EP2360835B1 - Conversion basses fréquences au moyen de signaux d'oscillateur local à ondes carrées - Google Patents

Conversion basses fréquences au moyen de signaux d'oscillateur local à ondes carrées Download PDF

Info

Publication number
EP2360835B1
EP2360835B1 EP10154072A EP10154072A EP2360835B1 EP 2360835 B1 EP2360835 B1 EP 2360835B1 EP 10154072 A EP10154072 A EP 10154072A EP 10154072 A EP10154072 A EP 10154072A EP 2360835 B1 EP2360835 B1 EP 2360835B1
Authority
EP
European Patent Office
Prior art keywords
signal
local oscillator
square wave
converted
period time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10154072A
Other languages
German (de)
English (en)
Other versions
EP2360835A1 (fr
Inventor
Stefan Andersson
Fredrik Tillman
Imad Ud Din
Daniel Eckerbert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Priority to EP10154072A priority Critical patent/EP2360835B1/fr
Priority to ES10154072T priority patent/ES2400785T3/es
Priority to US13/576,827 priority patent/US8665000B2/en
Priority to PCT/EP2011/052106 priority patent/WO2011101305A1/fr
Priority to CN201180010131.2A priority patent/CN102754332B/zh
Publication of EP2360835A1 publication Critical patent/EP2360835A1/fr
Application granted granted Critical
Publication of EP2360835B1 publication Critical patent/EP2360835B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/16Multiple-frequency-changing
    • H03D7/165Multiple-frequency-changing at least two frequency changers being located in different paths, e.g. in two paths with carriers in quadrature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/18Modifications of frequency-changers for eliminating image frequencies
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0041Functional aspects of demodulators
    • H03D2200/0086Reduction or prevention of harmonic frequencies

Definitions

  • Embodiments of the invention relates to a method and a mixing circuit for frequency down-converting an input signal having a first frequency to an output signal having a second frequency.
  • the problem of down-converting multiple component carriers can be solved in one of two ways: one direct-conversion receiver per component carrier or a heterodyne receiver with one IF to baseband conversion for each component carrier.
  • a heterodyne receiver with one IF to baseband conversion per component carrier is subject to harmonic down-conversion unless the frequency translation is performed by an analog multiplier and the local oscillator (LO) is a pure sine wave. Since the IF LO most likely is available as a square wave, the odd harmonics will cause harmonic down-conversion.
  • LO local oscillator
  • US 7 509 110 suggests a mixer circuit that includes five component mixers connected in parallel. Each component mixer uses a phase-shifted version of the local oscillator signal for frequency translation to produce a component output signal from the input signal. The component output signals are scaled according to corresponding gain factors and combined to form the output signal.
  • this solution intends to resemble or imitate a sine/cosine waveform as an effective local oscillator signal to reduce the harmonic down-conversion, and to achieve this, a set of five mixers in parallel is required in order to reduce the impact of odd order harmonics within the first decade from the fundamental frequency.
  • the object is achieved in a method of frequency down-converting an input signal having a first frequency to an output signal having a second frequency according to Claim 1. It comprises in particular the steps of generating a first local oscillator signal as a square wave having a period time corresponding to the sum of or the difference between said first and second frequencies and a duty cycle of 1/3 or 2/3, the first local oscillator signal having the same polarity in the fraction of the period time where it is active.
  • the method further comprises the steps of generating a second local oscillator signal as a modified square wave having the same period time as said first local oscillator signal and a duty cycle of 2/3, of which 1/3 of the period time has a positive amplitude and another 1/3 of the period time has a negative amplitude, said first and second local oscillator signals being generated with a phase shift of ⁇ /2 between them, such that said first local oscillator signal has a delay of 1 ⁇ 4 of said period time compared to said second local oscillator signal; mixing the input signal with the first local oscillator signal to achieve a first down-converted signal; mixing the input signal with the second local oscillator signal to achieve a second down-converted signal, multiplying at least one of said down-converted signals by a pre-calculated factor; and adding the two resulting down-converted signals to achieve said output signal.
  • the step of multiplying at least one of said down-converted signals by a pre-calculated factor comprises multiplying the first down-converted signal by a factor of ⁇ 3.
  • the step of multiplying at least one of said down-converted signals by a pre-calculated factor comprises multiplying the second down-converted signal by a factor of 1/ ⁇ 3 .
  • the steps of generating the second local oscillator signal and mixing the input signal with the second local oscillator signal may be performed by generating two separate square wave signals having respectively a first and a second polarity and mixing the input signal with each one of the separate square wave signals.
  • Some embodiments of the invention also relates to a mixing circuit for frequency down-converting an input signal having a first frequency to an output signal having a second frequency according to Claim 5, comprising an oscillator configured to generate a first local oscillator signal as a square wave having a period time corresponding to the sum of or the difference between said first and second frequencies and a duty cycle of 1/3 or 2/3, the first local oscillator signal having the same polarity in the fraction of the period time where it is active; and a first mixer configured to mix the input signal with the first local oscillator signal to achieve a first down-converted signal.
  • the circuit further comprises an oscillator configured to generate a second local oscillator signal as a modified square wave having the same period time as said first local oscillator signal and a duty cycle of 2/3, of which 1/3 of the period time has a positive amplitude and another 1/3 of the period time has a negative amplitude, and the circuit being configured to generate said first and second local oscillator signals with a phase shift of ⁇ /2 between them (103), such that said first local oscillator signal has a delay of 1 ⁇ 4 of said period time compared to said second local oscillator signal; a second mixer configured to mix the input signal with the second local oscillator signal to achieve a second down-converted signal, an amplifier configured to multiply at least one of said down-converted signals by a pre-calculated factor; and an adder configured to add the two resulting down-converted signals to achieve said output signal.
  • an oscillator configured to generate a second local oscillator signal as a modified square wave having the same period time as said first local oscillator signal and a duty
  • Embodiments corresponding to those mentioned above for the method also apply for the mixing circuit.
  • Figure 1 shows the principle of a frequency mixer based on a multiplier circuit 1.
  • Two signals of different or the same frequencies are applied to the multiplier circuit, i.e. an input signal and a local oscillator signal.
  • the mixer presents a mixture of signals having different frequencies, i.e. the sum of the frequencies of the input signal and the local oscillator signal and the difference between the frequencies of the input signal and the local oscillator signal.
  • the input signal could be a received, modulated radio frequency signal or an intermediate frequency signal, which has already been down-converted once.
  • the relevant output signal will be the signal having the difference frequency.
  • the input signal could be a data signal to be modulated on the local oscillator signal to obtain a modulated radio frequency signal. In that case the relevant output signal will be the signal having the sum frequency.
  • the relevant output signal is the one for which the frequency is the difference between the frequencies of the input signal and the local oscillator signal.
  • the desired frequency translation comes from part I of the equation while the unwanted harmonic down-conversion comes from part II.
  • One way to reduce part II can be to adjust the duty cycle of the square wave.
  • the duty cycle of the square wave signal is defined as the fraction of the period time where the signal is active, i.e. different from zero. As shown below, this can cancel or reduce some of the harmonics.
  • Figure 2 illustrates a square wave having a period time T and a duty cycle ⁇ . By changing the duty cycle of the square wave it is possible to cancel e.g.
  • an over-sampled LO signal can be used to accurately generate a waveform with desired duty cycle.
  • the accuracy in duty cycle is expected to be better than using other methods based on matching of components and/or voltage levels. Being able to use switched mixer solutions and integer ratios of components that need to be matched is a great advantage.
  • FIG. 5 One example of such a waveform is illustrated in Figure 5 .
  • This waveform is a modified square wave in which the duty cycle is divided into a first part having a negative amplitude and a second part having a positive amplitude.
  • the duty cycle of this signal is the fraction of time where the signal is active, i.e. different from zero.
  • the total duty cycle is 2/3, which ensures that also in this branch the 3 rd harmonic will be cancelled as described above. It will be shown below that the 5 th and 7 th harmonics of this signal will have opposite phase compared to the corresponding harmonics of the square wave.
  • the mixing products from the two multipliers 4, 5 in an adder 7 as shown in Figure 4 they will counteract each other.
  • L01 is delayed with T /4 compared to the other waveform L02, which means that the mixing product for the square wave at time t should be added to the mixing product for the other waveform at time t + T /4.
  • the L02 signal is delayed 3 T /4 compared to the LO1 signal.
  • the two local oscillator signals L01 and L02 are not necessarily generated by separate oscillators. It is possible to use the same oscillator for generating both L01 and LO2. This can be done e.g. by using an over-sampled LO to generate the waveforms and create the phase shift.
  • Figure 6 illustrates how the signals are combined.
  • the left side of the figure shows the local oscillator signal L02 and the local oscillator signal L01 multiplied by ⁇ .
  • the signal shown at the right side of the figure is these two local oscillator signals added to each other.
  • this signal does not exist as a physical signal, since it is the two down-converted signals that are added, not the two local oscillator signals. Instead, this signal just illustrates that the resulting down-converted signal will be as if it had been down-converted with a local oscillator signal having this shape. It is noted that the generated waveform does not try to imitate the sine/cosine waveforms usually generated by prior art.
  • Another variation is to invert both local oscillator signals, i.e. to multiply them by -1.
  • the square wave LO1 will have negative amplitude and still a duty cycle of 1/3, and for the L02 signal the first part of the duty cycle will be positive and the second part negative.
  • FIG 8 shows a flow chart 100 illustrating the process described above.
  • the first local oscillator signal L01 is delayed by 1/4 of the period time to achieve a phase shift of ⁇ /2 between the two local oscillator signals.
  • the two local oscillator signals may just be generated with the appropriate phase shift.
  • the LO1 signal is then used in step 104 for mixing the input signal in the multiplier 4 to obtain a first down-converted signal.
  • the L02 signal is used in step 105 for mixing the input signal in the multiplier 5 to obtain a second down-converted signal.
  • one of the down-converted signals is then multiplied by a pre-calculated factor, e.g. the gain factor ⁇ described above, to ensure that the 5 th and 7 th harmonics are cancelled.
  • the two down-converted signals are added together to achieve the desired output signal.
  • the generation of the second local oscillator signal L02 and the mixing of this signal with the input signal may be done by generating two separate square waves, i.e. one corresponding to the positive part of the L02 signal and one corresponding to the negative part, and then mixing each one with the input signal separately before adding the mixing results with the mixing result from LO1.
  • Figure 9 which corresponds to Figure 6 , except for the fact that the L02 signal is split up into the two separate square waves.
  • all three square waves have a duty cycle of 1/3.
  • a natural way of doing this using a differential design is to flip the inputs and thereby invert the signal at the input.
  • a corresponding mixing circuit 13 is shown in Figure 10 .
  • the multiplier 4 and the amplifier 6 are the same as in Figure 6 , while the multipliers 8 and 9 are used for mixing the input signal with the two separate square waves replacing the combined L02 signal. The mixing results are added in the adder 10.
  • Third and ninth are suppressed by the chosen duty cycle, while fifth and seventh are suppressed using the method shown in Figure 4 where two mixers are used together with a gain stage where the fundamental content is added in phase and the fifth and seventh order content is cancelled due to the 180 degree phase difference.
  • This idea utilizes a minimum of hardware to suppress all odd harmonics within a decade from the fundamental frequency. In a practical implementation, matching will determine the achievable harmonic rejection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superheterodyne Receivers (AREA)

Claims (8)

  1. Procédé de conversion bases fréquences d'un signal d'entrée ayant une première fréquence en un signal de sortie ayant une seconde fréquence, comprenant les étapes consistant à :
    - générer (101) un premier signal d'oscillateur local comme une onde carrée ayant une période temporelle correspondant à la somme de ou la différence entre lesdites première et seconde fréquences et un cycle de service de 1/3 ou 2/3, le premier signal d'oscillateur local ayant la même polarité dans la fraction de la période temporelle où il est actif ;
    - générer (102) un second signal d'oscillateur local comme une onde carrée modifiée ayant la même période temporelle que ledit premier signal d'oscillateur local et un cycle de service de 2/3, duquel 1/3 de la période temporelle a une amplitude positive et un autre 1/3 de la période temporelle a une amplitude négative, lesdits premier et second signaux d'oscillateur local étant générés avec un déphasage de n/2 entre eux (103), de sorte que ledit premier signal d'oscillateur local ait un retard de ¼ de ladite période temporelle comparé audit second signal d'oscillateur local ;
    - mélanger (104) le signal d'entrée avec le premier signal d'oscillateur local pour obtenir un premier signal converti à la baisse ;
    - mélanger (105) le signal d'entrée avec le second signal d'oscillateur local pour obtenir un second signal converti à la baisse ;
    - multiplier (106) au moins un desdits signaux convertis à la baisse par un facteur pré-calculé ; et
    - additionner (107) les deux signaux convertis à la baisse de résultat pour obtenir ledit signal de sortie.
  2. Procédé selon la revendication 1, caractérisé en ce que l'étape de multiplication d'au moins un desdits signaux convertis à la baisse par un facteur pré-calculé comprend de multiplier le premier signal converti à la baisse par un facteur de √3.
  3. Procédé selon la revendication 1, caractérisé en ce que l'étape de multiplication d'au moins un desdits signaux convertis à la baisse par un facteur précalculé comprend de multiplier le second signal converti à la baisse par un facteur de 1/√3.
  4. Procédé selon une quelconque des revendications 1 à 3, caractérisé en ce que les étapes de génération du second signal d'oscillateur local et de mélange du signal d'entrée avec le second signal d'oscillateur local sont effectuées en générant deux signaux d'onde carrée séparés ayant respectivement une première et une seconde polarité et en mélangeant le signal d'entrée avec chacun des signaux d'onde carrée séparés.
  5. Circuit de mélange pour la conversion basses fréquences d'un signal d'entrée ayant une première fréquence en un signal de sortie ayant une seconde fréquence, comprenant :
    - un oscillateur configuré afin de générer un premier signal d'oscillateur local (LO1) comme une onde carrée ayant une période temporelle correspondant à la somme de ou la différence entre lesdites première et seconde fréquences et un cycle de service de 1/3 ou 2/3, le premier signal d'oscillateur local ayant la même polarité dans la fraction de la période temporelle où il est actif ; et
    - un premier mélangeur (4) configuré afin de mélanger le signal d'entrée avec le premier signal d'oscillateur local pour obtenir un premier signal converti à la baisse,
    caractérisé en ce que le circuit comprend en outre :
    - un oscillateur configuré afin de générer un second signal d'oscillateur local (L02) comme une onde carrée modifiée ayant la même période temporelle que ledit premier signal d'oscillateur local et un cycle de service de 2/3, duquel 1/3 de la période temporelle a une amplitude positive et un autre 1/3 de la période temporelle a une amplitude négative, et le circuit étant configuré afin de générer lesdits premier et second signaux d'oscillateur local avec un déphasage de n/2 entre eux (103), de sorte que ledit premier signal d'oscillateur local a un retard de ¼ de ladite période temporelle comparé au second signal d'oscillateur local ;
    - un second mélangeur (5) configuré afin de mélanger le signal d'entrée avec le second signal d'oscillateur local pour obtenir un second signal converti à la baisse,
    - un amplificateur (6) configuré afin de multiplier au moins un desdits signaux convertis à la baisse par un facteur pré-calculé ; et
    - un sommateur (7) configuré afin d'additionnerles deux signaux convertis à la baisse de résultat pour obtenir ledit signal de sortie.
  6. Circuit selon la revendication 5, caractérisé en ce que ledit amplificateur (6) est configuré afin de multiplier le premier signal converti à la baisse par un facteur de √3.
  7. Circuit selon la revendication 5, caractérisé en ce que ledit amplificateur (6) est configuré afin de multiplier le second signal converti à la baisse par un facteur de 1/√3.
  8. Circuit selon une quelconque des revendications 5 à 7, caractérisé en ce que l'oscillateur pour générer le second signal d'oscillateur local (L02) et le second mélangeur (5 ;8,9) sont configurés afin de générer deux signaux d'onde carrée séparés ayant respectivement une première et une seconde polarité et mélanger le signal d'entrée avec chacun des signaux d'onde carrée séparés.
EP10154072A 2010-02-19 2010-02-19 Conversion basses fréquences au moyen de signaux d'oscillateur local à ondes carrées Not-in-force EP2360835B1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10154072A EP2360835B1 (fr) 2010-02-19 2010-02-19 Conversion basses fréquences au moyen de signaux d'oscillateur local à ondes carrées
ES10154072T ES2400785T3 (es) 2010-02-19 2010-02-19 Conversión por reducción de frecuencia usando señales de oscilador local de onda cuadrada
US13/576,827 US8665000B2 (en) 2010-02-19 2011-02-14 Down-conversion using square wave local oscillator signals
PCT/EP2011/052106 WO2011101305A1 (fr) 2010-02-19 2011-02-14 Abaissement de la fréquence utilisant des signaux d'oscillateur local carrés
CN201180010131.2A CN102754332B (zh) 2010-02-19 2011-02-14 使用方波本地振荡器信号的下变频

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10154072A EP2360835B1 (fr) 2010-02-19 2010-02-19 Conversion basses fréquences au moyen de signaux d'oscillateur local à ondes carrées

Publications (2)

Publication Number Publication Date
EP2360835A1 EP2360835A1 (fr) 2011-08-24
EP2360835B1 true EP2360835B1 (fr) 2012-12-05

Family

ID=42357768

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10154072A Not-in-force EP2360835B1 (fr) 2010-02-19 2010-02-19 Conversion basses fréquences au moyen de signaux d'oscillateur local à ondes carrées

Country Status (5)

Country Link
US (1) US8665000B2 (fr)
EP (1) EP2360835B1 (fr)
CN (1) CN102754332B (fr)
ES (1) ES2400785T3 (fr)
WO (1) WO2011101305A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9197161B2 (en) 2009-09-03 2015-11-24 Qualcomm Incorporated Driving a mixer with a differential lo signal having at least three signal levels
EP2624462B1 (fr) 2012-02-03 2017-07-12 Telefonaktiebolaget LM Ericsson (publ) Circuit de conversion descendante
EP2624463B1 (fr) 2012-02-03 2015-04-15 Telefonaktiebolaget L M Ericsson (PUBL) Circuit de conversion descendante avec détection d'interférence
CN102540170B (zh) * 2012-02-10 2016-02-10 江苏徕兹光电科技股份有限公司 基于双波长激光管相位测量的校准方法及其测距装置
US8624660B2 (en) 2012-04-19 2014-01-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for mixer-based harmonic rejection
CN102751983B (zh) * 2012-07-30 2014-10-22 中国电子科技集团公司第四十一研究所 一种td-lte综测仪的多环合成本振装置
US9203385B2 (en) 2012-12-21 2015-12-01 Qualcomm Incorporated Signal component rejection
WO2014154758A1 (fr) 2013-03-26 2014-10-02 Airbus Operations Gmbh Unité de toilettes
CN105409103A (zh) * 2013-07-03 2016-03-16 微电子中心德累斯顿有限公司 具有可配置的补偿器的dc-dc变换器
US10111280B2 (en) 2013-08-14 2018-10-23 Analog Devices, Inc. Multi-carrier base station receiver
US9232565B2 (en) * 2013-08-14 2016-01-05 Analog Devices, Inc. Multi-carrier base station receiver
CN104052407B (zh) * 2014-05-22 2018-06-22 晨星半导体股份有限公司 一种抑制谐波信号的方法及装置
US10171034B2 (en) * 2016-04-08 2019-01-01 Mediatek Inc. Phase-rotated harmonic-rejection mixer apparatus
US10009050B2 (en) 2016-05-26 2018-06-26 Mediatek Singapore Pte. Ltd. Quadrature transmitter, wireless communication unit, and method for spur suppression
US10419046B2 (en) 2016-05-26 2019-09-17 Mediatek Singapore Pte. Ltd Quadrature transmitter, wireless communication unit, and method for spur suppression
CN109613336B (zh) * 2018-12-07 2020-12-01 中国电子科技集团公司第四十一研究所 一种任意长度fft多模信号频域分析装置及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1487123B1 (fr) * 2002-04-23 2009-06-17 Fujitsu Limited Recepteur a conversion directe
US7509110B2 (en) 2005-03-14 2009-03-24 Broadcom Corporation High-order harmonic rejection mixer using multiple LO phases
EP2179504B1 (fr) * 2007-05-08 2011-02-23 Nxp B.V. Génération de signal d'oscillateur local sans étalonnage pour un mélangeur à rejet d'harmonique
DE602008006393D1 (de) * 2007-05-11 2011-06-01 Nxp Bv Bimodale mischerschaltung und verfahren
CN101842975A (zh) * 2007-10-29 2010-09-22 Nxp股份有限公司 无源谐波抑制混频器
US8278733B2 (en) * 2009-08-25 2012-10-02 Mediatek Inc. Bonding pad structure and integrated circuit chip using such bonding pad structure
US8422975B2 (en) * 2010-06-09 2013-04-16 Qualcomm, Incorporated Harmonic suppression and/or rejection

Also Published As

Publication number Publication date
EP2360835A1 (fr) 2011-08-24
WO2011101305A1 (fr) 2011-08-25
US8665000B2 (en) 2014-03-04
CN102754332A (zh) 2012-10-24
CN102754332B (zh) 2015-07-22
ES2400785T3 (es) 2013-04-12
US20120313672A1 (en) 2012-12-13

Similar Documents

Publication Publication Date Title
EP2360835B1 (fr) Conversion basses fréquences au moyen de signaux d'oscillateur local à ondes carrées
CN107437959B (zh) 正交发射机,无线通信单元以及发射机中处理信号的方法
US7509110B2 (en) High-order harmonic rejection mixer using multiple LO phases
EP1529338B1 (fr) Melangeurs ameliores presentant une pluralite d'oscillateurs locaux et systemes faisant appel a ces derniers
US8938204B2 (en) Signal generator circuit and radio transmission and reception device including the same
EP2372902B1 (fr) Générateur d'horloge RF avec annulation de tonalité de parasites
EP2905894B1 (fr) Circuit de modulation pour un dispositif radio et procédé associé
JP2013507043A (ja) バンドパスデジタル/アナログ変換器のための方法および装置
US20050059376A1 (en) System and method for frequency translation with harmonic suppression using mixer stages
US6766158B1 (en) Harmonic cancellation mixer
US20070268961A1 (en) Multi-band tv tuner and method thereof
US7259716B1 (en) Quadrature mixture LO suppression via DSW DAC noise dither
AU2006317657B2 (en) Method and apparatus for vector signal processing
Moseley et al. A two-stage approach to harmonic rejection mixing using blind interference cancellation
US20100112973A1 (en) Generation of a composite mitigation signalwith a desired spectral energy distrubution
CN216485484U (zh) 一种基于调制器的超宽带低中频上变频系统
US7302011B1 (en) Quadrature frequency doubling system
US8731507B2 (en) Frequency conversion device for wireless systems
US10033348B2 (en) Variable RF filter and wireless apparatus
JP2012165097A (ja) ハーモニックリジェクションミキサ
Guan et al. Estimation and correction of I/Q imbalance in wideband zero-IF receiver
JPH10303650A (ja) 周波数変換器
JP2002171296A (ja) 直交変調装置
US11387878B1 (en) Wireless communication apparatus and wireless communication method
CN211981855U (zh) 短波发射机

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20120222

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 587736

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010003899

Country of ref document: DE

Effective date: 20130124

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2400785

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130412

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 587736

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130305

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121205

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130306

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130405

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130305

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

26N No opposition filed

Effective date: 20130906

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010003899

Country of ref document: DE

Effective date: 20130906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130219

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190227

Year of fee payment: 10

Ref country code: GB

Payment date: 20190227

Year of fee payment: 10

Ref country code: ES

Payment date: 20190301

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010003899

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200901

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200220