EP2374509B1 - Atemkreislaufgerät - Google Patents

Atemkreislaufgerät Download PDF

Info

Publication number
EP2374509B1
EP2374509B1 EP10159309.3A EP10159309A EP2374509B1 EP 2374509 B1 EP2374509 B1 EP 2374509B1 EP 10159309 A EP10159309 A EP 10159309A EP 2374509 B1 EP2374509 B1 EP 2374509B1
Authority
EP
European Patent Office
Prior art keywords
respiratory
circuit device
cooling element
deformable wall
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10159309.3A
Other languages
English (en)
French (fr)
Other versions
EP2374509A1 (de
Inventor
Jochim Dr. Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Draeger Safety AG and Co KGaA
Original Assignee
Draeger Safety AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Draeger Safety AG and Co KGaA filed Critical Draeger Safety AG and Co KGaA
Priority to EP10159309.3A priority Critical patent/EP2374509B1/de
Priority to US13/044,167 priority patent/US9950196B2/en
Priority to CN2011100932854A priority patent/CN102210911A/zh
Publication of EP2374509A1 publication Critical patent/EP2374509A1/de
Application granted granted Critical
Publication of EP2374509B1 publication Critical patent/EP2374509B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B7/00Respiratory apparatus
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B9/00Component parts for respiratory or breathing apparatus
    • A62B9/003Means for influencing the temperature or humidity of the breathing gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/02Divers' equipment
    • B63C11/18Air supply
    • B63C11/22Air supply carried by diver
    • B63C11/24Air supply carried by diver in closed circulation

Definitions

  • the present invention relates to a breathing circuit device according to the preamble of claim 1.
  • Breathing circuit devices can provide respiratory air or breathing gas to a respirator of the breathing circuit device over a longer period of time.
  • the breathing circuit device exhaled by the respiratory expiratory gas by means of a carbon dioxide absorber, the carbon dioxide withdrawn and fed oxygen from an oxygen tank.
  • This can of the small in construction and compact breathing circuit device with a small volume of pure oxygen in the oxygen tank over a longer period, eg. B. 4 hours, provided for the respirator breathing gas.
  • the carbon dioxide absorber generally contains soda lime or alkali that absorbs the carbon dioxide in the exhaled expiratory gas exhaled by the respirator.
  • moisture and heat is released, which leads to a corresponding warming and humidification of the inspiratory gas, because the exhaled by the respiratory expiratory gas is provided in a breathing circuit back to the respiratory carrier as inspiration gas available.
  • the breathing circuit device is provided with a cooling element for cooling and thus also for draining the respiratory gas.
  • the expiratory gas is cooled and thereby cooled below the dew point, so that the moisture contained in the respiratory gas condenses.
  • various facilities are used, such as water ice, a latent heat storage or a zeolite cooler.
  • the heat collector is formed as a reservoir for an evaporable liquid and connectable to an evacuated adsorbent container so that the liquid is vaporized by absorbing heat of vaporization and its vapor is adsorbed to an adsorbent in the adsorbent container adsorbing heat and heat of condensation, the adsorbent as an outside of the breathing gas flow is arranged, designed to deliver the heat to the environment provided heat sink.
  • the device additionally comprises a cooling device with a coolant.
  • the two flexible bags are arranged on both sides of a heat-conducting contact wall, which is part of the carrying frame.
  • the object of the present invention is therefore to provide a breathing circuit device in which different cooling elements can be used easily and reliably with good heat output from the breathing gas to the cooling element.
  • a breathing circuit device comprising at least one breathing gas line for forming a breathing circuit, a cooling device with a cooling elements for cooling the breathing gas passed through the breathing circuit, the cooling element is separated with a wall of the breathing gas in the at least one breathing gas line, the Wall one deformable wall is, so that by means of a deformation of the deformable wall, a direct contact between the cooling element and the deformable wall can be produced for adaptation to different cooling elements, wherein a breathing bag is provided as part of the breathing gas line and that within the breathing bag a partition wall is formed through which the breathing gas exits the breathing bag, the cooling element in the region of the channel at the deformable wall of the breathing bag applies.
  • the deformable wall can adapt to the different surface structure of the cooling element, so that even with a use of different cooling elements in the breathing circuit device, a large-area direct contact between the deformable wall and the cooling element and thus good heat conduction from the to be cooled and dehumidifying breathing gas the cooling element is ensured.
  • This can be used in an advantageous manner in the breathing circuit device different cooling elements, for example with water ice, a latent heat storage or an evaporator of a zeolite cooler.
  • the breathing circuit device can thus be used flexibly for different applications with different cooling devices or cooling elements.
  • a pressure on a first side of the wall with the cooling element is greater than on a second side, so that due to the pressure difference between the first and second side, the deformable wall is pressed onto the cooling element.
  • the pressure on the first side of the wall corresponds to a respiratory gas pressure, wherein the pressure on the second side of the wall corresponds to an ambient pressure.
  • the deformable wall Due to the pressure difference and the higher pressure on the first side of the deformable wall thus the deformable wall is pressed by the breathing gas pressure on the surface of the cooling element, so that there is a large-area direct contact between the deformable wall and the cooling element due to the deformability of the deformable wall , Thus, the heat can be transferred to a sufficient extent of the breathing gas on the deformable wall and then from the deformable wall to the cooling element for cooling and dehumidifying the respiratory gas at the deformable wall.
  • the cooling element lies directly on the deformable wall. Due to the direct contact between the Cooling element and the deformable wall is thus a good heat transfer from the deformable wall to the cooling element possible.
  • the breathing gas is in direct contact with the second side of the deformable wall.
  • a thermal insulation is arranged on the outside of the cooling element and / or the respiratory gas is directly or indirectly in contact with the deformable wall or is in thermal communication.
  • the thermal insulation prevents the cold provided by the cooling element from escaping into the environment of the breathing circuit device to a greater extent, so that the cooling provided by the cooling element essentially serves to cool and dehumidify the breathing gas in the breathing circuit system with the at least one Breathing gas line is used.
  • the breathing gas is passed directly to the deformable wall.
  • a further device is arranged between the respiratory gas and the deformable wall, so that the heat is conducted by the respiratory gas to the device and then to the deformable wall.
  • This device may for example be a further wall or a container with a liquid or a gel.
  • the breathing circuit device has a breathing bag as part of the at least one breathing gas line.
  • the deformable wall forms in a variant of an outer wall of the breathing circuit device, in particular a housing of the breathing circuit device.
  • the cooling element is at least partially, in particular completely, disposed within the breathing bag and the deformable wall separates the cooling element of the breathing gas in the breathing bag.
  • a part of the breathing bag wall of the breathing bag forms the deformable wall, on which the cooling element rests directly.
  • a liquid or gel is enclosed in a container having walls and at least one wall of the container is formed by the deformable wall and the cooling element rests against the deformable wall of the container.
  • a heat side of the container with the breathing gas in thermal contact and on the deformable wall of the container is as a cold side of the container, the cooling element.
  • the heat of the breathing gas is thus indirectly passed through the container with the gel to the deformable wall.
  • the cooling element is located on the cold side.
  • the liquid or gel in the container may change during phase change, i. from a solid to a liquid state, deform and thus allows a deformation of the deformable wall to adapt to different surface structures of the cooling element.
  • the deformable wall is a foil and / or a two-dimensional bendable surface part and / or a tissue.
  • the cooling element is a cooling container with water ice or with a latent heat storage or with a liquid to be evaporated of a sorption cooler, in particular zeolite cooler.
  • the deformable wall at least partially, in particular completely, made of plastic.
  • the breathing circuit device expediently comprises an inspiratory line and an expiratory line.
  • the breathing circuit device has a Y-piece.
  • the inspiratory and expiratory lines are connected to the Y-piece.
  • a check valve are arranged on the inspiratory and expiratory line.
  • An in Fig. 1 illustrated breathing circuit device 1 provides a respiratory carrier, not shown, of the breathing circuit device 1 breathing gas or breathing air available.
  • the breathing circuit device 1 has a housing 18 made of plastic and / or metal.
  • breathing gas conduits 2 are arranged as an inspiratory conduit 3 and as an expiratory conduit 4.
  • the breathing gas lines 2 form a preferably completely closed breathing circuit system 5, so that no air is introduced from the surroundings of the breathing circuit device 1 into the breathing gas lines 2.
  • the expiratory gas 20 is after flowing into the expiratory line 4 according to Fig.
  • the carbon dioxide absorber 6 is designed as a soda lime container containing soda lime. In the soda lime container with soda lime, carbon dioxide is thus extracted from the expiration gas 20. In this chemical reaction The soda lime in the soda lime container heats up and also gives off some of the heat to the expired gas 20.
  • the effluent from the carbon dioxide absorber 6 breathing gas 22 is then fed to a breathing bag 13.
  • This respiratory gas 22 supplied to the breathing bag 13 is substantially purified of carbon dioxide and has a temperature, for example, in the range of 55 ° C. Thus, the expiratory gas was heated from 30 ° C after exhaling the respirator to a temperature of 55 ° C and has a relative humidity in the range of 100%.
  • the breathing bag 13 has deformable breathing bag walls 32. Within the breathing bag 13, a partition wall 24 is formed, so that within the breathing bag 13, a channel 23 is formed. A part of the breathing bag wall 32 forms an outer wall of the breathing circuit device 1 or a part of the wall of the housing 18. At this, the housing 18 forming part of the breathing bag wall 32, is a cooling element 8 as part of a cooling device 7.
  • the cooling element 8 is a container filled with water ice. On the cooling element 8, a thermal insulation 17 is also externally attached.
  • two springs 19 are arranged, which are connected to both the breathing bag wall 32 and the housing 18.
  • the springs 19 bring thereby a small pressure force on the breathing bag wall 32, so that the respiratory gas pressure within the breathing bag 13 is slightly greater than the ambient pressure outside the breathing circuit device 1. This is outside of the breathing bag 13, a lower pressure than within the breathing bag 13.
  • Das In the breathing bag 13 introduced breathing gas 22 flows through the channel 23 and then after the Flow through the channel 23 from the breathing bag 13 back into the inspiratory line 3. That part of the breathing bag wall 32, on which the cooling element 8 rests, thereby forming a deformable wall 12.
  • the deformable wall 12 has a first side 15, which with breathing gas 22 is in direct contact.
  • the deformable wall 12 also has a second side 16 against which the cooling element 8 rests.
  • the cooling element 8 is releasably attached to the breathing circuit device 1, in particular the housing 18 of the breathing circuit device 1, by means of at least one fastening device (not shown). This at least one fastening device is designed such that different cooling elements 8 can be attached to the breathing circuit device 1.
  • a cooling element 8 can be attached with a different surface structure and thereby due to the deformability of the wall 12 and the existing pressure difference, a large area immediate contact area between the deformable wall 12 and the surface of the cooling element 8 is made.
  • the heat can be conducted sufficiently well by the respiratory gas 22, through the deformable wall 12, to the cooling element 8.
  • the breathing gas 22 is cooled within the breathing bag 13 and also condenses moisture here.
  • the humidity of the inspiratory gas 21, which flows out of the breathing bag 13 can be lowered to physiologically acceptable levels.
  • a second embodiment of the breathing circuit device 1 is shown.
  • the cooling device 1 is a sorption cooler 25 designed as a zeolite cooler 26.
  • the cooling element 8 used is an evaporator 27.
  • the evaporator 27 is a container with an evaporable liquid, in particular water.
  • the evaporator 27 is connected through a steam line 28 to a valve 29 with a sorbent container 30 formed as a zeolite container 31.
  • zeolite is disposed within a container.
  • the liquid evaporates in the evaporator 27 and the evaporator 27 thereby cools and thus can cool and dehumidify the breathing gas 22 in the channel 23 through the deformable wall 12.
  • the vapor generated in the evaporator 27 is passed through the steam line 28 to the zeolite in the zeolite container 31 and adsorbed there. Heat is generated in the zeolite within the zeolite container 31, which is dissipated to the environment.
  • the thermal insulation 17 on the evaporator 27 as a cooling element 8 prevents that the heat provided by the evaporator 27 is dissipated to a greater extent to the environment of the breathing circuit device 1 and thus substantially for cooling and dehumidifying the respiratory gas 22 in the channel 23rd can be used.
  • cooling element 8 for example, a latent heat storage with paraffin, salt hydrate, or a cooling element 8 as part of a Peltier cooler or a heat pump or refrigeration system, wherein in the heat pump or refrigeration system, the cooling element 8 represents the evaporator of a refrigeration circuit with a compressor and a condenser ,
  • cooling elements 8 can be arranged with a different surface structure, so that in a flexible manner with a basic unit of the breathing circuit device 1 different cooling elements 8 can be used for different applications of the breathing circuit device 1. This can be provided with different cooling elements 8 for a variety of applications with a low-cost manufactured basic unit of the breathing circuit device 1, a breathing circuit device.

Landscapes

  • Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Atemkreislaufgerät gemäß dem Oberbegriff des Anspruches 1.
  • Atemkreislaufgeräte können einem Atemträger des Atemkreislaufgerätes über einen längeren Zeitraum Atemluft bzw. Atemgas zur Verfügung stellen. Dabei wird in dem Atemkreislaufgerät das von dem Atemträger ausgeatmete Exspirationsgas mittels eines Kohlendioxid-Absorbers das Kohlendioxid entzogen und Sauerstoff aus einem Sauerstoffbehälter zugeführt. Damit kann von dem im Aufbau kleinen und kompakten Atemkreislaufgerät mit einem geringen Volumen an reinem Sauerstoff in dem Sauerstoffbehälter auch über einen längeren Zeitraum, z. B. vier Stunden, für den Atemträger Atemgas zur Verfügung gestellt werden.
  • In dem Kohlendioxid-Absorber ist im Allgemeinen Atemkalk oder Alkali enthalten, der das Kohlendioxid in dem von dem Atemträger ausgeatmeten Exspirationsgas absorbiert. Bei dieser chemischen Reaktion wird Feuchtigkeit und Wärme frei, die zu einer entsprechenden Erwärmung und Befeuchtung des Inspirationsgases führt, weil das von dem Atemträger ausgeatmete Exspirationsgas in einem Atemkreissystem wieder dem Atemträger als Inspirationsgas zur Verfügung gestellt wird. Dies steht einem physiologisch verträglichen Atemklima entgegen, so dass eine Kühlung und Entfeuchtung des Exspirationsgases nach dem Durchleiten durch den Kohlendioxid-Absorber erforderlich ist. Hierzu ist das Atemkreislaufgerät mit einem Kühlelement zum Kühlen und damit auch zum Entfleuchten des Atemgases versehen. Mittels des Kühlelementes wird das Exspirationsgas gekühlt und dabei unterhalb des Taupunktes abgekühlt, so dass die in dem Atemgas enthaltene Feuchtigkeit kondensiert. Als Kühlelemente werden verschiedene Einrichtungen eingesetzt, beispielsweise Wassereis, ein Latentwärmespeicher oder ein Zeolithkühler.
  • Aus der DE 40 29 084 A1 ist eine Kühlvorrichtung zur Atemgaskühlung in einem Atemschutzgerät mit einem dem Atemgasstrom ausgesetzten Wärmekollektor bekannt. Der Wärmekollektor ist als ein Vorratsbehälter für eine verdampfbare Flüssigkeit ausgebildet und mit einem evakuierten Adsorptionsmittelbehälter verbindbar, so dass die Flüssigkeit unter Aufnahme von Verdampfungswärme verdampft und ihr Dampf an einem in dem Adsorptionsmittelbehälter befindlichen Absorptionsmittel unter Abgabe von Adsorptionswärme und Kondensationswärme adsorbiert wird, wobei der Adsorptionsmittelbehälter als ein außerhalb des Atemgasstromes angeordneter, zur Abgabe der Wärme an die Umgebung vorgesehenen Kühlkörper ausgebildet ist.
  • Ferner ist aus der DE 27 00 492 B1 ein Atemschutzgerät mit einer Chemikalienpatrone zur Absorption von ausgeatmetem Kohlenstoffdioxid und zur Freisetzung von Sauerstoff bekannt, wobei das Gerät zusätzlich eine Kühlvorrichtung mit einem Kühlmittel aufweist. Um eine gute Wärmeleitung zwischen dem zu kühlenden Atembeutel und dem in einem Beutel bevorrateten Kühlmittel zu gewährleisten, sind die beiden flexiblen Beutel beidseitig einer wärmeleitenden Kontaktwand, die Teil des Tragegestells ist, angeordnet.
  • Bei dem aus dem Stand der Technik bekannten Atemkreislaufgeräten können an dem Atemkreislaufgerät nicht unterschiedliche Kühlelemente bei einer gleichzeitig gewährleisteten guten Wärmeleitung von dem Atemgas zu dem Kühlelement angeordnet werden. Unterschiedliche Kühlelemente weisen verschiedene Oberflächen auf, so dass eine Anpassung an diese unterschiedlichen Oberflächen erforderlich ist für eine gute Wärmeleitung von dem Atemgas zu dem Kühlelement.
  • Die Aufgabe der vorliegenden Erfindung besteht deshalb darin, ein Atemkreislaufgerät zur Verfügung zu stellen, bei dem unterschiedliche Kühlelemente einfach und zuverlässig bei einer guten Wärmeleistung von dem Atemgas zu dem Kühlelement verwendet werden können.
  • Diese Aufgabe wird gelöst mit einem Atemkreislaufgerät, umfassend wenigstens eine Atemgasleitung zur Ausbildung eines Atemkreissystems, eine Kühlvorrichtung mit einem Kühlelemente zum Kühlen des durch das Atemkreissystem geleiteten Atemgases, wobei das Kühlelement mit einer Wandung von dem Atemgas in der wenigstens einen Atemgasleitung getrennt ist, wobei die Wandung eine verformbare Wandung ist, so dass mittels einer Verformung der verformbaren Wandung ein unmittelbarer Kontakt zwischen dem Kühlelement und der verformbaren Wandung herstellbar ist für eine Anpassung an unterschiedliche Kühlelemente, wobei ein Atembeutel als Teil der Atemgasleitung vorgesehen ist und, dass innerhalb des Atembeutels eine Trennwand ausgebildet ist, durch den das Atemgas aus dem Atembeutel austritt, wobei das Kühlelement im Bereich des Kanals an der verformbaren Wandung des Atembeutels anlegt. Die verformbare Wandung kann sich an die unterschiedliche Oberflächenstruktur des Kühlelementes anpassen, so dass auch bei einer Verwendung von unterschiedlichen Kühlelementen in dem Atemkreislaufgerät ein großflächiger unmittelbarer Kontakt zwischen der verformbaren Wandung und dem Kühlelement besteht und damit eine gute Wärmeleitung von dem zu kühlenden und entfeuchtenden Atemgas zu dem Kühlelement gewährleistet ist. Damit können in vorteilhafter Weise bei dem Atemkreislaufgerät unterschiedliche Kühlelemente, beispielsweise mit Wassereis, einem Latentwärmespeicher oder einem Verdampfer eines Zeolithkühlers, eingesetzt werden. Das Atemkreislaufgerät kann damit flexibel für unterschiedliche Anwendungsbereiche mit verschiedenen Kühlvorrichtungen bzw. Kühlelementen eingesetzt werden.
  • Insbesondere ist ein Druck an einer ersten Seite der Wandung mit dem Kühlelement größer als an einer zweiten Seite, so dass aufgrund der Druckdifferenz zwischen der ersten und zweiten Seite die verformbare Wandung auf das Kühlelement gedrückt ist. Der Druck an der ersten Seite der Wandung entspricht einem Atemgasdruck, wobei der Druck an der zweiten Seite der Wandung einem Umgebungsdruck entspricht. Aufgrund der Druckdifferenz und des höheren Druckes an der ersten Seite der verformbaren Wandung wird somit die verformbare Wandung von dem Atemgasdruck auf die Oberfläche des Kühlelementes gedrückt, so dass sich aufgrund der Verformbarkeit der verformbaren Wandung ein großflächiger unmittelbarer Kontakt zwischen der verformbaren Wandung und dem Kühlelement besteht. Damit kann die Wärme in einem ausreichenden Umfang von dem Atemgas auf die verformbare Wandung und anschließend von der verformbaren Wandung auf das Kühlelement übertragen werden zur Kühlung und Entfeuchtung des Atemgases an der verformbaren Wandung.
  • Dabei liegt das Kühlelement unmittelbar auf der verformbaren Wandung auf. Aufgrund des unmittelbaren Kontaktes zwischen dem Kühlelement und der verformbaren Wandung ist somit eine gute Wärmeleitung von der verformbaren Wandung auf das Kühlelement möglich.
  • Das Atemgas steht mit der zweiten Seite der verformbaren Wandung unmittelbar in Kontakt.
  • Vorzugsweise ist an dem Kühlelement außenseitig eine thermische Isolierung angeordnet und/oder das Atemgas mit der verformbaren Wandung mittelbar oder unmittelbar in Kontakt steht bzw. steht in thermischer Verbindung steht. Die thermische Isolierung verhindert, dass die von dem Kühlelement zur Verfügung gestellte Kälte in die Umgebung des Atemkreislaufgerätes in einem größeren Umfang entweicht, so dass die von dem Kühlelement zur Verfügung gestellte Kälte im Wesentlichen zur Kühlung und Entfeuchtung des Atemgases in dem Atemkreissystem mit der wenigstens einen Atemgasleitung eingesetzt wird. Bei einem unmittelbaren Kontakt bzw. einer unmittelbaren thermischen Verbindung zwischen dem Atemgas und der verformbaren Wandung wird das Atemgas direkt auf die verformbare Wandung geleitet. Bei einem mittelbaren Kontakt bzw. einer mittelbaren thermischen Verbindung zwischen dem Atemgas und der verformbaren Wandung ist zwischen dem Atemgas und der verformbaren Wandung eine weitere Vorrichtung angeordnet, so dass die Wärme von dem Atemgas auf die Vorrichtung und anschließend zu der verformbaren Wandung geleitet wird. Diese Vorrichtung kann beispielsweise eine weitere Wandung oder ein Behälter mit einer Flüssigkeit bzw. einem Gel sein.
  • Das Atemkreislaufgerät weist einen Atembeutel als Teil der wenigstens einen Atemgasleitung auf. Die verformbare Wandung bildet in einer Variante eine Außenwandung des Atemkreislaufgerätes, insbesondere eines Gehäuses des Atemkreislaufgerätes.
  • Zweckmäßig ist das Kühlelement wenigstens teilweise, insbesondere vollständig, innerhalb des Atembeutels angeordnet und die verformbare Wandung trennt das Kühlelement von dem Atemgas in dem Atembeutel.
  • In einer weiteren Ausführungsform bildet ein Teil der Atembeutelwandung des Atembeutels die verformbare Wandung, an welcher das Kühlelement unmittelbar aufliegt.
  • Insbesondere ist eine Flüssigkeit oder Gel in einem Behälter mit Wandungen eingeschlossen und wenigstens ist eine Wandung des Behälters von der verformbaren Wandung gebildet und das Kühlelement liegt an der verformbaren Wandung des Behälters auf.
  • In einer weiteren Ausgestaltung steht eine Wärmeseite des Behälters mit dem Atemgas in thermischen Kontakt und auf der verformbaren Wandung des Behälters liegt als eine Kälteseite des Behälters das Kühlelement auf. Die Wärme des Atemgases wird somit mittelbar durch den Behälter mit dem Gel zu der verformbaren Wandung geleitet. Auf der verformbaren Wandung liegt das Kühlelement an der Kälteseite auf. Die Flüssigkeit oder das Gel in dem Behälter kann sich beim Phasenwechsel, d.h. vom einem festen in einen flüssigen Zustand, verformen und ermöglicht damit auch eine Verformung der verformbaren Wandung zur Anpassung an unterschiedliche Oberflächenstrukturen des Kühlelementes.
  • In einer ergänzenden Variante ist die verformbare Wandung eine Folie und/oder ein zweidimensionales biegbares Flächenteil und/oder ein Gewebe.
  • In einer weiteren Variante ist das Kühlelement ein Kühlbehälter mit Wassereis oder mit einem Latentwärmespeicher oder mit einer zu verdampfende Flüssigkeit eines Sorptionskühlers, insbesondere Zeolithkühlers.
  • In einer zusätzlichen Ausgestaltung besteht die verformbare Wandung wenigstens teilweise, insbesondere vollständig, aus Kunststoff.
  • Zweckmäßig umfasst das Atemkreisgerät eine Inspirations- und eine Exspirationsleitung.
  • In einer weiteren Variante weist das Atemkreislaufgerät ein Y-Stück auf.
  • In einer ergänzenden Variante sind die Inspirations- und Exspirationsleitung an dem Y-Stück angeschlossen.
  • Vorzugsweise sind an der Inspirations- und Exspirationsleitung jeweils ein Rückschlagventil angeordnet.
  • Es zeigen:
  • Fig. 1
    eine vereinfachte Darstellung eines Atemkreislaufgerätes in einer ersten Ausführung,
    Fig. 2
    eine vereinfachte Darstellung des Atemkreislaufgerätes in einer zweiten Ausführung und
    Fig. 3
    eine vereinfachte Darstellung des Atemkreislaufgerätes in einer dritten Ausführung.
  • Ein in Fig. 1 dargestelltes Atemkreislaufgerät 1 stellt einem nicht dargestellten Atemträger des Atemkreislaufgerätes 1 Atemgas bzw. Atemluft zur Verfügung. Das Atemkreislaufgerät 1 weist ein Gehäuse 18 aus Kunststoff und/oder Metall auf. Innerhalb des Gehäuses 18 sind Atemgasleitungen 2 als Inspirationsleitung 3 und als Exspirationsleitung 4 angeordnet. Durch die Exspirationsleitung 4 strömt das von dem Atemträger ausgeatmete Exspirationsgas 20 in das Atemkreislaufgerät 1 ein und durch die Inspirationsleitung 3 strömt das Inspirationsgas 21 aus dem Atemkreislaufgerät 1 aus und wird von dem Atemträger eingeatmet. Die Atemgasleitungen 2 bilden dabei ein vorzugsweise vollständig, geschlossenes Atemkreissystem 5, so dass in die Atemgasleitungen 2 keine Luft aus der Umgebung des Atemkreislaufgerätes 1 eingeleitet wird. Das Exspirationsgas 20 wird nach dem Einströmen in die Exspirationsleitung 4 gemäß Fig. 1 oben einem Kohlendioxid-Absorber 6 zugeführt. Der Kohlendioxid-Absorber 6 ist dabei als ein Atemkalkbehälter ausgeführt der Atemkalk enthält. In dem Atemkalkbehälter mit Atemkalk wird somit dem Exspirationsgas 20 Kohlendioxid entzogen. Bei dieser chemischen Reaktion erwärmt sich der Atemkalk in dem Atemkalkbehälter und gibt einen Teil der Wärme auch an das Exspirationsgas 20 ab. Das aus dem Kohlendioxid-Absorber 6 ausströmende Atemgas 22 wird anschließend einem Atembeutel 13 zugeführt. Dieses dem Atembeutel 13 zugeführte Atemgas 22 ist dabei von Kohlendioxid im Wesentlichen gereinigt und weist eine Temperatur beispielsweise im Bereich von 55°C auf. Damit wurde das Exspirationsgas von 30°C nach dem Ausatmen beim Atemträger auf eine Temperatur von 55°C erwärmt und weist eine relative Luftfeuchtigkeit im Bereich von 100 % auf.
  • Ein innerhalb des Gehäuses 18 angeordneter Sauerstoffbehälter 9, eine Sauerstoffzugabeeinheit 10, beispielsweise als Ventil ausgebildet, und eine Sauerstoffleitung 11 dienen dazu, Sauerstoff aus dem Sauerstoffbehälter 9 dem Atemgas in dem Atembeutel 13 zuzuführen. Damit wird das Exspirationsgas 20 mit Sauerstoff ersetzt, d. h. der Sauerstoffgehalt in dem Exspirationsgas 20 wird erhöht, so dass dieses wieder als Inspirationsgas 21 mit einem ausreichenden Sauerstoffgehalt dem Atemträger des Atemkreislaufgerätes 1 zugeführt werden kann.
  • Der Atembeutel 13 weist verformbare Atembeutelwandungen 32 auf. Innerhalb des Atembeutels 13 ist eine Trennwand 24 ausgebildet, so dass sich innerhalb des Atembeutels 13 ein Kanal 23 ausbildet. Ein Teil der Atembeutelwandung 32 bildet eine Außenwandung des Atemkreislaufgerätes 1 bzw. einen Teil der Wandung des Gehäuses 18. An diesem, das Gehäuse 18 bildenden Teiles der Atembeutelwandung 32, liegt ein Kühlelement 8 als Teil einer Kühlvorrichtung 7 auf. Das Kühlelement 8 ist dabei ein mit Wassereis gefüllter Behälter. An dem Kühlelement 8 ist außerdem außenseitig eine thermische Isolierung 17 befestigt. An der Atembeutelwandung 32 sind zwei Federn 19 angeordnet, welche sowohl mit der Atembeutelwandung 32 als auch dem Gehäuse 18 verbunden sind. Die Federn 19 bringen dabei eine geringe Druckkraft auf die Atembeutelwandung 32 auf, so dass der Atemgasdruck innerhalb des Atembeutels 13 geringfügig größer ist als der Umgebungsdruck außerhalb des Atemkreislaufgerätes 1. Damit liegt außerhalb des Atembeutels 13 ein geringerer Druck vor als innerhalb des Atembeutels 13. Das in den Atembeutel 13 eingeleitete Atemgas 22 strömt durch den Kanal 23 und anschließend nach dem Durchströmen durch den Kanal 23 aus dem Atembeutel 13 wieder aus in die Inspirationsleitung 3. Derjenige Teil der Atembeutelwandung 32, auf welchem das Kühlelement 8 aufliegt, bildet dabei eine verformbare Wandung 12. Die verformbare Wandung 12 weist eine erste Seite 15 auf, die mit Atemgas 22 in unmittelbaren Kontakt steht. Die verformbare Wandung 12 weist ferner eine zweite Seite 16 auf, an welcher das Kühlelement 8 anliegt. Der oben beschriebene Druckunterschied zwischen dem Atemgas 22 innerhalb des Atembeutels 13 und dem Umgebungsdruck außerhalb des Atembeutels 13 führt dazu, dass die verformbare Wandung 12 auf das Kühlelement 8 aufgedrückt ist. Das Kühlelement 8 ist mittels wenigstens einer, nicht dargestellter Befestigungsvorrichtung lösbar an dem Atemkreislaufgerät 1, insbesondere dem Gehäuse 18 des Atemkreislaufgerätes 1, befestigt. Diese wenigstens eine Befestigungsvorrichtung ist dabei dahingehend ausgebildet, dass auch unterschiedliche Kühlelemente 8 an dem Atemkreislaufgerät 1 befestigt werden können.
  • Eine als Folie ausgebildete verformbare Wandung 12 ermöglicht es somit aufgrund des vorhandenen Druckunterschiedes, dass an dem Atemkreislaufgerät 1 ein Kühlelement 8 mit einer unterschiedlichen Oberflächenstruktur befestigt werden kann und dabei aufgrund der Verformbarkeit der Wandung 12 und des vorhandenen Druckunterschiedes ein großflächiger unmittelbarer Kontaktbereich zwischen der verformbaren Wandung 12 und der Oberfläche des Kühlelementes 8 besteht. Dadurch kann auch bei einer Verwendung von unterschiedlichen Kühlelementen 8 mit verschiedenen Oberflächenstrukturen die Wärme ausreichend gut von dem Atemgas 22, durch die verformbare Wandung 12 zu dem Kühlelement 8 geleitet werden. An der verformbaren Wandung 12 wird somit das Atemgas 22 innerhalb des Atembeutels 13 gekühlt und außerdem kondensiert hier Feuchtigkeit. Damit kann die Luftfeuchtigkeit des Inspirationsgases 21, welches aus dem Atembeutel 13 ausströmt, auf physiologisch verträgliche Werte abgesenkt werden.
  • Die Kontaktfläche zwischen der verformbaren Wandung 12 und dem Kühlelement 8 liegt im Bereich von ungefähr 600 cm2. Vorzugsweise ist dabei diese Kontaktfläche größer als 300 cm2, 400 cm2, 600 cm2 oder 800 cm2, so dass auch bei einer Verwendung von unterschiedlichen Kühlelementen 8 ein ausreichend guter Wärmeübergang von dem Atemgas 22 zu dem Kühlelement 8 gewährleistet ist.
  • In Fig. 2 ist ein zweites Ausführungsbeispiel des Atemkreislaufgerätes 1 dargestellt. Im Nachfolgenden werden im Wesentlichen nur die Unterschiede zu dem ersten Ausführungsbeispiel gemäß Fig. 1 beschrieben. Die Kühlvorrichtung 1 ist dabei ein als Zeolithkühler 26 ausgebildeter Sorptionskühler 25. Als Kühlelement 8 wird ein Verdampfer 27 verwendet. Der Verdampfer 27 ist ein Behälter mit einer verdampfbaren Flüssigkeit, insbesondere Wasser. Der Verdampfer 27 ist dabei durch eine Dampfleitung 28 mit einem Ventil 29 mit einem als Zeolithbehälter 31 ausgebildeten Sorptionsmittelbehälter 30 verbunden. In dem Zeolithbehälter 31 ist innerhalb eines Behälters Zeolith angeordnet. Bei einem Öffnen des Ventils 29 verdampft die Flüssigkeit in dem Verdampfer 27 und der Verdampfer 27 kühlt dadurch ab und kann somit durch die verformbare Wandung 12 das Atemgas 22 in dem Kanal 23 kühlen und entfeuchten. Der in dem Verdampfer 27 entstehende Dampf wird durch die Dampfleitung 28 zu dem Zeolith in dem Zeolithbehälter 31 geleitet und dort adsorbiert. Dabei entstehen in dem Zeolith innerhalb des Zeolithbehälters 31 Wärme, welche an die Umgebung abgeleitet wird. Die thermische Isolierung 17 an dem Verdampfer 27 als Kühlelement 8 verhindert, dass die von dem Verdampfer 27 zur Verfügung gestellte Wärme in einem größeren Umfang an die Umgebung des Atemkreislaufgerätes 1 abgeleitet wird und somit im Wesentlichen zur Kühlung und Entfeuchtung des Atemgases 22 in dem Kanal 23 genutzt werden kann.
  • In Fig. 3 ist ein drittes Ausführungsbeispiel des Atemkreislaufgerätes 1 dargestellt. Im Nachfolgenden werden im Wesentlichen nur die Unterschiede zu dem ersten Ausführungsbeispiel gemäß Fig. 1 beschrieben. Das austauschbare Kühlelement 8 ist dabei innerhalb des Atembeutels 13 angeordnet. Das Kühlelement 8 ist mittels der verformbaren Wandung 12 als Folie von dem Atemgas 22 innerhalb des Atembeutels 13 getrennt. Aufgrund des Druckunterschiedes zwischen dem Atemgas innerhalb des Atembeutels 13 und der Umgebung des Atembeutels 13, welche auch den Raum innerhalb der verformbaren Wandung 12 mit dem Kühlelement 8 einschließt, wird die verformbare Wandung 12 auf das Kühlelement 8 gedrückt. Nur ein geringer Teil der Oberfläche des Kühlelementes 8 ist dabei außenseitig im Bereich des Gehäuses 18 angeordnet, so dass von der thermischen Isolierung 17 nur eine geringe Oberfläche des Kühlelementes 8 von der Umgebung thermisch zu isoliert werden braucht. Damit kann die von dem Kühlelement 8 zur Verfügung gestellte Kälte im Wesentlichen vollständig zur Kühlung und Entfeuchtung des Atemgases 22 innerhalb des Atembeutels 13 zur Verfügung gestellt werden.
  • Als Kühlelement 8 kann beispielsweise ein Latentwärmespeicher mit Paraffin, Salzhydrat, oder ein Kühlelement 8 als Bestandteil eines Peltier-Kühlers oder einer Wärmepumpe bzw. Kälteanlage, wobei bei der Wärmepumpe bzw. Kälteanlage das Kühlelement 8 den Verdampfer eines Kältekreises mit einem Verdichter und einem Kondensator darstellt.
  • Insgesamt betrachtet sind mit dem erfindungsgemäßen Atemkreislaufgerät 1 wesentliche Vorteilteile verbunden. An dem Atemkreislaufgerät 1 können Kühlelemente 8 mit einer unterschiedlichen Oberflächenstruktur angeordnet werden, so dass in flexibler Weise mit einem Grundgerät des Atemkreislaufgerätes 1 unterschiedliche Kühlelemente 8 für verschiedene Anwendungsbereiche des Atemkreislaufgerätes 1 benutzt werden können. Damit kann mit einem kostengünstig herzustellenden Grundgerät des Atemkreislaufgerätes 1 ein Atemkreislaufgerät 1 mit unterschiedlichen Kühlelementen 8 für verschiedenste Anwendungen zur Verfügung gestellt werden.
  • BEZUGSZEICHENLISTE
  • 1
    Atemkreislaufgerät
    2
    Atemgasleitung
    3
    Inspirationsleitung
    4
    Exspirationsleitung
    5
    Atemkreissystem
    6
    Kohlendioxid-Absorber
    7
    Kühlvorrichtung
    8
    Kühlelement
    9
    Sauerstoffbehälter
    10
    Sauerstoffzugabeeinheit
    11
    Sauerstoffleitung
    12
    Verformbare Wandung
    13
    Atembeutel
    15
    Erste Seite der Wandung mit Kühlelement
    16
    Zweite Seite der Wandung mit Atemgas
    17
    Thermische Isolierung
    18
    Gehäuse des Atemkreislaufgerätes
    19
    Feder
    20
    Exspirationsgas
    21
    Inspirationsgas
    22
    Atemgas
    23
    Kanal in Atembeutel
    24
    Trennwand in Atembeutel
    25
    Sorptionskühler
    26
    Zeolithkühler
    27
    Verdampfer
    28
    Dampfleitung
    29
    Ventil
    30
    Sorptionsmittelbehälter
    31
    Zeolithbehälter
    32
    Atembeutelwandung

Claims (14)

  1. Atemkreislaufgerät (1), umfassend
    eine Atemgasleitung (2) zur Ausbildung eines Atemkreissystems (5),
    eine Kühlvorrichtung (7) mit wenigstens einem Kühlelement (8) zum Kühlen eines durch die Atemgasleitung (2) geleiteten Atemgases, wobei das wenigstens eine Kühlelement (8) mit einer Wandung (12) von dem Atemgas getrennt ist,
    dadurch gekennzeichnet, dass
    die Wandung (12) eine verformbare Wandung (12) ist, so dass mittels einer Verformung der verformbaren Wandung (12) ein unmittelbarer Kontakt zwischen dem wenigstens einem Kühlelement (8) und der verformbaren Wandung (12) herstellbar ist.
  2. Atemkreislaufgerät nach Anspruch 1, dadurch gekennzeichnet, dass ein Druck an einer ersten Seite (15) der verformbaren Wandung (12) mit dem Kühlelement (8) größer ist als an einer zweiten Seite (16), so dass aufgrund der Druckdifferenz zwischen der ersten und der zweiten Seite (15, 16) die verformbare Wandung (12) auf das Kühlelement (8) gedrückt ist.
  3. Atemkreislaufgerät nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Kühlelement (8) unmittelbar auf der verformbaren Wandung (12) aufliegt.
  4. Atemkreislaufgerät nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass das Atemgas mit der ersten Seite (15) der verformbaren Wandung (12) unmittelbar in Kontakt steht.
  5. Atemkreislaufgerät nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
    an dem Kühlelement (8) außenseitig eine thermische Isolierung angeordnet ist und/oder das Atemgas mit der verformbaren Wandung (12) mittelbar oder unmittelbar in thermischer Verbindung steht.
  6. Atemkreislaufgerät nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Atemkreislaufgerät einen Atembeutel (13) als Teil der Atemgasleitung (2) aufweist und/oder die verformbare Wandung (12) eine Außenwandung des Atemkreislaufgerätes (1), insbesondere eines Gehäuses (18) des Atemkreislaufgerätes (1), bildet.
  7. Atemkreislaufgerät nach Anspruch 6, dadurch gekennzeichnet, dass das Kühlelement (8) wenigstens teilweise, insbesondere vollständig, innerhalb des Atembeutels (13) angeordnet ist und die verformbare Wandung (12) das Kühlelement (8) von dem Atemgas in dem Atembeutel (13) trennt.
  8. Atemkreislaufgerät nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass ein Teil der Atembeutelwandung (32) des Atembeutels (13) die verformbare Wandung (12) bildet, an welcher das Kühlelement (8) unmittelbar aufliegt.
  9. Atemkreislaufgerät nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Flüssigkeit oder Gel in einem Behälter mit Wandungen eingeschlossen ist und wenigstens eine Wandung des Behälters von der verformbaren Wandung (12) gebildet ist und das Kühlelement (8) an der verformbaren Wandung (12) des Behälters aufliegt.
  10. Atemkreislaufgerät nach Anspruch 9, dadurch gekennzeichnet, dass eine Wärmeseite des Behälters mit dem Atemgas in thermischen Kontakt steht und auf der verformbaren Wandung (12) des Behälters als eine Kälteseite des Behälters das Kühlelement (8) aufliegt.
  11. Atemkreislaufgerät nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die verformbare Wandung (12) eine Folie und/oder ein zweidimensionales biegbares Flächenteil und/oder ein Gewebe ist.
  12. Atemkreislaufgerät nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Kühlelement (8) ein Kühlbehälter mit Wassereis oder mit einem Latentwärmespeicher oder mit einer zu verdampfenden Flüssigkeit eines Sorptionskühlers, insbesondere Zeolithkühlers, ist.
  13. Atemkreislaufgerät nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Atemkreislaufgerät einen Kohlendioxid-Absorber (6) zum Entzug von Kohlendioxid aus dem durch das Atemkreissystem (5) geleiteten Atemgas aufweist.
  14. Atemkreislaufgerät nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Atemkreislaufgerät einen Sauerstoffbehälter (9) zur Speicherung von Sauerstoff und eine Sauerstoffzugabeeinheit (10) zum Einleiten von Sauerstoff aus dem Sauerstoffbehälter (9) in das Atemgas aufweist.
EP10159309.3A 2010-04-08 2010-04-08 Atemkreislaufgerät Active EP2374509B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10159309.3A EP2374509B1 (de) 2010-04-08 2010-04-08 Atemkreislaufgerät
US13/044,167 US9950196B2 (en) 2010-04-08 2011-03-09 Breathing circuit device
CN2011100932854A CN102210911A (zh) 2010-04-08 2011-04-08 呼吸循环仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10159309.3A EP2374509B1 (de) 2010-04-08 2010-04-08 Atemkreislaufgerät

Publications (2)

Publication Number Publication Date
EP2374509A1 EP2374509A1 (de) 2011-10-12
EP2374509B1 true EP2374509B1 (de) 2016-09-28

Family

ID=42224780

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10159309.3A Active EP2374509B1 (de) 2010-04-08 2010-04-08 Atemkreislaufgerät

Country Status (3)

Country Link
US (1) US9950196B2 (de)
EP (1) EP2374509B1 (de)
CN (1) CN102210911A (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012004205B4 (de) * 2012-03-01 2015-05-21 Dräger Safety AG & Co. KGaA Atemkreislaufgerät
CN102974052B (zh) * 2012-12-19 2015-07-22 江西易用科技有限公司 化学氧消防自救呼吸器氧气反应罐
DE102013016599B4 (de) * 2013-10-07 2015-11-05 Dräger Safety AG & Co. KGaA Kühlvorrichtung für ein Atemschutzgerät
DE102013016601B4 (de) * 2013-10-07 2015-09-10 Dräger Safety AG & Co. KGaA Kühlvorrichtung für ein Atemschutzgerät
CN103895840A (zh) * 2014-04-01 2014-07-02 中国人民解放军海军医学研究所 潜水呼吸器呼吸舱
DE102014017712B3 (de) * 2014-12-01 2016-05-12 Drägerwerk AG & Co. KGaA Atemluftversorgung mit Rückatemsystem
CN105498056B (zh) * 2015-12-24 2018-03-23 聂文军 一种呼吸循环仪
DE102019007408B4 (de) 2019-10-24 2022-07-07 Dräger Safety AG & Co. KGaA Kühlelement zur Verwendung in einer Kühlvorrichtung eines Kreislaufatemschutzgerätes
IT202000006121A1 (it) 2020-03-23 2020-06-23 Valentina Daddi Sistema di pompaggio d'ossigeno e ventilazione assistita ad alimentazione elettrica autonoma
GB202006832D0 (en) * 2020-05-07 2020-06-24 Dive Systems Ltd Apparatus and method
CN113120195A (zh) * 2021-05-26 2021-07-16 深圳易如潜水装备有限公司 一种纯氧型密闭式循环呼吸系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3527214A (en) * 1967-05-24 1970-09-08 Air Liquide Apparatus for regenerating a breathable gas in individual respiratory device of the closed-circuit type
SU474173A1 (ru) * 1973-05-03 1975-11-15 Всесоюзный научно-исследовательский институт горноспасательного дела Газотеплозащитный костюм
DE2700492B1 (de) * 1977-01-07 1978-05-18 Draegerwerk Ag Atemschutzgeraet mit einer Kuehlvorrichtung
JPH0545316Y2 (de) * 1986-07-25 1993-11-18
DE4029084A1 (de) * 1990-09-13 1992-03-19 Draegerwerk Ag Kuehlvorrichtung zur atemgaskuehlung in einem atemschutzgeraet
US5435152A (en) * 1994-02-18 1995-07-25 Microcool Corporation Air treating device having a bellows compressor actuable by memory-shaped metal alloy elements
DE10304394B4 (de) * 2003-02-04 2005-10-13 Dräger Safety AG & Co. KGaA Atemgerät mit einem Kreislauf für Atemgas
DE102005062185B3 (de) * 2005-12-23 2007-07-12 Dräger Medical AG & Co. KG Beatmungsvorrichtung mit aktiver Entfeuchtung
CN200954322Y (zh) * 2006-09-04 2007-10-03 煤炭科学研究总院重庆分院 隔绝式正压氧气呼吸器
DE102008055700B4 (de) * 2008-11-03 2013-02-21 Dräger Safety AG & Co. KGaA Atemgerät mit einem Kreislauf für Atemgas

Also Published As

Publication number Publication date
US9950196B2 (en) 2018-04-24
CN102210911A (zh) 2011-10-12
EP2374509A1 (de) 2011-10-12
US20110247618A1 (en) 2011-10-13

Similar Documents

Publication Publication Date Title
EP2374509B1 (de) Atemkreislaufgerät
DE102012004205B4 (de) Atemkreislaufgerät
DE10028030A1 (de) Sorptionsvorrichtung zum Heizen und Kühlen von Gasströmen
EP2643645B1 (de) Adsorptionskältemaschine mit einem Vakuumbehälter zur Entfernung von Fremdgasen
EP2818204A1 (de) Kühlvorrichtung für Chemikalien-Schutzanzüge und/oder Kreislaufatemgeräte
EP3226950B1 (de) Atemluftversorgung mit rückatemsystem
EP1416233B1 (de) Adsorptions-Kühlapparat mit Pufferspeicher
DE102019118984A1 (de) Diffusionssperre mittels Schutzschichten
DE102006054560A1 (de) Kühlsystem und Verfahren zur Kühlung einer Flugzeugeinrichtung
EP1443288A2 (de) Kühl-Container mit Adsorptions-Kühlapparat
DE2846139A1 (de) Verfahren mit kuehlungssystem zur koerperkuehlung und ein waermeschutzanzug dazu
EP2637883B1 (de) Abgas angetriebene adsorptionskältemaschine
DE10153121C1 (de) Kühlvorrichtung für Atemgas in einem Atemgerät
DE102016200917B4 (de) Temperiersystem für eine Person, Verfahren zum Betrieb und Verwendung eines solchen Temperiersystems
EP2354689A2 (de) Absorptionwärmepumpe mit Peltier-Elementen und deren Verwendung
DE102019118977A1 (de) Adsorberkühlung
DE102013016599B4 (de) Kühlvorrichtung für ein Atemschutzgerät
EP2895804A1 (de) Sammelbehälter und verfahren zur rückgewinnung von arbeitsmittel in sorptionsvorrichtungen
DE19910845C1 (de) Verfahren und Vorrichtung zur CO2-Entfernung aus einem Atemgasgemisch in einem Atemkreislaufsystem
EP2314938A2 (de) Sorptionswärmetauscher und Verfahren hierfür
DE4431388C2 (de) Vorrichtung zur Aufnahme und Abgabe von Wärmeenergie
DE102015006857B4 (de) Adsoptionspeicher zum Kühlen einer Fahrgastzelle eines eine Klimaanlage aufweisenden Fahrzeugs
DE102008020605B4 (de) Heiz- und Kühlanordnung
DE102014008450B4 (de) Thermische Konditionierung von Bauteilen
DE102004006345A1 (de) Fahrzeug mit Adsorptionskühler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA ME RS

17P Request for examination filed

Effective date: 20120305

17Q First examination report despatched

Effective date: 20160126

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: A62B 7/00 20060101AFI20160426BHEP

Ipc: B63C 11/24 20060101ALN20160426BHEP

INTG Intention to grant announced

Effective date: 20160519

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 832234

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010012462

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170130

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170128

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010012462

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170408

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170502

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170408

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170408

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 832234

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 15