gardant le même sens d'enroulement des spires de l'antenne. Toutefois, on effectue un ou plusieurs changements de sens d'enroulement des spires en un point PR2, PR1 autre que 1, A aux figures 23, 24, 26, 27.To the Figures 12, 13 , 14 , 19 , 21 , 25 , 26 a reversing point PR3 at point 1 A is provided, that is to say an inversion of the winding direction of the turns of the antenna at the passage of 1 A, going from D to E. figures 15 , 16 , 17 , 18 , 22, 23 , 24 , 27 , 28, 29 , 30 , 31 and 32 , we go through the point 1, A going from D to E keeping the same winding direction of the turns of the antenna. However, one or more changes in winding direction of the turns are made at a point PR2, PR1 other than 1, A to figures 23 , 24 , 26, 27 .

La première borne d'accès est distincte de la deuxième borne d'accès en ce que la première borne d'accès est séparée de la deuxième borne d'accès par une ou plusieurs spires.The first access terminal is distinct from the second access terminal in that the first access terminal is separated from the second access terminal by one or more turns.

Une seule première borne 1 d'accès et une seule deuxième borne 2 d'accès sont par exemple prévues.Only one first access terminal 1 and only one second access terminal 2 are for example provided.

Dans un mode de réalisation, un transpondeur TRANS comme charge Z est connecté à la première borne 1 et à la deuxième borne 2, comme par exemple à la figure 35.In one embodiment, a transponder TRANS as load Z is connected to the first terminal 1 and the second terminal 2, for example to the figure 35 .

Les figures 35 à 46 correspondent à l'un quelconque des modes de réalisation décrits ci-dessus, où les capacités C10, C20 présentes le cas échéant n'ont pas été représentées.The Figures 35 to 46 correspond to any of the embodiments described above, where the capacities C10, C20 present if necessary have not been represented.

Dans un autre mode de réalisation, un lecteur LECT comme charge Z est connecté à la première borne 1 et à la deuxième borne 2, comme par exemple à la figure 36.In another embodiment, a reader LECT as load Z is connected to the first terminal 1 and the second terminal 2, for example to the figure 36 .

Plusieurs charges peuvent être prévues.Several charges can be provided.

Dans un autre mode de réalisation, plusieurs charges Z distinctes peuvent être connectées à la même première borne 1 d'accès et à la même deuxième borne 2 d'accès.In another embodiment, several separate charges Z can be connected to the same first access terminal 1 and to the same second access terminal 2.

Par exemple, un transpondeur TRANS en tant que première charge Z1 et un lecteur LECT en tant que deuxième charge Z2 peuvent être connectés à la même première borne 1 et à la même deuxième borne 2, ainsi que représenté par exemple aux figures 37 et 38, le transpondeur TRANS et le lecteur LECT étant électriquement en parallèle à la figure 38.For example, a transponder TRANS as the first load Z1 and a reader LECT as the second load Z2 can be connected to the same first terminal 1 and the same second terminal 2, as shown for example in FIGS. figures 37 and 38 , the TRANS transponder and the reader LECT being electrically in parallel with the figure 38 .

Dans un autre mode de réalisation, l'antenne peut comporter, pour la connexion de plusieurs charges distinctes, plusieurs premières bornes 1 d'accès distinctes entre elles et/ou plusieurs deuxièmes bornes 2 d'accès distinctes entre elles. Des premières bornes 1 d'accès distinctes sont séparées entre elles par au moins une spire de l'antenne. Des deuxièmes bornes 2 d'accès distinctes sont séparées entre elles par au moins une spire de l'antenne.In another embodiment, the antenna may comprise, for the connection of several separate loads, a plurality of first distinct access terminals 1 and / or a plurality of second access terminals 2 distinct from each other. First distinct access terminals 1 are separated from each other by minus one turn of the antenna. Separate second terminals 2 are separated from each other by at least one turn of the antenna.

Par exemple, à la figure 39, un transpondeur TRANS en tant que première charge Z1 est connecté entre la première borne 1 d'accès et la deuxième borne 2 d'accès, tandis qu'un lecteur LECT en tant que deuxième charge Z2 est connecté entre une autre première borne 11 d'accès et une autre deuxième borne 12 d'accès.For example, at the figure 39 a transponder TRANS as the first load Z1 is connected between the first access terminal 1 and the second access terminal 2, while a reader LECT as the second load Z2 is connected between another first terminal 11d. access and another second terminal 12 access.

Par exemple, à la figure 40, un transpondeur TRANS en tant que première charge Z1 est connecté entre la première borne 1 d'accès et la deuxième borne 2 d'accès, tandis qu'un lecteur LECT en tant que deuxième charge Z2 est connecté entre une autre deuxième borne 12 d'accès et la deuxième borne d'accès 2 (bornes d'accès successives).For example, at the figure 40 a transponder TRANS as the first load Z1 is connected between the first access terminal 1 and the second access terminal 2, while a reader LECT as the second load Z2 is connected between another second terminal 12d. access and the second access terminal 2 (successive access terminals).

Dans un autre mode de réalisation, plusieurs applications RFID, et/ou lecteur RFID et/ou transpondeur RFID peuvent être connectés entre les première et deuxième bornes 1, 2 d'accès identiques ou entre des première et deuxième bornes 1, 2 d'accès distinctes, comme par exemple les applications désignées par APPL1, APPL3 à la figure 41 entre des première et deuxième bornes 1, 2, d'accès distinctes 1, 2, 12, 13 successives.In another embodiment, a plurality of RFID applications, and / or RFID reader and / or RFID transponder may be connected between the first and second identical access terminals 1, 2 or between first and second access terminals 1, 2 such as the applications designated by APPL1, APPL3 to the figure 41 between first and second terminals 1, 2, access distinct 1, 2, 12, 13 successive.

Bien entendu, dans ce qui précède, le rôle de la première borne 1 d'accès et le rôle de la deuxième borne 2 d'accès peuvent être intervertis.Of course, in the foregoing, the role of the first access terminal 1 and the role of the second access terminal 2 can be inverted.

Dans ce qui précède, la charge Z connectée aux bornes 1, 2 d'accès a par exemple une fréquence d'accord prescrite, ainsi que cela est représenté à la figure 42. Cette fréquence d'accord est fixe.In the foregoing, the load Z connected to the access terminals 1, 2 has, for example, a prescribed tuning frequency, as is shown in FIG. figure 42 . This tuning frequency is fixed.

Cette fréquence d'accord prescrite est par exemple dans une bande haute fréquence (HF), la bande haute fréquence couvrant les fréquences supérieures ou égales à 30 kHz et inférieures à 80MHz. Cette fréquence d'accord est par exemple de 13.56 MHz.This prescribed tuning frequency is for example in a high frequency band (HF), the high frequency band covering frequencies greater than or equal to 30 kHz and less than 80 MHz. This tuning frequency is for example 13.56 MHz.

La fréquence d'accord peut également être dans une bande ultra haute fréquence (UHF), la bande ultra haute fréquence couvrant les fréquences supérieures ou égales à 80 MHz et inférieures ou égales à 5800 MHz. Par exemple dans ce cas, la fréquence d'accord est de 868 MHz ou 915 MHz.The tuning frequency may also be in an ultra high frequency (UHF) band, the ultra high frequency band covering frequencies greater than or equal to 80 MHz and less than or equal to 5800 MHz. For example, in this case, the tuning frequency is 868 MHz or 915 MHz.

Dans un mode de réalisation, ladite au moins une première borne 1 d'accès et ladite au moins une deuxième borne 2 d'accès sont connectées à au moins une première charge Z1 ayant une première fréquence d'accord prescrite et à au moins une deuxième charge Z2 ayant une deuxième fréquence d'accord prescrite différente de la première fréquence d'accord prescrite.In one embodiment, said at least one first access terminal 1 and said at least one second access terminal 2 are connected to at least one first load Z1 having a first prescribed tuning frequency and at least one second charge Z2 having a second prescribed tuning frequency different from the first prescribed tuning frequency.

Dans un mode de réalisation, une première charge Z1 ayant la première fréquence d'accord prescrite dans la bande haute fréquence et une deuxième charge Z2 ayant la deuxième fréquence d'accord prescrite dans la bande ultra haute fréquence sont connectées aux bornes 1, 2 d'accès.In one embodiment, a first load Z1 having the first tuning frequency prescribed in the high frequency band and a second load Z2 having the second tuning frequency prescribed in the ultra high frequency band are connected to terminals 1, 2 d. 'access.

Dans le mode de réalisation de la figure 43, la première charge Z1 ayant la première fréquence d'accord prescrite dans la bande haute fréquence et une deuxième charge Z2 ayant la deuxième fréquence d'accord prescrite dans la bande ultra haute fréquence sont connectées à la même première borne 1 d'accès et à la même deuxième borne 2 d'accès.In the embodiment of the figure 43 the first load Z1 having the first tuning frequency prescribed in the high frequency band and a second load Z2 having the second tuning frequency prescribed in the ultra high frequency band are connected to the same first access terminal 1 and the same second terminal 2 access.

Dans le mode de réalisation de la figure 44, la première charge Z1 ayant la première fréquence d'accord prescrite dans la bande haute fréquence est connectée entre la première borne 1 d'accès et la deuxième borne 2 d'accès, tandis que la deuxième charge Z2 ayant la deuxième fréquence d'accord prescrite dans la bande ultra haute fréquence est connectée entre une autre première borne 11 d'accès et une autre deuxième borne 12 d'accès.In the embodiment of the figure 44 , the first load Z1 having the first tuning frequency prescribed in the high frequency band is connected between the first access terminal 1 and the second access terminal 2, while the second load Z2 having the second tuning frequency prescribed in the ultra-high frequency band is connected between another first access terminal 11 and another second access terminal 12.

Dans les modes de réalisation des figures 45 et 46, la première charge Z1 ayant la première fréquence d'accord prescrite dans la bande haute fréquence est connectée entre la première borne 1 d'accès et la deuxième borne 2 d'accès, tandis que la deuxième charge Z2 ayant la deuxième fréquence d'accord prescrite dans la bande ultra haute fréquence est connectée entre une autre deuxième borne 12 d'accès et la deuxième borne d'accès 2 (bornes d'accès successives), le nombre de spires entre les bornes étant différent entre les deux figures.In the embodiments of figures 45 and 46 , the first load Z1 having the first tuning frequency prescribed in the high frequency band is connected between the first access terminal 1 and the second access terminal 2, while the second load Z2 having the second tuning frequency prescribed in the ultra-high frequency band is connected between another second access terminal 12 and the second access terminal 2 (successive access terminals), the number of turns between the terminals being different between the two figures.

Claims (29)

  1. RFID / NFC antenna circuit comprising:
    - an antenna (L) formed by a number of at least three turns (S), the antenna having a first end terminal (D) and a second end terminal (E),
    - at least two access terminals (1, 2) to connect a charge,
    - at least one tuning capacitance (C1, ZZ) for tuning at a prescribed tuning frequency, having a first capacitance terminal (C1X) and a second capacitance terminal (C1E),
    - an intermediate tap (A) connected to the antenna (L) and distinct from the end terminals,
    - first connection means (CON1A) connecting the intermediate tap (A) to a first (1) of the two access terminals,
    - second connection means (CON2E) connecting the second end terminal (E) to the second capacitance terminal (C1E),
    characterized in that it comprises:
    - third connection means (CON31, CON32) connecting the first capacitance terminal (C1X) and the second (2) of the access terminals respectively to a first point (P1) of the antenna (L) and to a second point (P2) of the antenna (L),
    wherein the second point (P2) is connected to the second end terminal (E) of the antenna (L) by at least one turn (S) of the antenna (L) and is connected to the first point of the antenna (L) by at least one turn (S) of the antenna (L).
  2. Circuit according to claim 1, characterized in that the capacitance comprises a first metal surface forming the first capacitance terminal (C1X), a second metal surface forming the second capacitance terminal (C1E), at least one dielectric layer lying between the first metal surface and the second metal surface.
  3. Circuit according to any of claims 1 and 2, characterized in that the capacitance comprises at least one dielectric layer having a first side and a second side distant from the first side,
    - a first metal surface forming the first capacitance terminal (C1X) on the first side of the dielectric layer,
    - a second metal surface forming the second capacitance terminal (C1E) on the second side of the dielectric layer,
    - a third metal surface forming a third capacitance terminal (C1F) lying away from the first metal surface on the first side of the dielectric layer,
    - the first capacitance terminal (C1X) defining a first capacitance value (C2) with the second capacitance terminal (C1E),
    - the third capacitance terminal (C1F) defining a second capacitance value (C1) with the second capacitance terminal (C1E),
    - the first capacitance terminal (C1X) defining a third coupling capacitance value (C12) with the third capacitance terminal (C1F),
    - connection means connecting the third capacitance terminal (C1F) to one of the access terminals (1, 2).
  4. Circuit according to any of the preceding claims, characterized in that the antenna (L) comprises at least one first turn (S1), at least one second turn and at least one third turn, which are consecutive, the first turn (S1) extending from the second end terminal (E) in a first winding direction to a reversal point (PR) connected to the second turn, the second and third turns (S2, S3) extending from said reversal point (PR) to the first end terminal (D) in a second winding direction which is the reverse of the first winding direction,
    - the first point (P1) of the antenna (L) and the second point (P2) of the antenna (L) being located on the second and third turns (S2, S3).
  5. Circuit according to any of the preceding claims, characterized in that the antenna (L) comprises at least one first turn (S1) and at least one second turn (S2, S3) consecutive between two third and fourth points (E; D) of the antenna, the first turn (S1) being connected to the second turn (S2, S3) by a reversal point (PR), the first turn (S1) extending from the third point (E) to the reversal point (PR) in a first winding direction, the second turn (S2, S3) extending from said reversal point (PR) to the fourth point (D) in a second direction of winding which is the reverse of the first winding direction.
  6. Circuit according to claim 1, characterized in that the antenna (L) comprises at least one first turn (S1) and at least one second turn (S2, S3) consecutive between two third and fourth points (E; D) of the antenna, the first turn (S1) being connected to the second turn (S2, S3) by a reversal point (PR), the first turn (S1) extending from the third point (E) to the reversal point (PR) in a first direction of winding, the second turn (S2, S3) extending from said reversal point (PR) to the fourth point (D) in a second direction of winding which is the reverse of the first direction of winding,
    - the first point (P1) is located at the intermediate tap (A) of the antenna (L) and the second point (P2) is located at the first end terminal (D) of the antenna (L).
  7. Circuit according to claim 1, characterized in that the antenna (L) comprises at least one first turn (S1) and at least one second turn (S2, S3) consecutive between two third and fourth points (E; D) of the antenna, the first turn (S1) being connected to the second turn (S2, S3) by a reversal point (PR), the first turn (S1) extending from the third point (E) to the reversal point (PR) in a first direction of winding, the second turn (S2, S3) extending from said reversal point (PR) to the fourth point (D) in a second direction of winding which is the reverse of the first direction of winding,
    - the first point (P1) is located at the first end terminal (D).
  8. Circuit according to any of the preceding claims, characterized in that at least one turn (S2) of the antenna comprises in series a winding (S2') of turns of smaller surrounded surface with respect to the surface surrounded by the remainder (S2") of said turn (S2) or with respect to the surface surrounded by other turns of the antenna (3).
  9. Circuit according to any of the preceding claims, characterized in that the tuning capacitance (C1) comprises a second capacitance (ZZ) formed by at least one third turn (SC3) comprising two first and second ends (SC31, SC32) and by at least one fourth turn (SC4) comprising two first and second ends (SC41, SC42), the third turn (SC3) being electrically separated from the fourth turn (SC4) to define at least the tuning capacitance (C1) between the first end (SC31) of the third turn (SC3) and the second end (SC42) of the fourth turn (SC4),
    - the first end (SC31) of the third turn lying further distant from the second end (SC42) of the fourth turn (SC4) than from the first end (SC41) of the fourth turn (SC4), the second end (SC32) of the third turn (SC3) lying further distant from the first end (SC41) of the fourth turn (SC4) than from the second end (SC42) of the fourth turn (SC4), the second capacitance being defined between the first end (SC31) of the third turn (SC3) and the second end (SC42) of the fourth turn (SC4).
  10. Circuit according to the preceding claim, characterized in that there is at least one turn (S1) of the antenna between the intermediate tap (A) and the second capacitance.
  11. Circuit according to either of claims 9 and 10, characterized in that first coupling means are provided to ensure coupling (COUPL12) by mutual inductance between firstly the at least one turn (S2) of the antenna electrically connected in parallel with the first and second access terminals (1, 2) and secondly the other at least one turn (S1) of the antenna, second coupling means are provided to ensure coupling (COUPLZZ) by mutual inductance between said other at least one turn (S1) of the antenna and the at least one third and fourth turns (SC3, SC4) of the second capacitance (ZZ).
  12. Circuit according to the preceding claim, characterized in that the first coupling means are formed by the proximity between, firstly, the at least one turn (S2) of the antenna electrically connected in parallel with the first and second access terminals (1, 2) and, secondly, the other at least one turn (S1) of the antenna, the second coupling means are formed by the proximity between said other at least one turn (S1) of the antenna and the at least one third and fourth turns (SC3, SC4) of the second capacitance (ZZ).
  13. Circuit according to any of claims 9 to 12, characterized in that the third turn (SC3) and the fourth turn (SC4) are interleaved.
  14. Circuit according to any of claims 9 to 13, characterized in that the third turn (SC3) comprises at least one third section, the fourth turn (SC4) comprises a fourth section, the third section lying adjacent the fourth section.
  15. Circuit according to claim 14, characterized in that the sections extend parallel to each other.
  16. Circuit according to any of claims 9 to 15, characterized in that the at least one third turn (SC3) and the at least one fourth turn (SC4) define a second sub-circuit having a second natural resonance frequency, the first and second access terminals (1, 2), together with a module (M) connected to them and with at least one turn (S2) connected to said first and second access terminals (1, 2), define a first sub-circuit having a first natural resonance frequency, the turns being arranged so that frequency difference between the first natural resonance frequency and the second natural resonance frequency is equal to or less than 10 MHz.
  17. Circuit according to any of claims 9 to 15, characterized in that the at least one third turn (SC3) and the at least one fourth turn (SC4) define a second sub-circuit having a second natural resonance frequency, the first and second access terminals (1, 2) together with a module (M) connected to them and with at least one turn (S2) connected to said first and second access terminals (1, 2) define a first sub-circuit having a first natural resonance frequency, the turns being arranged so that the frequency difference between the first natural resonance frequency and the second natural resonance frequency is equal to or less than 500 KHz.
  18. Circuit according to any of claims 9 to 17, characterized in that the at least one third turn (SC3) and the at least one fourth turn (SC4) define a second sub-circuit having a second natural resonance frequency, the first and second access terminals (1, 2) together with a module (M) connected to them and with at least one turn (S2) connected to said first and second access terminals (1, 2) define a first sub-circuit having a first natural resonance frequency, the turns being arranged so that the first natural resonance frequency and the second natural resonance frequency are substantially equal.
  19. Circuit according to any of the preceding claims, characterized in that the antenna comprises a mid-point (PM) to set a potential at a reference potential, with an equal number of turns on the section extending from the first end terminal (D) to the mid-point (PM) and on the section extending from the mid-point (PM) to the second end terminal (E).
  20. Circuit according to any of the preceding claims, characterized in that said terminals (D, E, 1, 2, C1E, C1X), said tap (A), said points (P1, P2) and the capacitance (C1, ZZ) define a plurality of at least three nodes, the nodes defining at least one first group (S1) of at least one turn between two first nodes (1, C1E) separate from each other, and at least one second group of at least one other turn (S2) between two second nodes (1, 2) separate from each other, at least one of the first nodes being different from at least one of the second nodes, first coupling means are provided to ensure coupling (COUPL12) by mutual inductance between the first group (S1) of at least one turn and the second group of at least one other turn (S2) through the fact that the first group (S1) of at least one turn is positioned in the vicinity of the second group of at least one other turn (S2).
  21. Circuit according to any of the preceding claims, characterized in that said terminals (D, E, 1, 2, C1E, C1X), said tap (A), said points (P1, P2), and the capacitance (C1, ZZ) define a plurality of at least three nodes, the nodes defining at least one first group (S1) of at least one turn between two first nodes (1, C1E) separate from each other, and at least one second group of at least one other turn (S2) between two second nodes (1, 2) separate from each other, and at least one third group of at least one other turn (SC3, SC4) between two third nodes (E, C1X) separate from each other, at least one of the first nodes being different from at least one of the second nodes, at least one of first nodes being different from at least one of the third nodes, at least one of the third nodes being different from at least one of the second nodes,
    - first coupling means are provided to ensure coupling (COUPL12) by mutual inductance between, firstly, the first group (S1) of at least one turn and, secondly, the second group of at least one other turn (S2) through the fact that the first group (S1) of at least one turn is positioned in the vicinity of the second group of at least one other turn (S2),
    - second coupling means are provided to ensure coupling (COUPLZZ) by mutual inductance between firstly the first group (S1) of at least one turn and secondly the third group of at least one other turn (SC3, SC4) through the fact that the first group (S1) of at least one turn is positioned in the vicinity of the third group of at least one other turn (SC3, SC4).
  22. Circuit according to the preceding claim, characterized in that the first group (S1) of at least one turn is positioned between the second group of at least one other turn (S2) and the third group of at least one other turn (SC3, SC4).
  23. Circuit according to any of claims 20 to 22, characterized in that the distance separating the turns (S1, S2, SC3, SC4) belonging to different groups is equal to or less than 20 millimetres.
  24. Circuit according to any of claims 20 to 22, characterized in that the distance separating the turns (S1, S2, SC3, SC4) belonging to different groups is equal to or less than 10 millimetres.
  25. Circuit according to any of claims 20 to 22, characterized in that the distance separating the turns (S1, S2, SC3, SC4) belonging to different groups is equal to or less than 1 millimetre.
  26. Circuit according to any of claims 20 to 25, characterized in that the distance separating the turns (S1, S2, SC3, SC4) belonging to different groups is equal to or more than 80 micrometres.
  27. Circuit according to any of the preceding claims, characterized in that at least a reader (LECT) as charge and / or at least a transponder (TRANS) as charge is connected to the access terminals (1, 2).
  28. Circuit according to any of the preceding claims, characterized in that it comprises several first access terminals (1) which are distinct from each other and / or several second access terminals which are distinct from each other.
  29. Circuit according to any of the preceding claims, characterized in that said at least one first access terminal (1) and said at least one second access terminal (2) are connected to at least one first charge (Z1) having a first prescribed tuning frequency in a high frequency band and at least one second charge (Z2) having a second prescribed tuning frequency in another ultra high frequency band.
EP09805691A 2008-12-11 2009-12-09 Rfid antenna circuit Active EP2377200B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/FR2008/052281 WO2010066955A1 (en) 2008-12-11 2008-12-11 Rfid antenna circuit
FR0953791A FR2939936B1 (en) 2008-12-11 2009-06-08 RFID ANTENNA CIRCUIT
PCT/EP2009/066749 WO2010066799A2 (en) 2008-12-11 2009-12-09 Rfid antenna circuit

Publications (2)

Publication Number Publication Date
EP2377200A2 EP2377200A2 (en) 2011-10-19
EP2377200B1 true EP2377200B1 (en) 2012-10-31

Family

ID=41137346

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09805691A Active EP2377200B1 (en) 2008-12-11 2009-12-09 Rfid antenna circuit

Country Status (12)

Country Link
US (1) US8749390B2 (en)
EP (1) EP2377200B1 (en)
JP (1) JP5592895B2 (en)
KR (1) KR101634837B1 (en)
CN (1) CN102282723B (en)
BR (1) BRPI0922402A2 (en)
CA (1) CA2746241C (en)
FR (1) FR2939936B1 (en)
IL (1) IL213449A (en)
SG (1) SG172085A1 (en)
TW (1) TWI524587B (en)
WO (2) WO2010066955A1 (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2963140B1 (en) * 2010-07-20 2012-08-31 Oberthur Technologies NON-CONTACT TYPE MICROCIRCUIT DEVICE
CA2752609C (en) * 2010-09-21 2018-08-14 Inside Secure Nfc card for portable device
FR2966267A1 (en) 2010-10-19 2012-04-20 Inside Contactless APPARATUS COMPRISING NEAR FIELD COMMUNICATION DEVICE BY INDUCTIVE COUPLING
KR101273184B1 (en) 2011-08-02 2013-06-17 엘지이노텍 주식회사 Antenna and mobile terminal device therof
JP5709690B2 (en) * 2011-08-17 2015-04-30 タイコエレクトロニクスジャパン合同会社 antenna
US9590761B2 (en) * 2011-09-23 2017-03-07 Commscope Technologies Llc Detective passive RF components using radio frequency identification tags
CN102544709B (en) * 2011-12-21 2014-07-30 上海坤锐电子科技有限公司 Mobile payment through-connection-bridge communication distance balanced through-connection-bridge antenna
FR2985863B1 (en) * 2012-01-18 2014-02-14 Inside Secure ANTENNA CIRCUIT FOR NFC DEVICE
FR2991511B1 (en) * 2012-06-01 2014-07-04 Eray Innovation RFID AND / OR NFC ANTENNA CIRCUIT
CN103515698A (en) * 2012-06-28 2014-01-15 比亚迪股份有限公司 NFC (Near Field Communication) antenna and electronic equipment
US9934895B2 (en) * 2012-06-29 2018-04-03 Intel Corporation Spiral near field communication (NFC) coil for consistent coupling with different tags and devices
KR20140046754A (en) * 2012-10-11 2014-04-21 삼성메디슨 주식회사 Ultrasound system and method for automatically activating ultrasound probe based on motion of ultrasound probe
KR102144360B1 (en) 2012-12-05 2020-08-13 삼성전자주식회사 Smart nfc antenna matching network system and user device including the same
US9270343B2 (en) * 2012-12-20 2016-02-23 Nxp B.V. Wireless charging recognizing receiver movement over charging pad with NFC antenna array
TW201426220A (en) * 2012-12-21 2014-07-01 Hon Hai Prec Ind Co Ltd Watch having NFC antenna
TW201426221A (en) * 2012-12-21 2014-07-01 Hon Hai Prec Ind Co Ltd Watch having NFC antenna
US9293825B2 (en) * 2013-03-15 2016-03-22 Verifone, Inc. Multi-loop antenna system for contactless applications
CN105229853B (en) * 2013-05-13 2018-02-16 阿莫技术有限公司 NFC antenna module and the carried terminal being made from it
JP6146272B2 (en) * 2013-11-22 2017-06-14 トヨタ自動車株式会社 Power receiving device and power transmitting device
KR102184679B1 (en) 2013-12-20 2020-11-30 삼성전자주식회사 Smart nfc antenna matching network system having multiple antennas and user device including the same
US20150188227A1 (en) * 2013-12-31 2015-07-02 Identive Group, Inc. Antenna for near field communication, antenna arrangement, transponder with antenna, flat panel and methods of manufacturing
KR101664439B1 (en) * 2014-06-13 2016-10-10 주식회사 아모텍 Nfci antenna module and portable device having the same
CN107004155B (en) * 2014-10-14 2019-12-13 康菲德斯合股公司 RFID transponder and RFID transponder network
PL3010084T3 (en) * 2014-10-17 2020-01-31 Synoste Oy A device with a receiving antenna and a related power transfer system
FR3032050B1 (en) * 2015-01-27 2018-02-16 Starchip MICROELECTRONIC CHIP WITH MULTIPLE PLOTS
US10333200B2 (en) * 2015-02-17 2019-06-25 Samsung Electronics Co., Ltd. Portable device and near field communication chip
EP3231132A4 (en) * 2015-02-20 2018-06-27 Hewlett-Packard Development Company, L.P. User authentication device
WO2016186169A1 (en) * 2015-05-21 2016-11-24 シャープ株式会社 Display device
KR102511755B1 (en) * 2015-06-12 2023-03-21 삼성전자주식회사 Near field communication antenna and near field communication device having the same
CN106329096B (en) * 2015-06-30 2020-03-31 比亚迪股份有限公司 NFC antenna
US9947988B2 (en) * 2015-08-06 2018-04-17 Thin Film Electronics Asa Wireless communication device with integrated ferrite shield and antenna, and methods of manufacturing the same
US10692643B2 (en) * 2015-10-27 2020-06-23 Cochlear Limited Inductance coil path
US10955977B2 (en) 2015-11-03 2021-03-23 Microsoft Technology Licensing, Llc Extender object for multi-modal sensing
US10649572B2 (en) 2015-11-03 2020-05-12 Microsoft Technology Licensing, Llc Multi-modal sensing surface
US10338753B2 (en) 2015-11-03 2019-07-02 Microsoft Technology Licensing, Llc Flexible multi-layer sensing surface
CN107368616B (en) * 2016-05-11 2021-03-09 中芯国际集成电路制造(上海)有限公司 Simulation model circuit for realizing radio frequency identification and simulation method thereof
TWI625896B (en) * 2016-05-13 2018-06-01 Chen Yi Feng Broadband multi-frequency dual loop antenna
US10055619B2 (en) * 2016-06-17 2018-08-21 Intermec, Inc. Systems and methods for compensation of interference in radiofrequency identification (RFID) devices
CN106252842A (en) * 2016-07-29 2016-12-21 中国科学院微电子研究所 Gain antenna and communication system
JP6369666B1 (en) 2016-09-26 2018-08-08 株式会社村田製作所 ANTENNA DEVICE AND ELECTRONIC DEVICE
CN106299667A (en) * 2016-09-26 2017-01-04 上海德门电子科技有限公司 The NFC antenna device of adjustable self-resonant frequency and electronic equipment and method
KR102452409B1 (en) * 2016-10-19 2022-10-11 삼성전자주식회사 Electronic device with radiating member
US10152837B1 (en) 2016-12-29 2018-12-11 George Mallard System and method for integrating credential readers
WO2018153019A1 (en) * 2017-02-27 2018-08-30 华为技术有限公司 Nfc antenna and terminal device
BR102018007799A2 (en) * 2018-04-18 2019-11-05 Centro Nac De Tecnologia Eletronica Avancada S A module type electronic radio frequency identification device
GB2576319B (en) * 2018-08-13 2021-01-06 Pragmatic Printing Ltd Capacitively coupled RFID communication
EP3918523B1 (en) * 2019-01-31 2024-06-05 Linxens Holding Chip card, antenna support for a chip card and method for manufacturing an antenna support for a chip card
CN114424207A (en) * 2019-09-19 2022-04-29 胡斯华纳有限公司 Wireless identification tag and corresponding reader
SE545998C2 (en) * 2019-09-19 2024-04-09 Husqvarna Ab Wireless identification tags and corresponding readers

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3823403A (en) 1971-06-09 1974-07-09 Univ Ohio State Res Found Multiturn loop antenna
IL100451A (en) 1990-12-28 1994-08-26 Bashan Oded Non-contact data communications system
US5541399A (en) 1994-09-30 1996-07-30 Palomar Technologies Corporation RF transponder with resonant crossover antenna coil
US5955723A (en) 1995-05-03 1999-09-21 Siemens Aktiengesellschaft Contactless chip card
US5708419A (en) 1996-07-22 1998-01-13 Checkpoint Systems, Inc. Method of wire bonding an integrated circuit to an ultraflexible substrate
WO1998006075A1 (en) 1996-08-06 1998-02-12 Meto International Gmbh Electronic anti-theft element
DE19753619A1 (en) 1997-10-29 1999-05-06 Meto International Gmbh Identification tag with radio frequency identification transponder
IL119943A (en) 1996-12-31 2000-11-21 On Track Innovations Ltd Contact/contactless data transaction card
JP3823406B2 (en) * 1997-01-07 2006-09-20 松下電器産業株式会社 Multilayer filter and mobile phone using the same
DE19719434A1 (en) 1997-05-12 1998-11-19 Meto International Gmbh Universal securing element and method for its manufacture
JPH11346114A (en) * 1997-06-11 1999-12-14 Matsushita Electric Ind Co Ltd Antenna device
CN1179295C (en) 1997-11-14 2004-12-08 凸版印刷株式会社 Composite IC module and composite IC card
IL122841A0 (en) 1997-12-31 1998-08-16 On Track Innovations Ltd Smart card for effecting data transfer using multiple protocols
FR2777141B1 (en) 1998-04-06 2000-06-09 Gemplus Card Int TRANSPONDER
US6154137A (en) 1998-06-08 2000-11-28 3M Innovative Properties Company Identification tag with enhanced security
JP2000067194A (en) * 1998-08-25 2000-03-03 Sony Corp Storage device
DE19905886A1 (en) 1999-02-11 2000-08-17 Meto International Gmbh Identification element and method for producing an identification element
JP3632894B2 (en) * 1999-03-15 2005-03-23 ソニー株式会社 Antenna device and card-like storage medium
DE19951561A1 (en) 1999-10-27 2001-05-03 Meto International Gmbh Securing element for electronic article surveillance
JP4186149B2 (en) * 1999-12-06 2008-11-26 株式会社エフ・イー・シー Auxiliary antenna for IC card
US6522308B1 (en) * 2000-01-03 2003-02-18 Ask S.A. Variable capacitance coupling antenna
FI113809B (en) 2000-11-01 2004-06-15 Rafsec Oy Method for making a smart sticker and a smart sticker
NO313976B1 (en) 2000-11-06 2003-01-06 Helge Idar Karlsen Device by antenna
JP2002183689A (en) * 2000-12-11 2002-06-28 Dainippon Printing Co Ltd Noncontact data carrier device and method of manufacture
US6407669B1 (en) * 2001-02-02 2002-06-18 3M Innovative Properties Company RFID tag device and method of manufacturing
FR2823888B1 (en) 2001-04-24 2005-02-18 Gemplus Card Int METHOD FOR MANUFACTURING CONTACTLESS OR HYBRID CARD AND OBTAINED CARD
US6693541B2 (en) * 2001-07-19 2004-02-17 3M Innovative Properties Co RFID tag with bridge circuit assembly and methods of use
JP4196554B2 (en) * 2001-09-28 2008-12-17 三菱マテリアル株式会社 Tag antenna coil and RFID tag using the same
US7119693B1 (en) 2002-03-13 2006-10-10 Celis Semiconductor Corp. Integrated circuit with enhanced coupling
FR2840431B1 (en) 2002-05-29 2004-09-03 Francois Trantoul METHOD AND DEVICE FOR PROTECTING READING INSTRUCTIONS
JP4063040B2 (en) * 2002-10-22 2008-03-19 ソニー株式会社 IC module and IC module antenna
JP2004227046A (en) 2003-01-20 2004-08-12 Hitachi Ltd Portable information device
US6970141B2 (en) * 2003-07-02 2005-11-29 Sensormatic Electronics Corporation Phase compensated field-cancelling nested loop antenna
JP4244169B2 (en) * 2003-08-04 2009-03-25 日本発條株式会社 Non-contact information medium and communication system using the same
US20060044769A1 (en) 2004-09-01 2006-03-02 Forster Ian J RFID device with magnetic coupling
US7812729B2 (en) * 2004-11-15 2010-10-12 Sensormatic Electronics, LLC Combination EAS and RFID label or tag with controllable read range using a hybrid RFID antenna
US20080271305A1 (en) 2005-01-19 2008-11-06 Tosoh Smd Etna, Llc Automated Sputtering Target Production
FR2886466B1 (en) 2005-05-25 2012-06-15 Oberthur Card Syst Sa ELECTRONIC ENTITY WITH MAGNETIC ANTENNA
FR2887665B1 (en) 2005-06-27 2007-10-12 Oberthur Card Syst Sa ELECTRONIC ENTITY WITH MAGNETIC ANTENNA
FR2893162B1 (en) 2005-11-08 2008-02-15 Oberthur Card Syst Sa MICROCIRCUIT CARD COMPRISING A ADVANCED INTERDIGITAL CAPACITOR
JP2007166379A (en) * 2005-12-15 2007-06-28 Fujitsu Ltd Loop antenna and electronic apparatus with same
IL175824A0 (en) 2006-05-22 2007-09-20 On Track Innovations Ltd Data transaction card having a tunable coil antenna with reduced footprint
FR2904453B1 (en) 2006-07-25 2009-01-16 Oberthur Card Syst Sa ELECTRONIC ANTENNA WITH MICROCIRCUIT.
KR100822240B1 (en) * 2006-08-07 2008-04-17 전자부품연구원 RFID Tag
FR2910152B1 (en) 2006-12-19 2009-04-03 Oberthur Card Syst Sa ANTENNA WITH BRIDGE WITHOUT VIA FOR PORTABLE ELECTRONIC ENTITY
JP4452782B2 (en) 2006-12-20 2010-04-21 仁川大學校産學協力團 Multiple loop antenna for RFID reader, RFID reader having the same, and RFID system having the same
US7675365B2 (en) 2007-01-10 2010-03-09 Samsung Electro-Mechanics Systems and methods for power amplifiers with voltage boosting multi-primary transformers
EP1970840A1 (en) 2007-03-15 2008-09-17 Magnex Corporation RFID tag with improved range
GB0705635D0 (en) 2007-03-23 2007-05-02 Innovision Res & Tech Plc Near field RF communicators
FR2914458B1 (en) 2007-03-28 2009-06-26 Inside Contactless Sa METHOD OF COUPLING A CONTACTLESS INTEGRATED CIRCUIT TO AN NFC COMPONENT
FR2915011B1 (en) 2007-03-29 2009-06-05 Smart Packaging Solutions Sps CHIP CARD WITH DOUBLE COMMUNICATION INTERFACE
WO2008131243A1 (en) * 2007-04-18 2008-10-30 3M Innovative Properties Company Radio frequency identification functionality coupled to electrically conductive signage
JP5020161B2 (en) 2008-05-16 2012-09-05 三菱電機株式会社 Wireless communication device
TW201019628A (en) 2008-08-15 2010-05-16 Ivi Smart Technologies Inc RF power conversion circuits & methods, both for use in mobile devices
US8201748B2 (en) * 2009-04-27 2012-06-19 Impinj, Inc. Packaged RFID IC with integrated antenna

Also Published As

Publication number Publication date
EP2377200A2 (en) 2011-10-19
WO2010066955A1 (en) 2010-06-17
KR101634837B1 (en) 2016-06-29
CN102282723B (en) 2014-09-24
BRPI0922402A2 (en) 2017-07-11
JP2012511850A (en) 2012-05-24
CA2746241A1 (en) 2010-06-17
KR20110099722A (en) 2011-09-08
JP5592895B2 (en) 2014-09-17
TW201101579A (en) 2011-01-01
WO2010066799A2 (en) 2010-06-17
WO2010066799A3 (en) 2010-08-19
SG172085A1 (en) 2011-07-28
CA2746241C (en) 2018-01-23
TWI524587B (en) 2016-03-01
IL213449A0 (en) 2011-07-31
FR2939936A1 (en) 2010-06-18
CN102282723A (en) 2011-12-14
IL213449A (en) 2015-08-31
US8749390B2 (en) 2014-06-10
FR2939936B1 (en) 2018-11-23
US20110266883A1 (en) 2011-11-03

Similar Documents

Publication Publication Date Title
EP2377200B1 (en) Rfid antenna circuit
EP2710523B1 (en) Radiofrequency transponder device with passive resonant circuit
FR2886466A1 (en) ELECTRONIC ENTITY WITH MAGNETIC ANTENNA
FR2887665A1 (en) ELECTRONIC ENTITY WITH MAGNETIC ANTENNA
EP1883996A2 (en) Electronic entity with magnetic antenna
EP2618496B1 (en) NFC antenna with interleaved coils
WO2016188920A1 (en) Radiofrequency antenna circuit having interlocking mutual inductors
WO2009059997A1 (en) Wideband inductive antenna for contactless communication systems
EP2583353B1 (en) High-frequency antenna
EP3391291B1 (en) Radiofrequency device with adjustable lc circuit including an electric and/or electronic module
FR3081243A1 (en) SECURE ELECTRONIC PASSPORT AGAINST UNAUTHORIZED READINGS
FR3036541A1 (en) ANTENNA WITH CIRCUITS RLC ENTREMELES
WO2017191373A1 (en) Electronic module of small size for a chip card
EP3516736B1 (en) Antenna with ferromagnetic rods wound and coupled together
EP2471028B1 (en) Manufacturing method for a device comprising a rfid circuit, and corresponding device
FR2784524A1 (en) HF antenna for non-contact reading of electronic tags, has two concentric spiral coils with opposite sense on a PCB substrate, both contributing to radiation of interrogation signal
EP3314540B1 (en) Multilayer electronic module, in particular for a contactless chip card
EP2471030B1 (en) Method for the realization of a device comprising a radiofrequency circuit, obtained device and module for carrying out the method
FR3028982A1 (en) REDUCED SIZE ELETRONIC MODULE FOR CHIP CARD

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110715

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 582437

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009010935

Country of ref document: DE

Effective date: 20130103

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 582437

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121031

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130131

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130228

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130201

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI AND CIE SA, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130131

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20130801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121209

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009010935

Country of ref document: DE

Effective date: 20130801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20131218

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140108

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602009010935

Country of ref document: DE

Representative=s name: HOEGER, STELLRECHT & PARTNER PATENTANWAELTE MB, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141209

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20161227

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170120

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171209

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602009010935

Country of ref document: DE

Representative=s name: HOEGER, STELLRECHT & PARTNER PATENTANWAELTE MB, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20191217

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200113

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009010935

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231124

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231229

Year of fee payment: 15