EP2375025B1 - Coolant circuit for a combustion engine - Google Patents

Coolant circuit for a combustion engine Download PDF

Info

Publication number
EP2375025B1
EP2375025B1 EP10015802.1A EP10015802A EP2375025B1 EP 2375025 B1 EP2375025 B1 EP 2375025B1 EP 10015802 A EP10015802 A EP 10015802A EP 2375025 B1 EP2375025 B1 EP 2375025B1
Authority
EP
European Patent Office
Prior art keywords
cylinder head
crankcase
combustion engine
cooling circuit
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10015802.1A
Other languages
German (de)
French (fr)
Other versions
EP2375025A3 (en
EP2375025A2 (en
Inventor
Matthias Honzen
Markus Köhne
Volker Boestfleisch
Hermann Henning
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Audi AG
Original Assignee
Audi AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi AG filed Critical Audi AG
Publication of EP2375025A2 publication Critical patent/EP2375025A2/en
Publication of EP2375025A3 publication Critical patent/EP2375025A3/en
Application granted granted Critical
Publication of EP2375025B1 publication Critical patent/EP2375025B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/027Cooling cylinders and cylinder heads in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/02Intercooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/16Outlet manifold

Definitions

  • Cooling circuit for an internal combustion engine with separate flow through the cylinder head and cylinder crankcase, and an exhaust gas cooler.
  • Such cooling circuits are used in the automotive industry for heat dissipation of the internal combustion engine and for cooling of operating materials of the internal combustion engine, such as exhaust gas, fresh gas or lubricant, which can affect the efficiency and / or the exhaust gas composition of the internal combustion engine.
  • the DE 10 2004 052 137 A1 shows a dual-circuit cooling for an internal combustion engine with a crankcase and a cylinder head.
  • the crankcase is incorporated in a crankcase coolant circuit while the cylinder head is incorporated into a separate cylinder head coolant circuit. Both coolant circuits are fed by a common coolant pump.
  • the crankcase coolant circuit can be closed by an actuator, whereby the crankcase heats up faster after a cold start. Furthermore, it is possible to operate the two coolant circuits at different temperature levels.
  • the DE 103 32 947 A1 also describes an internal combustion engine for a motor vehicle with a dual-circuit cooling, in the cylinder head and cylinder crankcase have separate coolant branches, which are fed via a common inlet from a coolant pump.
  • the coolant on the cylinder head and the cylinder crankcase is recombined after exiting the corresponding components and recirculated to the coolant pump.
  • the coolant can optionally be performed via a branch with exhaust gas cooler, heater core and oil cooler to the coolant pump or passed through a second branch either to the main heat exchanger or bypassing the main heat exchanger directly to the coolant pump.
  • the object of the present invention is therefore to provide a cooling circuit for an internal combustion engine, in which an exhaust gas cooler with a small space requirement can be arranged and operated as efficiently as possible.
  • the exhaust gas cooler is integrated downstream of the cylinder head and upstream of the junction in the cylinder head branch circuit, this is flowed through by the compared to the crankcase branch circuit cooler coolant of the cylinder head branch circuit.
  • the fuel in the corresponding heat exchanger can be better cooled, which has a positive effect on the efficiency and / or the exhaust gas composition of the internal combustion engine.
  • other elements such as a heat exchanger, can be integrated as needed.
  • a shut-off valve designed as a vacuum-operated rotary valve is arranged in the crankcase branch circuit downstream of the crankcase. Through the shut-off valve, the coolant flow in the crankcase branch circuit can be regulated. Thus, by a shut-off of the crankcase branch circuit preferably after the start of the internal combustion engine, a faster heating of the same can be achieved.
  • the main heat exchanger is arranged downstream of the connection point.
  • the main heat exchanger has the largest cooling capacity and can be supplied with coolant from the cylinder head and the crankcase.
  • a control valve between the coolant pump and main heat exchanger is arranged.
  • the control valve regulates the coolant flow to be supplied to the coolant pump.
  • a bypass line branches off between the main water cooler and the connection point and is connected to the control valve.
  • the bypass line is used for bypassing the main heat exchanger by the coolant is diverted from the cylinder head and the crankcase downstream of the junction and the control valve is supplied.
  • the control valve can switch depending on the temperature between the flow through the bypass line or the main heat exchanger.
  • the control valve is preferably designed as a map thermostat.
  • two or more cylinder heads are flowed through in parallel in the cylinder head branch circuit and the exhaust gas cooler is arranged downstream of the cylinder heads.
  • the exhaust gas cooler is arranged downstream of the cylinder heads.
  • the heat exchanger for a fuel is designed as a charge air cooler.
  • An intercooler is used to cool fresh air compressed by a supercharger, which results in efficiency gains.
  • the heat exchanger for a fuel is designed as an exhaust gas cooler.
  • an exhaust gas cooler at least part of the exhaust gas exiting the internal combustion engine is cooled to supply it as an inert gas to the combustion process in the internal combustion engine (exhaust gas recirculation).
  • the resulting reduction in the combustion temperature reduces the proportion of nitrogen oxides in the exhaust gas.
  • the figure shows a schematic view of the cooling circuit of an internal combustion engine.
  • an internal combustion engine 2 has a crankcase 4, which contains cylinders in individual combustion chambers, and a cylinder head 3, which contains the devices required for the gas exchange of the combustion chambers.
  • the internal combustion engine 2 converts chemical energy into mechanical and thermal energy during its operation, which is why it is integrated in a cooling circuit 1 for heat removal.
  • the coolant pump 5 conveys coolant to the internal combustion engine 2, wherein the coolant flow is divided at a branch point A into two parallel branch circuits 8 and 9.
  • the cylinder head 3 is integrated into a cylinder head branch circuit 8 and the crankcase 4 into a crankcase branch circuit 9.
  • crankcase 4 heats up faster and more vigorously than the cylinder head 3 during operation of the internal combustion engine 2.
  • the branch circuits 8 and 9 are located downstream of the cylinder head 3 and the crankcase 4 at a connection point B. merged again.
  • a heat exchanger 7 for a fuel of the internal combustion engine 2 is arranged between the cylinder head 3 and junction B.
  • Operating materials in this context are gases or liquids that are required for the function of the internal combustion engine 2, such as exhaust gas.
  • a check valve 10 is arranged, whereby the crankcase branch circuit 9 for the purpose of faster heating of the internal combustion engine 2, in particular the crankcase 4, if necessary, can be shut off.
  • the check valve 10 is to be executed as a negative pressure operated rotary valve.
  • the coolant passes to a main heat exchanger 6 and from there to a control valve 11.
  • the output of the control valve 11 is connected to the suction side 5 of the coolant pump 5.
  • control valve 11 is preferably designed as a map-controlled thermostat or a rotary valve with two inlets and one outlet.
  • the cooling circuit 1 of the invention is not limited to the elements shown. Rather, additional heat exchanger, oil cooler, water cooler, etc. can be integrated into the cooling circuit 1 or a partial circuit thereof.

Description

Kühlkreislauf für eine Brennkraftmaschine mit getrennter Durchströmung von Zylinderkopf und Zylinderkurbelgehäuse, und einem Abgaskühler.Cooling circuit for an internal combustion engine with separate flow through the cylinder head and cylinder crankcase, and an exhaust gas cooler.

Derartige Kühlkreisläufe werden im Kraftfahrzeugbau zur Wärmeabfuhr von der Brennkraftmaschine und zur Kühlung von Betriebsstoffen der Brennkraftmaschine, wie beispielsweise Abgas, Frischgas oder Schmiermittel genutzt, wodurch sich der Wirkungsgrad und/oder die Abgaszusammensetzung der Brennkraftmaschine beeinflussen lässt.Such cooling circuits are used in the automotive industry for heat dissipation of the internal combustion engine and for cooling of operating materials of the internal combustion engine, such as exhaust gas, fresh gas or lubricant, which can affect the efficiency and / or the exhaust gas composition of the internal combustion engine.

Die DE 10 2004 052 137 A1 zeigt eine Zweikreiskühlung für eine Brennkraftmaschine mit einem Kurbelgehäuse und einem Zylinderkopf. Das Kurbelgehäuse ist in einen Kurbelgehäuse-Kühlmittelkreislauf eingebunden, während der Zylinderkopf in einen separaten Zylinderkopf-Kühlmittelkreislauf eingebunden ist. Beide Kühlmittelkreisläufe werden von einer gemeinsamen Kühlmittelpumpe gespeist. Der Kurbelgehäuse-Kühlmittelkreislauf kann durch ein Stellelement verschlossen werden, wodurch sich das Kurbelgehäuse nach einem Kaltstart schneller erwärmt. Weiterhin ist es möglich die beiden Kühlmittelkreisläufe auf unterschiedlichen Temperaturniveaus zu betreiben.The DE 10 2004 052 137 A1 shows a dual-circuit cooling for an internal combustion engine with a crankcase and a cylinder head. The crankcase is incorporated in a crankcase coolant circuit while the cylinder head is incorporated into a separate cylinder head coolant circuit. Both coolant circuits are fed by a common coolant pump. The crankcase coolant circuit can be closed by an actuator, whereby the crankcase heats up faster after a cold start. Furthermore, it is possible to operate the two coolant circuits at different temperature levels.

Die DE 103 32 947 A1 beschreibt ebenfalls eine Brennkraftmaschine für ein Kraftfahrzeug mit einer Zweikreiskühlung, bei der Zylinderkopf und Zylinderkurbelgehäuse über separate Kühlmittelzweige verfügen, die über einen gemeinsamen Zulauf von einer Kühlmittelpumpe gespeist werden. Das Kühlmittel auf dem Zylinderkopf und dem Zylinderkurbelgehäuse wird nach dem Austritt aus den entsprechenden Bauteilen wieder zusammengeführt und zur Kühlmittelpumpe rezirkuliert. Dabei kann das Kühlmittel wahlweise über einen Zweig mit Abgaskühler, Heizungswärmetauscher und Ölkühler zur Kühlmittelpumpe geführt werden oder aber über einen zweiten Zweig wahlweise zum Hauptwärmetauscher oder unter Umgehung des Hauptwärmetauschers direkt zur Kühlmittelpumpe geleitet werden.The DE 103 32 947 A1 also describes an internal combustion engine for a motor vehicle with a dual-circuit cooling, in the cylinder head and cylinder crankcase have separate coolant branches, which are fed via a common inlet from a coolant pump. The coolant on the cylinder head and the cylinder crankcase is recombined after exiting the corresponding components and recirculated to the coolant pump. In this case, the coolant can optionally be performed via a branch with exhaust gas cooler, heater core and oil cooler to the coolant pump or passed through a second branch either to the main heat exchanger or bypassing the main heat exchanger directly to the coolant pump.

Nachteilig ist jedoch, dass der Abgaskühler bei dem gezeigten Kühlmittelkreislauf nur mit solchem Kühlmittel beaufschlagt werden kann, welches bereits den gesamten Motor, also sowohl den Zylinderkopf, als auch das Zylinderkurbelgehäuse, durchströmt hat und dementsprechend erwärmt ist. Dadurch ergeben sich Wirkungsgradverluste bei der Kühlung des Abgases. Zudem benötigt die Integration von zwei verschiedenen Zweigen zur Rückführung des Kühlmittels zur Kühlmittelpumpe einen großen Bauraum.The disadvantage, however, is that the exhaust gas cooler can be acted upon in the coolant circuit shown only with such coolant, which has already flowed through the entire engine, so both the cylinder head, and the cylinder crankcase, and is heated accordingly. This results in efficiency losses in the cooling of the exhaust gas. In addition, the integration of two different branches for returning the coolant to the coolant pump requires a large amount of space.

Aufgabe der vorliegenden Erfindung ist es daher einen Kühlkreislauf für eine Brennkraftmaschine bereitzustellen, in dem ein Abgaskühler mit geringem Bauraumbedarf angeordnet und möglichst effizient betrieben werden kann.The object of the present invention is therefore to provide a cooling circuit for an internal combustion engine, in which an exhaust gas cooler with a small space requirement can be arranged and operated as efficiently as possible.

Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst.This object is solved by the features of patent claim 1.

Indem der Abgaskühler stromab des Zylinderkopfes und stromauf der Verbindungsstelle in den Zylinderkopf-Zweigkreislauf eingebunden ist, wird dieser von dem im Vergleich zum Kurbelgehäuse-Zweigkreislauf kühleren Kühlmittel des Zylinderkopf-Zweigkreislaufs durchströmt. Dadurch kann der Betriebsstoff in dem entsprechenden Wärmetauscher besser gekühlt werden, was sich positiv auf den Wirkungsgrad und/oder die Abgaszusammensetzung der Brennkraftmaschine auswirkt. Natürlich können neben den genannten Bestandteilen des Kühlkreislaufs auch noch weitere Elemente, wie ein Heizungswärmetauscher, je nach Bedarf integriert werden.By the exhaust gas cooler is integrated downstream of the cylinder head and upstream of the junction in the cylinder head branch circuit, this is flowed through by the compared to the crankcase branch circuit cooler coolant of the cylinder head branch circuit. As a result, the fuel in the corresponding heat exchanger can be better cooled, which has a positive effect on the efficiency and / or the exhaust gas composition of the internal combustion engine. Of course, in addition to the aforementioned components of the cooling circuit also other elements, such as a heat exchanger, can be integrated as needed.

Ein als unterdruckbetätigtes Drehventil ausgebildetes Absperrventil ist im Kurbelgehäuse-Zweigkreislauf stromab des Kurbelgehäuses angeordnet. Durch das Absperrventil kann der Kühlmittelvolumenstrom im Kurbelgehäuse-Zweigkreislauf reguliert werden. So kann durch eine Absperrung des Kurbelgehäuse-Zweigkreislaufs vorzugsweise nach dem Start der Brennkraftmaschine eine schnellere Erwärmung derselben erzielt werden.A shut-off valve designed as a vacuum-operated rotary valve is arranged in the crankcase branch circuit downstream of the crankcase. Through the shut-off valve, the coolant flow in the crankcase branch circuit can be regulated. Thus, by a shut-off of the crankcase branch circuit preferably after the start of the internal combustion engine, a faster heating of the same can be achieved.

In einer bevorzugten Ausführung ist der Hauptwärmetauscher stromab der Verbindungsstelle angeordnet. Der Hauptwärmetauscher hat die größte Kühlkapazität und kann mit Kühlmittel aus dem Zylinderkopf und dem Kurbelgehäuse beaufschlagt werden.In a preferred embodiment, the main heat exchanger is arranged downstream of the connection point. The main heat exchanger has the largest cooling capacity and can be supplied with coolant from the cylinder head and the crankcase.

In einer bevorzugten Ausführung ist ein Steuerventil zwischen Kühlmittelpumpe und Hauptwärmetauscher angeordnet. Das Steuerventil reguliert den der Kühlmittelpumpe zuzuführenden Kühlmittelvolumenstrom.In a preferred embodiment, a control valve between the coolant pump and main heat exchanger is arranged. The control valve regulates the coolant flow to be supplied to the coolant pump.

In einer bevorzugten Ausführung zweigt zwischen Hauptwasserkühler und Verbindungsstelle eine Bypassleitung ab, die an dem Steuerventil angebunden ist. Die Bypassleitung dient der bedarfsweisen Umgehung des Hauptwärmetauschers, indem das Kühlmittel aus dem Zylinderkopf und dem Kurbelgehäuse stromab der Verbindungsstelle abgezweigt wird und dem Steuerventil zugeführt wird. Das Steuerventil kann temperaturabhängig zwischen der Durchströmung der Bypassleitung oder des Hauptwärmetauschers umschalten. Dazu ist das Steuerventil bevorzugt als ein Kennfeldthermostat ausgebildet.In a preferred embodiment, a bypass line branches off between the main water cooler and the connection point and is connected to the control valve. The bypass line is used for bypassing the main heat exchanger by the coolant is diverted from the cylinder head and the crankcase downstream of the junction and the control valve is supplied. The control valve can switch depending on the temperature between the flow through the bypass line or the main heat exchanger. For this purpose, the control valve is preferably designed as a map thermostat.

In einer bevorzugten Ausführung werden zwei oder mehr Zylinderköpfe im Zylinderkopf-Zweigkreislauf parallel durchströmt und der Abgaskühler ist stromab der Zylinderköpfe angeordnet. Bei Brennkraftmaschinen mit Zylinderbänken in V- oder W-Anordnung finden sich mehrere Zylinderköpfe. Diese sind parallel in den Zylinderkopf-Zweigkreislauf eingebunden, wobei das Kühlmittel aus den Zylinderköpfen vor der Zuführung in den Abgaskühler wieder gesammelt wird.In a preferred embodiment, two or more cylinder heads are flowed through in parallel in the cylinder head branch circuit and the exhaust gas cooler is arranged downstream of the cylinder heads. In internal combustion engines with cylinder banks in V or W arrangement, there are several cylinder heads. These are incorporated in parallel in the cylinder head branch circuit, wherein the coolant is collected from the cylinder heads before being fed into the exhaust gas cooler again.

In einem nicht erfindungsgemäßen Beispiel ist der Wärmetauscher für einen Betriebsstoff als Ladeluftkühler ausgebildet. Ein Ladeluftkühler dient der Abkühlung von durch einen Lader verdichteter Frischluft, wodurch sich Wirkungsgradgewinne erzielen lassen.In an example not according to the invention, the heat exchanger for a fuel is designed as a charge air cooler. An intercooler is used to cool fresh air compressed by a supercharger, which results in efficiency gains.

Erfindungsgemäß ist der Wärmetauscher für einen Betriebsstoff als Abgaskühler ausgebildet. In einem Abgaskühler wird zumindest ein Teil des aus der Brennkraftmaschine austretenden Abgases gekühlt, um es als Inertgas dem Verbrennungsprozess in der Brennkraftmaschine zuzuführen (Abgasrückführung). Die daraus resultierende Verringerung der Verbrennungstemperatur reduziert den Anteil an Stickoxiden im Abgas.According to the invention, the heat exchanger for a fuel is designed as an exhaust gas cooler. In an exhaust gas cooler, at least part of the exhaust gas exiting the internal combustion engine is cooled to supply it as an inert gas to the combustion process in the internal combustion engine (exhaust gas recirculation). The resulting reduction in the combustion temperature reduces the proportion of nitrogen oxides in the exhaust gas.

Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der nachstehenden Beschreibung eines bevorzugten Ausführungsbeispiels unter Bezugnahme auf die Zeichnung.Further details, features and advantages of the invention will become apparent from the following description of a preferred embodiment with reference to the drawings.

Darin zeigt die Figur eine schematische Ansicht des Kühlkreislaufs einer Brennkraftmaschine.Therein, the figure shows a schematic view of the cooling circuit of an internal combustion engine.

Gemäß der Figur hat eine Brennkraftmaschine 2 ein Kurbelgehäuse 4, welches Zylinder in einzelnen Brennräumen beinhaltet, und einen Zylinderkopf 3, der die für den Gaswechsel der Brennräume benötigten Vorrichtungen enthält. Die Brennkraftmaschine 2 setzt bei ihrem Betrieb chemische Energie in mechanische und thermische Energie um, weshalb diese in einen Kühlkreislauf 1 zur Wärmeabfuhr eingebunden ist. Bei der dargestellten Zweikreiskühlung fördert die Kühlmittelpumpe 5 Kühlmittel zur Brennkraftmaschine 2, wobei der Kühlmittelstrom sich an einer Verzweigungsstelle A in zwei parallele Zweigkreisläufe 8 und 9 aufteilt. Der Zylinderkopf 3 ist in einen Zylinderkopf-Zweigkreislauf 8 und das Kurbelgehäuse 4 in einen Kurbelgehäuse-Zweigkreislauf 9 eingebunden. Durch die in den Brennräumen des Kurbelgehäuses 4 hauptsächlich stattfindende Umsetzung der Energie, erwärmt sich das Kurbelgehäuse 4 beim Betrieb der Brennkraftmaschine 2 schneller und stärker als der Zylinderkopf 3. Die Zweigkreisläufe 8 und 9 werden stromab des Zylinderkopfes 3 beziehungsweise des Kurbelgehäuses 4 an einer Verbindungsstelle B wieder zusammengeführt. Im Zylinderkopf-Zweigkreislauf 8 ist zwischen Zylinderkopf 3 und Verbindungsstelle B ein Wärmetauscher 7 für ein Betriebsstoff der Brennkraftmaschine 2 angeordnet. Betriebsstoffe sind in diesem Zusammenhang Gase oder Flüssigkeiten, die für die Funktion der Brennkraftmaschine 2 benötigt werden, wie Abgas. Im Kurbelgehäuse-Zweigkreislauf 9 zwischen Kurbelgehäuse 4 und Verbindungsstelle B ist ein Absperrventil 10 angeordnet, wodurch der Kurbelgehäuse-Zweigkreislauf 9 zum Zwecke einer schnelleren Erwärmung der Brennkraftmaschine 2, insbesondere des Kurbelgehäuses 4, bedarfsweise abgesperrt werden kann. Das Absperrventil 10 ist als ein unterdruckbetätigtes Drehventil auszuführen. Von der Verbindungsstelle B gelangt das Kühlmittel zu einem Hauptwärmetauscher 6 und von diesem zu einem Steuerventil 11. Der Ausgang des Steuerventils 11 ist mit der Ansaugseite 5 der Kühlmittelpumpe 5 verbunden. Zwischen der Verbindungsstelle B und dem Hauptwärmetauscher 6 zweigt an einem Bypassabzweig C eine Bypassleitung 12 ab, durch die Kühlmittel aus der Brennkraftmaschine 2 unter Umgehung des Hauptwasserkühlers 6 zum Steuerventil 11 und somit zur Kühlmittelpumpe 5 gelangen kann. Das Steuerventil 11 ist zu diesem Zweck vorzugsweise als ein Kennfeldthermostat oder ein Drehschieber mit zwei Zuläufen und einem Ausgang auszuführen. Natürlich beschränkt sich der erfindungsgemäße Kühlkreislauf 1 nicht auf die dargestellten Elemente. Vielmehr können zusätzliche Heizungswärmetauscher, Ölkühler, Wasserkühler, etc. in den Kühlkreislauf 1 oder einen Teilkreislauf davon integriert werden.According to the figure , an internal combustion engine 2 has a crankcase 4, which contains cylinders in individual combustion chambers, and a cylinder head 3, which contains the devices required for the gas exchange of the combustion chambers. The internal combustion engine 2 converts chemical energy into mechanical and thermal energy during its operation, which is why it is integrated in a cooling circuit 1 for heat removal. In the illustrated two-circuit cooling, the coolant pump 5 conveys coolant to the internal combustion engine 2, wherein the coolant flow is divided at a branch point A into two parallel branch circuits 8 and 9. The cylinder head 3 is integrated into a cylinder head branch circuit 8 and the crankcase 4 into a crankcase branch circuit 9. As a result of the conversion of the energy mainly taking place in the combustion chambers of the crankcase 4, the crankcase 4 heats up faster and more vigorously than the cylinder head 3 during operation of the internal combustion engine 2. The branch circuits 8 and 9 are located downstream of the cylinder head 3 and the crankcase 4 at a connection point B. merged again. In the cylinder head branch circuit 8, a heat exchanger 7 for a fuel of the internal combustion engine 2 is arranged between the cylinder head 3 and junction B. Operating materials in this context are gases or liquids that are required for the function of the internal combustion engine 2, such as exhaust gas. In the crankcase branch circuit 9 between the crankcase 4 and junction B, a check valve 10 is arranged, whereby the crankcase branch circuit 9 for the purpose of faster heating of the internal combustion engine 2, in particular the crankcase 4, if necessary, can be shut off. The check valve 10 is to be executed as a negative pressure operated rotary valve. From the junction B, the coolant passes to a main heat exchanger 6 and from there to a control valve 11. The output of the control valve 11 is connected to the suction side 5 of the coolant pump 5. Between the connection point B and the main heat exchanger 6 branches off at a bypass branch C from a bypass line 12, can pass through the coolant from the internal combustion engine 2, bypassing the main water cooler 6 to the control valve 11 and thus to the coolant pump 5. For this purpose, the control valve 11 is preferably designed as a map-controlled thermostat or a rotary valve with two inlets and one outlet. Of course, the cooling circuit 1 of the invention is not limited to the elements shown. Rather, additional heat exchanger, oil cooler, water cooler, etc. can be integrated into the cooling circuit 1 or a partial circuit thereof.

Liste der Bezugszeichen:

A
Verzweigungsstelle
B
Verbindungsstelle
C
Bypassabzweig
1
Kühlkreislauf
2
Brennkraftmaschine
3
Zylinderkopf
4
Kurbelgehäuse
5
Kühlmittelpumpe
6
Hauptwärmetauscher
7
Wärmetauscher für ein Betriebsstoff
8
Zylinderkopf-Zweigkreislauf
9
Kurbelgehäuse-Zweigkreislauf
10
Absperrventil
11
Steuerventil
List of reference numbers:
A
branching point
B
junction
C
bypass branch
1
Cooling circuit
2
Internal combustion engine
3
cylinder head
4
crankcase
5
Coolant pump
6
Main heat exchanger
7
Heat exchanger for a fuel
8th
Cylinder head branch circuit
9
Crankcase branch circuit
10
shut-off valve
11
control valve

Claims (6)

  1. Cooling circuit (1) for an internal combustion engine (2), comprising an internal combustion engine (2) having at least one cylinder head (3) and one crankcase (4), a coolant pump (5), a primary heat exchanger (6) and an exhaust gas cooler (7), the cooling circuit (1) downstream of the coolant pump (5) being divided between a branch site (A) and a connection site (B) so that the at least one cylinder head (3) is integrated in a cylinder head branch circuit (8) and the crankcase (4) is integrated in a crankcase branch circuit (9) which extends in parallel with the cylinder head branch circuit (8), the exhaust gas cooler (7) being arranged in the cylinder head branch circuit (8) downstream of the at least one cylinder head (3), characterised in that a shutoff valve (10) formed as a vacuum-actuated turning valve is arranged in the crankcase branch circuit (9) between the crankcase (4) and the connection site (B).
  2. Cooling circuit according to claim 1, characterised in that the primary heat exchanger (6) is arranged downstream of the connection site (B).
  3. Cooling circuit according to either claim 1 or claim 2, characterised in that a control valve (11) is arranged between the coolant pump (5) and the primary heat exchanger (6).
  4. Cooling circuit according to any of claims 1 to 3, characterised in that a bypass line (12), which is coupled to the control valve (11), branches off between the main water cooler (6) and the connection site (B).
  5. Cooling circuit according to either claim 3 or claim 4, characterised in that the control valve (11) is designed as a map-controlled thermostat.
  6. Cooling circuit according to any of claims 1 to 5, characterised in that flow takes place in parallel through two or more cylinder heads (3) in the cylinder head branch circuit (8), and the exhaust gas cooler (7) is arranged downstream of the cylinder heads (3).
EP10015802.1A 2010-03-08 2010-12-18 Coolant circuit for a combustion engine Not-in-force EP2375025B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010010594.5A DE102010010594B4 (en) 2010-03-08 2010-03-08 Cooling circuit for an internal combustion engine

Publications (3)

Publication Number Publication Date
EP2375025A2 EP2375025A2 (en) 2011-10-12
EP2375025A3 EP2375025A3 (en) 2013-04-17
EP2375025B1 true EP2375025B1 (en) 2015-02-25

Family

ID=44201350

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10015802.1A Not-in-force EP2375025B1 (en) 2010-03-08 2010-12-18 Coolant circuit for a combustion engine

Country Status (5)

Country Link
US (1) US8464669B2 (en)
EP (1) EP2375025B1 (en)
JP (1) JP2011185267A (en)
CN (1) CN102191987B (en)
DE (1) DE102010010594B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021058124A1 (en) 2019-09-23 2021-04-01 Deutz Aktiengesellschaft Internal combustion engine comprising an oil cooler integrated into the cylinder block, and cooling water control

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2392794B1 (en) * 2010-06-07 2019-02-27 Ford Global Technologies, LLC Separately cooled turbo charger for maintaining a no-flow strategy of a cylinder block coolant lining
BR112015010837A2 (en) * 2012-11-30 2018-04-24 Basf Se storage unit for a drive system in a vehicle, method of operating it, drive system and vehicle
JP5904227B2 (en) * 2014-03-24 2016-04-13 トヨタ自動車株式会社 Engine cooling system
DE102014216659B4 (en) * 2014-08-21 2021-08-19 Bayerische Motoren Werke Aktiengesellschaft Method and management system for operating a cooling system of an internal combustion engine
JP6225931B2 (en) * 2015-02-20 2017-11-08 トヨタ自動車株式会社 Cooling device for internal combustion engine
DE102015212733A1 (en) * 2015-07-08 2017-01-12 Bayerische Motoren Werke Aktiengesellschaft Coolant circuit for liquid-cooled gearboxes
DE102015222735A1 (en) * 2015-11-18 2017-05-18 Volkswagen Aktiengesellschaft Charge gas cooling circuit and method for tempering charge gas
WO2017099267A1 (en) 2015-12-08 2017-06-15 주식회사 두산 Cooling device for forklift brake system
DE102016100579B3 (en) 2016-01-14 2017-03-30 BorgWarner Esslingen GmbH Method for controlling a coolant flow of an internal combustion engine and valve device therefor
CN110621854B (en) 2017-05-23 2022-08-12 卡明斯公司 Engine cooling system and method for spark-ignition engine
CN112709624B (en) * 2019-10-25 2022-07-08 宁波吉利罗佑发动机零部件有限公司 Engine thermal management system and method
DE102019219056A1 (en) * 2019-12-06 2021-06-10 Volkswagen Aktiengesellschaft Cooling circuit arrangement of a motor vehicle
CN113062793B (en) * 2021-03-31 2022-06-03 贵州电子科技职业学院 Water return pipeline structure of automobile radiator

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT283824B (en) * 1966-02-23 1970-08-25 H C Hans Dipl Ing Dr Dr List Internal combustion engine with exhaust gas turbocharger and charge air cooler
DE3317454A1 (en) 1983-05-13 1984-11-15 Daimler-Benz Ag, 7000 Stuttgart Cooling system for a liquid-cooled internal combustion engine, especially for motor vehicles
JPS62247113A (en) * 1986-03-28 1987-10-28 Aisin Seiki Co Ltd Cooling system control device for internal combustion engine
US5113807B1 (en) * 1989-07-19 1994-10-25 Kobayashi Manabu Cooling system for engine
JP2712711B2 (en) * 1990-02-16 1998-02-16 株式会社デンソー Method and apparatus for cooling internal combustion engine
BR9701062A (en) * 1997-02-24 1998-11-10 Gen Motors Brasil Ltda Independent cooling system for alternative internal combustion engines
DE19955302A1 (en) * 1999-11-17 2001-05-23 Deutz Ag Liquid-cooled internal combustion engine
DE10032184A1 (en) * 2000-07-01 2002-01-10 Bosch Gmbh Robert Device for cooling an internal combustion engine
JP2002227648A (en) * 2001-01-30 2002-08-14 Aisin Seiki Co Ltd Engine cooling device
JP3669275B2 (en) 2001-02-20 2005-07-06 日産自動車株式会社 EGR gas cooling device for internal combustion engine
DE10119969A1 (en) * 2001-04-24 2002-10-31 Bosch Gmbh Robert Reciprocating internal combustion engine cooled by liquid
JP4485104B2 (en) * 2001-08-30 2010-06-16 本田技研工業株式会社 Gas-liquid separator for engine cooling system
JP2003120291A (en) * 2001-10-10 2003-04-23 Honda Motor Co Ltd Cooling structure of engine
KR100482428B1 (en) 2001-10-26 2005-04-14 현대자동차주식회사 Engine cooling system using two theromstat
JP2003201842A (en) * 2002-01-07 2003-07-18 Suzuki Motor Corp Cooling device of engine
DE10210303B4 (en) * 2002-03-08 2007-05-03 Robert Bosch Gmbh Cooling circuit for an internal combustion engine
DE10222102A1 (en) * 2002-05-17 2003-11-27 Basf Ag A method for cooling combustion engines, involves using a circulating coolant fluid which contains non-ionic corrosion inhibitors and is at least intermittently de-ionized
DE10244829A1 (en) * 2002-09-25 2004-04-01 Bayerische Motoren Werke Ag Liquid-cooled combustion engine, has head cooling system with hot, warm wall heat exchangers coupled to block cooling system so cooling water passes to casing mainly via hot wall section during warm-up
DE10301797A1 (en) * 2003-01-20 2004-07-29 Bayerische Motoren Werke Ag Internal combustion engine with coolant circuit, has coolant pump connected to fourth switching element on outlet side, heat storage device connected to fifth switching element on input side
DE10302170A1 (en) 2003-01-22 2004-08-12 Daimlerchrysler Ag Combustion engine coolant circuit has a link to a gearbox oil cooler circuit that is controlled by the position of a control unit actuator so that gearbox oil can be heated or cooled as necessary
JP3975399B2 (en) * 2003-04-22 2007-09-12 アイシン精機株式会社 Engine cooling system for vehicles
JP2005036714A (en) * 2003-07-14 2005-02-10 Honda Motor Co Ltd Cooling water pipe connection structure in engine
DE10332947A1 (en) * 2003-07-19 2005-02-03 Daimlerchrysler Ag Internal combustion engine for a motor vehicle
ATE454544T1 (en) 2004-02-01 2010-01-15 Behr Gmbh & Co Kg ARRANGEMENT FOR COOLING EXHAUST AND CHARGE AIR
DE102004047452A1 (en) * 2004-09-30 2006-04-13 Fev Motorentechnik Gmbh Cooling system for internal combustion engine has controllable setting member to regulate distribution of cooling air stream between two cooling circuits in dependence on measured parameter
DE102004052137A1 (en) * 2004-10-27 2006-05-11 Bayerische Motoren Werke Ag Coolant circuit for internal combustion engine has crankcase-coolant circuit and cylinder head-coolant circuit whereby they are implemented as separate coolant circuit and crankcase-coolant circuit is lockable with actuating element
DE102004058865B4 (en) * 2004-12-06 2020-08-20 Att Automotivethermotech Gmbh Method and device for needs-based cooling and venting of internal combustion engines
JP4497082B2 (en) * 2005-11-17 2010-07-07 トヨタ自動車株式会社 Engine coolant circulation device
DE502007001624D1 (en) * 2007-01-17 2009-11-12 Ford Global Tech Llc Integrated engine cooling system
DE102008007766A1 (en) * 2008-02-06 2009-08-13 Audi Ag Cooling device for cooling internal combustion engine, has coolant circuit comprising coolant pitch circles that are separated from each other by electromechanical assembly by self-switching, where circle has different cooling agents
CN101649768A (en) * 2009-09-09 2010-02-17 奇瑞汽车股份有限公司 Engine cooling system
CN102191991A (en) * 2010-03-03 2011-09-21 株式会社电装 Controller for engine cooling system
DE102010060319B4 (en) * 2010-11-03 2012-05-31 Ford Global Technologies, Llc. cooling system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021058124A1 (en) 2019-09-23 2021-04-01 Deutz Aktiengesellschaft Internal combustion engine comprising an oil cooler integrated into the cylinder block, and cooling water control
US11802497B2 (en) 2019-09-23 2023-10-31 Deutz Aktiengesellschaft Internal combustion engine including an oil cooler integrated into the cylinder block, and cooling water control

Also Published As

Publication number Publication date
CN102191987A (en) 2011-09-21
US8464669B2 (en) 2013-06-18
DE102010010594B4 (en) 2014-10-09
CN102191987B (en) 2013-04-03
EP2375025A3 (en) 2013-04-17
DE102010010594A1 (en) 2011-09-08
US20110214628A1 (en) 2011-09-08
EP2375025A2 (en) 2011-10-12
JP2011185267A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
EP2375025B1 (en) Coolant circuit for a combustion engine
EP2302190B1 (en) Exhaust gas recycling system
DE102014201678A1 (en) Intercooler system with integrated heating device
DE102012223808B4 (en) Internal combustion engine with turbocharging and exhaust gas recirculation and method for operating such an internal combustion engine
DE102012200562A1 (en) engine system
DE112011102951B4 (en) Exhaust gas turbocharger of an internal combustion engine
DE102007021526A1 (en) Combustion engine, especially for motor vehicle, uses waste-gate for exhaust-gas turbo-charger with additional waste-gate joined to coolant circuit
DE102013021259A1 (en) Charging device for an internal combustion engine of a motor vehicle and method for operating such a charging device
DE102007061495A1 (en) Explosion internal combustion engine for motor vehicle, has cooler arrangement including low temperature cooling circuit with air heat exchanger that cools compressed combustion air and condenser heat exchanger
DE102007005246A1 (en) Air supply to automotive piston engine has air pre-heater which is a liquid/gas heat exchanger forming an integral part of an engine cooling system
DE102012205001B4 (en) Coolant circuit for an internal combustion engine and method for operating the internal combustion engine
DE102010048918B4 (en) Exhaust system and method for removing exhaust gas of an internal combustion engine
EP3023622B1 (en) Cooling system for a vehicle, in particular a commercial vehicle
AT506198B1 (en) INTERNAL COMBUSTION ENGINE WITH AT LEAST ONE CONDENSATE SOURCE
DE202013100932U1 (en) Intercooler system with integrated heating device
EP1727976B1 (en) Internal combustion engine having a humidifying device and a heat exchanger
DE102008008492B4 (en) Method for controlling a motor vehicle internal combustion engine arrangement
DE102017011851A1 (en) Arrangement for converting thermal energy from heat loss of an internal combustion engine
DE19954690A1 (en) Air intake for an IC motor has a cooling unit for the air drawn in fitted with Peltier elements as a compact system easily fitted to the air intake installation
DE102013011563B4 (en) Cooling circuit of an internal combustion engine and method for operating a cooling circuit
DE102012001675A1 (en) Circuit arrangement for cooling combustion air of internal combustion engine of motor car, has charge-air heat exchangers that are thermally coupled with high-temperature circuit and low-temperature circuit respectively
DE102008031122A1 (en) Heating arrangement for heating transmission of e.g. passenger car, in starting phase, has heat exchanger device that is attached to exhaust gas recirculation device, and transmission that is loaded with heat transferring fluid
EP3739180A1 (en) Cooling circuit arrangement of a combustion engine
EP3428439A1 (en) Exhaust gas recirculation assembly of a motor vehicle, and method for operating an exhaust gas recirculation assembly
DE102009057802B4 (en) Cooling circuit for an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F01P 3/02 20060101AFI20130313BHEP

Ipc: F01P 3/12 20060101ALI20130313BHEP

17P Request for examination filed

Effective date: 20131017

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20140722

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141119

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010008935

Country of ref document: DE

Effective date: 20150409

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 712195

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150415

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150225

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150525

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150526

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150625

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010008935

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20151126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151218

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151218

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 712195

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101218

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191231

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20201228

Year of fee payment: 11

Ref country code: GB

Payment date: 20201227

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20201231

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010008935

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211218