EP2366908B1 - Actuator - Google Patents
Actuator Download PDFInfo
- Publication number
- EP2366908B1 EP2366908B1 EP11150392.6A EP11150392A EP2366908B1 EP 2366908 B1 EP2366908 B1 EP 2366908B1 EP 11150392 A EP11150392 A EP 11150392A EP 2366908 B1 EP2366908 B1 EP 2366908B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- piston
- guide
- guide rods
- actuator according
- stroke
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005452 bending Methods 0.000 claims description 37
- 238000006243 chemical reaction Methods 0.000 claims description 27
- 238000003466 welding Methods 0.000 claims description 25
- 230000002787 reinforcement Effects 0.000 claims description 6
- 229910000831 Steel Inorganic materials 0.000 claims description 5
- 239000010959 steel Substances 0.000 claims description 5
- 239000004952 Polyamide Substances 0.000 claims description 4
- 229920002647 polyamide Polymers 0.000 claims description 4
- 239000000835 fiber Substances 0.000 claims description 3
- 230000000994 depressogenic effect Effects 0.000 claims 1
- 229910001092 metal group alloy Inorganic materials 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 239000011343 solid material Substances 0.000 claims 1
- 230000033001 locomotion Effects 0.000 description 13
- 238000004873 anchoring Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 235000013361 beverage Nutrition 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B15/00—Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
- F15B15/02—Mechanical layout characterised by the means for converting the movement of the fluid-actuated element into movement of the finally-operated member
- F15B15/06—Mechanical layout characterised by the means for converting the movement of the fluid-actuated element into movement of the finally-operated member for mechanically converting rectilinear movement into non- rectilinear movement
- F15B15/068—Mechanical layout characterised by the means for converting the movement of the fluid-actuated element into movement of the finally-operated member for mechanically converting rectilinear movement into non- rectilinear movement the motor being of the helical type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/18—Mechanical movements
- Y10T74/18056—Rotary to or from reciprocating or oscillating
- Y10T74/18296—Cam and slide
Definitions
- the invention relates to an actuator according to the preamble of patent claim 1.
- actuators are e.g. Butterfly valves or ball valves in the beverage bottling industry.
- disc valves or ball valves is often in at least one end position or movements of the closure element in or out of the end position to produce a very large or the maximum switching torque from the actuator, the one-sided against spring force or double-sided with pressure medium, e.g. Compressed air, can be acted upon.
- pressure medium e.g. Compressed air
- both guide rods are simultaneously and similarly loaded by the piston to transmit the reaction torque from the switching torque in the housing, regardless of the respective, depending on the stroke direction of the piston direction of the reaction torque.
- Both equally long guide rods are anchored in the same cover, eg welded.
- the free bending spiral lengths of the guide rods change inversely as the guide lengths.
- the free bending spiral length is the decisive parameter for the bending loads or bending stresses to which the guide rod is subjected mainly in the area of anchoring in the cover but also in the penetration area into the guide. Regardless of the magnitude of the reaction torque, the bending loads on each guide bar are greatest when the free bend sweep length is greatest.
- the reaction torque at the piston is highest when the free bending gyration at both guide rods is greatest, there is a risk of wear in the area of the anchorages and also in the mouth areas of the guides and there up the guide rods.
- the guide rods are made of extremely heavy-duty and expensive material in the known actuator further.
- the piston skirt is reinforced by a metallic outer support tube, whereby the number of parts of the actuator is increased inappropriately.
- the lid in which the two guide rods are anchored is not made of the same expensive material as the guide rods themselves, the welding of two different materials is problematic, possibly such that an automated welding process can not be performed. Nevertheless, the risk of breakage in the respective weld remains acute, and at the same time in both guide rods, since both guide rods are anchored in the same lid and at the same time in the operation of the actuator subject to maximum bending forces when their free Biegewirkzinn grow together. Often, the guide rods must be time-consuming rectified after welding, so they run properly in the guides.
- the four guide rods which are radially equidistant from the piston axis, are diametrically opposed to each other in pairs, with one pair of guide rods circumferentially placed relatively close to a guide rod of the other pair, further limiting the amount of radians usable for the linkages in the piston skirt inexpedient.
- the actuator is, mainly because of the four guide rods multipart and requires a time and cost intensive production.
- the invention has for its object to provide an actuator of the type mentioned, which is very reliable, structurally simple and yet inexpensive.
- the actuator consists of only a small number of parts and can be produced inexpensively, since, for example, the production of the anchoring area can be automated, and the guide rods may not need any messages. Since the respective reaction torque is introduced into the housing in a particularly stable manner in both stroke end positions of the piston, the torques to be transmitted by the actuator to the functional element, for example the closure member of a disk valve, can be very precisely predicted in terms of their values and characteristics and on the switching behavior of the disk valve vote, for example so that these torques have their, preferably plateau-like, maxima at the stroke end positions of the piston.
- the free ends of the two guide rods overlap in the stroke direction.
- the overlap may, preferably, correspond to about one third of the outside diameter of the piston, or a multiple of the strength of the guide rods.
- the guide rods are placed axially symmetrically and diametrically opposite with respect to the piston axis. In this way, the reaction torque is received symmetrically and transmitted into the housing.
- the piston has a piston plate and a piston skirt containing the scenes and the guides, one guide their open mouth in the piston plate and its blind end in the piston skirt, whereas the other guide their open mouth in the piston skirt and her having blind end in the piston plate.
- the two guide rods are immersed in the pistons from different sides, the formation of the guides ensures that pressure can not pass from one side of the piston to the other via the guides or linkages. In addition, this results in a largely symmetrical piston formation with sufficient meat around those areas in which forces are transmitted.
- the piston can be acted upon by pressure medium via a pressure medium connection and against a return spring and / or on both sides via opposite pressure medium connections.
- the piston movement takes place in a stroke direction by the pressure pulse from the pressure medium connection, and in the opposite direction by the return spring, optionally depending on either complete pressure relief in the pressure medium connection or a controlled pressure relief.
- the piston in each stroke direction by a pressure pulse of a pressure medium, e.g. Compressed air, operated.
- the torque to be transmitted depends on the angular position relative to a zero position.
- the torque is usually the lowest within, for example, a 90 ° rotational adjustment between about 22 ° and 68 °.
- the slope of each backdrop is usually steeper in both initial ranges but the same chosen as in an intermediate region of the backdrop.
- practice shows that, for example, when the compressed air is applied to the piston against a return spring, and provision of the piston with the return spring, the torque from the displacement of the transverse axis in both initial areas of the scenes are different.
- the slopes of the scenery in the initial areas are expedient steeper than in the intermediate area and chosen differently, so that the torque generated at the spring return and the torque generated upon application of compressed air at least largely the same size.
- the bearing of the functional element and the actuator shaft and the connections of the functional element in the valve each set the same switching values or switching behavior in different ways, for example, operated by the actuator switching valve, for example, when the disc valve is designed by the actuator air-opening but spring-closing or air-closing but spring opening.
- the pitch angles in the initial regions differ by about 2% to 10%, preferably about 5%, and the pitch angle in the intermediate section is about 60% of the pitch angles in the initial regions.
- the steepest pitch angle is about 66 °, the pitch angle in the intermediate area about 38.9 ° and the less steep pitch angle about 63 °. With this difference, the pitch angle in the two initial areas can be at least largely produce the same torques when compressed air and spring return.
- the largest pitch angle can be provided in an initial region where, in the stroke end position of the piston and at the slightest force of the return spring, the transverse axis engages the link.
- the piston can be made of cost-effective and easy to process high-density polyamide.
- the polyamide does not require fiber reinforcement, which, however, should not be excluded, e.g. to provide a glass fiber reinforcement in the piston.
- each cover has a single receptacle for a guide rod end.
- the guide rod is anchored with its end in the receptacle by welding, screwing, shrinking, gluing or caulking.
- Anchoring can be done in an automated workflow be prepared and thereby with high precision, so that a message of the anchored guide rods is unnecessary.
- the guide rod is anchored with its end in the receptacle of the lid by friction welding, preferably automated friction welding.
- the friction welding process leads to a nearly monolithic anchoring and makes it possible to perform an exact positioning and alignment of the guide rod in the lid during friction welding, so that a message of the guide rod can be omitted.
- the guide rods Thanks to the bending loads or bending stresses of the guide rods, which are reduced as a result of the design, they can be made of a cost-effective material, e.g. from a steel of specification 1.4301 or an at least substantially similar material.
- the actuator A is used for Drehverstellen a rotatable functional element G, for example, a closure element of a disc valve V or ball valve, for example in the beverage industry, where the functional element G for rotational adjustment over a certain angle of rotation (eg 90 °) requires a certain torque and torque curve, the or The actuator A generates and applies.
- the required switching torque can be a maximum for example in the movement of the functional element G in or out of an end position.
- the actuator is in the embodiment in Fig.
- the actuator A has in the embodiment shown, for example, a circular cylindrical housing 1, which consists of a cylindrical sleeve 5, e.g. metal, and upper and lower covers 5, 3 closing the sleeve 5, e.g. made of a metal such as steel, is closed.
- the two covers 3, 4 are inserted into the sleeve 5 and fixed for example by laser welding.
- a piston 2 is linearly reciprocable, in the embodiment shown, for example by compressed air via a pressure medium connection 11 in the lid 3 in a stroke direction against the force of a return spring 17 created between the piston 2 and the other cover 4 is, in the opposite stroke direction by the return spring 17 mitigate founded as soon as the pressurization is canceled or reduced.
- the piston 2 may be made of metal or metal and plastic or only of plastic, and is suitably made of a polyamide in a high-density setting and without fiber reinforcement.
- the piston 2 has a piston plate 10 and a piston skirt 9 integral therewith, which surrounds an inner cavity 12 in which the upper end of an actuator shaft 25 is immersed, which is rotatably mounted in the cover 4, for example by means of a bearing 22, and optionally seals.
- the skirt 9 there are two diametrically opposite, opposite directions, e.g. helical splines 13 molded, in which engage the ends of a fixed in the actuator shaft 25 transverse axis 8.
- the sliders 13 may be circumferentially angular over a radian, e.g. of 90 ° or more or less. Their slope can be uniform or variable. Its axial length is for example greater than the total stroke of the piston 2 in the housing. 1
- the piston 2 converts its linear lifting movement into a rotational movement of the actuator shaft 25, wherein the actuator shaft 25 generates a constant or varying torque over the rotation angle, provided that the piston 2 is prevented during its strokes at a relative rotation about the piston axis.
- two guide rods 6a, 6b are installed in the actuator A, which engage displaceably in guides 18a, 18b of the piston 2.
- the guide rods 6a, 6b e.g. Solid rods with circular cylindrical cross section, e.g. made of a steel of specification 1.4301, or an equivalent material, are parallel to each other and as well as the guides 18a, 18b parallel to the axis of the piston 2 and to its stroke direction.
- the guide rods 6a, 6b are e.g. placed symmetrically and diametrically opposite with respect to the piston axis and each anchored at one end.
- the one guide rod 6a is anchored with its upper end, for example in a recessed receptacle 14 in the upper lid 3 and cantilevered with its other end free.
- the other guide rod 6b is anchored at one end in, for example, a receptacle 15 of the lower lid 4 and projects with its free end opposite to a guide rod 6a.
- the free ends of both guide rods 6a, 6b overlap in a central region of the actuator A, for example with an overlap, which may be slightly shorter than a guide length xb, with the shown in the upper end position of the piston 2, the free end of the guide rod 6b in the Guide 18b is guided.
- the guide length xa of the one guide rod 6a in the guide 18a is substantially equal to the projection length of the guide rod 6a.
- the two guides 18a, 18b are, for example, identical blind holes, wherein the guide 18a has its mouth 20 in the top of the piston plate 10 and a blind end 19 at the lower end of the piston skirt 9.
- the guide 18b has its open mouth 20 on the lower side of the piston skirt 9 and its blind end 19 adjacent to the top of the piston plate 10, such that no pressure-transmitting communication between the underside of the piston plate 10 and the top thereof takes place through the guides 18a, 18b can.
- the piston plate 10 is sealed by a circumferential ring seal 21 on the inner wall of the sleeve 5.
- the space below the piston plate 10, in which the return spring 17 is arranged having a vent opening.
- a variable which determines the height of the bending loads of the guide rods 6a, 6b is the so-called free bending spiral length of each guide rod, ie the length which exists during the transmission of the reaction torque between the mouth of the respective guide 18a, 18b and the respective anchoring 16.
- the free bending warp length ya of the guide rod 6a is minimum or even zero
- the free bending warp length yb of the other guide rod 6b has an extent corresponding, for example, to half to two thirds of the outer diameter of the piston 2 or approximately twice the guide length xb.
- the guide length xb may correspond, for example, to about one third of the outside diameter of the piston, or a multiple of the strength of the guide rods 6a, 6b, eg about three times the thickness.
- the free bending yaw length ya is a minimum or zero, arises when generating the torque for the functional element G from the reaction torque on the piston 2 only a minimal bending load for the guide rod 6a, actually only a shear stress transverse to the longitudinal direction of the guide rod 6a
- the guide rod 6a consequently transmits a major part of the reaction torque into the cover 3.
- the other guide rod 6b in which it is subjected to bending loads due to the free bending-wave length yb, also assists, because of the guide length xb but also introduces a portion of the reaction torque in the other cover 4.
- the sum of the guide lengths xa + xb of the two guide rods 6a, 6b in the guides 18a, 18b has a certain value, but remains constant over the stroke of the piston 2, since the guide length xb increases to the same extent as the guide length xa of the guide rod 6a decreases, and vice versa.
- the situation is similar with the free bending-wave lengths ya, yb, whose sum ya + yb also remains constant over the stroke of the piston 2.
- the guide rods 6a, 6b can be welded, screwed, glued, shrunk or caulked in the receptacles 14, 15.
- a preferred method of anchoring is friction welding.
- each guide rod is rotated in a tool under axial pressure in the receptacle 15 of the lid 3, 4, until under heat generated by friction, a welding process takes place, resulting in a nearly integral and monolithic welding region 16 leads, in which at least a significant part of the front end face and also a part of the peripheral surface of the end of the respective guide rod 6a, 6b with the material of the lid 3, 4 is welded.
- This friction welding process can be automated and offers the additional advantage of already performing a precise alignment of the guide rod 6a, 6b with respect to the axis of the lid 3, 4 and thus of the housing 1 during friction welding, whereby a message after welding can be dispensed with.
- This offers manufacturing advantages and on the one hand leads due to the high quality of the welding area 16, e.g. between very similar or the same materials, and the reduced bending loads for the guide rod 6a, 6b to increase the operational or process reliability of the actuator A.
- an automated welding process it could alternatively be laser welded, perform inexpensively.
- the diameter of the piston 2 or its stroke length and the length of the housing 1 depend on the applications and the required torques for the functional element G. Different torques for the functional element G may require actuators of different diameter (piston diameter), provided that a pressure medium actuation (With compressed air) is made, either a one-sided pressure medium applied against the return spring 17 or alternatively a double-sided alternating pressure medium.
- the two guide rods 6a, 6b could be arranged not diametrically opposite each other but at arbitrary mutual angular displacements, e.g. with regard to a larger angle of rotation.
- the transverse axis 8 can engage in the scenes 13 via sliding shoes or plain bearings or bearings to improve the friction conditions here.
- the guide rods 6a, 6b could have any external cross-sections which fit into the guides and / or be formed as hollow profiles or tubes.
- Actuator A may contain a continuous lubricant supply for lubricating the areas in which relative movements take place with simultaneous transmission of power.
- a tube as a guide rod 6a, 6b could be plugged in an alternative, not shown, on a pin provided on the cover 3, 4 and e.g.
- the pin thus forms a local integrated reinforcement in and adjacent to the anchoring area, or could even extend over a substantial portion of or the entire length of the pipe. This could also be a measure to make the messages of the guide rods 6a, 6b dispensable.
- Fig. 2 shows a development of the outer periphery of the piston 2 with the example, only indicated by its center line 21 backdrop 13.
- the gate 13 has initial areas 21a, 21c and an intermediate region 21b.
- the slope of the slide 13 (the included with a radial axis perpendicular to the piston axis angle) is in the initial region 21 a largest (slope angle W1), in the intermediate region 21 b smallest (slope angle W2), and is in the other initial region 21 c greater than in Intermediate area 21 b, but smaller than in the initial area 21 a (pitch angle W3).
- the pitch angle W1 may be about 66 °, the pitch angle W2 about 39 ° or 38.9 °, and the pitch angle W3 about 63 °. That is, the pitch angles W1 and W3 differ by about 5%, while the pitch angle W2 is only about 60% of the pitch angles W1, W2. Between the areas 21 a, 21 b and 21 c clean rounded transitions are provided.
- FIG Fig. 1 is therefore the largest pitch angle W1, for example, in the initial region 21 a, in which engages the end of the transverse axis 8 of the actuator shaft 25 in the upper Hubend ein shown piston 2, as soon as the piston is acted upon by the pressure medium connection 11 with pressure medium.
- the transverse axis 8 enters the other initial area 21c with the slightly smaller pitch angle W3 when the Return spring 17, the piston 2 straight back into the in Fig. 1 shown upper Hubend ein brings.
- a torque curve As in Fig. 3 is indicated schematically.
- the torque (Nm) is indicated, while the horizontal axis represents the angular range in degrees.
- the torque (curve 22) is given, in which the torque reaches its maximum value M max respectively at the two end positions of the piston, these maxima are almost plateau-like and at the same height, ie, the torque maxima are at least in about the same size.
- the torque M max is for example about 40 Nm, while the minimum of the torque M min is about only 10 Nm.
- reaction torque transmitted by the piston 2 to the guide rods 6a, 6b extends correspondingly, ie, the strongest reaction torque then makes the most particularly stable support on the guide rods 6a, 6b used profitably.
- This in Fig. 3 schematically indicated M min could be flatter than shown and eg plateau-like.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Actuator (AREA)
- Fluid-Damping Devices (AREA)
- Fluid-Driven Valves (AREA)
Description
Die Erfindung betrifft einen Aktor gemäß Oberbegriff des Patentanspruchs 1.The invention relates to an actuator according to the preamble of
Bevorzugtes, jedoch nicht einschränkendes, Anwendungsgebiet solcher Aktoren sind z.B. Scheibenventile oder Kugelhähne in der Getränkeabfüllindustrie. In solchen Scheibenventilen oder Kugelhähnen ist häufig in zumindest einer Endstellung bzw. bei Bewegungen des Verschlusselementes in die oder aus der Endstellung ein sehr großes bzw. das maximale Schaltdrehmoment vom Aktor zu erzeugen, der einseitig gegen Federkraft oder doppelseitig mit Druckmittel, z.B. Druckluft, beaufschlagbar ist.Preferred but not limiting application of such actuators are e.g. Butterfly valves or ball valves in the beverage bottling industry. In such disc valves or ball valves is often in at least one end position or movements of the closure element in or out of the end position to produce a very large or the maximum switching torque from the actuator, the one-sided against spring force or double-sided with pressure medium, e.g. Compressed air, can be acted upon.
Bei dem aus
Bei dem aus
Weiterer Stand der Technik ist enthalten in
Der Erfindung liegt die Aufgabe zugrunde, einen Aktor der eingangs genannten Art anzugeben, der sehr funktionssicher, baulich einfach und dennoch kostengünstig ist.The invention has for its object to provide an actuator of the type mentioned, which is very reliable, structurally simple and yet inexpensive.
Die gestellte Aufgabe wird mit den Merkmalen des Patentanspruchs 1 gelöst.The stated object is achieved with the features of
Da das Ende der einen Führungsstange in einem Deckel und das Ende der anderen Führungsstange im anderen Deckel des Gehäuses verankert sind, ist in jeder Endstellung des Kolbens die freie Biegewirklänge einer Führungsstange ein Minimum, so dass die Biegebelastungen und Biegespannungen dieser Führungsstange ebenfalls minimal sind, während gleichzeitig seine Führungslänge ein Maximum ist, so dass die spezifische Flächenpressung zwischen der Führung und der Führungsstange gering bleibt, selbst wenn dann das zu übertragende Reaktionsmoment ein Maximum ist. Die Führungsstange, deren freie Biegewirklänge ein Minimum ist, entlastet somit die andere Führungsstange, deren freie Biegewirklänge dann ein Maximum ist. Dies reduziert insgesamt die Biegebelastungen und Biegespannungen für die beiden Führungsstangen, und zwar sowohl in den Verankerungsbereichen als auch in den Mündungen der Führungen. Damit geht eine Minderung des Verschleißes der Führungsstangen in den Führungen einher. Bei der Hubbewegung des Kolbens aus der jeweiligen Endstellung nimmt zwar die freie Biegewirklänge der Führungsstange zu, deren freie Biegewirklänge zunächst ein Minimum betrug, jedoch nimmt gleichzeitig die freie Biegewirklänge der anderen Führungsstange ab, so dass über den Hubweg des Kolbens das Reaktionsdrehmoment unter Reduzierung der Biegekräfte für beide Führungsstangen problemlos übertragen wird. Die Verankerungsbereiche, z.B. Schweißbereiche, werden weniger stark belastet, was die Gefahr von Schäden reduziert und gleichzeitig die Betriebssicherheit bzw. Prozesssicherheit spürbar erhöht. Aufgrund der geringeren Biegebelastungen der Führungsstangen können diese aus einem kostengünstigen Material hergestellt werden, gegebenenfalls aus dem gleichen Material wie die Deckel. Dies vereinfacht die Verankerung beispielsweise durch Schweißen. Der Aktor besteht nur aus einer geringen Anzahl Teilen und lässt sich kostengünstig herstellen, da beispielsweise die Herstellung der Verankerungsbereich automatisiert erfolgen kann, und die Führungsstangen gegebenenfalls kein Nachrichten benötigen. Da in beiden Hubendstellungen des Kolbens das jeweilige Reaktionsdrehmoment besonders stabil in das Gehäuse eingeleitet wird, lassen sich die dann vom Aktor auf das Funktionselement, z.B. das Verschlussorgan eines Scheibenventils, zu übertragenden Drehmomente in ihren Werten und Verläufen sehr präzise vorherbestimmen und auf das Schaltverhalten des Scheibenventils abstimmen, beispielsweise so, dass diese Drehmomente ihre, vorzugsweise plateauähnlichen, Maxima bei den Hubendstellungen des Kolbens haben.Since the end of a guide rod in a lid and the end of the other guide rod are anchored in the other cover of the housing, in each end position of the piston, the free bending spiral length of a guide rod is a minimum, so that the bending loads and bending stresses of this guide rod are also minimal while at the same time its guide length is a maximum, so the specific surface pressure between the guide and the guide rod remains small, even if then the reaction torque to be transmitted is a maximum. The guide rod, whose free Biegewirklänge is a minimum, thus relieves the other guide rod, the free Biegewirklänge is then a maximum. This reduces overall the bending loads and bending stresses for the two guide rods, both in the anchoring areas and in the mouths of the guides. This is accompanied by a reduction in the wear of the guide rods in the guides. In the stroke movement of the piston from the respective end position, although the free Biegewirklänge the guide rod increases whose free Biegewirklänge initially amounted to a minimum, but at the same time decreases the free Biegewirklänge the other guide rod, so that over the stroke of the piston, the reaction torque while reducing the bending forces is easily transmitted for both guide rods. The anchoring areas, such as welding areas, are less heavily loaded, which reduces the risk of damage and at the same time noticeably increases operational safety and process reliability. Due to the lower bending loads of the guide rods they can be made of a cost-effective material, possibly of the same material as the lid. This simplifies the anchoring, for example by welding. The actuator consists of only a small number of parts and can be produced inexpensively, since, for example, the production of the anchoring area can be automated, and the guide rods may not need any messages. Since the respective reaction torque is introduced into the housing in a particularly stable manner in both stroke end positions of the piston, the torques to be transmitted by the actuator to the functional element, for example the closure member of a disk valve, can be very precisely predicted in terms of their values and characteristics and on the switching behavior of the disk valve vote, for example so that these torques have their, preferably plateau-like, maxima at the stroke end positions of the piston.
Bei einer zweckmäßigen Ausführungsform überlappen sich die freien Enden der beiden Führungsstangen in Hubrichtung. Die Überlappung kann, vorzugsweise, etwa einem Drittel des Kolbenaußendurchmessers entsprechen bzw. einem Mehrfachen der Stärke der Führungsstangen. Dadurch ist die Führungslänge auch der Führungsstange relativ groß und damit tragfähig, deren freie Biegewirklänge ein Maximum ist.In an expedient embodiment, the free ends of the two guide rods overlap in the stroke direction. The overlap may, preferably, correspond to about one third of the outside diameter of the piston, or a multiple of the strength of the guide rods. As a result, the guide length and the guide rod is relatively large and thus sustainable, the free Biegewirklänge is a maximum.
Günstig ist es, wenn die in einer jeweiligen Kolbenendstellung im Gehäuse gegebene freie maximale Biegewirklänge der einen Führungsstange zwischen etwa der Hälfte bis zu zwei Drittel des Kolbenaußendurchmessers und/oder etwa dem Zweifachen der Überlappung der freien Enden der beiden Führungsstangen entspricht. Diese relativ kurze freie Biegewirklänge reduziert die Biegebelastungen dieser Führungsstange auf ein moderates Maß, ohnedies unterstützt durch die dann mit minimaler freier Biegewirklänge sehr stabil lastaufnehmende andere Führungsstange.It is advantageous if the given in a respective Kolbenendstellung in the housing free maximum bending sweep length of a guide rod between about half to two-thirds of the Kolbenaußendurchmessers and / or about twice the overlap of the free ends of the two guide rods. This relatively short free bending spiral length reduces the bending loads of this guide bar to a moderate degree, anyway supported through the then with minimal free Biegewirklänge very stable load-absorbing other guide rod.
Besonders wichtig ist die Summe der Führungslängen und die Summe der freien Biegewirklängen von beiden Führungsstangen in den bzw. außerhalb der Führungen unabhängig von der Richtung des Reaktionsdrehmomentes am Kolben bzw. der Hubrichtung des Kolbens über den gesamten Kolbenhub konstant. Dies ist besonders wichtig im Hinblick auf einen möglichst gleichmäßigen und nicht lokal konzentrierten Verschleiß in den Führungen bzw. an den Führungsstangen.Particularly important is the sum of the guide lengths and the sum of the free Biegewirklängen of both guide rods in and out of the guides regardless of the direction of the reaction torque on the piston or the stroke direction of the piston over the entire piston stroke constant. This is particularly important in terms of a uniform and not locally concentrated wear in the guides or on the guide rods.
Bei einer zweckmäßigen Ausführungsform sind die Führungsstangen in Bezug auf die Kolbenachse achssymmetrisch und diametral gegenüberliegend platziert. Auf diese Weise wird das Reaktionsdrehmoment symmetrisch aufgenommen und in das Gehäuse übertragen.In an expedient embodiment, the guide rods are placed axially symmetrically and diametrically opposite with respect to the piston axis. In this way, the reaction torque is received symmetrically and transmitted into the housing.
Ferner ist es günstig, wenn der Kolben eine Kolbenplatte und eine die Kulissen und die Führungen enthaltende Kolbenschürze aufweist, wobei eine Führung ihre offene Mündung in der Kolbenplatte und ihr blindes Ende in der Kolbenschürze, hingegen die andere Führung ihre offene Mündung in der Kolbenschürze und ihr blindes Ende in der Kolbenplatte aufweist. Obwohl die beiden Führungsstangen von verschiedenen Seiten in den Kolben eintauchen, ist durch die Ausbildung der Führungen sichergestellt, dass über die Führungen bzw. Kulissen Druck nicht von einer Seite des Kolbens zur anderen gelangen kann. Außerdem resultiert daraus eine weitgehend symmetrische Kolbenausbildung mit ausreichend viel Fleisch um diejenigen Bereiche, in denen Kräfte übertragen werden.Further, it is advantageous if the piston has a piston plate and a piston skirt containing the scenes and the guides, one guide their open mouth in the piston plate and its blind end in the piston skirt, whereas the other guide their open mouth in the piston skirt and her having blind end in the piston plate. Although the two guide rods are immersed in the pistons from different sides, the formation of the guides ensures that pressure can not pass from one side of the piston to the other via the guides or linkages. In addition, this results in a largely symmetrical piston formation with sufficient meat around those areas in which forces are transmitted.
Bei einer zweckmäßigen Ausführungsform ist der Kolben über einen Druckmittelanschluss und gegen eine Rückstellfeder und/oder doppelseitig über entgegengesetzte Druckmittelanschlüsse durch Druckmittel beaufschlagbar. In der einen Variante erfolgt die Kolbenbewegung in einer Hubrichtung durch den Druckimpuls aus dem Druckmittelanschluss, und in der entgegengesetzten Richtung durch die Rückstellfeder, gegebenenfalls abhängig von entweder vollkommener Druckentlastung im Druckmittelanschluss oder einer gesteuerten Druckentlastung. Dabei kann der Aktor so eingesetzt werden, dass, z.B. ein betätigtes Scheibenventi,l durch Druckbeaufschlagung des Kolbens geöffnet und durch die Rückstellfeder geschlossen wird (normal geschlossen = NC), oder umgekehrt (normal offen = NO). Im anderen Fall wird der Kolben in jeder Hubrichtung durch einen Druckimpuls eines Druckmittels, z.B. Druckluft, betätigt.In an expedient embodiment, the piston can be acted upon by pressure medium via a pressure medium connection and against a return spring and / or on both sides via opposite pressure medium connections. In one variant, the piston movement takes place in a stroke direction by the pressure pulse from the pressure medium connection, and in the opposite direction by the return spring, optionally depending on either complete pressure relief in the pressure medium connection or a controlled pressure relief. In this case, the actuator can be used so that, e.g. an actuated disc valve is opened by pressurizing the piston and closed by the return spring (normally closed = NC) or vice versa (normally open = NO). In the other case, the piston in each stroke direction by a pressure pulse of a pressure medium, e.g. Compressed air, operated.
Abhängig vom Öffnungsgrad, z.B. eines Scheibenventils, ist das zu übertragende Drehmoment abhängig von der Winkelstellung gegenüber einer Nulllage. Dabei ist das Drehmoment in der Regel innerhalb beispielsweise einer 90°-Drehverstellung zwischen etwa 22° und 68° am geringsten. Hierfür wird die Steigung jeder Kulisse normalerweise in beiden Anfangsbereichen steiler aber gleich gewählt als in einem Zwischenbereich der Kulisse. Die Praxis zeigt jedoch, dass beispielsweise bei Druckluftbeaufschlagung des Kolbens gegen eine Rückstellfeder, und Rückstellung des Kolbens mit der Rückstellfeder, die Drehmomente aus der Verlagerung der Querachse in beiden Anfangsbereichen der Kulissen unterschiedlich ausfallen. Um dies zu vermeiden, werden zweckmäßig die Steigungen der Kulisse in den Anfangsbereichen steiler als im Zwischenbereich und verschieden gewählt, so dass das bei der Federrückstellung erzeugte Drehmoment und das bei Beaufschlagung mit Druckluft erzeugte Drehmoment zumindest weitestgehend gleich groß ausfallen. So lassen sich vorteilhaft Überlastungen in den Kulissen, der Lagerung des Funktionselementes und der Aktorwelle und den Verbindungen des Funktionselementes im Ventil vermeiden. Außerdem stellen sich jeweils gleiche Schaltwerte bzw. Schaltverhalten bei unterschiedlichen Arbeitsweisen ein, z.B. des vom Aktor betätigten Schaltventils, z.B. wenn das Scheibenventil durch den Aktor luftöffnend aber federschließend oder luftschließend aber federöffnend ausgelegt ist.Depending on the degree of opening, for example a disk valve, the torque to be transmitted depends on the angular position relative to a zero position. The torque is usually the lowest within, for example, a 90 ° rotational adjustment between about 22 ° and 68 °. For this purpose, the slope of each backdrop is usually steeper in both initial ranges but the same chosen as in an intermediate region of the backdrop. However, practice shows that, for example, when the compressed air is applied to the piston against a return spring, and provision of the piston with the return spring, the torque from the displacement of the transverse axis in both initial areas of the scenes are different. To avoid this, the slopes of the scenery in the initial areas are expedient steeper than in the intermediate area and chosen differently, so that the torque generated at the spring return and the torque generated upon application of compressed air at least largely the same size. Thus, it is advantageous to avoid overloading in the scenes, the bearing of the functional element and the actuator shaft and the connections of the functional element in the valve. In addition, each set the same switching values or switching behavior in different ways, for example, operated by the actuator switching valve, for example, when the disc valve is designed by the actuator air-opening but spring-closing or air-closing but spring opening.
Bei einer zweckmäßigen Ausführungsform differieren die Steigungswinkel in den Anfangsbereichen um ca. 2 % bis 10 %, vorzugsweise etwa 5 %, und beträgt der Steigungswinkel im Zwischenabschnitt etwa 60 % der Steigungswinkel in den Anfangsbereichen. Vorzugsweise beträgt der steilste Steigungswinkel etwa 66°, der Steigungswinkel im Zwischenbereich etwa 38,9° und der weniger steile Steigungswinkel etwa 63°. Mit dieser Differenz der Steigungswinkel in den beiden Anfangsbereichen lassen sich bei Druckluftbeaufschlagung und Federrückstellung zumindest weitestgehend gleiche Drehmomente erzeugen.In an expedient embodiment, the pitch angles in the initial regions differ by about 2% to 10%, preferably about 5%, and the pitch angle in the intermediate section is about 60% of the pitch angles in the initial regions. Preferably, the steepest pitch angle is about 66 °, the pitch angle in the intermediate area about 38.9 ° and the less steep pitch angle about 63 °. With this difference, the pitch angle in the two initial areas can be at least largely produce the same torques when compressed air and spring return.
Dabei kann der größte Steigungswinkel in einem Anfangsbereich dort vorgesehen sein, wo in der Hubendstellung des Kolbens und bei geringster Kraft der Rückstellfeder die Querachse in die Kulisse eingreift.In this case, the largest pitch angle can be provided in an initial region where, in the stroke end position of the piston and at the slightest force of the return spring, the transverse axis engages the link.
Da auch die bei der Kraftübertragung im Kolben entstehenden Kräfte großflächig verteilt und nur moderat sind, kann bei einer zweckmäßigen Ausführungsform der Kolben aus kostengünstigem und gut verarbeitbarem hochdichtem Polyamid hergestellt sein. Das Polyamid benötigt keine Faserverstärkung, wodurch jedoch nicht ausgeschlossen sein soll, z.B. eine Glasfaserverstärkung im Kolben vorzusehen.Since the forces arising in the power transmission in the piston are distributed over a large area and only moderate, in an expedient embodiment of the piston can be made of cost-effective and easy to process high-density polyamide. The polyamide does not require fiber reinforcement, which, however, should not be excluded, e.g. to provide a glass fiber reinforcement in the piston.
Zweckmäßig weist jeder Deckel eine einzige Aufnahme für ein Führungsstangenende auf. Die Führungsstange ist mit ihrem Ende in der Aufnahme durch Schweißen, Schrauben, Schrumpfen, Kleben oder Verstemmen verankert. Die Verankerung kann in einem automatisierten Arbeitsablauf hergestellt werden, und dadurch mit hoher Präzision, so dass ein Nachrichten der verankerten Führungsstangen entbehrlich wird.Suitably, each cover has a single receptacle for a guide rod end. The guide rod is anchored with its end in the receptacle by welding, screwing, shrinking, gluing or caulking. Anchoring can be done in an automated workflow be prepared and thereby with high precision, so that a message of the anchored guide rods is unnecessary.
Besonders zweckmäßig, kostengünstig und hinsichtlich der Qualität der Verankerung optimal wird die Führungsstange mit ihrem Ende in der Aufnahme des Deckels durch Reibschweißen, vorzugsweise automatisiertes Reibschweißen, verankert. Der Reibschweißvorgang führt zu einer nahezu monolithischen Verankerung und ermöglicht es, beim Reibschweißen eine exakte Positionierung und Ausrichtung der Führungsstange im Deckel vorzunehmen, so dass ein Nachrichten der Führungsstange entfallen kann.Particularly expedient, cost-effective and optimal in terms of the quality of anchoring the guide rod is anchored with its end in the receptacle of the lid by friction welding, preferably automated friction welding. The friction welding process leads to a nearly monolithic anchoring and makes it possible to perform an exact positioning and alignment of the guide rod in the lid during friction welding, so that a message of the guide rod can be omitted.
Dank der als Folge der Bauweise reduzierten Biegebelastungen oder Biegespannungen der Führungsstangen können diese aus einem kostengünstigen Material hergestellt werden, z.B. aus einem Stahl der Spezifikation 1.4301 oder einem zumindest im Wesentlichen gleichartigen Material.Thanks to the bending loads or bending stresses of the guide rods, which are reduced as a result of the design, they can be made of a cost-effective material, e.g. from a steel of specification 1.4301 or an at least substantially similar material.
Im Hinblick auf einfache Herstellbarkeit kann es zweckmäßig sein, als Führungsstangen kreiszylindrische Vollmaterialstäbe zu verwenden, und die Führungen als Blindbohrungen im Kolben auszubilden. Dies soll jedoch nicht ausschließen, als Führungsstangen auch Hohlprofile oder Rohre zu verwenden und letztere auf an den Deckeln vorgesehene Zapfen aufzustecken und z.B. durch Reibschweißen zu verankern.In view of ease of manufacture, it may be appropriate to use as a guide rods circular cylindrical solid rods, and form the guides as blind holes in the piston. However, this should not exclude to use as guide rods and hollow sections or tubes and the latter aufzustecken on provided on the lids pin and e.g. anchored by friction welding.
Eine Ausführungsform des Erfindungsgegenstandes wird anhand der Zeichnungen erläutert. Es zeigen:
- Fig. 1
- einen Achsschnitt eines Aktors in einer Endstellung,
- Fig. 2
- eine Abwicklung des Außendurchmessers eines Kolbens des Aktors mit einem charakteristischen Verlauf einer Kulisse, und
- Fig. 3
- ein Diagramm zum vom Aktor erzeugten Drehmomentverlauf über einen nur beispielhaft mit 90° gewählten Schaltwinkel.
- Fig. 1
- an axial section of an actuator in an end position,
- Fig. 2
- a development of the outer diameter of a piston of the actuator with a characteristic course of a backdrop, and
- Fig. 3
- a diagram of the torque curve generated by the actuator over a selected example only with 90 ° switching angle.
Der Aktor A dient beispielsweise zum Drehverstellen eines drehbaren Funktionselementes G, beispielsweise eines Verschlusselementes eines Scheibenventils V oder Kugelhahns, beispielsweise in der Getränkeabfüllindustrie, wobei das Funktionselement G zur Drehverstellung über einen bestimmten Drehwinkel (z.B. 90°) eines bestimmten Drehmoments und Drehmomentverlaufs bedarf, das bzw. den der Aktor A erzeugt und aufbringt. Das erforderliche Schaltdrehmoment kann beispielsweise bei der Bewegung des Funktionselementes G in oder aus eine Endstellung ein Maximum sein. Der Aktor ist in der Ausführungsform in
Der Aktor A weist ein in der gezeigten Ausführungsform beispielsweise kreiszylindrisches Gehäuse 1 auf, das aus einer zylindrischen Hülse 5, z.B. aus Metall, und oberen und unteren, die Hülse 5 verschließenden Deckeln 3, 4, z.B. aus einem Metall wie Stahl, verschlossen ist. Die beiden Deckel 3, 4 sind in die Hülse 5 eingesetzt und beispielsweise durch Laserschweißen fixiert.The actuator A has in the embodiment shown, for example, a circular
In dem Gehäuse 1 ist ein Kolben 2 linear hin- und herverstellbar, in der gezeigten Ausführungsform beispielsweise durch Druckluftbeaufschlagung über einen Druckmittelanschluss 11 im Deckel 3 in einer Hubrichtung gegen die Kraft einer Rückstellfeder 17 erstellbar, die zwischen dem Kolben 2 und dem anderen Deckel 4 angeordnet ist, in der entgegengesetzten Hubrichtung durch die Rückstellfeder 17 zurückstellbar, sobald die Druckbeaufschlagung aufgehoben oder reduziert wird.In the
Der Kolben 2 kann aus Metall oder Metall und Kunststoff oder nur aus Kunststoff bestehen, und ist zweckmäßig aus einem Polyamid in hochdichter Einstellung und ohne Faserverstärkung hergestellt. Der Kolben 2 weist eine Kolbenplatte 10 und eine damit einstückigen Kolbenschürze 9 auf, die einen inneren Hohlraum 12 umgibt, in welchen das obere Ende einer Aktorwelle 25 eintaucht, die beispielsweise mittels eines Lagers 22, und gegebenenfalls Abdichtungen, im Deckel 4 drehbar gelagert ist. In der Kolbenschürze 9 sind zwei in Bezug auf die Kolbenachse diametral gegenüberliegende, gegensinnige, z.B. schraubengangartige Kulissen 13 eingeformt, in die die Enden einer in der Aktorwelle 25 fixierten Querachse 8 eingreifen. Die Kulissen 13 können sich in Umfangsrichtung über ein Bogenmaß z.B. von 90° oder mehr oder weniger erstrecken. Ihre Steigung kann gleichförmig oder variabel sein. Ihre axiale Länge ist beispielsweise größer als der Gesamthub des Kolbens 2 im Gehäuse 1.The
Über den Eingriff der Querachse 8 in die Kulissen 13 wandelt der Kolben 2 seine lineare Hubbewegung in eine Drehbewegung der Aktorwelle 25 um, wobei von der Aktorwelle 25 ein konstantes oder variierendes Drehmoment über den Drehwinkel generiert wird, vorausgesetzt, dass der Kolben 2 während seiner Hubbewegungen an einer relativen Drehung um die Kolbenachse gehindert wird.About the engagement of the
Zum letztgenannten Zweck sind in den Aktor A zwei Führungsstangen 6a, 6b eingebaut, die in Führungen 18a, 18b des Kolbens 2 verschiebbar eingreifen. Die Führungsstangen 6a, 6b, z.B. Vollmaterialstäbe mit kreiszylindrischem Querschnitt, z.B. aus einem Stahl der Spezifikation 1.4301, oder einem gleichwertigen Material, sind zueinander parallel und wie auch die Führungen 18a, 18b parallel zur Achse des Kolbens 2 und zu dessen Hubrichtung. Die Führungsstangen 6a, 6b sind z.B. in Bezug auf die Kolbenachse symmetrisch und diametral gegenüberliegend platziert und jeweils an einem Ende verankert.For the latter purpose, two
Die eine Führungsstange 6a ist mit ihrem oberen Ende beispielsweise in einer vertieften Aufnahme 14 im oberen Deckel 3 verankert und kragt mit ihrem anderen Ende frei aus. Die andere Führungsstange 6b ist hingegen mit einem Ende in beispielsweise einer Aufnahme 15 des unteren Deckels 4 verankert und kragt mit ihrem freien Ende entgegengesetzt zur einen Führungsstange 6a aus. Die freien Enden beider Führungsstangen 6a, 6b überlappen sich in einem Mittelbereich des Aktors A, beispielsweise mit einer Überlappung, die etwas kürzer sein kann als eine Führungslänge xb, mit der in der gezeigten oberen Endstellung des Kolbens 2 das freie Ende der Führungsstange 6b in der Führung 18b geführt ist. In der gleichen Betriebsposition ist hingegen die Führungslänge xa der einen Führungsstange 6a in der Führung 18a im Wesentlichen gleich der Auskraglänge der Führungsstange 6a.The one
Die beiden Führungen 18a, 18b sind beispielsweise formgleiche Blindbohrungen, wobei die Führung 18a ihre Mündung 20 in der Oberseite der Kolbenplatte 10 und ein blindes Ende 19 beim unteren Ende der Kolbenschürze 9 besitzt. Hingegen hat die Führung 18b ihre offene Mündung 20 an der unteren Seite der Kolbenschürze 9 und ihr blindes Ende 19 benachbart zur Oberseite der Kolbenplatte 10, derart, dass durch die Führungen 18a, 18b keine druckübertragende Kommunikation zwischen der Unterseite der Kolbenplatte 10 und deren Oberseite stattfinden kann. Zusätzlich ist die Kolbenplatte 10 durch eine umfangsseitige Ringdichtung 21 an der Innenwand der Hülse 5 abgedichtet. In der gezeigten Ausführungsform kann der Raum unterhalb der Kolbenplatte 10, in welchem die Rückstellfeder 17 angeordnet ist, eine Entlüftungsöffnung aufweisen.The two
Bei der Beaufschlagung des Kolbens 2 aus der in
Eine die Höhe der Biegebelastungen der Führungsstangen 6a, 6b bestimmende Variable ist die sogenannte freie Biegewirklänge jeder Führungsstange, d.h. diejenige Länge, die bei der Übertragung des Reaktionsdrehmomentes zwischen der Mündung der jeweiligen Führung 18a, 18b und der jeweiligen Verankerung 16 vorliegt. In der gezeigten einen Endstellung in
Da in der gezeigten Endstellung die freie Biegewirklänge ya ein Minimum bzw. Null ist, entsteht beim Erzeugen des Drehmomentes für das Funktionselement G aus dem Reaktionsdrehmoment am Kolben 2 nur eine minimale Biegebelastung für die Führungsstange 6a, eigentlich nur eine Scherbelastung quer zur Längsrichtung der Führungsstange 6a im Zwischenraum zwischen der Oberseite der Kolbenplatte 10 und der Unterseite des Deckels 3. Die Führungsstange 6a überträgt demzufolge einen überwiegenden Teil des Reaktionsdrehmomentes in den Deckel 3. Allerdings assistiert auch die andere Führungsstange 6b, in dem sie zwar Biegebelastungen aufgrund der freien Biegewirklänge yb unterliegt, wegen der Führungslänge xb jedoch auch einen Anteil des Reaktionsdrehmomentes in den anderen Deckel 4 einleitet.Since in the end position shown the free bending yaw length ya is a minimum or zero, arises when generating the torque for the functional element G from the reaction torque on the
Die Summe der Führungslängen xa + xb der beiden Führungsstangen 6a, 6b in den Führungen 18a, 18b hat einen bestimmten Wert, der über den Hubweg des Kolbens 2 jedoch konstant bleibt, da die Führungslänge xb im gleichen Ausmaß zunimmt wie die Führungslänge xa der Führungsstange 6a abnimmt, und umgekehrt. Genauso verhält es sich mit den freien Biegewirklängen ya, yb, deren Summe ya + yb über den Hubweg des Kolbens 2 ebenfalls konstant bleibt.The sum of the guide lengths xa + xb of the two
Insgesamt bedeutet dies, dass durch die gegensinnige Verankerung der Enden der beiden Führungsstangen 6a, 6b in den Deckeln 3, 4 die aus dem Reaktionsdrehmoment des Kolbens resultierenden Biegebelastungen oder Biegekräfte für die Führungsstangen 6a, 6b reduziert werden, insbesondere für die die jeweils die kürzere oder keine freie Biegewirklänge aufweisende Führungsstange 6a oder 6b, die dann einen überwiegenden Teil des Reaktionsmomentes überträgt, wenn ihre Führungslänge xa bzw. xb optimal groß ist, was eine geringe spezifische Flächenpressung bei der Übertragung des Hauptteiles des Reaktionsdrehmomentes mit sich bringt, und damit einen verringerten Verschleiß zwischen den Führungsstangen 6a, 6b und den Führungen 18a, 18b. Da über den Hubweg des Kolbens 2 die Summe der Führungslängen und die Summe der freien Biegewirklängen konstant bleibt, variieren die Biegebelastungen der Führungsstangen nicht oder kaum, und wird auch Verschleiß zwischen den Führungsstangen und den Führungen vergleichsmäßigt bzw. großflächig verteilt. Dies ermöglicht die Verwendung eines kostengünstigen Materials, beispielsweise eines Stahls der Spezifikation 1.4301 für die Führungsstangen 6a, 6b, das gegebenenfalls auch das Material der Deckel 3, 4 sein kann. Da ferner die Summe der Führungslängen xa, xb der beiden Führungsstangen stets konstant bleibt, benötigt der Kolben 2 auch keine Verstärkungen, um lokale Belastungsspitzen besser aufnehmen zu können.Overall, this means that by opposing the anchoring of the ends of the two
Die Führungsstangen 6a, 6b können in den Aufnahmen 14, 15 verschweißt, verschraubt, verklebt, eingeschrumpft oder verstemmt sein. Eine bevorzugte Verankerungsweise ist Reibschweißen. Zu diesem Zweck (Ausbildung der Schweißbereiche 16 in den Aufnahmen 14, 15) wird jede Führungsstange in einem Werkzeug unter axialem Andruck in der Aufnahme 15 des Deckels 3, 4 rotiert, bis unter reibungsbedingt generierter Wärme ein Verschweißvorgang abläuft, der zu einem nahezu integralen und monolithischen Schweißbereich 16 führt, in welchem zumindest ein erheblicher Teil der Stirnendfläche und auch ein Teil der Umfangsfläche des Endes der jeweiligen Führungsstange 6a, 6b mit dem Material des Deckels 3, 4 verschweißt ist. Dieser Reibschweißvorgang kann automatisiert ablaufen und bietet den zusätzlichen Vorteil, beim Reibschweißen bereits eine präzise Ausrichtung der Führungsstange 6a, 6b in Bezug auf die Achse des Deckels 3, 4 und damit des Gehäuses 1 vorzunehmen, wodurch ein Nachrichten nach dem Verschweißen entbehrlich sein kann. Dies bietet herstellungstechnische Vorteile und führt einerseits aufgrund der hohen Qualität des Schweißbereiches 16, z.B. zwischen sehr ähnlichen oder gleichen Materialien, und der verringerten Biegebelastungen für die Führungsstange 6a, 6b zu einer Erhöhung der Betriebs- oder Prozesssicherheit des Aktors A. Außerdem lässt sich ein automatisierter Schweißvorgang, es könnte alternativ auch lasergeschweißt werden, kostengünstig durchführen.The
Der Durchmesser des Kolbens 2 bzw. dessen Hublänge und die Länge des Gehäuses 1 richten sich nach den Anwendungsfällen und den benötigten Drehmomenten für das Funktionselement G. Unterschiedliche Drehmomente für das Funktionselement G können Aktoren unterschiedlicher Durchmesser (Kolbendurchmesser) erfordern, vorausgesetzt, dass eine Druckmittelbetätigung (mit Druckluft) vorgenommen wird, und zwar entweder eine einseitige Druckmittelbeaufschlagung gegen die Rückstellfeder 17 oder alternativ eine doppelseitig abwechselnde Druckmittelbeaufschlagung.The diameter of the
Bei einer alternativen Ausführungsform könnten die beiden Führungsstangen 6a, 6b nicht diametral gegenüberliegend angeordnet sein, sondern in willkürlich wählbaren gegenseitigen Winkelversetzungen, z.B. im Hinblick auf einen größeren Drehwinkel. Die Querachse 8 kann in den Kulissen 13 über Gleitschuhe oder Gleitlager oder Wälzlager eingreifen, um hier die Reibungsverhältnisse zu verbessern. Ferner könnten die Führungsstangen 6a, 6b beliebige, in die Führungen passende Außenquerschnitte aufweisen und/oder als Hohlprofile oder Rohre ausgebildet werden. Im Aktor A kann ein Dauerschmierstoffvorrat zum Schmieren der Bereiche enthalten sein, in denen Relativbewegungen bei gleichzeitiger Kraftübertragung stattfinden. Ein Rohr als Führungsstange 6a, 6b könnte bei einer nicht gezeigten Alternative auf einen am Deckel 3, 4 vorgesehenen Zapfen aufgesteckt und z.B. durch Reibschweißen verankert sein. Der Zapfen bildet so eine lokale integrierte Verstärkung im und angrenzend an den Verankerungsbereich, oder könnte sich sogar über einen erheblichen Teil der oder die gesamte Länge des Rohres erstrecken. Auch dies könnte eine Maßnahme sein, das Nachrichten der Führungsstangen 6a, 6b entbehrlich zu machen.In an alternative embodiment, the two
In der Ausführungsform in
Durch den in
Claims (15)
- Actuator (A) for a rotating function element (G), in particular a closing element of a disk valve or a ball valve (V), having a housing (1) comprising at least one pressure means supply (11) and being closed at both ends by covers (3, 4), a piston (2) being guided to reciprocate in the housing (1) in a sealing manner, the piston (2) containing diametrically opposed, convolution-like guiding grooves (13) for a transverse axis (8) of an actuator shaft (25) rotatably mounted in a cover (4), submerging into the piston (2) and rotatably driven by the piston (2) with torques in opposite directions, and having two parallel guide rods (6a, 6b) firmly anchored in the housing each only at one end, the guide rods (69, 66) engaging in guides (18a, 18b) extending in the direction of the piston stroke and ending blind within the piston stroke, characterized in that the one guide rod (6a) is anchored in the one cover (3), and the other guide rod (6b) is anchored in the other cover (4), and that the two guides (18a, 18b) end blind in opposite directions in the piston (2).
- Actuator according to claim 1, characterized in that the free ends of the two guide rods (6a, 6b) overlap in the direction of the piston stroke, preferably with an overlap approximately corresponding to one third of the piston's outer diameter.
- Actuator according to claim 1 or 2, characterized in that in a respective piston stroke end position the free effective bending length (ya, yb) of only one guide rod (6a, 6b) amounts to between approximately half to nearly two thirds of the piston's outer diameter, and/or approximately to twice the overlap of the free ends of the two guide rods (6a, 6b).
- Actuator according to at least one of the preceding claims, characterized in that the sum of the guide lengths (xa, xb) of both guide rods (6a, 6b) in the guides (18a, 18b), preferably also the sum of the free effective bending lengths (ya, yb), is constant over the piston stroke independent of the direction of the reaction torque at the piston (2) or the stroke direction of the piston (2).
- Actuator according to at least one of the preceding claims, characterized in that the guide rods (6a, 6b) are placed in the covers (3, 4) with respect to the piston axis axially symmetrically and diametrically opposed.
- Actuator according to at least one of the preceding claims, characterized in that the piston (2) comprises a piston plate (10) and a piston skirt (9) containing the guiding grooves (13) and the guides (18a, 18b), one guide (18a) having an open mouth (20) in the piston plate (10) and its blind end (19) in the piston skirt (9), and the other guide (18b) having an open mouth (20) in the piston skirt (9) and its blind end (19) in the piston plate.
- Actuator according to claim 1, characterized in that the piston (2) is to be actuated in one stroke direction from a pressure means supply (11) against a readjusting spring (17), and in the other stroke direction by the readjusting spring (17), and/or that it is to be actuated at both sides by pressure means supplies disposed at opposed sides in the housing (1).
- Actuator according to at least one of the preceding claims, characterized in that each guiding groove (13) comprises in starting regions (21 a, 21 c) different but greater pitch angles (W 1, W3) - with respect to a radial plane perpendicularly through the piston axis - than the pitch angle (W2) in an intermediate region (21 b) between the starting regions (21 a, 21 c), preferably such that the torques transmitted from the actuator shaft (25) to the function element (G) by engagement of the transverse axis (8) in the starting regions (21 a, 21 c) at least approximately have the same maxima (Mmax), independent of the action of the pressure means or the readjusting spring (17) on the piston (2).
- Actuator according to claim 8, characterized in that the pitch angles (W1, W3) in the starting regions (21a, 21 c) differ by about 2% to 10%, preferably by about 5%, and that the pitch angle of slope (W2) in the intermediate region (21 b) amounts to about 60% of the pitch angles (W1, W3), where preferably the pitch angle (W1) amounts to about 66°, the pitch angle (W2) amounts to approximately 40° or 38.9°, and the pitch angle (W3) amounts to about 63°.
- Actuator according to claim 9, characterized in that the greatest pitch angle (W1) is provided in the starting region (21 a) in which in the stroke end position of the piston (2), the transverse axis (8) engages with the lowest acting force of the readjusting spring (17).
- Actuator according to claim 1, characterized in that the piston (2) is made of high-density polyamide, preferably without fiber reinforcement.
- actuator according to at least one of the preceding claims, characterized in that each cover (3, 4) comprises either a depressed or a pin-shaped mounting (14, 15) for a guide rod end, and that the guide rods (6a, 6b) are inserted into the mountings (14) or placed over the mountings (14) and are welded, screwed, shrunk, glued or calked there.
- Actuator according to claim 12, characterized in that the respective guide rod (6a, 6b) is anchored in a welding region (16) in or on the mounting (14) of the cover (3 or 4) by friction welding, preferably automated friction welding, preferably at the front side and at the outer or inner periphery.
- Actuator according to claim 1, characterized in that at least the guide rods (6a, 6b) preferably consist of a steel of specification 1.4301 or a metal alloy comparable to this specification.
- Actuator according to at least one of the preceding claims, characterized in that the guide rods (6a, 6b) are equally dimensioned, circular cylindrical solid material rods or tubes and that the guides (18a, 18b) are blind holes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL11150392T PL2366908T3 (en) | 2010-03-05 | 2011-01-07 | Actuator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010002621A DE102010002621A1 (en) | 2010-03-05 | 2010-03-05 | actuator |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2366908A2 EP2366908A2 (en) | 2011-09-21 |
EP2366908A3 EP2366908A3 (en) | 2014-11-26 |
EP2366908B1 true EP2366908B1 (en) | 2015-09-23 |
Family
ID=44072570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11150392.6A Active EP2366908B1 (en) | 2010-03-05 | 2011-01-07 | Actuator |
Country Status (8)
Country | Link |
---|---|
US (1) | US8667887B2 (en) |
EP (1) | EP2366908B1 (en) |
CN (1) | CN102192211B (en) |
BR (1) | BRPI1101358A2 (en) |
DE (1) | DE102010002621A1 (en) |
DK (1) | DK2366908T3 (en) |
ES (1) | ES2551393T3 (en) |
PL (1) | PL2366908T3 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011116627B3 (en) * | 2011-10-20 | 2012-10-18 | Gea Tuchenhagen Gmbh | Actuating device for a rotatable closure part of a valve |
DE102014215579B4 (en) * | 2014-08-06 | 2017-12-14 | Suspa Gmbh | Piston-cylinder unit |
US9927041B2 (en) * | 2014-08-29 | 2018-03-27 | A. Raymond Et Cie | Fluid control valve utilizing shape memory alloy driving spring |
US10195418B2 (en) | 2014-10-10 | 2019-02-05 | Nxstage Medical, Inc. | Pinch clamp devices, methods, and systems |
DE102015105489A1 (en) * | 2015-04-10 | 2016-10-13 | Bürkert Werke GmbH | actuator |
US20160340849A1 (en) | 2015-05-18 | 2016-11-24 | M-B-W, Inc. | Vibration isolator for a pneumatic pole or backfill tamper |
DE102015223999A1 (en) | 2015-12-02 | 2017-06-08 | Krones Ag | Parallel kinematic robot for manipulating piece goods with at least one manipulator and at least one actuating device for the at least one manipulator and method for manipulating piece goods by means of at least one parallel kinematic robot |
DE102016203873A1 (en) | 2016-03-09 | 2017-09-14 | Evoguard Gmbh | Rotary drive, disc valve and beverage bottling plant |
DE102016203870A1 (en) | 2016-03-09 | 2017-09-14 | Evoguard Gmbh | Rotary drive and beverage bottling plant |
US10125873B2 (en) * | 2017-02-15 | 2018-11-13 | Ge Aviation Systems Llc | Valve assembly with rotatable element |
CN107676329A (en) * | 2017-09-30 | 2018-02-09 | 重庆维庆液压机械有限公司 | The method of work of rotatable hydraulic cylinder |
CN113124190A (en) * | 2021-04-21 | 2021-07-16 | 四川九天真空科技股份有限公司 | Pneumatic rotary ball valve |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2998805A (en) * | 1958-04-24 | 1961-09-05 | Cons Thermoplastics Company | Remote control valve operator |
US3165982A (en) * | 1961-06-01 | 1965-01-19 | Canadian Res & Dev Foundation | Hydraulic torque actuator |
GB1251805A (en) * | 1967-11-25 | 1971-11-03 | ||
US4504038A (en) * | 1983-04-25 | 1985-03-12 | King Ottis W | Valve actuator |
IT1174589B (en) * | 1984-07-06 | 1987-07-01 | Aurelio Messina | SEMI-ROTARY SINGLE-ACTING PNEUMATIC ACTUATOR, PROVIDED WITH RETURN SPRINGS BOUND BY A SINGLE BASE |
US4970944A (en) * | 1985-02-07 | 1990-11-20 | Conbraco Industries, Inc. | Rotary actuator |
IT1196937B (en) * | 1986-07-08 | 1988-11-25 | Giovanni Trevisan | PRECOMPRESSED SPRING STRUCTURE, PARTICULARLY DESIGNED FOR PNEUMATIC-OPERATED SEMI-ROTATING ACTUATORS, WITH SIMPLE EFFECT |
IT1217711B (en) * | 1988-05-24 | 1990-03-30 | Aurelio Messina | PERFECTED ACTUATOR FOR THE DRIVE, IN OPENING AND IN GENERAL |
DE8904747U1 (en) * | 1989-04-15 | 1989-06-01 | Wexler, Zeev, Hod Hacarmel, Haifa | Pneumatic or hydraulic rotary actuator for a shut-off valve, in particular a ball shut-off valve |
US5170693A (en) | 1991-04-26 | 1992-12-15 | Stary Gary M | Rotary actuator device with a free floating piston |
FR2736972B1 (en) * | 1995-07-17 | 1997-08-29 | Ksb Sa | ACTUATOR OF THE TYPE INCLUDING A JACK |
DE29703710U1 (en) | 1997-02-28 | 1997-06-26 | Wilhelm Guth GmbH & Co KG, 76829 Landau | Rotary drive |
IT1301877B1 (en) * | 1998-07-29 | 2000-07-07 | Giovanni Trevisan | DEVICE FOR ADJUSTING THE CENTRAL POSITION OF THE PISTONS AND THE ANGULAR POSITION OF THE PINION IN A COMMAND ACTUATOR FOR |
DE29814551U1 (en) | 1998-08-13 | 1998-11-12 | APV Rosista GmbH, 59425 Unna | Rotary drive, in particular pneumatic rotary drive |
DE19950582B9 (en) | 1999-10-21 | 2004-09-09 | Tuchenhagen Gmbh | Actuating device for a rotatable closure part of a valve |
DE10315095A1 (en) | 2003-04-02 | 2004-10-14 | Behr Gmbh & Co. Kg | Fastening device for a heat exchanger and heat transfer fastening |
IL155255A (en) | 2003-04-06 | 2006-10-31 | B G Tech Ltd | Rotary valve actuator |
DE10317281B4 (en) * | 2003-04-11 | 2005-04-28 | Schunk Gmbh & Co Kg | Turning or swiveling device and connection module for a turning or swiveling device |
US6793194B1 (en) * | 2003-04-29 | 2004-09-21 | Bg Tech Ltd. | Rotary valve actuator |
CN201047457Y (en) | 2007-05-14 | 2008-04-16 | 孙安远 | Butterfly valve pneumatic power executor |
DE102008044772B3 (en) | 2008-08-28 | 2009-11-05 | Gea Tuchenhagen Gmbh | Rotary-check valve for protecting leakage of fluid in e.g. foodstuff industry, has rotary-shut-off valves controlling inlet opening using closing element e.g. seat disk, and outlet opening using another closing element |
-
2010
- 2010-03-05 DE DE102010002621A patent/DE102010002621A1/en not_active Withdrawn
-
2011
- 2011-01-07 ES ES11150392.6T patent/ES2551393T3/en active Active
- 2011-01-07 DK DK11150392.6T patent/DK2366908T3/en active
- 2011-01-07 PL PL11150392T patent/PL2366908T3/en unknown
- 2011-01-07 EP EP11150392.6A patent/EP2366908B1/en active Active
- 2011-02-25 US US13/034,802 patent/US8667887B2/en active Active
- 2011-03-03 BR BRPI1101358-3A patent/BRPI1101358A2/en not_active IP Right Cessation
- 2011-03-07 CN CN201110056060.1A patent/CN102192211B/en active Active
Also Published As
Publication number | Publication date |
---|---|
ES2551393T3 (en) | 2015-11-18 |
EP2366908A3 (en) | 2014-11-26 |
US8667887B2 (en) | 2014-03-11 |
BRPI1101358A2 (en) | 2012-08-07 |
CN102192211B (en) | 2014-10-08 |
DE102010002621A1 (en) | 2011-09-08 |
EP2366908A2 (en) | 2011-09-21 |
US20110220819A1 (en) | 2011-09-15 |
CN102192211A (en) | 2011-09-21 |
PL2366908T3 (en) | 2016-03-31 |
DK2366908T3 (en) | 2015-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2366908B1 (en) | Actuator | |
EP2780614B1 (en) | Actuating device for a rotatable closure part of a valve | |
DE3717190C2 (en) | ||
EP1741945B1 (en) | Assembled camshaft | |
DE2912033C2 (en) | Non-rotatable press-fit connection of two components arranged one inside the other with a radial gap | |
EP1991792B1 (en) | Torque motor | |
EP3208164A1 (en) | Ball screw | |
EP2110568A2 (en) | Drive rod | |
DE102020129285A1 (en) | Expansion valve | |
DE102020124870A1 (en) | Expansion valve | |
DE102020124871A1 (en) | Expansion valve | |
EP2598774B1 (en) | Torsional vibration damper | |
DE602004001988T2 (en) | ROTARY VALVE ACTUATOR | |
DE10356397B3 (en) | piston compressor | |
DE102016219220B4 (en) | Hydraulic drive | |
EP2581209A1 (en) | Method for operating a pressing piston | |
EP3832228A1 (en) | Expansion valve | |
DE10322501A1 (en) | Rotary piston pump, has a piston whose annular space is positioned with respect to the shaft area of rollers such that the piston rotates continuously along the circumference of the rollers | |
EP3580463B1 (en) | Device having a piston, a cylinder and at least one inner tube and at least one outer tube | |
EP1887229A1 (en) | rotary actuator and the concerning manufacturing method | |
DE102020108863A1 (en) | Pressure piece for a synchronous assembly of a vehicle transmission | |
DE102008049348A1 (en) | Universal joint arrangement for a cardan shaft | |
EP3042104B1 (en) | Continuously variable transmission | |
CH714838A1 (en) | Piston shoe unit for an axial piston machine. | |
DE102005033452A1 (en) | Rotating drive especially for utility vehicles has a rotating spiral piston rod threaded through floating non rotating pistons with pressure seals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F15B 15/06 20060101AFI20141023BHEP |
|
17P | Request for examination filed |
Effective date: 20141107 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150409 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: MANNL, STEPHAN Inventor name: SAUER, MARTIN Inventor name: WIEDENMANN, WILLI |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: CH Ref legal event code: NV Representative=s name: BOVARD AG, CH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 751417 Country of ref document: AT Kind code of ref document: T Effective date: 20151015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502011007914 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2551393 Country of ref document: ES Kind code of ref document: T3 Effective date: 20151118 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20151130 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151223 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151224 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160123 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160125 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160131 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502011007914 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20160624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160107 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 751417 Country of ref document: AT Kind code of ref document: T Effective date: 20160107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110107 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20181212 Year of fee payment: 9 Ref country code: CZ Payment date: 20181219 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20181213 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20190128 Year of fee payment: 18 Ref country code: CH Payment date: 20190115 Year of fee payment: 9 Ref country code: NL Payment date: 20190116 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20190110 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20200114 Year of fee payment: 10 Ref country code: ES Payment date: 20200203 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200107 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20200201 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200107 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200107 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200108 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200131 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200131 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200107 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20220426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210108 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230523 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231205 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20240111 Year of fee payment: 14 |