EP2368310A2 - Elektrische maschine mit mehreren kühlströmen und kühlverfahren - Google Patents

Elektrische maschine mit mehreren kühlströmen und kühlverfahren

Info

Publication number
EP2368310A2
EP2368310A2 EP09771522A EP09771522A EP2368310A2 EP 2368310 A2 EP2368310 A2 EP 2368310A2 EP 09771522 A EP09771522 A EP 09771522A EP 09771522 A EP09771522 A EP 09771522A EP 2368310 A2 EP2368310 A2 EP 2368310A2
Authority
EP
European Patent Office
Prior art keywords
cooling
rotor
stator
radial
slot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP09771522A
Other languages
English (en)
French (fr)
Inventor
Oliver Memminger
Friedrich SCHÖBERL
Norbert SCHÖNBAUER
Johann Stegner
Robert Danner
Jürgen DRABER
Daniel Friedl
Anatoli Vogel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2368310A2 publication Critical patent/EP2368310A2/de
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/10Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing

Definitions

  • the present invention relates to an electric machine with a stator having a laminated core, which has at least one radial ventilation slot, and a rotor, which also has at least one radial ventilation slot. Moreover, the present invention relates to a method for cooling such an electric machine.
  • the object of the present invention is thus to reduce the assembly costs of an electrical machine and in particular such with a permanent magnet excited rotor.
  • a method is to be specified with which an electrical machine, which is designed to be easy to install, can be effectively cooled.
  • an electric machine having a stator which has a laminated core which has at least one radial cooling slot, and a rotor which likewise has at least one radial cooling slot.
  • slot wherein the laminated core of the stator has on its outer jacket a plurality of axially extending cooling fins, where an axially extending first cooling flow is guided, and the rotor has axially extending first cooling channels, which open into its at least one radial cooling slot, so that a second cooling flow through the axial first cooling passages of the rotor, the at least one radial cooling slot of the rotor, the air gap between the rotor and the stator, the at least one radial cooling slot of the stator and in the axial direction on the axial cooling fins of the stator along can be conducted.
  • the invention provides a method for cooling an electric machine with a stator and a rotor, by cooling fins on the outer jacket of the stator by an axially extending first cooling flow and cooling the rotor and stator with a second cooling flow, the axial is introduced into the rotor, is deflected in the rotor in the radial direction, leaving the rotor in the radial direction and radially forwarded in the stator and axially on the outer jacket of the stator, wherein each of the cooling currents in the reverse direction through the stator and rotor can be conducted.
  • the stator does not receive only preheated cooling medium from the rotor, but is additionally cooled with "unconsumed" coolant at axial cooling fins by a further cooling flow.
  • the rotor is energized by permanent magnets. This usually creates the majority of the losses in the stator.
  • the highly effective cooling of the stator according to the invention is all the more positive.
  • the rotor is penetrated only by a single radial cooling slot. In general, fewer radial cooling slots can be provided in the rotor in the electric machine according to the invention than in the prior art, since an additional axial cooling flow ensures further cooling.
  • an embodiment with only a single radial cooling slot in the rotor is particularly advantageous, since the permanent magnets can then be easily pushed from the front sides in the rotor and potted.
  • the axial first cooling channels of the rotor on one side of the cooling slot axial second cooling channels (with their central axes) with respect to the axis of the rotor radially below the first cooling channels and axial third cooling channels in the radial height of first cooling channels on the other side of the cooling slot, so that a third cooling flow is guided separately from the second cooling flow through the second cooling channels, the cooling slot and the radial cooling channels.
  • the reference point for the radial height (relative to the rotor axis) of a cooling flow, the center of the cooling flow is considered.
  • it can be achieved by changing the cooling planes that the downstream part of the rotor is also cooled with "unconsumed" or not yet heated coolant.
  • a fourth cooling flow may be provided, which is introduced into the rotor at the radial height of the second cooling flow, is diverted in the rotor to a radial height below the second cooling flow, and leaves the rotor at this lower radial height.
  • the rotor may have a thrust washer having openings to the second or third cooling channels, which openings are each smaller than the cross section of a second or third cooling channel. With these openings, the volume flow of the cooling streams can be suitably adjusted in relation to each other, without the cooling channels in the rotor being reduced in cross-section.
  • the stator may comprise a laminated core, and the cooling fins may be formed by each individual sheet having corresponding outwardly projecting extensions. This makes it very easy to manufacture a laminated stator core with external cooling fins, since the cooling fins are already "punched" onto the laminated core. An alternative would be to weld the outer cooling fins to the stator lamination stack. Welding, however, represents an additional work step that can be avoided.
  • the FIG shows a generator 1 with a radiator 2.
  • the radiator 2 has a fan 3 for sucking cooling air, which he blows in a heat exchanger 4.
  • the air flows from there through an outlet 5 to the outside. This defines an external cooling circuit.
  • the heat exchanger 4 cools through the outer cooling circuit 6 an inner, closed cooling circuit 7.
  • the internal cooling circuit 7 is driven by a shaft fan 8, which is mounted on the B side of the shaft 9 of the generator 1.
  • the inner cooling circuit flows through the heat exchanger and penetrates into the winding head space on the A side (drive side) of the generator. There it flows around the winding head 10 and the winding circuit 31 and then flows through the rotor 11 and the stator 12, as will be explained in more detail below.
  • the coolant in particular air flows through the winding head space on the B side (non-drive side) of the generator and again reaches the shaft fan 8 or a corresponding external fan.
  • the rotor 11 has a laminated core 13, on whose end faces thrust washers or pressure rings 14 and 15 are mounted. In its axial direction, the rotor 11 is bisected by a radial cooling slot 16. This cooling slot 16 is formed here by a spacer with the discs 29.
  • the rotor 11 also has axially extending cooling channels whose axial centers are located on two coaxial cylinders.
  • the radial distance of the central axis of a cooling channel from the axis of the shaft 9 is referred to as the radial height of the cooling channel.
  • the rotor 11 thus has a first cooling channel and radially below, ie at a lower radial height, a second axial cooling channel 18.
  • On the right side of the radial cooling slot 16, which divides the rotor centrally, is located in the same radial height Radial underneath is again in the same radial height as the second cooling channel 18, a fourth cooling channel 20.
  • permanent magnets 21 are arranged in specially provided pockets distributed around the circumference. These are inserted from both end faces into the rotor and also shed from both end faces. Since the rotor 11 has only a central radial cooling slot 16, the insertion of the magnets and the casting is correspondingly easy to accomplish.
  • the stator 12 has as a winding support a laminated core 22 which is traversed by numerous radially extending cooling slots 23.
  • axially extending cooling fins 24 are integrally formed on the laminated core 22.
  • the Cooling ribs 24 protrude in a star shape from the stator 12 and can be welded to the laminated core.
  • each individual plate of the laminated core 22 has radially projecting extensions, so that the cooling fins 24 result in the packaging of the individual plates.
  • the inner cooling circuit now has at least two different cooling flows.
  • the first cooling flow 25 runs along the stator jacket exclusively in the axial direction.
  • the axial cooling fins 24 of the stator are effectively cooled.
  • At the 13-sided end of this first cooling flow 25 is still used to cool the winding head.
  • a second cooling stream 26 is fed by a coolant or cooling air which has already cooled the winding head 10 and the winding circuit 31 in the A-side winding head space.
  • This second cooling stream penetrates through the A-side pressure ring 14 into the first cooling channel 17 of the rotor 11.
  • the second coolant stream 26 is directed radially outward. It is distributed axially in the entire air gap 27 between the rotor 11 and stator 12. From there it is, since the pressure rings 14 and 15 have a slightly larger diameter than the rotor laminated core including the permanent magnets 21, urged radially outward through the cooling slots 23 of the stator.
  • the second cooling or air flow 26 connects to the first air flow 25.
  • the second air flow 26 thus provides cooling of the left rotor part and the inner part of the stator shown in FIG. 1 over its entire axial length.
  • the second cooling flow 26 thus has a substantially Z-shaped course. It flows first axially, then radially and finally again axially.
  • sufficient cooling of the stator 12 can take place together with the linear first cooling flow, even if the rotor has only one radial cooling slot 16 and no plurality of such radial slots.
  • a third cooling flow 28 may be provided, which flows on the A side into the second cooling channels 18 through the pressure shield 14.
  • the third cooling flow 28 in the radial cooling slot 16 in the rotor 11 is forced upwards into the third cooling channels, which are located to the right of the cooling slot 16 at a greater radial height than the second cooling channels 18.
  • the third cooling flow 28 leaves the third cooling channels In the pressure plate 15 openings are provided for this purpose, the size of which is dimensioned such that the resistance of the third cooling flow 28 is not too low and also the second cooling flow 26 has a sufficient volume flow.
  • the third cooling flow 28 merges with the first and second cooling streams 25, 26 in the front side space of the generator 1 in front of the wave fan 8.
  • the third cooling flow 28 is thus in the first part of the rotor (left side in FIG. through the cooler area (near the shaft) of the rotor. He hardly absorbs heat.
  • On the right side of the rotor it is then led upwards and serves there for the effective cooling of the right rotor part.
  • the left half of the rotor part is, as explained above, primarily cooled by the second cooling flow 26.
  • the cooling principle according to the invention with two separate cooling streams can be summarized in terms of its mode of operation as follows:
  • An electric machine according to the invention or a cooling method according to the invention is designed so that it is possible to use only one rotor of the machine and in particular of a permanent magnet generator radial, centrally arranged cooling slot.
  • only a single rotor cooling slot would not be sufficient for dissipating losses in Z ventilation.
  • With the structure of the invention can just because It is now possible to ensure that the permanent magnets of the rotor are precisely positioned and durably protected against corrosion (simple basting on both sides). This is the reason why the stator pack is axially ribbed for additional heat dissipation in order to guarantee adequate cooling.
  • the axially extending ribs are recooled with a forced air flow of a shaft fan.
  • the magnets of the rotor, the region of the air gap and a part of the stator are recooled by a further cooling air flow, which is generated by the radial cooling air slot arranged centrally in the rotor.
  • a third cooling air flow is made possible by the negative pressure of the shaft fan and openings in the B-side rotor pressure plate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

Die Montage einer elektrischen Maschine und insbesondere eines Permanentmagnet -Generators soll ohne Einbuße von Kühlqualität vereinfacht werden. Dazu wird eine elektrische Maschine mit einem Stator (12), der einen Wicklungsträger (22) aufweist, welcher mindestens einen radialen Kühlschlitz (23) besitzt, und einem Rotor (11) der ebenfalls mindestens einen radialen Kühlschlitz (16) besitzt, vorgeschlagen. Der Wicklungsträger (22) des Stators (12) weist an seinem Außenmantel mehrere axial verlaufende Kühlrippen (24) auf, an denen ein axial verlaufender erster Kühlstrom (25) entlangleitbar ist. Außerdem weist der Rotor (11) axial verlaufende erste Kühlkanäle (17) auf, die in seinen mindestens einen radialen Kühlschlitz (16) münden, so dass ein zweiter Kühlstrom (26) durch die axialen ersten Kühlkanäle (17) des Rotors (11), den mindestens einen radialen Kühlschlitz (16) des Rotors (11), den Luftspalt (27) zwischen Rotor und Stator den mindestens einen radialen Kühlschlitz (23) und in axialer Richtung an den axialen Kühlrippen (24) des Stators entlangleitbar ist. Damit lässt sich der Stator durch zwei verschiedene Kühlströme kühlen und es kann insbesondere die Anzahl radialer Kühlschlitze im Rotor (11) insbesondere auf eins reduziert werden, was die Fertigung deutlich vereinfacht.

Description

Beschreibung
Elektrische Maschine mit mehreren Kühlströmen und Kühlverfahren
Die vorliegende Erfindung betrifft eine elektrische Maschine mit einem Stator, der ein Blechpaket aufweist, welches mindestens einen radialen Lüftungsschlitz besitzt, und einem Rotor, der ebenfalls mindestens einen radialen Lüftungsschlitz besitzt. Darüber hinaus betrifft die vorliegende Erfindung ein Verfahren zum Kühlen einer derartigen elektrischen Maschine.
Bei elektrischen Maschinen sind zur Entwärmung des Rotors und des Stators häufig sowohl im Rotor als auch im Stator radial verlaufende Kühlschlitze vorgesehen. Handelt es sich bei der elektrischen Maschine um einen so genannten Permanentmagnet - Generator so ist die Montage der Permanentmagnete in entsprechenden Taschen des Rotors verhältnismäßig aufwendig, wenn der Rotor zahlreiche radiale Lüftungsschlitze besitzt. Um jedoch eine ausreichende Entwärmung garantieren zu können, wird bislang der erhöhte Montageaufwand hingenommen. So werden bislang Permanentmagnet -Generatoren mit einer gleichen Anzahl an radialen Stator- und Rotorkühlluftschlitzen gefertigt, die für gleichmäßige Entwärmung sorgen. Der Rotor dient hierbei mit seinen Kühlschlitzen als Radiallüfter.
Die Aufgabe der vorliegenden Erfindung besteht somit darin, den Montageaufwand einer elektrischen Maschine und insbeson- dere einer solchen mit permanentmagneterregtem Rotor zu reduzieren. Darüber hinaus soll ein Verfahren angegeben werden, mit dem eine elektrische Maschine, die montagefreundlich ausgestaltet ist, effektiv entwärmt werden kann.
Erfindungsgemäß wird diese Aufgabe gelöst durch eine elektrische Maschine mit einem Stator, der ein Blechpaket aufweist, welches mindestens einen radialen Kühlschlitz besitzt, und einem Rotor, der ebenfalls mindestens einen radialen Kühl- schlitz besitzt, wobei das Blechpaket des Stators an seinem Außenmantel mehrere axial verlaufende Kühlrippen aufweist, an denen ein axial verlaufender erster Kühlstrom entlang leitbar ist, und der Rotor axial verlaufende erste Kühlkanäle auf- weist, die in seinen mindestens einen radialen Kühlschlitz münden, so dass ein zweiter Kühlstrom durch die axialen ersten Kühlkanäle des Rotors, den mindestens einen radialen Kühlschlitz des Rotors, den Luftspalt zwischen Rotor und Stator, den mindestens einen radialen Kühlschlitz des Stators und in axialer Richtung an den axialen Kühlrippen des Stators entlang leitbar ist.
Darüber hinaus wird erfindungsgemäß bereitgestellt ein Verfahren zum Kühlen einer elektrischen Maschine mit einem Sta- tor und einem Rotor, durch Kühlen von Kühlrippen am Außenmantel des Stators durch einen axial verlaufenden ersten Kühl- strom und Kühlen des Rotors und Stators mit einem zweiten Kühlstrom, der axial in den Rotor eingeleitet wird, im Rotor in radialer Richtung umgelenkt wird, den Rotor in radialer Richtung verlässt und im Stator radial weitergeleitet wird sowie am Außenmantel des Stators axial weiterverläuft, wobei der jeder der Kühlströme auch in umgekehrter Richtung durch Stator und Rotor leitbar ist.
In vorteilhafter Weise wirken entsprechend der vorliegenden
Erfindung somit zwei Kühlströme zusammen, die für eine besonders effektive Entwärmung des Stator sorgen. Insbesondere erhält der Stator nicht ausschließlich vorgewärmtes Kühlmedium vom Rotor, sondern wird zusätzlich mit "unverbrauchtem" Kühl- mittel an axialen Kühlrippen durch einen weiteren Kühlstrom gekühlt .
In einer Ausführungsform ist der Rotor durch Permanentmagnete erregt. Damit entsteht in der Regel der Großteil der Verluste im Stator. Die erfindungsgemäße hochwirksame Kühlung des Stators wirkt sich umso positiver aus. Vorzugsweise wird der Rotor nur von einem einzigen radialen Kühlschlitz durchsetzt. Generell können bei der erfindungsgemäßen elektrischen Maschine weniger radiale Kühlschlitze im Rotor vorgesehen sein als im Stand der Technik, da ein zu- sätzlicher axialer Kühlstrom für weitere Entwärmung sorgt.
Dennoch ist eine Ausführungsform mit nur einem einzigen radialen Kühlschlitz im Rotor besonders vorteilhaft, da die Permanentmagnete dann jeweils von den Stirnseiten problemlos in den Rotor geschoben und vergossen werden können.
Gemäß einer weiteren bevorzugten Ausführungsform befinden sich die axialen ersten Kühlkanäle des Rotors auf der einen Seite des Kühlschlitzes, axiale zweite Kühlkanäle (mit ihren zentralen Achsen) bezogen auf die Achse des Rotors radial un- terhalb der ersten Kühlkanäle und axiale dritte Kühlkanäle in radialer Höhe der ersten Kühlkanäle auf der anderen Seite des Kühlschlitzes, so dass ein dritter Kühlstrom getrennt von dem zweiten Kühlstrom durch die zweiten Kühlkanäle, den Kühl- schlitz und die radialen Kühlkanäle leitbar ist. Dabei wird als Bezugspunkt für die radiale Höhe (bezogen auf die Rotorachse) eines Kühlstroms das Zentrum des Kühlstroms betrachtet. In vorteilhafter Weise kann durch den Wechsel der Kühlebenen erreicht werden, dass auch der stromabwärts gelegene Teil des Rotors mit "unverbrauchtem" bzw. noch nicht erwärm- ten Kühlmittel entwärmt wird.
Zusätzlich hierzu kann ein vierter Kühlstrom vorgesehen sein, der in radialer Höhe des zweiten Kühlstroms in den Rotor eingeleitet wird, im Rotor auf eine radiale Höhe unterhalb des zweiten Kühlstroms umgeleitet wird und den Rotor auf dieser tieferen radialen Höhe verlässt. Dadurch wird der bereits angewärmte Kühlmittelstrom nach einem gewissen axialen Weg hin zur Welle geleitet, wo er kaum mehr Kühlungsaufgaben bewältigen muss. In diesem axialen Bereich kann dann der dritte Kühlström die Kühlaufgaben übernehmen.
Weiterhin kann der Rotor eine Druckscheibe aufweisen, die Öffnungen zu den zweiten oder dritten Kühlkanälen besitzt, welche Öffnungen jeweils kleiner sind als der Querschnitt eines zweiten oder dritten Kühlkanals. Mit diesen Öffnungen lässt sich der Volumenstrom der Kühlströme im Verhältnis zueinander passend einstellen, ohne dass die Kühlkanäle im Ro- tor im Querschnitt verkleinert werden.
Speziell kann der Stator ein Blechpaket aufweisen, und die Kühlrippen können dadurch gebildet sein, dass jedes Einzel - blech entsprechende nach außen ragende Fortsätze besitzt. Da- durch lässt sich ein Statorblechpaket mit Außenkühlrippen sehr einfach fertigen, denn die Kühlrippen sind bereits an das Blechpaket "angestanzt". Eine Alternative bestünde darin, die Außenkühlrippen an das Statorblechpaket anzuschweißen. Das Anschweißen stellt jedoch einen zusätzlichen Arbeits- schritt dar, der vermieden werden kann.
Die vorliegende Erfindung wird nun anhand der beigefügten Zeichnung näher erläutert, die einen Teilquerschnitt durch einen erfindungsgemäßen permanentmagneterregten Generator zeigt.
Die nachfolgend näher geschilderten Ausführungsbeispiele stellen bevorzugte Ausführungsformen der vorliegenden Erfindung dar.
Die FIG zeigt einen Generator 1 mit einem Kühler 2. Der Kühler 2 besitzt einen Lüfter 3 zum Ansaugen von Kühlluft, die er in einen Wärmetauscher 4 bläst . Die Luft strömt von dort durch eine Auslassstutzen 5 nach außen. Hierdurch ist ein äu- ßerer Kühlkreislauf definiert.
Der Wärmetauscher 4 kühlt durch den äußeren Kühlkreislauf 6 einen inneren, geschlossenen Kühlkreislauf 7. Angetrieben wird der innere Kühlkreislauf 7 durch einen Wellenlüfter 8, der auf die B-Seite der Welle 9 des Generators 1 montiert ist. Der innere Kühlkreislauf durchströmt beginnend von dem Lüfter 8 den Wärmetauscher und dringt auf der A-Seite (Antriebsseite) des Generators in den Wickelkopfräum ein. Dort umströmt er den Wickelkopf 10 sowie die Wicklungsschaltung 31 und durchströmt anschließend den Rotor 11 und den Stator 12, wie nachfolgend näher erläutert werden wird. Schließlich durchströmt das Kühlmittel (insbesondere Luft) den Wickel- kopfraum auf der B-Seite (Nichtantriebsseite) des Generators und erreicht wieder den Wellenlüfter 8 bzw. einen entsprechenden Fremdlüfter.
Der Rotor 11 besitzt ein Blechpaket 13, an dessen Stirnseiten Druckscheiben oder Druckringe 14 und 15 angebracht sind. In seiner axialen Richtung ist der Rotor 11 durch einen radialen Kühlschlitz 16 zweigeteilt. Dieser Kühlschlitz 16 wird hier durch einen Abstandshalter mit den Scheiben 29 gebildet.
Der Rotor 11 weist weiterhin axial verlaufende Kühlkanäle auf, deren axiale Zentren auf zwei koaxialen Zylindern liegen. Nachfolgend wird der radiale Abstand der Zentralachse eines Kühlkanals von der Achse der Welle 9 als radiale Höhe des Kühlkanals bezeichnet. Gemäß dem vorliegenden Beispiel besitzt der Rotor 11 somit einen ersten Kühlkanal und radial darunter, also in einer geringeren radialen Höhe einen zweiten axialen Kühlkanal 18. Auf der rechten Seite des radialen Kühlschlitzes 16, der den Rotor mittig teilt, befindet sich in der gleichen radialen Höhe wie der erste Kühlkanal 17 ein dritter Kühlkanal 19. Radial darunter befindet sich wieder in der gleichen radialen Höhe wie der zweite Kühlkanal 18 ein vierter Kühlkanal 20. In dem Blechpaket 13 sind in eigens dafür vorgesehenen Taschen am Umfang verteilt Permanentmagnete 21 angeordnet. Diese sind von beiden Stirnseiten her in den Rotor eingeschoben und von beiden Stirnseiten her auch vergossen. Da der Rotor 11 nur einen mittigen radialen Kühl- schlitz 16 besitzt, ist das Einfügen der Magnete und das Vergießen entsprechend einfach zu bewerkstelligen.
Der Stator 12 besitzt als Wicklungsträger ein Blechpaket 22, das von zahlreichen radial verlaufenden Kühlschlitzen 23 durchzogen ist. Am Außenmantel des Blechpakets sind axial verlaufende Kühlrippen 24 an das Blechpaket 22 angeformt. Die Kühlrippen 24 ragen sternförmig von dem Stator 12 ab und können an das Blechpaket angeschweißt sein. Alternativ besitzt jedes Einzelblech des Blechpakets 22 radial abstehende Fortsätze, so dass sich bei der Paketierung der Einzelbleche die Kühlrippen 24 ergeben.
Erfindungsgemäß weist der innere Kühlkreislauf nun mindestens zwei verschiedene Kühlströme auf. Der erste Kühlstrom 25 verläuft entlang des Statormantels ausschließlich in axialer Richtung. Durch diesen Strom, der nahezu ohne Wärmeaufnahme fast unmittelbar vom Wärmetauscher 4 gespeist wird, werden die axialen Kühlrippen 24 des Stators effektiv gekühlt. Am 13- seitigen Ende wird dieser erste Kühlstrom 25 noch dazu genutzt, den Wickelkopf zu kühlen.
Ein zweiter Kühlstrom 26 wird durch ein Kühlmittel bzw. Kühlluft gespeist, welches/welche im A-seitigen Wickelkopfräum den Wickelkopf 10 und die Wicklungsschaltung 31 bereits gekühlt hat. Dieser zweite Kühlstrom dringt durch den A-seiti- gen Druckring 14 in den ersten Kühlkanal 17 des Rotors 11. An dem radialen Kühlschlitz 16 in der Mitte des Rotors wird der zweite Kühlmittelstrom 26 radial nach außen gelenkt. Er verteilt sich axial im gesamten Luftspalt 27 zwischen Rotor 11 und Stator 12. Von dort wird er, da die Druckringe 14 und 15 einen etwas größeren Durchmesser besitzen als das Rotorblechpaket einschließlich der Permanentmagnete 21, radial nach außen durch die Kühlschlitze 23 des Stators gedrängt. An der Außenfläche des Stators verbindet sich der zweite Kühl- bzw. Luftstrom 26 mit dem ersten Luftstrom 25. Der zweite Luft- ström 26 sorgt somit für eine Kühlung des in der FIG dargestellten linken Rotorteils und des Innenteils des Stators über seiner gesamten axialen Länge. Der zweite Kühlstrom 26 besitzt somit im Wesentlichen Z-förmigen Verlauf. Er fließt zunächst axial, dann radial und schließlich wieder axial. Zu- sammen mit dem linearen ersten Kühlstrom kann somit eine ausreichende Entwärmung des Stators 12 erfolgen, auch wenn der Rotor lediglich über einen radialen Kühlschlitz 16 und nicht über eine Vielzahl derartiger radialer Schlitze verfügt. Optional kann wie in dem in der FIG dargestellten Beispiel ein dritter Kühlstrom 28 vorgesehen sein, der A-seitig in die zweiten Kühlkanäle 18 durch das Druckschild 14 einströmt. In dem radialen Kühlschlitz 16 des Rotors 11 befindet sich ein Abstandshalter. Im vorliegenden Beispiel sind als Abstandshalter drei Scheiben 29 eingesetzt. Die Scheiben 29 sind unterschiedlich ausgebildet und besitzen Aussparungen 30 in zueinander versetzten Positionen. Dadurch wird der dritte Kühl- strom 28 im radialen Kühlschlitz 16 in der FIG nach oben in die dritten Kühlkanäle gedrängt, die sich rechts von dem Kühlschlitz 16 in größerer radialer Höhe befinden als die zweiten Kühlkanäle 18. Schließlich verlässt der dritte Kühlstrom 28 die dritten Kühlkanäle 19 durch das B-seitige Druckschild 15. In dem Druckschild 15 sind hierzu Öffnungen vorge- sehen, deren Größe so bemessen ist, dass der Widerstand des dritten Kühlstroms 28 nicht zu gering ist und auch der zweite Kühlstrom 26 einen ausreichenden Volumenstrom besitzt. Nach der Öffnung im Druckschild 15 vereint sich der dritte Kühlstrom 28 mit dem ersten und zweiten Kühlstrom 25, 26 in dem Stirnseitenraum des Generators 1 vor dem Wellenlüfter 8. Der dritte Kühlstrom 28 wird somit im ersten Teil des Rotors (linke Seite in der FIG) durch den kühleren Bereich (wellennaher Bereich) des Rotors geführt . Er nimmt dabei kaum Wärme auf. Auf der rechten Seite des Rotors ist er dann nach oben geführt und dient dort zur effektiven Kühlung des rechten Rotorteils. Die linke Hälfte des Rotorteils wird, wie oben erläutert, primär durch den zweiten Kühlstrom 26 gekühlt.
Das erfindungsgemäße Kühlprinzip mit zwei voneinander ge- trennten Kühlströmen lässt sich hinsichtlich seiner Wirkungsweise wie folgt zusammenfassen: Eine erfindungsgemäße elektrische Maschine bzw. ein erfindungsgemäßes Kühlungsverfahren ist so ausgebildet, dass es möglich ist, den Rotor der Maschine und insbesondere eines Permanentmagnet -Generators mit nur einem radialen, mittig angeordneten Kühlschlitz auszuführen. Nach üblicher Bauart wäre nur ein einziger Rotorkühl - schlitz für die Verlustabführung bei Z-Belüftung nicht ausreichend. Mit dem erfindungsgemäßen Aufbau kann gerade wegen nur eines einzigen mittigen Kühlschlitzes nun ohne hohen Aufwand gewährleistet werden, dass die Permanentmagnete des Rotors exakt positioniert werden und dauerhaft gegen Korrosion geschützt sind (einfaches beidseitiges Begießen) .Um ausrei- chende Kühlung zu garantieren, ist das Statorpaket für zusätzliche Entwärmung axial verrippt . Die axial verlaufenden Rippen werden mit einer erzwungenen Luftströmung eines Wellenlüfters rückgekühlt. Die Magnete des Rotors, der Bereich des Luftspalts sowie ein Teil des Stators werden durch einen weiteren Kühlluftstrom rückgekühlt, der durch den im Rotor mittig angeordneten radialen Kühlluftschlitz erzeugt wird. Gegebenenfalls wird ein dritter Kühlluftstrom durch den Unterdruck des Wellenlüfters und Öffnungen in der B-seitigen Rotordruckscheibe ermöglicht. Durch einen Wechsel der Kühlka- nalebenen im Bereich des radialen Kühlschlitzes in der Mitte des Rotorpakets wird erreicht, dass die zweite Hälfte des Rotors ebenfalls mit "kalter" Kühlluft versorgt werden kann. Diese zusätzliche Kühlung dient der Entwärmung der Magnete des zweiten Rotorpakets. Aus dem erfindungsgemäßen Kühlprin- zip ergeben sich folgende, zum Teil bereits angesprochene
Vorteile: Zum einen lässt sich eine Kosteneinsparung in der Fertigung erzielen, da der Rotor nur in zwei Teilpaketen und nicht beispielsweise in zehn Teilpaketen hergestellt werden muss. Darüber hinaus kann ein vollständiger Korrosionsschutz der verwendeten Permanentmagnete durch zuverlässiges Eingießen entsprechend der Vergussmasse von den Rotorstirnseiten erreicht werden. Schließlich kann trotz der an sich nicht ausreichenden radialen Kühlströmung eine hinreichende Statorkühlung aufgrund der axialen Verrippung erzielt werden.

Claims

Patentansprüche
1. Elektrische Maschine mit einem Stator (12) , der einen Wicklungsträger (22) auf- weist, welcher mindestens einen radialen Kühlschlitz (23) besitzt, und einem Rotor (11) , der ebenfalls mindestens einen radialen Kühlschlitz (16) besitzt, d a d u r c h g e k e n n z e i c h n e t , dass - der Wicklungsträger (22) des Stators (12) an seinem Außenmantel mehrere axial verlaufende Kühlrippen (24) aufweist, an denen ein axial verlaufender erster Kühlstrom (25) entlang leitbar ist, und der Rotor (11) axial verlaufende erste Kühlkanäle (17) aufweist, die in seinen mindestens einen radialen Kühlschlitz (16) münden, so dass ein zweiter Kühlstrom (26) durch die axialen ersten Kühlkanäle (17) des Rotors (11) , den mindestens einen radialen Kühlschlitz (16) des Rotors (11) , den Luftspalt (27) zwi- sehen Rotor (11) und Stator (12) , den mindestens einen radialen Kühlschlitz (23) des Stators (12) und in axialer Richtung an den axialen Kühlrippen (24) des Stators (12) entlang leitbar ist.
2. Elektrische Maschine nach Anspruch 1, wobei der Rotor (11) durch Permanentmagnete (21) erregt ist.
3. Elektrische Maschine nach Anspruch 1 oder 2, wobei der Rotor (11) nur von einem einzigen radialen Kühlschlitz (16) durchsetzt ist.
4. Elektrische Maschine nach Anspruch 3, wobei durch die axialen ersten Kühlkanäle (17) des Rotors (11) auf der einen Seite des Kühlschlitzes (16) , axiale zweite Kühlkanäle (18) radial unterhalb der ersten Kühlkanäle (17) und axiale dritte Kühlkanäle (19) in radialer Höhe der ersten Kühlkanäle (17) auf der anderen Seite des Kühlschlitzes (6) befinden, so dass ein dritter Kühlstrom (28) getrennt von dem zweiten Kühlstrom (26) durch die zweiten Kühlkanäle (18), den Kühlschlitz (16) und die dritten Kühlkanäle (19) leitbar ist.
5. Elektrische Maschine nach einem der vorhergehenden Ansprü- che, wobei der Rotor (11) einen Druckring (15) aufweist, die Öffnungen zu den zweiten oder dritten Kühlkanälen (18,19) besitzt, welche Öffnungen jeweils kleiner sind als der Querschnitt eines zweiten oder dritten Kühlkanals.
6. Elektrische Maschine nach einem der vorhergehenden Ansprüche, wobei der Wicklungsträger (22) ein Blechpaket aufweist, und die Kühlrippen (24) dadurch gebildet sind, dass jedes Einzelblech entsprechende nach außen ragende Fortsätze besitzt .
7. Verfahren zum Kühlen einer elektrischen Maschine mit einem Stator (12) und einem Rotor (11) , g e k e n n z e i c h n e t durch
Kühlen von Kühlrippen (24) am Außenmantel des Stators (12) durch einen axial verlaufenden ersten Kühlstrom (25) und Kühlen des Rotors (11) und Stators (12) mit einem zweiten Kühlstrom (26), der axial in den Rotor (11) eingeleitet wird, im Rotor (11) in radialer Richtung umgelenkt wird, den Rotor (11) in radialer Richtung verlässt und im Stator (12) radial weitergeleitet wird sowie am Außenmantel des Stators (12) axial weiterverläuft, wobei jeder der Kühl- ströme (26,28) auch in umgekehrter Richtung durch Stator (12) und Rotor (11) leitbar ist.
8. Verfahren nach Anspruch 7, wobei der Rotor (11) durch einen dritten Kühlstrom (28) gekühlt wird, der in den Rotor (11) radial unterhalb des zweiten Kühlstroms (26) eingeleitet wird, innerhalb des Rotors (11) auf die radiale Höhe des zweiten Kühlstroms geleitet wird und den Rotor (11) getrennt von dem zweiten Kühlstrom (26) in radialer Höhe des zweiten Kühlstroms verlässt.
9. Verfahren nach Anspruch 7 oder 8, wobei ein vierter Kühl- strom (25) in radialer Höhe des zweiten Kühlstroms (26) in den Rotor (11) eingeleitet wird, im Rotor (11) auf eine radiale Höhe unterhalb des zweiten Kühlstroms gelenkt wird und den Rotor (11) auf dieser tieferen radialen Höhe verlässt.
EP09771522A 2008-12-23 2009-11-24 Elektrische maschine mit mehreren kühlströmen und kühlverfahren Ceased EP2368310A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008064495A DE102008064495B3 (de) 2008-12-23 2008-12-23 Elektrische Maschine mit mehreren Kühlströmen und Kühlverfahren
PCT/EP2009/065737 WO2010072499A2 (de) 2008-12-23 2009-11-24 Elektrische maschine mit mehreren kühlströmen und kühlverfahren

Publications (1)

Publication Number Publication Date
EP2368310A2 true EP2368310A2 (de) 2011-09-28

Family

ID=41785877

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09771522A Ceased EP2368310A2 (de) 2008-12-23 2009-11-24 Elektrische maschine mit mehreren kühlströmen und kühlverfahren

Country Status (6)

Country Link
US (1) US8648505B2 (de)
EP (1) EP2368310A2 (de)
CN (1) CN102265487B (de)
DE (1) DE102008064495B3 (de)
RU (1) RU2510560C2 (de)
WO (1) WO2010072499A2 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9077212B2 (en) 2010-09-23 2015-07-07 Northern Power Systems, Inc. Method and apparatus for rotor cooling in an electromechanical machine
ES2428017T3 (es) 2011-04-04 2013-11-05 Siemens Aktiengesellschaft Procedimiento para montar una máquina eléctrica
EP2757666B1 (de) * 2013-01-17 2015-06-24 Siemens Aktiengesellschaft Verbesserte Kühlung einer elektrischen Maschine
WO2014124687A1 (de) 2013-02-15 2014-08-21 Siemens Aktiengesellschaft Elektrische maschine mit segmentiertem stator und zweischichtwicklung
DE102013002704A1 (de) 2013-02-16 2014-08-21 Audi Ag Drehstabsystem für eine Fahrzeugachse eines zweispurigen Fahrzeuges
EP3007328A1 (de) 2014-10-08 2016-04-13 Siemens Aktiengesellschaft Aktivteil einer elektrischen Maschine
EP3082202A1 (de) 2015-04-17 2016-10-19 Siemens Aktiengesellschaft Schleifringkörper für einen läufer einer elektrisch erregten rotatorischen dynamoelektrischen maschine
CN104868656A (zh) * 2015-04-29 2015-08-26 宁波诺丁汉大学 永磁电机
US10439350B2 (en) 2015-05-29 2019-10-08 Siemens Aktiengesellschaft Arrangement for guiding and/or holding electrically conductive sliding contact elements
DE102015211048A1 (de) 2015-06-16 2016-12-22 Siemens Aktiengesellschaft Elektrische Maschine
EP3353878B1 (de) 2015-09-21 2019-05-15 Siemens Aktiengesellschaft Elektrische maschine mit radialen kühlschlitzen sowie windkraftanlage
CN105337430A (zh) * 2015-12-03 2016-02-17 卧龙电气南阳防爆集团股份有限公司 一种无径向风道通风冷却结构的方箱电机
US10778056B2 (en) * 2017-05-16 2020-09-15 Hamilton Sunstrand Corporation Generator with enhanced stator cooling and reduced windage loss
WO2018218452A1 (en) * 2017-05-27 2018-12-06 Siemens Aktiengesellschaft Cooling enclosure and motor
US20190309644A1 (en) * 2018-04-10 2019-10-10 Elysium Solutions LLC Electrical power generation assembly having recovery gas efficiency
CN109412339B (zh) * 2018-09-06 2020-04-28 新疆金风科技股份有限公司 电机及风力发电机组
CN112054613B (zh) * 2020-04-27 2021-08-17 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种水冷电机定子及电机
RU2740792C1 (ru) * 2020-07-30 2021-01-21 Общество с ограниченной ответственностью "СПЕЦИАЛЬНЫЕ ПРОЕКТЫ МАШИНОСТРОЕНИЯ" (ООО "СПЕЦИАЛЬНЫЕ ПРОЕКТЫ МАШИНОСТРОЕНИЯ") Индукторный генератор с воздушной системой охлаждения
EP4102682A1 (de) * 2021-06-09 2022-12-14 Siemens Gamesa Renewable Energy A/S Generator, windturbine und verfahren zur kühlung eines direktantriebsgenerators einer windturbine
CN113726096B (zh) * 2021-08-30 2024-03-29 大连日牵电机有限公司 牵引电机带冷却器的双风扇冷却结构
RU2770909C1 (ru) * 2021-09-06 2022-04-25 Общество с ограниченной ответственностью "СПЕЦИАЛЬНЫЕ ПРОЕКТЫ МАШИНОСТРОЕНИЯ" (ООО "СПЕЦИАЛЬНЫЕ ПРОЕКТЫ МАШИНОСТРОЕНИЯ") Индукторный генератор с воздушной системой охлаждения
DE102022121996A1 (de) 2022-08-31 2024-02-29 Bayerische Motoren Werke Aktiengesellschaft Blechpaket für eine elektrische Maschine, insbesondere eines Kraftfahrzeugs, elektrische Maschine und Kraftfahrzeug
DE102022121993A1 (de) 2022-08-31 2024-02-29 Bayerische Motoren Werke Aktiengesellschaft Blechpaket für eine elektrische Maschine, insbesondere eines Kraftfahrzeugs, sowie elektrische Maschine für ein Kraftfahrzeug

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE616524C (de) * 1929-11-03 1935-07-31 Siemens Schuckertwerke Akt Ges Einrichtung zur Belueftung elektrischer Maschinen mit grosser axialer Laenge
CH174436A (de) * 1933-04-21 1935-01-15 Siemens Ag Einrichtung für die Kühlung elektrischer Maschinen.
FR1350043A (fr) * 1962-12-11 1964-01-24 Forges Ateliers Const Electr Ventilation perfectionnée de machines électriques
DE1488657A1 (de) 1965-03-13 1969-06-12 Siemens Ag Genutete Bleche fuer elektrische Maschinen mit axial verlaufenden Kuehlkanaelen im Joch
US3675056A (en) * 1971-01-04 1972-07-04 Gen Electric Hermetically sealed dynamoelectric machine
GB1354247A (en) * 1972-05-30 1974-06-05 Gen Electric Dynamoelectric machine
US3939907A (en) * 1974-05-21 1976-02-24 Skvarenina John A Rotary compressor and condenser for refrigerating systems
FR2589017B1 (fr) * 1985-10-17 1990-07-27 Alsthom Machine synchrone a enroulements supraconducteurs
DE3703594A1 (de) * 1987-02-06 1988-09-08 Bbc Brown Boveri & Cie Gasgekuehlte elektrische maschine
SU1746478A1 (ru) * 1990-06-25 1992-07-07 Филиал Всесоюзного Научно-Иследовательского Института Электромашиностроения По Крупным Электрическим Машинам Электрическа машина
EP0522210B1 (de) * 1991-07-12 1995-09-27 Siemens Aktiengesellschaft Verfahren zum Kühlen einer umlaufenden elektrischen Maschine und elektrische Maschine zur Durchführung des Verfahrens
CH686327A5 (de) * 1993-08-17 1996-02-29 Abb Management Ag Gasgekuehlte elektrische Maschine.
JP2837101B2 (ja) * 1994-11-04 1998-12-14 ファナック株式会社 空冷式電動機
JP3855658B2 (ja) * 1998-01-21 2006-12-13 株式会社日立製作所 電動機
JP3332039B2 (ja) * 1999-09-03 2002-10-07 株式会社日立製作所 回転電機
CA2324696C (en) 2000-10-26 2008-06-10 General Electric Canada Inc. Dynamoelectric machine rotor ventilation
JP3806303B2 (ja) * 2000-12-11 2006-08-09 三菱重工業株式会社 発電機における冷却構造
JP3819814B2 (ja) * 2002-06-19 2006-09-13 収一 佐古田 磁力による高効率回転装置。
US6522036B1 (en) * 2002-01-21 2003-02-18 Li-Ming Chen Motor with a heat dissipating assembly
RU2231195C1 (ru) * 2002-10-09 2004-06-20 Научно-производственное объединение "ЭЛСИБ" Открытое акционерное общество Система охлаждения электрической машины
GB2399231A (en) * 2003-03-07 2004-09-08 Alstom Multi-path cooling of a turbo-generator rotor winding
RU2258295C2 (ru) * 2003-05-05 2005-08-10 Открытое Акционерное Общество "Силовые Машины - Зтл, Лмз, Электросила, Энергомашэкспорт" (Оао "Силовые Машины") Способ газового охлаждения электрической машины и электрическая машина
DE10335038A1 (de) * 2003-08-01 2005-03-10 Siemens Ag Elektrische Maschine mit Läuferkühlung und entsprechendes Kühlungsverfahren
RU36586U1 (ru) * 2003-10-07 2004-03-10 Открытое акционерное общество "Энергомашкорпорация" Вращающаяся электрическая машина с замкнутым газовым охлаждением
JP2008228523A (ja) * 2007-03-15 2008-09-25 Toyota Industries Corp 回転電機およびその回転子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2010072499A2 *

Also Published As

Publication number Publication date
US20110278969A1 (en) 2011-11-17
RU2011130908A (ru) 2013-01-27
DE102008064495B3 (de) 2010-10-21
CN102265487B (zh) 2013-10-16
US8648505B2 (en) 2014-02-11
RU2510560C2 (ru) 2014-03-27
WO2010072499A2 (de) 2010-07-01
CN102265487A (zh) 2011-11-30
WO2010072499A3 (de) 2011-04-07

Similar Documents

Publication Publication Date Title
DE102008064495B3 (de) Elektrische Maschine mit mehreren Kühlströmen und Kühlverfahren
EP2368308B1 (de) Elektrische maschine mit axialen, radial versetztem kühlstrom und entsprechende methode
EP0155405B1 (de) Einrichtung zur indirekten Gaskühlung der Ständerwicklung und/oder zur direkten Gaskühlung des Ständerblechpaketes dynamoelektrischer Maschinen, vorzugsweise für gasgekühlte Turbogeneratoren
DE102007061597B4 (de) Elektrische Maschine mit Doppelaxiallüfter
EP2109207B1 (de) Flüssigkeitsgekühlte elektrische Maschine sowie Verfahren zur Kühlung einer solchen elektrischen Maschine
EP2783452B1 (de) Elektrische maschine
DE102006043169B4 (de) Elektrische Maschine mit einem innengekühlten Läufer
DE112012001991T5 (de) Rotatorische Elektromaschine
EP0894358B1 (de) Rotorwicklung für eine elektrische maschine
CH323433A (de) Verfahren und Einrichtung zum Kühlen von elektrischen Leitern einer ganz gekapselten, dynamoelektrischen Maschine
WO2016113034A1 (de) Elektrische rotierende maschine mit einseitiger kühlung und verfahren zur einseitigen kühlung
EP3314728A1 (de) Synchrone reluktanzmaschine
DE102016210930B4 (de) Elektrische Maschine
EP2076956B1 (de) Kühlsystem für hochausgenutzte rotierende elektrische maschinen
EP1204193B1 (de) Kühlsystem für trägheitsarme rotierende elektrische Maschine
DE102011054046A1 (de) Spulendistanzblock einer dynamoelektrischen Maschine mit einer Strömungsablenkstruktur auf seiner spulenseitigen Oberfläche
DE10225221B4 (de) Belüftung eines Ringmotors für eine Rohrmühle
EP3657635A1 (de) Rotor für eine asynchronmaschine mit verlustoptimierter stabgeometrie, asynchronmaschine sowie verfahren
EP0903833A1 (de) Elektrische Maschine mit Kurzschlussläufer
EP2230746B1 (de) Ständerkühlsystem für eine gehäuselose rotierende elektrische Maschine
EP1062719A1 (de) Belüftungssystem für die erregerwicklung grosser schenkelpolmaschinen
EP1032113A1 (de) Kühlung für eine Elektromaschine, insbesondere Drehfeldmaschine
WO2022042792A1 (de) Gekühlter rotor einer elektrischen maschine
WO2023046332A1 (de) Rotor für eine elektrische rotierende maschine, elektrische rotierende maschine, gondelantrieb und wasserfahrzeug
EP3261218B1 (de) Stator für einen elektromotor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110531

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120509

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20180816