EP2367077B1 - Ensemble glace-lunette d'habillage pour pièce d'horlogerie et procédé d'assemblage - Google Patents
Ensemble glace-lunette d'habillage pour pièce d'horlogerie et procédé d'assemblage Download PDFInfo
- Publication number
- EP2367077B1 EP2367077B1 EP10156622.2A EP10156622A EP2367077B1 EP 2367077 B1 EP2367077 B1 EP 2367077B1 EP 10156622 A EP10156622 A EP 10156622A EP 2367077 B1 EP2367077 B1 EP 2367077B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- crystal
- bezel
- ice
- junction
- zones
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 13
- 239000013078 crystal Substances 0.000 claims description 74
- 230000002093 peripheral effect Effects 0.000 claims description 35
- 230000005540 biological transmission Effects 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 20
- 238000007789 sealing Methods 0.000 claims description 16
- 239000012528 membrane Substances 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 7
- 239000006096 absorbing agent Substances 0.000 claims description 6
- 238000013016 damping Methods 0.000 claims description 6
- 229920001296 polysiloxane Polymers 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 230000035939 shock Effects 0.000 claims description 6
- 125000006850 spacer group Chemical group 0.000 claims description 5
- 230000009471 action Effects 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 3
- 230000001419 dependent effect Effects 0.000 claims description 2
- 238000003780 insertion Methods 0.000 claims 1
- 230000037431 insertion Effects 0.000 claims 1
- 239000011521 glass Substances 0.000 description 28
- 230000005236 sound signal Effects 0.000 description 15
- 235000015243 ice cream Nutrition 0.000 description 10
- 229910052594 sapphire Inorganic materials 0.000 description 6
- 239000010980 sapphire Substances 0.000 description 6
- 229910052500 inorganic mineral Inorganic materials 0.000 description 5
- 239000011707 mineral Substances 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000013013 elastic material Substances 0.000 description 3
- 239000005355 lead glass Substances 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000011034 rock crystal Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 241001080024 Telles Species 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 229940082150 encore Drugs 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B39/00—Watch crystals; Fastening or sealing of crystals; Clock glasses
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B21/00—Indicating the time by acoustic means
- G04B21/02—Regular striking mechanisms giving the full hour, half hour or quarter hour
- G04B21/08—Sounding bodies; Whistles; Musical apparatus
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B23/00—Arrangements producing acoustic signals at preselected times
- G04B23/02—Alarm clocks
- G04B23/028—Sounding bodies; boxes used as sounding cases; fixation on or in the case
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49579—Watch or clock making
Definitions
- the invention relates to a method of assembly between on the one hand a, and on the other hand a bezel comprising a notch for the housing of said ice, for the use in a timepiece of said ice as vibrating member and radiating broadcast of a sound signal from a vibratory source such as ringing, music box or the like, and transmitted to said telescope and / or to a middle part.
- a vibratory source such as ringing, music box or the like
- the invention also relates to an ice-cover assembly for a timepiece, arranged to increase the acoustic level when an ice is used as a vibrating and radiating member for broadcasting a sound signal coming from a vibratory source such as a buzzer, music box or the like, transmitted to a telescope, and / or to a middle part, said set of glasses and bezel comprising on the one hand said bezel having a notch for accommodating an ice-cream, and on the other hand such ice having an upper surface and a lower surface connected by an edge.
- a vibratory source such as a buzzer, music box or the like
- the invention also relates to a timepiece comprising at least one such ice-glasses.
- the invention relates to the field of timepieces comprising means for transmitting a sound signal such as ringing, music box or similar. It relates more particularly to timepieces portable by the user, such as watches, pendants and the like.
- the invention proposes to solve the problem of sound diffusion by a small timepiece. Indeed, if the diffusion of the sound is easy in the case of clocks of salon or clocks, which have volumes or sound boxes designed to diffuse the sound, and widely dimensioned, it always poses problem in the case of small timepieces, where the volume to constitute a box or a resonant cavity is necessarily very limited, and where many components hinder sound diffusion, dampening rather than amplifying it.
- This problem is all the more arduous as the sound sources, consisting of timbres, gongs or even keyboards, are themselves very small, and that the amplification level of the sound must be important for the sound is audible by the user, and possibly by his entourage.
- the amplification and the diffusion of the sound must not alter its purity, it is therefore essential to prevent any untimely resonance of another component of the timepiece.
- the patent application FR 2 154 704 in the name of Timex describes an alarm watch with a piezoelectric oscillator resonating the ice of the watch, which is fixed directly on it, in a manner substantially perpendicular to the hoist tangent to the ice, which is fixed to the middle part by a rubber elastic ring or similar. A vibration in the plane tangent to the ice is only obtained with an oscillator generating vibrations in this direction.
- the patent CH 626 497 on behalf of Ebauches, has innovated by allowing the use of ice as a vibrating organ, serving as a vibration transmitting member, thanks to the interposition, between the bezel and the ice, of a thin annular connecting piece, which absorbs little energy, and does not alter the sound.
- These provisions were taken up by the patent EP 0 694 824 on behalf of Asulab and by the patent CH 698 742 in the name of Richemont, in which the annular piece adopts a broken line profile.
- These solutions have the advantage of not deforming the sound, and little damping vibrations, but the amplitude of vibration of the ice remains limited because of the peripheral support of the latter.
- the invention proposes to bring a new solution to the problem of the transmission of sound by using ice as a vibrating and radiating organ, with respect for the quality of its expected, thanks to a good transmission of vibrations from the mechanism of emission of the sound signal of the timepiece to the ice through the bezel, with a sharp increase in the acoustic level regardless of the installation location of the mechanism emission of the sound signal in the timepiece.
- said appropriate number is chosen equal to two.
- the number of junction zones is two, and only two.
- the space between said ice and said bezel is hermetically sealed with sealing means.
- said sealing means are chosen comprising at least one flexible seal, and / or at least one elastic membrane.
- the invention also relates to an ice-cover assembly for a timepiece, arranged to increase the acoustic level when an ice is used as a vibrating and radiating member for broadcasting a sound signal coming from a vibratory source such as a buzzer, music box or the like, transmitted to a telescope, and / or to a middle part, said set of glasses and bezel comprising on the one hand said bezel having a notch for accommodating an ice-cream, and on the other hand, such an ice having an upper surface and a lower surface connected by an edge, characterized in that it comprises one or more disjoint junction zones together constituting the only mechanical link vibratory transmission of said bezel to said ice so as to allow the free vibration of most of the periphery of said ice, in a peripheral space between said ice and said bezel outside said junction areas, without ue this free vibration of said ice is hindered, and outside of which junction areas said ice is away from said bezel, to resonate said ice under the action of the vibration
- said upper surface of said ice is in direct abutment with said notch, and that said edge of said ice is in direct or indirect contact with said notch or with said bezel, and said lower surface of said ice is in direct or indirect support with said bezel or with a middle part that comprises, juxtaposed with said bezel, said timepiece, to enclose said ice.
- the ice-glasses assembly comprises, at each said junction zone, at least one support wedge constituted by a peripheral spacer wedge or by a lower wedge.
- the peripheral space between said ice and said bezel, at least outside the surfaces where said ice and said bezel are joined by said connection piece or pieces, is sealed with sealing means.
- the invention also relates to a timepiece comprising at least one such ice-glasses.
- the invention relates to the field of timepieces comprising means for transmitting a sound signal such as ringing, music box or similar. It relates more particularly to timepieces portable by the user, such as watches, pendants and the like.
- an actuator In timepieces with a traditional sound signal of the bell or music box type, and in particular in watches, an actuator, of the hammer or cam type, strikes or vibrates a vibratory source such as a bell, a gong or a bell. keyboard, or the like.
- the vibration produced by this vibratory source is transmitted to elements that can radiate, such as the middle and the bezel, provided however that no isolator or damper element is interposed in the path of the vibration.
- the vibration can not be transmitted to the ice, because it is usually insulated with a seal whose function is to seal the watch, and / or it is driven into the bezel by the intermediate of a hard plastic seal. As a result, the ice is not vibrated and can not radiate, which explains the limitations of the prior art.
- the invention therefore seeks to render usable the large radiation surface that the ice can offer, which is moreover well disposed towards the user and his surroundings, to render audible, with perfect sound quality, the sound signal the buzzer or vibratory source.
- the invention relates to a method of assembling between on the one hand a lens 2, and on the other hand a bezel 3, for the use in a timepiece 100 of this lens 2 as a vibrating and radiating body a sound signal from a vibratory source such as a ring, music box or the like.
- the invention also relates to a set ice-glasses 1, in particular obtained by the implementation of this method.
- the invention focuses, in particular, to provide a great ease of adaptation to any type of timepiece, regardless of the location of the vibratory sources relative to the ice.
- the essential thing is to be able transmit these vibrations by elements constituting the structure of the timepiece to a telescope, which can be the original telescope or a replacement telescope, the telescope that carries the ice making in turn vibrate the ice.
- a telescope which can be the original telescope or a replacement telescope, the telescope that carries the ice making in turn vibrate the ice.
- the innovative principle of the invention is to limit the attachment of the window 2 to the window 3, which comprises a notch 30 for the housing of the ice 2, to one or more substantially point areas hereinafter called “junction zones" 4, so as to allow the free vibration of most of the periphery of the ice 2, in a peripheral space 7 between the window 2 and the window 3 outside these junction areas 4, without this free vibration ice is hampered.
- the ice 2 behaves in a manner like a beam embedded at one end, or at both ends, if the number of attachment points is respectively one or two.
- a number of junction areas 4 greater than three is obviously possible, and improves the rigidity of the connection between the window 2 and the window 3, however the vibration is hampered, and the sound yield is less spectacular than with one or two zones junction only.
- a good simulation of the vibratory behavior of the whole of the timepiece 100, and more particularly of the set ice-telescope 1, joined to a quality achievement, allows to obtain the maximum sound efficiency.
- the appropriate number of junction areas 4 is chosen to be equal to two, and preferably only two.
- the thickness of this ice 2 is determined, and the contact surface between this ice 2 and this telescope 3 at each of these junction zones 4 to, according to the above calculation, correspond to the natural frequencies. and harmonics of this ice at these bandwidths, and to obtain the adequate number of junction areas closest to the value two.
- junction zones 4 The realization of the junction zones 4 will be explained in more detail later in the presentation.
- the number, the position and the surface of the junction zones 4, and the thickness of the ice 2 are dimensioned to obtain an eigenfrequency of between 1000 and 7000 Hz, and more particularly between 2000. and 6000 Hz.
- the appropriate number of junction zones 4 at least equal to two is chosen.
- this number is equal to two
- the ice 2 then vibrates substantially pivotally with respect to an axis joining the two junction areas 4.
- the two junction zones 4 are diametrically opposite, or as far as possible if the ice 2 has no symmetry, so as to improve the impact resistance.
- the two junction zones 4 are arranged, either at noon and six o'clock, or at three o'clock and nine o'clock, depending on the configuration of the ice-cream 2.
- the ice 2 is substantially a cylinder portion oriented on a parallel to the axis three hours-nine hours, and we choose the latter axis to position the two junction areas 4.
- junction zones 4 are forced during the simulation, it is necessary to act on other parameters, in particular the thickness of the ice 2 and the contact surface at the junction zone 4. Conversely, if the ice 2 is maintained only by a single junction zone 4, in single embedding, for example welded at a point, the lowering of the first natural frequency is obtained, albeit with a lower impact resistance. good.
- sealing the peripheral space 7 between the ice 2 and the bezel 3 with sealing means 8 is preferably sealed.
- These sealing means 8 are preferably chosen. comprising at least one flexible seal, such as a silicone seal or the like, and / or at least one elastic membrane, in particular of the bellows type or the like, deployed between the telescope 3 and the ice-cream 2 and not impeding the vibrations of this last.
- This bellows may be a metal bellows, or an elastomer bellows, or the like.
- Such an elastic membrane provides a good seal and very good impact resistance. It must be chosen as thin as possible to behave as neutral as a silicone seal, for example.
- junction zones 4 are also covered with these sealing means 8.
- shock absorber 10 is mounted at a distance from the ice 2, in particular at a distance from a lower surface 21 and / or from an upper surface 20 that this ice 2 has, relative to the equilibrium position of this ice cream. 2.
- this damper 10 has a single stop 10B, the side of the lower surface 21, as visible on the figure 12 , the upper stop then being constituted by the notch 30 of the bezel.
- this shock absorber 10 comprises two stops, one 10A on the side of the upper surface 20 and one 10B on the side of the lower surface. 21 of ice 2, as visible on the Figures 7 and 10 showing the end positions 2A and 2B of the lens 2.
- These stops are preferably made of an elastic material, or are the terminations of damping means such as springs or the like.
- the lower surface 10B or both the upper surface 10A and the lower surface 10B, as the case may be, are arranged to limit the movement of the ice 2 in the event of impact or the like, but also so as not to interfere with its trajectory in its vibration and resonance movement.
- the surface or surfaces 10A, 10B is or are therefore beyond the maximum vibration amplitude of the ice, calculated in response to vibration of the vibratory source, in the extreme case of amplitude of vibration.
- junction zone or zones 4 are made, or else by restricting the surfaces of direct contact between the ice 2 and the bezel 3 by peripheral removal of material from the glass 2 or / and the window 3, or by interposition between the window 2 and the window 3 of at least one support wedge 5 constituted by a spacer wedge 50 or by a lower wedge 51.
- the interposition of such support wedges 5 is also possible in combination with the restriction of the contact surfaces between the window 3 and the window 2.
- These support wedges 5, peripheral spacing wedges 50 and / or lower support wedges 51 provide the mechanical vibration transmission link between the window 2 and the window. glasses 3 to these junction areas 4 only, and away from each other outside these points.
- the material of the support wedges must be chosen with care, because it must transmit the vibration of the telescope 3 to the ice 2, and especially do not dampen this vibration. Particularly good results are obtained with metal shims, the connection to the junction surface 4 is then called mechanical metal link vibratory transmission. Support shims made of ceramic materials or the like, or other hard materials, also give good results. These support blocks can also be in the same material as ice 2.
- the first way to design the junction areas 4 is thus to achieve them by localized peripheral clamping.
- This tightening can be achieved by restricting the surfaces of direct contact between the window and the window by peripheral removal of material from the ice and / or the window, for example by a particular machining of the window 3 at the notch 30 so to make bearing surfaces separated by recesses, which is preferable to a machining ice 2 because less expensive.
- Clamping can also, more economically, be achieved by the interposition, between the notch 30 and the ice 2, support wedges 5, formed by spacer spacers 50.
- These wedges 50 are so called because they provide both the first transmission function of the vibration of the bezel 3 to the ice 2 by the contact surface therebetween at the junction zone 4, and the second function of spacing the rest of the periphery of the the ice 2 relative to the notch 30 of the telescope.
- the figure 7 illustrates this embodiment, where the junction zone 4 is formed by a radial peripheral support, and where the shim 50 is more precisely constituted of a connecting piece 11.
- the ice 2 must remain permanently in the bezel 3, whatever its vibration level, which can be high for example during a sequence of big ring or chime. It is then necessary to have an ice cream 2 having sufficient elastic properties for its tightening in the bezel 3 to be assured whatever its vibratory level, and that the connection to the junction zones 4 is excellent.
- the sapphire crystal 2, or mineral glass, or in an elastic material of suitable characteristics is chosen, preferably organic glasses which are in general too heterogeneous to guarantee the purity of the sound.
- the sapphire is preferably chosen for its scratch-proof character. It is still possible to use a lead crystal, particularly with more than 21% lead, which has great elasticity, and dampens vibrations much less than mineral glass.
- the attenuation of the propagation of the acoustic wave is slower in sapphire or crystal than in a mineral glass, which results in an increased resonance time with these materials.
- the dissipation of energy in thermal form is very weak with sapphire, most of the energy remains available for the sound emission.
- a clamping assembly especially in two junction zones, a sapphire crystal, or lead crystal, in a bezel, gives good energy results and good sound quality without disturbing the sound, and pleasant for the listener.
- the ice can still be made of a natural mineral material of adequate crystallographic structure, such as rock crystal, quartz, or the like.
- the second way to design the junction areas 4 is to achieve a localized clamping of the ice 2 in the direction of its thickness, in the manner of a clamp.
- the periphery of the ice 2 is at a distance from the walls of the notch 30, only one of the faces of the ice 2, in this case its upper surface 20, comes into contact, at least one-time at the junction zone 4, with a surface of this notch 30.
- the lower surface 21 of the ice 2 is immobilized, at each junction zone 4, by a support wedge 5.
- This support wedge 5 can be made, or in the form of a lower block 51 bearing on the bezel 3 or on the middle part 6, or in the form of a boss of an intermediate piece.
- This lower wedge 51 or this intermediate piece is preferably substantially annular in shape similar to that of the bezel.
- Such an intermediate piece also bears, directly or indirectly, on the middle part 6, and is housed in the bezel 3, either in the notch 30, or in a housing provided for this purpose.
- the ice 2 is thus pinched punctually between the notch 30 on the one hand, and this lower wedge 51 or this intermediate piece on the other hand.
- At least one such junction zone 4 is made by dressing the periphery of the window 2 with a connecting piece 11, whose inner profile bears on the ice both on the one hand the upper surface 20 of the 2, and secondly on the lower surface 21 of the ice 2 and / or on an edge 22 connecting the lower surface 21 and the upper surface 20 of the ice 2.
- this ice 2 thus equipped is positioned with a connecting piece 11 in the notch 30 so as to move the lens 2 away from this lens 3 at any other point than these junction zones 4, and so that, for each of these junction zones 4, at least this upper surface 20 or this edge 22 is in direct or indirect support on this notch 30, and that for each of these zones junction 4, this lower surface 21 is in direct or indirect support with the telescope 3 or with the middle 6 juxtaposed to the telescope, to enclose the ice 2.
- the periphery of the ice 2, outside the junction areas 4, is free to vibrate in a peripheral space 7 where it has no contact, or with the telescope 3 , nor with the middle part 6, as visible on the Figures 8, 10 and 12 .
- junction areas 4 differentiated and variegated, one in the first way, the other in the second way.
- junction zones 4 are, moreover, in no way limiting.
- the figure 5 illustrates a junction zone 4 comprising both a radial peripheral support of the lens 2 in the bezel 3 by a connecting piece 11 enclosing the ice 2, and which is supported in the notch 30 by means of a shim spacing device 50, and a maintenance in the direction of the thickness of the ice, which is here ensured by a lower wedge 51 resting on the middle part 6.
- the peripheral wedge 50 and the lower wedge 51 can be made of elastic materials for mounting by compression, provided, however, to ensure the good vibratory transmission of the bezel 3 to the ice 2 without damping effect of holds.
- at least one adjustment screw 61 at the middle part 6 makes it possible to adjust the stress on the lower block 51, and thus on the ice 2.
- a junction zone 4 may consist of the juxtaposition of two or more junction points spaced a few millimeters apart. Between them. The important thing is that the distance between these junction areas is as large as possible. However, it is preferable, within the same junction zone, to limit the spacing between the end points making the connection, typically those making the embedding of the ice 2, because the greater this spacing, the higher the frequency clean of the set is high, and the less the gain is important. For a timepiece such as a watch, the maximum spacing within the same junction zone should be between a few tenths of a millimeter, and a few millimeters, for example.
- the junction zone may also be constituted by an attachment of the lens 2 to the bezel 3 by a mechanical fastening, for example by screwing, or even by welding or soldering between the bezel 3 and a metal deposit made on ice 2 by a chemical vapor deposition process, or sputtering, or the like.
- the invention also relates to an ice-cover assembly 1 for a timepiece 100, which is arranged for the use of a mirror 2 as a vibrating and radiating member for broadcasting a sound signal originating from a source vibratory such as ringing, music box or the like.
- This set ice-telescope 1 comprises firstly a telescope 3 having a notch 30 for the housing of an ice 2, and secondly such an ice 2 having an upper surface 20 and a lower surface 21 connected by an edge 22.
- this ice-telescope assembly 1 comprises one or more junction zones 4 together constituting the only mechanical link vibratory transmission of the telescope 3 to the ice 2 to make the ice 2 resonate under the action of the vibrations which it are transmitted by the telescope 3 at, respectively, this or these junction areas 4.
- the ice 2 is spaced from the bezel 3 outside the surfaces where they are joined by, respectively, this or these junction areas 4.
- the upper surface 20 or the edge 22 of the ice 2 bears directly on the notch 30.
- the lower surface 21 of the ice bears directly or indirectly with the bezel 3 or with the middle part 6.
- the upper surface 20 of the ice 2 bears directly on the notch 30, and the edge 22 of the ice 2 bears directly or indirectly with the notch 30 or with the 3.
- the lower surface 21 of the glass 2 is in direct or indirect support with either the bezel 3 or with the middle part 6.
- the ice-lens assembly 1 advantageously comprises, at least at a junction zone 4, and preferably at each junction zone 4, at least one support wedge 5.
- This support wedge 5 is constituted by a peripheral wedge spacing 50 or a lower shim 51, as previously described.
- such a peripheral wedge 50 is mounted under stress between the window 2 and the window 3 for holding the window 2, and preferably has a substantially U-shaped profile, and is arranged to be supported by its internal profile on the ice 2 and its outer profile on the bezel 3.
- the ice 2 equipped with this shim 50 is housed in the notch 30 away from the bezel 3 at any point other than a junction zone 4.
- the ice-seat assembly 1 thus comprises at least one such support wedge 5 constituted by a connecting piece 11 located at the junction zone 4, or preferably a group of disjoint connecting pieces 11 located at all the junction areas 4.
- the ice 2 is supported on the bezel 3, at the junction zone 4, through at least one such connecting piece 11.
- This connecting piece 11 is preferably to substantially U-shaped profile, and arranged to bear, by its inner profile on the ice 2, preferably both on the edge 22 and on the upper surfaces 20 and lower 21 of the ice 2, and its outer profile on the Bezel 3 near the upper surface 20 of the ice in direct or indirect support on the notch 30 to resonate the ice 2 with the bezel 3.
- the ice equipped with this shim 50 is housed in the notch 30.
- the ice 2 is at distance from the telescope 3 outside the surfaces where they are joined by a junction zone 4.
- at least one of its outer profile surfaces near the upper surface 20 of the ice is in direct or indirect support on the notch 30, and another of the surfaces of its outer profile near the bottom surface 21 of the ice is in direct or indirect support with the bezel 3 or the middle part 6.
- a contact between the connecting piece 11, or more generally the support wedge 5, and the middle part 6, is advantageous because it allows the transmission of the vibrations to the ice 2 both by the bezel 3 and by the 6.
- this middle part 6 is, in the timepiece, in vibratory connection with a membrane, which is itself in vibratory contact with the vibratory source or sources.
- the middle part 6 can also directly support, by vibratory contact, the vibratory source or sources.
- the ice-cover assembly 1 comprises, interposed between, on the one hand, the junction zone (s) 4 and, on the other hand, the bezel 3 and / or the middle part 6, at least one assembly ring. intermediate.
- at least one intermediate connecting ring 51 is interposed between, on the one hand, or the connecting pieces 11, and on the other hand the bezel 3 and / or the middle part 6.
- this connecting ring 51 allows to create a constraint, for example adjustable by screw 61 as visible on the Figures 5 and 6 .
- the peripheral space 7 between the window 2 and the window 3, at least outside the surfaces where the window 2 and the window 3 are joined by this or these junction areas 4, is closed sealingly with means of 8, as described above.
- a soft seal of silicone type or similar is chosen, and the junction zones 4 are also covered with this seal constituting these sealing means 8.
- the ice-cover assembly 1 comprises, in addition to these sealing means 8 which concern the periphery of the window 2, at least one seal 9 as described higher for sealing at the joint plane 60 or the junction surface between the bezel 3 and the middle part 6 of the timepiece 100.
- the set ice-glasses 1 comprises, interposed between, on the one hand the ice 2, and on the other hand the notch 30 or the middle part 6 or an assembly ring bearing on the latter, at less a shock absorber 10, as described above, mounted at a distance from the ice 2 relative to the equilibrium position of the latter.
- the set ice-glasses 1 further comprises elastic return means for the repositioning of the ice 2 in the event of stress.
- the ice is made of sapphire. In a first embodiment, it is made of mineral glass. In a second embodiment, it is made of lead crystal.
- the ice-glasses assembly 1 comprises two junction zones 4, allowing both a very good mechanical strength and a large amplitude of vibration of the ice 2.
- the tightening value is between 0.010 and 0.060 millimeters per radius, and preferably between 0.010 and 0.030 millimeters.
- This clamping is a radial clamping on the periphery of the ice. Axial clamping is possible in the axial direction, that is to say in the direction of the thickness of the ice, but it is understood that such excessive axial clamping hampers the vibration and radiation of the ice according to this direction, so it is better to be limited to a simple maintenance of the ice, in particular by the lower holds 51.
- the acoustic gain obtained by the implementation of the invention is important, of the order of 20 dBA.
- the invention also relates to a timepiece 100 comprising at least one such ice-bezel assembly 1. It comprises a middle part 6 of which a junction plane 60 is arranged to cooperate sealingly with the bezel 3.
- the invention provides the advantage of involving both the glass and the bezel in vibration and acoustic radiation.
- the invention is also applicable to a direct mounting of the window 2 in the middle part 6, but the mounting of the window 2 in the window 3 according to the invention allows, precisely, independence from the room 100, and the invention can be implemented easily for any timepiece, replacing the original bezel and / or the ice by a set ice-glasses 1 according to the invention, or even by adapting the original parts by machining and / or by the interposition of adequate bearing blocks as described above.
- the invention focuses on transmitting the vibrations from the sound source to the ice to make it resonate.
- the vibratory chain transmits the vibration from the vibratory source, ring, timbre, gong, chime, music box, vibrator, or other, to the turntable of the timepiece, the platinum to the middle of the timepiece, from the case to the bezel, and the bezel to the ice.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Electric Clocks (AREA)
- Electromechanical Clocks (AREA)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10156622.2A EP2367077B1 (fr) | 2010-03-16 | 2010-03-16 | Ensemble glace-lunette d'habillage pour pièce d'horlogerie et procédé d'assemblage |
PCT/EP2011/053878 WO2011113824A1 (fr) | 2010-03-16 | 2011-03-15 | Ensemble glace-lunette d' habillage pour pièce d'horlogerie et procédé d' assemblage |
EP11158278A EP2367079B1 (fr) | 2010-03-16 | 2011-03-15 | Ensemble glace-lunette d'habillage pour pièce d'horlogerie et procédé d'assemblage |
JP2011057865A JP5325916B2 (ja) | 2010-03-16 | 2011-03-16 | 時計用ガラス・ベゼル組立体ユニット及び組み立て方法 |
CN2011101134480A CN102305992B (zh) | 2010-03-16 | 2011-03-16 | 钟表的表面玻璃-表圈组装单元以及组装方法 |
US13/049,192 US8411533B2 (en) | 2010-03-16 | 2011-03-16 | Crystal-bezel assembly unit for a timepiece and process assembly |
HK12101801.3A HK1162072A1 (en) | 2010-03-16 | 2012-02-23 | Crystal-bezel assembly unit for a timepiece and process for assembly |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10156622.2A EP2367077B1 (fr) | 2010-03-16 | 2010-03-16 | Ensemble glace-lunette d'habillage pour pièce d'horlogerie et procédé d'assemblage |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2367077A1 EP2367077A1 (fr) | 2011-09-21 |
EP2367077B1 true EP2367077B1 (fr) | 2017-07-26 |
Family
ID=42663674
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10156622.2A Active EP2367077B1 (fr) | 2010-03-16 | 2010-03-16 | Ensemble glace-lunette d'habillage pour pièce d'horlogerie et procédé d'assemblage |
EP11158278A Active EP2367079B1 (fr) | 2010-03-16 | 2011-03-15 | Ensemble glace-lunette d'habillage pour pièce d'horlogerie et procédé d'assemblage |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11158278A Active EP2367079B1 (fr) | 2010-03-16 | 2011-03-15 | Ensemble glace-lunette d'habillage pour pièce d'horlogerie et procédé d'assemblage |
Country Status (6)
Country | Link |
---|---|
US (1) | US8411533B2 (zh) |
EP (2) | EP2367077B1 (zh) |
JP (1) | JP5325916B2 (zh) |
CN (1) | CN102305992B (zh) |
HK (1) | HK1162072A1 (zh) |
WO (1) | WO2011113824A1 (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010105377A1 (fr) * | 2009-03-19 | 2010-09-23 | Rolex S.A. | Boîte de montre |
EP2796942A1 (fr) * | 2013-04-23 | 2014-10-29 | ETA SA Manufacture Horlogère Suisse | Methode de fixation d'un mouvement dans un boîtier |
EP2853958A1 (fr) | 2013-09-26 | 2015-04-01 | Montres Breguet SA | Pièce d'horlogerie à niveau acoustique amélioré |
EP3002639B1 (fr) | 2014-10-01 | 2018-01-31 | Montres Breguet SA | Lunette de montre musicale à performance acoustique améliorée |
TWD181391S (zh) * | 2015-12-09 | 2017-02-21 | 卡地亞國際股份有限公司 | 錶殼 |
EP3220210B1 (fr) * | 2016-03-15 | 2020-05-06 | Montres Breguet S.A. | Piece d'horlogerie a sonnerie ou a musique, a lunette résonante |
USD861504S1 (en) * | 2017-10-26 | 2019-10-01 | Swarovski Aktiengesellschaft | Wrist watch |
USD867166S1 (en) * | 2017-11-22 | 2019-11-19 | Richemont International Sa | Watch |
CN108213878B (zh) * | 2018-03-27 | 2019-04-26 | 深圳市帕玛精品制造有限公司 | 手表表圈的制作方法及手表表圈 |
DE102020112523B3 (de) * | 2020-05-08 | 2021-09-02 | Realization Desal Ag | Uhrglas mit einem dekorativen Element |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH520357A (fr) | 1966-06-08 | 1971-10-29 | Spadini Paolo | Montre-bracelet-réveil |
US3386239A (en) * | 1966-06-16 | 1968-06-04 | Shiffman Jerome | Combination plastic watch case and crystal |
FR1557221A (zh) * | 1967-02-24 | 1969-02-14 | ||
BE789336A (fr) | 1971-09-29 | 1973-01-15 | Timex Corp | Montre-reveil electronique |
US4115994A (en) * | 1976-07-13 | 1978-09-26 | Tomlinson James N | Dial illumination means |
DE2705991A1 (de) * | 1977-02-12 | 1978-08-17 | Leifheit International | Haushaltsmaschine, insbesondere gemueseschneider o.dgl. |
CH626494GA3 (en) | 1977-08-23 | 1981-11-30 | Waterproof watch case | |
CH626497B (fr) | 1977-11-07 | Ebauches Sa | Montre munie d'un resonateur forme par sa glace soumise a l'action d'un transducteur. | |
CH649436GA3 (zh) * | 1982-06-10 | 1985-05-31 | ||
JPS59147399U (ja) * | 1984-02-01 | 1984-10-02 | セイコーエプソン株式会社 | 携帯用電子機器の構造 |
CH686600B5 (fr) * | 1994-07-25 | 1996-11-15 | Asulab Sa | Pièce d'horlogerie comportant un transducteur électro-acoustique. |
JPH0910183A (ja) | 1995-06-30 | 1997-01-14 | Seiko Epson Corp | 携帯装置および腕装着型脈波計測装置 |
US5867452A (en) * | 1997-10-17 | 1999-02-02 | E. Gluck Corp. | Watch with invisible speaker |
DE19823981A1 (de) * | 1998-05-29 | 1999-12-02 | Glassen Georg | Uhr |
CH698533B1 (fr) | 2005-03-11 | 2009-08-31 | Richemont Int Sa | Dispositif de fixation d'au moins un timbre de sonnerie dans une pièce d'horlogerie et procédé de fixation d'au moins un timbre de sonnerie dans une pièce d'horlogerie. |
CH698742B1 (fr) | 2005-09-28 | 2009-10-15 | Richemont Int Sa | Dispositif de liaison d'un timbre de sonnerie d'une pièce d'horlogerie à la glace de celle-ci et pièce d'horlogerie munie d'un tel dispositif de liaison entre le timbre d'une sonnerie et la glace de cette pièce d'horlogerie. |
-
2010
- 2010-03-16 EP EP10156622.2A patent/EP2367077B1/fr active Active
-
2011
- 2011-03-15 WO PCT/EP2011/053878 patent/WO2011113824A1/fr active Application Filing
- 2011-03-15 EP EP11158278A patent/EP2367079B1/fr active Active
- 2011-03-16 JP JP2011057865A patent/JP5325916B2/ja active Active
- 2011-03-16 US US13/049,192 patent/US8411533B2/en active Active
- 2011-03-16 CN CN2011101134480A patent/CN102305992B/zh active Active
-
2012
- 2012-02-23 HK HK12101801.3A patent/HK1162072A1/xx unknown
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP2367079B1 (fr) | 2013-01-16 |
EP2367079A1 (fr) | 2011-09-21 |
WO2011113824A1 (fr) | 2011-09-22 |
US8411533B2 (en) | 2013-04-02 |
CN102305992B (zh) | 2013-05-01 |
HK1162072A1 (en) | 2012-08-17 |
CN102305992A (zh) | 2012-01-04 |
US20110228648A1 (en) | 2011-09-22 |
JP2011191306A (ja) | 2011-09-29 |
EP2367077A1 (fr) | 2011-09-21 |
JP5325916B2 (ja) | 2013-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2367077B1 (fr) | Ensemble glace-lunette d'habillage pour pièce d'horlogerie et procédé d'assemblage | |
EP2942675B1 (fr) | Montre à sonnerie | |
EP2461219B1 (fr) | Membrane de rayonnement acoustique pour une boîte à musique ou une montre à sonnerie | |
EP3537229B1 (fr) | Boîte de montre musicale | |
EP2461220B1 (fr) | Membrane de rayonnement acoustique pour une boîte à musique ou une montre à sonnerie | |
EP3220210B1 (fr) | Piece d'horlogerie a sonnerie ou a musique, a lunette résonante | |
EP3009895B1 (fr) | Montre musicale ou à sonnerie munie d'un agencement à rayonnement acoustique | |
EP3049872A1 (fr) | Pièce d'horlogerie à niveau acoustique amélioré | |
WO2017071903A1 (fr) | Montre avec étanchéite améliorée | |
CH714635A1 (fr) | Pièce d'horlogerie à sonnerie. | |
CH702840A2 (fr) | Ensemble glace-lunette d'habillage pour pièce d'horlogerie et procédé d'assemblage. | |
CH712080A2 (fr) | Pièce d'horlogerie comprenant une source sonore. | |
EP3812844B1 (fr) | Pièce d'horlogerie comprenant un dispositif amplificateur de vibrations | |
EP3696618A1 (fr) | Montre a sonnerie ou musicale avec agencement pour guider des ondes acoustiques | |
EP2034376B1 (fr) | Boîte de montre | |
CH714758A2 (fr) | Boîte de montre musicale. | |
EP0899635A1 (fr) | Appareil susceptible d'être immergé et comprenant un transducteur sonore | |
CH708622A2 (fr) | Pièce d'horlogerie à sonnerie et/ou à boîte à musique. | |
EP4176321A1 (fr) | Piece d'horlogerie comprenant un dispositif amplificateur de vibrations | |
CH710200B1 (fr) | Lunette de montre pour montre musicale. | |
CH711686B1 (fr) | Montre comprenant un boîtier dans lequel est logé un mouvement horloger. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
17P | Request for examination filed |
Effective date: 20120321 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G04B 23/02 20060101ALI20170301BHEP Ipc: G04B 21/08 20060101AFI20170301BHEP Ipc: G04C 21/02 20060101ALI20170301BHEP Ipc: G04B 39/00 20060101ALI20170301BHEP |
|
INTG | Intention to grant announced |
Effective date: 20170317 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: CH Ref legal event code: NV Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 912865 Country of ref document: AT Kind code of ref document: T Effective date: 20170815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010043837 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170726 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 912865 Country of ref document: AT Kind code of ref document: T Effective date: 20170726 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171026 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171126 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171026 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171027 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010043837 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20180430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180331 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100316 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170726 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230611 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240220 Year of fee payment: 15 Ref country code: GB Payment date: 20240221 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240221 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240401 Year of fee payment: 15 |