EP2360438B1 - Fluid turbulator for geothermal probe - Google Patents

Fluid turbulator for geothermal probe Download PDF

Info

Publication number
EP2360438B1
EP2360438B1 EP11154105.8A EP11154105A EP2360438B1 EP 2360438 B1 EP2360438 B1 EP 2360438B1 EP 11154105 A EP11154105 A EP 11154105A EP 2360438 B1 EP2360438 B1 EP 2360438B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
borehole heat
disc
annular
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11154105.8A
Other languages
German (de)
French (fr)
Other versions
EP2360438A2 (en
EP2360438A3 (en
Inventor
Anton Ledwon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dynamic Blue Holding GmbH
Original Assignee
Dynamic Blue Holding GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynamic Blue Holding GmbH filed Critical Dynamic Blue Holding GmbH
Priority to PL11154105T priority Critical patent/PL2360438T3/en
Priority to SI201130738T priority patent/SI2360438T1/en
Publication of EP2360438A2 publication Critical patent/EP2360438A2/en
Publication of EP2360438A3 publication Critical patent/EP2360438A3/en
Application granted granted Critical
Publication of EP2360438B1 publication Critical patent/EP2360438B1/en
Priority to HRP20160160TT priority patent/HRP20160160T1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the invention relates to a Erdsondenfluidturbolator for a coaxial earth probe according to the preamble of claim 1, which is provided for the exchange of heat between a heat transfer fluid and the ground surrounding the earth probe in which the geothermal probe is arranged in the operating state.
  • Ground probes can be coaxial or U-shaped.
  • U-shaped geothermal probes have an inflow pipe which leads down into the ground and is connected in a fluid-conducting manner to an outflow pipe at a lower end in a connection region.
  • the heat transfer fluid thus flows down the inflow pipe, merges into the discharge area in the connection area and flows up again in this area.
  • the inflow pipe is an outer pipe and the exhaust pipe is an inner pipe arranged inside the outer pipe. Outside the inner tube and inside the outer tube is a ring portion forming a heat transfer area.
  • the arrangement of the outer tube to the inner tube is coaxial.
  • the connection region is formed in the case of a coaxial ground probe through an opening of the inner tube, so that heat transfer fluid located in the outer tube or in the annular region can flow here into the inner tube.
  • Such a system is in DE 20 2008 002 048 described.
  • geothermal probe When passing through the geothermal probe, heat transfer between the heat transfer fluid and the soil takes place.
  • the heat transfer is essentially by convection. Whether heat is emitted or absorbed depends on whether the ground probe is used for a cooling process or a heat process.
  • geological probes are arranged up to 100 m deep in the ground, in individual cases, larger depths are realized.
  • ground probes are shared in a geothermal heat loop.
  • Such a Erdsondenzieniklauf usually has a Pump and a heat exchanger.
  • heat transfer fluid is circulated within the ground probe heat circuit.
  • the ground probes can be connected in parallel or in series or in combinations thereof.
  • the obtained temperature difference between the inlet and the derived heat transfer fluid is transferred to a second fluid circuit.
  • the temperature difference between the heat transfer fluid introduced and discharged into the geothermal probe is referred to below as the temperature gradient.
  • the soil is taken from a heat flow or a heat output.
  • the temperature difference between the heat transfer fluid introduced and the heat transfer fluid removed is typically a few degrees. Typical values are between -2 ° C and 1 ° C and conductance values between 2 ° C and 5 ° C.
  • the temperature difference is relatively low and the heat transfer fluid exiting the geothermal probes is not yet ready to heat e.g. Residential spaces suitable.
  • the heat output can be made available with the help of a heat pump.
  • ground probes are used in a geothermal probe circuit, since the usable temperature difference of a geothermal probe is usually not sufficient to evaporate a heat medium in a second fluid circuit in the heat pump. Especially for ground probes with a length of less than 70 m, the achievable temperature gradient is often insufficient. Furthermore, in some regions, the permitted depth is limited, for example, to protect the groundwater.
  • the heat transfer can be improved by placing the heat transfer fluid in a helical rotational movement as it flows through the geothermal probe.
  • helical flow bodies may be provided within the ground probe, which redirects the otherwise laminar incoming heat transfer fluid in a spiral direction.
  • this measure already leads to an improvement of the heat transfer, however, especially with geothermal probes of less than 100 m, but also in regions where the usable geothermal energy is rather low, the heat yield is still insufficient.
  • Out JP 2004/3401463 is a geothermal fluid turbulator according to the preamble of claim 1.
  • the object is achieved by a Erdsondenfluidturbulator for a coaxial ground probe with the features of claim 1.
  • a geothermal fluid turbulator constructed in accordance with the present invention is disposed within a coaxial ground probe in an interior region of an outer tube and is characterized by at least one split ring disc lying in a plane disposed at an angle to an orthogonal plane of a longitudinal axis of the ground probe having a center approximately at the longitudinal axis lies, an inner edge, which serves for fastening the partial annular disc to an inner tube and an outer diameter which is smaller than an inner diameter of the outer tube of the ground probe.
  • the center point and the outer diameter of the partial annular disk are defined as the center point and outer diameter of a closed annular disk, from which the partial annular disk would be produced by cutting out a sector.
  • the necessary length of geothermal probe required for the geothermal probe to achieve sufficiently high efficiency can be reduced, and the geothermal probe can also be used in regions where the depth of drilling is geologically or legally limited.
  • the efficiency is due to turbulence of the offside of Erdsondenfluidturbolators achieved approximately laminar flowing heat transfer fluid.
  • the heat transfer fluid water is usually used. Since temperatures can also occur below zero in the cold winter months, frost protection is usually added. Conditionally u.a. Due to the anomaly of the water, its material properties change with temperature. For example, e.g. the density of water is highest at 4 ° C above zero. The change in the material properties of the water leads in geothermal probes, in which no Erdsondenfluidturbolator is arranged, that forms an approximately laminar flow with unequal tempered layers. The unevenly tempered layers are parallel to an outer tube outer surface, wherein in the vicinity of the outer tube inner surface warmer layers are present, which act as insulators of the inner layers. These inner layers therefore absorb little heat. By swirling the heat transfer fluid, this layer formation is canceled, thereby achieving a higher Temparaturgradient.
  • the increased by the turbulent flow flow resistance is not serious. For example, to penetrate three consecutive probes with 10 to 14 cubic meters of water per hour, a pressure difference of 0.1 bar to 0.3 bar, so that a pump only needs to absorb 100 W to 300 W of power to provide the pressure difference ,
  • a partial ring disc provides for different flow directions and thereby causing swirling of the heat transfer fluid.
  • the heat transfer fluid flows almost laminar through the outer tube.
  • the heat transfer fluid undergoes a change in direction due to the inclination of the partial annular disc with respect to the orthogonal plane and then flows obliquely through the outer tube along the partial annular disc.
  • the fluid flow is divided into two partial streams: the already described, oblique and an axial between a Outer tube inner surface and the partial annular disc. The division causes additional swirling of the heat transfer fluid.
  • At least two partial ring disks are arranged adjacent to one another along the longitudinal axis and have angle values with different signs with respect to the orthogonal plane.
  • Such an arrangement resembles a helix when the angular values have approximately equal magnitudes and the partial annular discs are arranged substantially diametrically opposite one another but offset from one another along the longitudinal axis. This geometry promotes the rotary flow.
  • the partial ring discs may have one or more recesses through which a further partial flow is achieved. This splits off from the obliquely rotational flow and flows through the recesses, ie approximately parallel to the longitudinal axis, through.
  • the shape of the recesses is essentially arbitrary. However, round, elliptical, kidney-shaped or ring-sectoral recesses are suitable.
  • two adjacent partial annular disks jointly surround the inner pipe by less than 360 ° and three adjacent partial annular disks jointly enclose the inner pipe by more than 360 °.
  • an additional flow direction is to be achieved: the rotational flow direction is thereby to be additionally divided and, on the one hand, to remain rotational, and, on the other hand, to extend axially between the partial ring disks.
  • An additional mixing is achieved.
  • At least three partial annular disks arranged along the longitudinal axis form a partial disk turbulator.
  • this has at least five partial annular discs.
  • at least three partial annular discs have a central angle of about 180 ° and thus prove to be half annular discs.
  • the remaining partial annular discs advantageously have a center angle of about 160 ° to 170 °. They can therefore be made of the partial annular discs with a center angle of about 180 °, characterized in that annular disc sectors of about 10 ° to 30 ° are removed at one of its ends of these part ring discs.
  • a method for producing a partial annular disk is characterized in that a plate, preferably made of thermoplastic material, which has a round hole in the center, is separated approximately into two equal halves, and from which halves optionally ring sectors are cut off at the end.
  • At least two partial disc turbulators are used, the respective uppermost annular discs are arranged in planes having approximately the same angle values with respect to the orthogonal plane, but with different signs. This ensures that the rotational flow is at least once clockwise and at least once counterclockwise.
  • the earth probe turbulizer additionally includes at least one annular disc having an annular disc surface which preferably extends parallel to the orthogonal plane and has at least one opening in the annular disc surface.
  • the annular disc is attached to the inner tube and surrounds this, whereby an annular surface between the inner tube and the outer tube is largely closed except for the openings of the annular disc.
  • the annular disc thus has a center which lies approximately on the longitudinal axis, an inner diameter which is equal to an outer diameter of the inner tube and an outer diameter which is less than or equal to the inner diameter of the outer tube.
  • this washer its outer diameter and the inner diameter of the outer tube are the same and supports this.
  • the annular disc thus increases the stability of the geothermal probe and limits the axial flow along the outer tube.
  • the shape and number of openings is essentially freely selectable. However, there are three or four round or kidney-shaped openings.
  • annular disc pair Preferably, two annular discs, which have a distance a along the longitudinal axis and whose openings are rotated around an annular disc angle about the longitudinal axis to each other, form an annular disc pair.
  • This annular disc angle should advantageously be chosen so that in a plan view, the openings of the lower annular disc of the annular disc surface of the upper annular disc are at least partially obscured.
  • Such an arrangement causes the heat transfer fluid does not have to flow purely translational Flußrichtugn between the two annular discs, but also rotationally. This additionally promotes the mixing process.
  • a ground probe on length sections of about 20m to about 25m at least ten Operationurburbolatoren and at least two annular disc pairs, arranged so that above, between and below the pairs of annular disc Operaidenturbolatoren are provided.
  • a common swirling and mixing of the heat transfer fluid is achieved on these lengths.
  • the swirling is achieved primarily by the Colournturbolatoren, in which the heat transfer fluid is divided several times in the three partial streams described above and then mixed again. These processes mainly cause swirling of the heat transfer fluid, which in addition is amplified by rotational direction changes of two along the longitudinal axis adjacent to each other arranged part ring discs. This turbulence process is supported by mixing processes of several pairs of annular disks.
  • FIG. 1 shows a schematic representation of a ground probe 20.
  • heat transfer fluid is passed into an outer tube 32.
  • the outer tube 32 is a cylindrical member having the inner diameter there as measured on an outer tube inner surface 60. Externally, the outer tube 32 has an outer tube outer surface 62 facing the soil 54.
  • an inner tube 30 is disposed within the same. It is substantially cylindrical and has an inner tube inner surface 56 on its inwardly facing surface and an inner tube outer surface 58 on its outwardly facing surface.
  • the heat transfer fluid flows within an annular space 64 between inner tube 30 and outer tube 32, the ground probe 20 down.
  • the annulus 64 is bounded horizontally by the outer tube inner surface 60 and the inner tube outer surface 58 and vertically by a connecting portion 68 and the upper end 72 of the ground probe 20. In the region of the upper end 72, an inlet 22 flows into the annular space 64 in a fluid-conducting manner, in the connection region 68 the annular space 64 passes in a fluid-conducting manner into an inner tube interior 66.
  • the inner tube interior 66 is bounded horizontally by the inner tube inner surface 56 and vertically by the connecting region 68 and the drain 40, into which the inner tube space 66 discharges in a fluid-conducting manner.
  • connection cover 24 is arranged on the outer tube 32.
  • the inlet 22 is fluid-conductively connected to the annular space 64 and the outlet 40 is fluid-conductively connected to the inner tube interior 66.
  • the connection ceiling 24 forms the interface between the part of the ground probe 20, which is located in the ground 54 and the part that is accessible from the outside.
  • both the inlet 22 and the outlet 40 have means for fastening lines.
  • the connection cover 23 shown has a heating coil 34, which is formed from an electrical conductor. Via connection contacts 28, a current can be passed through the heating coil 34 in order to heat the heating coil 34, whereby the connection cover 24 can be welded to the outer tube 32.
  • the geothermal probe 20 has a length L which varies according to the desired depth, for example between 15m and 25m.
  • the heat transfer fluid absorbs a heat output from the soil 54 during the passage of the annular space 64.
  • the outer tube 32 is advantageously made of a material which has a relatively high heat transfer coefficient. For example, high-density polyethylene, PE-HD for short, can be used.
  • PE-HD high-density polyethylene
  • a probe foot 46 is arranged, which tapers conically. This probe foot 46 facilitates penetration of the ground probe 20 into a bore.
  • the probe foot 46 may be connected to the outer tube 32 by a thermal welding process, such as butt dies.
  • the outer tube 32 usually has a wall thickness wa between 2.5 mm and 5 mm. Preferably, it has a wall thickness wa of 3.2 mm to 3.8 mm.
  • the inner diameter of the outer tube 32 is preferably 100 mm to 180 mm.
  • the inner diameter di of the inner tube 30 is advantageously between 20 mm and 50 mm.
  • the ratio of the diameter di of the inner tube 30 to the diameter da of the outer tube 32 is thus in a range between 0.2 and 0.7, advantageously in a range between 0.25 and 0.35. This ensures that the annular space 64 has a relatively large area and the heat transfer fluid moves therein as slowly as possible. At the same time, it is still ensured that the diameter di of the inner tube 30 is not too small and that no excessively large tube resistance is formed here.
  • the geothermal probe 20 advantageously has a vent 70.
  • This comprises a vent opening 42, a vent line 36 and a vent valve 38.
  • the vent opening 42 is advantageously arranged at a location of the connection cover 24 located as high as possible.
  • the vent line 36 is connected to the vent opening 42.
  • a vent valve 38 is arranged, for example, a ball valve.
  • the heat transfer fluid is pressurized and the vent valve 38 is opened.
  • FIG. 2 shows in plan view a schematic representation of three ground probes 20a
  • FIG. 3 shows an arrangement of three ground probes 20a, 20b, 20c in series in a side view.
  • the representation is less schematic, in particular, the lines 52 are clearly recognizable as such.
  • FIG. 4 shows exemplary partial ring discs 76a-76e. These enclose in the inserted state, the inner tube 30 having an outer diameter d1, a center mt and an inner edge 78.
  • the partial annular discs 76 can be connected in any manner with the inner tube 30, for example, welded or glued.
  • the components of the Erdsondenfluidturbulators can be made of the same material, preferably made of thermoplastic Kuststoff, such as the inner tube 30 accordingly be, whereby a slight connection between the annular discs 76 and / or the annular discs 80 is ensured with the inner tube 30.
  • the outer diameter d1 of the partial annular disc 76 is selected to be slightly smaller than the inner diameter of the outer tube 32. On the one hand this simplifies insertion of the inner tube 30 together with fixed partial annular discs 76 into the outer tube 32, on the other hand the partial annular discs 76 thereby act as spacers between the outer tube 32 and the inner tube 30, or support the two against each other.
  • FIG. 5 shows a schematic representation of Operationnturbolators 84 in the mounted state.
  • this consists of five partial annular discs 76a-76e, whose outer diameter d1 are smaller than the inner diameter of the outer tube 32.
  • the partial annular discs 76a, 76d and 76e are preferably partial annular discs with a center angle of about 180 °, thus forming approximately half annular discs.
  • the partial annular discs 76b and 76c are partial annular discs of less than 180 °. Such is preferably made of a half-ring disc, the end of a ring disk sector is removed.
  • the partial annular discs 76a, 76c and 76e are preferably arranged one above the other in the operating state such that, in a plan view, the partial annular discs 76c and 76e are covered by the partial annular disc 76a. Further, the partial annular discs 76a, 76c and 76e lie in planes which have similar angles with respect to an orthogonal plane to the longitudinal axis 44. Partial ring disks 76b and 76d are arranged in a similar manner to one another and lie opposite the partial annular disks 76a, 76c and 76e with respect to the longitudinal axis.
  • the planes in which the partial ring discs 76b and 76d lie have a similar angle value with respect to the orthogonal plane, but with a different sign than the planes of the partial ring discs 76a, 76c and 76e. So you are inclined in the opposite direction, so to speak. An angle value of approximately 5 ° to 15 ° proves advantageous.
  • the geometry of such a partial disc turbulator 84 is similar to a helix with recesses 88 (between partial annular discs 76b-76c and 76c-76d). As a result, the heat transfer fluid undergoes three flow directions when passing through this Sectionstubenturbolators 84. These flow directions and partial flows are through the Arrows in FIG. 5 indicated.
  • a part of the heat transfer fluid passes through the sectionusionnturbulator 84 in the vertical direction between the outer tube inner surface 60 and the Generalusionnturbulator 84.
  • a second part is detected by partial ring disc 76a of Operausionnturbulators 84 and thereby experiences an oblique, rotational direction.
  • This is additionally split between partial annular discs 76b-76c and 76c-76d into two sub-flows.
  • One part crosses the recesses resulting from the fact that two adjacent partial annular discs 76b-76c, 76c-76d can not be assembled into complete annular discs, but together have a center angle of less than 360 ° and maintain its rotational movement.
  • the remainder flows vertically through the recesses 88, creating additional turbulence.
  • FIG. 6 shows the schematic representation of an annular disc 80, with an outer diameter d5, an inner diameter d3, a center mr and three openings 82, wherein only one opening may be sufficient.
  • the inner diameter d3 of the annular disc 80 is adapted to the outer diameter of the inner tube 30.
  • the annular disc 80 similar to the above-described partial ring disc 76, can be fastened to the inner tube 30. However, this attachment preferably takes place in an orthogonal plane of the longitudinal axis 44.
  • the outer diameter d5 of the annular disc 80 is preferably matched to the inner diameter da of the outer tube 32.
  • the annular disc 80 thereby acts as a spacer between the outer tube 32 and the inner tube 30 and on the other hand, the vertical flow of the heat transfer fluid, in particular in the vicinity of the outer tube inner surface 60, thereby interrupted.
  • the heat transfer fluid flows through the three orifice 82, thereby mixing the heat transfer fluid.
  • FIG. 7 shows a schematic representation of an advantageous combination of two about the longitudinal axis 44 to each other rotated annular discs 80a and 80b, which are mutually, with a distance a in the direction of the longitudinal axis 44, respectively.
  • Such an arrangement forms an annular disk pair 86.
  • the present invention is not limited to the embodiment described above.
  • the fastening of the annular disks 80 and / or the partial annular disks 76 can alternatively or additionally also take place on the outer pipe inner surface 60 of the outer pipe 32.
  • the Operaringin 76 and / or the annular discs 80 then complete or partial distances from the inner tube 30 so that between them heat transfer fluid can flow in the axial direction.
  • a helix which preferably has holes. The holes then generate the splitting of the rotary flow into a rotational and a vertical portion.
  • stoppers 84 may be mounted on the part-disk turbulators. These generate additional turbulences of the oblique-rotational flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

Die Erfindung betrifft einen Erdsondenfluidturbolator für eine koaxiale Erdsonde gemäß dem Oberbegriff des Anspruchs 1, welche zum Austausch von Wärme zwischen einem Wärmeübertragungsfluids und dem die Erdsonde umgebenen Erdreich, in welchem die Erdsonde im Betriebszustand angeordnet ist, vorgesehen ist.The invention relates to a Erdsondenfluidturbolator for a coaxial earth probe according to the preamble of claim 1, which is provided for the exchange of heat between a heat transfer fluid and the ground surrounding the earth probe in which the geothermal probe is arranged in the operating state.

Erdsonden können koaxial oder U-förmig aufgebaut sein. U-förmige Erdsonden weisen ein Einströmrohr auf, das in das Erdreich hinabführt und an einem unteren Ende in einem Verbindungsbereich fluidleitend mit einem Ausströmrohr verbunden ist. Das Wärmeübertragungsfluid strömt also das Einströmrohr hinab, geht in dem Verbindungsbereich in das Ausströmrohr über und strömt in diesem wieder hinauf. In koaxialen Erdsonden ist das Einströmrohr ein Außenrohr und das Ausströmrohr ein innerhalb des Außenrohres angeordnetes Innenrohr. Außerhalb des Innenrohres und innerhalb des Außenrohres ist ein Ringbereich, der einen Wärmeübertragungsbereich ausbildet. Die Anordnung des Außenrohres zum Innenrohr ist dabei koaxial. Der Verbindungsbereich ist bei einer koaxialen Erdsonde durch eine Öffnung des Innenrohres gebildet, so dass in dem Außenrohr bzw. im Ringbereich befindliches Wärmeübertragungsfluid hier in das Innenrohr fließen kann. Ein solches System ist in DE 20 2008 002 048 beschrieben.Ground probes can be coaxial or U-shaped. U-shaped geothermal probes have an inflow pipe which leads down into the ground and is connected in a fluid-conducting manner to an outflow pipe at a lower end in a connection region. The heat transfer fluid thus flows down the inflow pipe, merges into the discharge area in the connection area and flows up again in this area. In coaxial ground probes, the inflow pipe is an outer pipe and the exhaust pipe is an inner pipe arranged inside the outer pipe. Outside the inner tube and inside the outer tube is a ring portion forming a heat transfer area. The arrangement of the outer tube to the inner tube is coaxial. The connection region is formed in the case of a coaxial ground probe through an opening of the inner tube, so that heat transfer fluid located in the outer tube or in the annular region can flow here into the inner tube. Such a system is in DE 20 2008 002 048 described.

Beim Durchlaufen der Erdsonde findet eine Wärmeübertragung zwischen dem Wärmeübertragungsfluid und dem Erdreich statt. Die Wärmeübertragung erfolgt im Wesentlichen durch Konvektion. Ob Wärme abgegeben oder aufgenommen wird hängt davon ab, ob die Erdsonde für einen Kälteprozess oder einem Wärmeprozess verwendet wird. Dazu werden gattungsgemäße Erdsonden bis zu 100 m tief im Erdreich angeordnet, in Einzelfällen werden auch größere Tiefen realisiert.When passing through the geothermal probe, heat transfer between the heat transfer fluid and the soil takes place. The heat transfer is essentially by convection. Whether heat is emitted or absorbed depends on whether the ground probe is used for a cooling process or a heat process. For this purpose, geological probes are arranged up to 100 m deep in the ground, in individual cases, larger depths are realized.

Üblicherweise werden mehrere Erdsonden in einem Erdsondenwärmekreislauf gemeinsam verwendet. Ein solcher Erdsondenwärmekreislauf weist meist eine Pumpe und einen Wärmetauscher auf. Mittels der Pumpe wird Wärmeübertragungsfluid zur Zirkulation innerhalb des Erdsondenwärmekreislaufes gebracht. Die Erdsonden können dabei parallel oder in Reihe oder in Kombinationen daraus geschaltet sein. Im Wärmetauscher wird die gewonnene Temperaturdifferenz zwischen dem zu- und dem abgeleiteten Wärmeübertragungsfluid an einen zweiten Fluidkreislauf übertragen.Typically, multiple ground probes are shared in a geothermal heat loop. Such a Erdsondenwärmekreislauf usually has a Pump and a heat exchanger. By means of the pump, heat transfer fluid is circulated within the ground probe heat circuit. The ground probes can be connected in parallel or in series or in combinations thereof. In the heat exchanger, the obtained temperature difference between the inlet and the derived heat transfer fluid is transferred to a second fluid circuit.

Der Temperaturunterschied zwischen dem in die Erdsonde eingeleiteten und abgeleiteten Wärmeübertragungsfluid wird im Folgenden als Temperaturgradient bezeichnet. Dem Erdreich wird ein Wärmestrom oder eine Wärmeleistung entnommen.The temperature difference between the heat transfer fluid introduced and discharged into the geothermal probe is referred to below as the temperature gradient. The soil is taken from a heat flow or a heat output.

Bei Erdsonden von weniger als 100 m Länge bzw. Tiefe beträgt der Temperaturunterschied zwischen dem eingeleiteten Wärmeübertragungsfluid und dem abgeleiteten Wärmeübertragungsfluid in der Regel wenige Grad. Üblich sind Einleitwerte zwischen -2 °C und 1 °C und Ausleitwerte zwischen 2 °C und 5 °C. Die Temperaturdifferenz ist verhältnismäßig gering und das aus den Erdsonden austretende Wärmeübertragungsfluid noch nicht zum Heizen von z.B. Wohnräumen geeignet. Die Wärmeleistung kann jedoch mit Hilfen einer Wärmepumpe nutzbar gemacht werden.For geothermal probes less than 100 meters in length or depth, the temperature difference between the heat transfer fluid introduced and the heat transfer fluid removed is typically a few degrees. Typical values are between -2 ° C and 1 ° C and conductance values between 2 ° C and 5 ° C. The temperature difference is relatively low and the heat transfer fluid exiting the geothermal probes is not yet ready to heat e.g. Residential spaces suitable. However, the heat output can be made available with the help of a heat pump.

Üblicherweise kommen in einem Erdsondenwärmekreislauf mehrere Erdsonden zum Einsatz, da der nutzbare Temperaturunterschied einer Erdsonde in der Regel nicht ausreicht, um ein Wärmemittel in einem zweiten Fluidkreislauf in der Wärmepume zu verdampfen. Insbesondere bei Erdsonden mit einer Länge von unter 70 m ist der erzielbare Temperaturgradient häufig unzureichend. Weiterhin ist in einigen Regionen die zulässige Bohrtiefe begrenzt, um beispielsweise das Grundwasser zu schützen.Usually, a plurality of ground probes are used in a geothermal probe circuit, since the usable temperature difference of a geothermal probe is usually not sufficient to evaporate a heat medium in a second fluid circuit in the heat pump. Especially for ground probes with a length of less than 70 m, the achievable temperature gradient is often insufficient. Furthermore, in some regions, the permitted depth is limited, for example, to protect the groundwater.

Beispielsweise ist aus der DE 30 00 157 A1 , der DE 20 2008 002 048 , der EP 2 151 643 A2 aus der JP 2004/340/463 bekannt, dass die Wärmeübertragung verbessert werden kann, indem das Wärmeübertragungsfluid beim Durchströmen der Erdsonde in eine schraubenförmige Drehbewegung versetzt wird. Hierzu können helixförmige Strömungskörper innerhalb der Erdsonde vorgesehen sein, die das ansonsten laminar einströmende Wärmeübertragungsfluid in spiralförmiger Richtung umleiten. Grundsätzlich führt diese Maßnahme bereits zu einer Verbesserung der Wärmeübertragung, allerdings ist gerade bei Erdsonden von weniger als 100 m, aber auch in Regionen, in denen die nutzbare Erdwärme eher gering ist, die Wärmeausbeute noch unzureichend.For example, is from the DE 30 00 157 A1 , of the DE 20 2008 002 048 , of the EP 2 151 643 A2 from the JP 2004/340/463 It is known that the heat transfer can be improved by placing the heat transfer fluid in a helical rotational movement as it flows through the geothermal probe. For this purpose, helical flow bodies may be provided within the ground probe, which redirects the otherwise laminar incoming heat transfer fluid in a spiral direction. Basically, this measure already leads to an improvement of the heat transfer, however, especially with geothermal probes of less than 100 m, but also in regions where the usable geothermal energy is rather low, the heat yield is still insufficient.

Aus JP 2004/3401463 ist einen Erdsondenfluidturbulator gemäß dem Oberbegriff des Anspruchs 1.Out JP 2004/3401463 is a geothermal fluid turbulator according to the preamble of claim 1.

Hier setzt nun die Erfindung ein. Sie hat es sich zur Aufgabe gemacht, den Wirkungsgrad von koaxialen Erdsonden und somit die Effizienz von koaxialen Erdsondenwärmekreisläufen zu verbessern. Weiterhin soll die Erfindung den effektiven Gebrauch von Erdsonden in Regionen ermöglichen, in denen Gesetze die zulässige Bohrtiefe begrenzen.This is where the invention begins. It has set itself the task to improve the efficiency of coaxial ground probes and thus the efficiency of coaxial Erdsondenwärmekreisläufen. Furthermore, the invention is to enable the effective use of geothermal probes in regions where laws limit the allowable drilling depth.

Erfindungsgemäß wird die Aufgabe durch einen Erdsondenfluidturbulator für eine koaxiale Erdsonde mit den Merkmalen des Anspruchs 1 gelöst.According to the invention the object is achieved by a Erdsondenfluidturbulator for a coaxial ground probe with the features of claim 1.

Ein erfindungsgemäß ausgestalteter Erdsondenfluidturbolator ist in einer koaxialen Erdsonde in einem Innenbereich eines Außenrohrs angeordnet und ist gekennzeichnet durch mindestens eine Teilringscheibe, die in einer Ebene liegt, die in einem Winkel zu einer Orthogonalebene einer Längsachse der Erdsonde angeordnet ist, aufweisend einen Mittelpunkt, der etwa auf der Längsachse liegt, einen Innenrand, der zur Befestigung der Teilringscheibe an einem Innenrohr dient und einen Außendurchmesser, der kleiner gleich einem Innendurchmesser des Außenrohrs der Erdsonde ist. Der Mittelpunkt und der Außendurchmesser der Teilringscheibe sind definiert als Mittelpunkt und Außendurchmesser einer geschlossenen Ringscheibe, aus welcher die Teilringscheibe durch Ausschneiden eines Sektors entstehen würde.A geothermal fluid turbulator constructed in accordance with the present invention is disposed within a coaxial ground probe in an interior region of an outer tube and is characterized by at least one split ring disc lying in a plane disposed at an angle to an orthogonal plane of a longitudinal axis of the ground probe having a center approximately at the longitudinal axis lies, an inner edge, which serves for fastening the partial annular disc to an inner tube and an outer diameter which is smaller than an inner diameter of the outer tube of the ground probe. The center point and the outer diameter of the partial annular disk are defined as the center point and outer diameter of a closed annular disk, from which the partial annular disk would be produced by cutting out a sector.

Durch das Vorsehen eines Erdsondenfluidturbolators kann die notwendige Länge einer Erdsonde, die erforderlich ist, damit die Erdsonde einen ausreichend großen Wirkungsgrad erreicht, reduziert werden und die Erdsonde kann auch in Regionen eingesetzt werden, in denen die Bohrtiefe geologisch oder gesetzlich begrenzt ist. Der Wirkungsgrad wird durch Verwirbelung des abseits des Erdsondenfluidturbolators annähernd laminar strömenden Wärmeübertragungsfluids erreicht.By providing a geothermal fluid turbulator, the necessary length of geothermal probe required for the geothermal probe to achieve sufficiently high efficiency can be reduced, and the geothermal probe can also be used in regions where the depth of drilling is geologically or legally limited. The efficiency is due to turbulence of the offside of Erdsondenfluidturbolators achieved approximately laminar flowing heat transfer fluid.

Als Wärmeübertragungsfluid wird üblicherweise Wasser verwendet. Da insbesondere in den kalten Wintermonaten auch Temperaturen unterhalb des Nullpunktes auftreten können, wird üblicherweise ein Frostschutz zugesetzt. Bedingt u.a. durch die Anomalie des Wassers ändern sich seine Stoffeigenschaften mit der Temperatur. So ist z.B. die Dichte von Wasser bei 4°C über Null am höchsten. Die Änderung der Stoffeigenschaften des Wassers führt in Erdsonden, in denen kein Erdsondenfluidturbolator angeordnet ist, dazu, dass sich eine annähernd laminare Strömung mit ungleich temperierten Schichten ausbildet. Die ungleich temperierten Schichten verlaufen parallel zu einer Außenrohraußenfläche, wobei in der Nähe der Außenrohrinnenfläche wärmere Schichten vorliegen, welche als Isolatoren der inneren Schichten wirken. Diese inneren Schichten nehmen daher kaum Wärme auf. Durch das Verwirbeln des Wärmeübertragungsfluids wird diese Schichtenbildung aufgehoben und dadurch ein höherer Temparaturgradient erzielt.As the heat transfer fluid, water is usually used. Since temperatures can also occur below zero in the cold winter months, frost protection is usually added. Conditionally u.a. Due to the anomaly of the water, its material properties change with temperature. For example, e.g. the density of water is highest at 4 ° C above zero. The change in the material properties of the water leads in geothermal probes, in which no Erdsondenfluidturbolator is arranged, that forms an approximately laminar flow with unequal tempered layers. The unevenly tempered layers are parallel to an outer tube outer surface, wherein in the vicinity of the outer tube inner surface warmer layers are present, which act as insulators of the inner layers. These inner layers therefore absorb little heat. By swirling the heat transfer fluid, this layer formation is canceled, thereby achieving a higher Temparaturgradient.

Der durch die turbulente Strömung erhöhte Flußwiderstand ist nicht gravierend. Um beispielsweise drei hintereinander geschaltete Erdsonden mit 10 bis 14 Kubikmeter Wasser die Stunde zu durchfluten, reicht ein Druckunterschied von 0,1 bar bis 0,3 bar, so dass eine Pumpe lediglich 100 W bis 300 W an Leistung aufnehmen muss, um den Druckunterschied bereitzustellen.The increased by the turbulent flow flow resistance is not serious. For example, to penetrate three consecutive probes with 10 to 14 cubic meters of water per hour, a pressure difference of 0.1 bar to 0.3 bar, so that a pump only needs to absorb 100 W to 300 W of power to provide the pressure difference ,

Eine Teilringscheibe sorgt für unterschiedliche Strömungsrichtungen und ein dadurch verursachtes Verwirbeln des Wärmeübertragungsfluids. Oberhalb des Erdsondenfluidturbolators strömt das Wärmeübertragungsfluid nahezu laminar durch das Außenrohr. Beim Auftreffen auf eine Teilringscheibe erfährt das Wärmeübertragungsfluid, durch die Neigung der Teilringscheibe bezüglich der Orthogonalebene, eine Richtungsänderung und strömt alsdann entlang der Teilringscheibe schräg rotatorisch durch das Außenrohr. Falls der Außendurchmesser der Teilringscheibe kleiner als der Innendurchmesser des Außenrohrs ist, wird der Fluidstrom in zwei Teilströme aufgeteilt: der bereits beschriebene, schrägrotatorische und ein axialer zwischen einer Außenrohrinnenfläche und der Teilringscheibe. Die Aufteilung bewirkt zusätzliches Verwirbeln des Wärmeübertragungsfluids.A partial ring disc provides for different flow directions and thereby causing swirling of the heat transfer fluid. Above the ground probe fluid turbulator, the heat transfer fluid flows almost laminar through the outer tube. When hitting a partial annular disk, the heat transfer fluid undergoes a change in direction due to the inclination of the partial annular disc with respect to the orthogonal plane and then flows obliquely through the outer tube along the partial annular disc. If the outer diameter of the partial ring disc is smaller than the inner diameter of the outer tube, the fluid flow is divided into two partial streams: the already described, oblique and an axial between a Outer tube inner surface and the partial annular disc. The division causes additional swirling of the heat transfer fluid.

Erfindungsgemäß werden mindestens zwei Teilringscheiben entlang der Längsachse benachbart zueinander angeordnet und weisen bezüglich der Orthogonalebene Winkelwerte mit unterschiedlichen Vorzeichen auf. Eine solche Anordnung ähnelt einer Helix, wenn die Winkelwerte in etwa gleiche Beträge aufweisen und die Teilringscheiben einander im Wesentlichen diametral gegenüberliegend, aber entlang der Längsachse versetzt zueinander angeordnet sind. Durch diese Geometrie wird die rotatorische Strömung gefördert.According to the invention, at least two partial ring disks are arranged adjacent to one another along the longitudinal axis and have angle values with different signs with respect to the orthogonal plane. Such an arrangement resembles a helix when the angular values have approximately equal magnitudes and the partial annular discs are arranged substantially diametrically opposite one another but offset from one another along the longitudinal axis. This geometry promotes the rotary flow.

Zusätzlich können die Teilringscheiben eine oder mehrere Aussparungen aufweisen, durch die ein weiterer Teilstrom erreicht wird. Dieser spaltet sich von der schräg rotatorischen Strömung ab und strömt durch die Aussparungen, also in etwa parallel zur Längsachse, hindurch. Die Form der Aussparungen ist dabei im Wesentlichen frei wählbar. Es eignen sich jedoch runde, elliptische, nierenförmige oder ringsektorische Aussparungen.In addition, the partial ring discs may have one or more recesses through which a further partial flow is achieved. This splits off from the obliquely rotational flow and flows through the recesses, ie approximately parallel to the longitudinal axis, through. The shape of the recesses is essentially arbitrary. However, round, elliptical, kidney-shaped or ring-sectoral recesses are suitable.

Vorzugsweise umschließen zwei benachbarte Teilringscheiben das Innenrohr gemeinsam um weniger als 360° und drei benachbarte Teilringscheiben das Innenrohr gemeinsam um mehr als 360°. Durch eine solche geometrische Anordnung soll eine zusätzliche Strömungsrichtung erreicht werden: die rotatorischen Strömungsrichtung soll sich dadurch zusätzlich aufteilen und einerseits rotatorisch bleiben, und andererseits axial zwischen den Teilringscheiben verlaufen. Ein zusätzliches Vermischen wird dadurch erreicht.Preferably, two adjacent partial annular disks jointly surround the inner pipe by less than 360 ° and three adjacent partial annular disks jointly enclose the inner pipe by more than 360 °. By means of such a geometric arrangement, an additional flow direction is to be achieved: the rotational flow direction is thereby to be additionally divided and, on the one hand, to remain rotational, and, on the other hand, to extend axially between the partial ring disks. An additional mixing is achieved.

Vorzugsweise bilden mindestens drei entlang der Längsachse zueinander angeordnete Teilringscheiben einen Teilscheibenturbulator. In einer besonders vorteilhaften Gestaltung weist dieser mindestens fünf Teilringscheiben auf. Davon weisen vorteilhafterweise mindestens drei Teilringscheiben einen Mittelpunktwinkel von etwa 180° auf und erweisen sich so als halbe Ringscheiben. Die restlichen Teilringscheiben weisen vorteilhafterweise einen Mittelpunktwinkel von etwa 160° bis 170° auf. Sie können also aus den Teilringscheiben mit Mittelpunktwinkel von etwa 180° dadurch hergestellt werden, dass von diesen Teilringscheiben Ringscheibensektoren von etwa 10° bis 30° an einem ihrer Enden entfernt werden.Preferably, at least three partial annular disks arranged along the longitudinal axis form a partial disk turbulator. In a particularly advantageous embodiment, this has at least five partial annular discs. Of these, advantageously, at least three partial annular discs have a central angle of about 180 ° and thus prove to be half annular discs. The remaining partial annular discs advantageously have a center angle of about 160 ° to 170 °. They can therefore be made of the partial annular discs with a center angle of about 180 °, characterized in that annular disc sectors of about 10 ° to 30 ° are removed at one of its ends of these part ring discs.

Ein Verfahren zum Herstellen einer Teilringscheibe ist dadurch gekennzeichnet, dass eine Platte, vorzugsweise aus thermoplastischem Kunststoff, die mittig ein rundes Loch aufweist, etwa in zwei gleiche Hälften getrennt wird und von welchen Hälften gegebenenfalls endseitig Ringsektoren abgetrennt werden.A method for producing a partial annular disk is characterized in that a plate, preferably made of thermoplastic material, which has a round hole in the center, is separated approximately into two equal halves, and from which halves optionally ring sectors are cut off at the end.

Vorzugsweise werden mindestens zwei Teilscheibenturbolatoren verwendet, deren jeweils oberste Teilringscheiben in Ebenen angeordnet sind, die bezüglich der Orthogonalebene in etwa gleiche Winkelwerte, aber mit unterschiedlichen Vorzeichen aufweisen. Dadurch wird erreicht, dass die rotatorische Strömung mindestens einmal im Uhrzeigersinn und mindestens einmal gegen den Uhrzeigersinn verläuft.Preferably, at least two partial disc turbulators are used, the respective uppermost annular discs are arranged in planes having approximately the same angle values with respect to the orthogonal plane, but with different signs. This ensures that the rotational flow is at least once clockwise and at least once counterclockwise.

Vorzugsweise beinhaltet der Erdsondenturbolator zusätzlich mindestens eine Ringscheibe mit einer Ringscheibenfläche, die sich vorzugsweise parallel zur Orthogonalebene erstreckt und mindestens eine Öffnung in der Ringscheibenfläche aufweist. Die Ringscheibe ist ans Innenrohr befestigt und umgibt dieses, wodurch eine Ringfläche zwischen dem Innenrohr und dem Außenrohr bis auf die Öffnungen der Ringscheibe weitestgehend geschlossen ist. Die Ringscheibe weist also einen Mittelpunkt auf, der etwa auf der Längsachse liegt, einen Innendurchmesser, der gleich einem Außendurchmesser des Innenrohrs ist und einen Außendurchmesser der kleiner gleich dem Innendurchmesser des Außenrohrs ist. Bei einer besonders vorteilhaften Gestaltung dieser Ringscheibe sind ihr Außendurchmesser und der Innendurchmesser des Außenrohrs gleich und stützt dieses. Die Ringscheibe erhöht somit die Stabilität der Erdsonde und schränkt die axiale Strömung entlang des Außenrohrs ein. Die Form und Anzahl der Öffnungen ist dabei im Wesentlichen frei wählbar. Es eignen sich jedoch drei oder vier runde oder nierenförmige Öffnungen.Preferably, the earth probe turbulizer additionally includes at least one annular disc having an annular disc surface which preferably extends parallel to the orthogonal plane and has at least one opening in the annular disc surface. The annular disc is attached to the inner tube and surrounds this, whereby an annular surface between the inner tube and the outer tube is largely closed except for the openings of the annular disc. The annular disc thus has a center which lies approximately on the longitudinal axis, an inner diameter which is equal to an outer diameter of the inner tube and an outer diameter which is less than or equal to the inner diameter of the outer tube. In a particularly advantageous design of this washer, its outer diameter and the inner diameter of the outer tube are the same and supports this. The annular disc thus increases the stability of the geothermal probe and limits the axial flow along the outer tube. The shape and number of openings is essentially freely selectable. However, there are three or four round or kidney-shaped openings.

Vorzugsweise bilden zwei Ringscheiben, die einen Abstand a entlang der Längsachse aufweisen und deren Öffnungen um einen Ringscheibenwinkel um die Längsachse verdreht zueinander angeordnet sind, ein Ringscheibenpaar. Dieser Ringscheibenwinkel sollte vorteilhafterweise so gewählt werden, dass in einer Draufsicht die Öffnungen der unteren Ringscheibe von der Ringscheibenfläche der oberen Ringscheibe zu mindestens teilweise verdeckt sind. Eine solche Anordnung bewirkt, dass das Wärmeübertragungsfluid keine rein translatorische Flußrichtugn zwischen den beiden Ringscheiben, sondern auch rotatorisch strömen muss. Dies fördert den Vermischungsprozess zusätzlich.Preferably, two annular discs, which have a distance a along the longitudinal axis and whose openings are rotated around an annular disc angle about the longitudinal axis to each other, form an annular disc pair. This annular disc angle should advantageously be chosen so that in a plan view, the openings of the lower annular disc of the annular disc surface of the upper annular disc are at least partially obscured. Such an arrangement causes the heat transfer fluid does not have to flow purely translational Flußrichtugn between the two annular discs, but also rotationally. This additionally promotes the mixing process.

Vorzugsweise weist eine Erdsonde auf Längenabschnitten von etwa 20m bis etwa 25m mindestens zehn Teilscheibenturbolatoren und mindestens zwei Ringscheibenpaare auf, so angeordnet, dass oberhalb, zwischen und unterhalb der Ringscheibenpaare Teilscheibenturbolatoren vorgesehen sind. Dadurch wird auf diesen Längenabschnitten ein gemeinsames Verwirbeln und Vermischen des Wärmeübertragungsfluids erreicht.Preferably, a ground probe on length sections of about 20m to about 25m at least ten Teilscheibeurburbolatoren and at least two annular disc pairs, arranged so that above, between and below the pairs of annular disc Teilscheibenturbolatoren are provided. As a result, a common swirling and mixing of the heat transfer fluid is achieved on these lengths.

Das Verwirbeln wird in erster Linie durch die Teilscheibenturbolatoren erreicht, in denen sich das Wärmeübertragungsfluid mehrfach in die drei oben beschriebenen Teilströme aufteilt und anschließend wieder vermengt. Diese Prozesse bewirken hauptsächlich ein Verwirbeln des Wärmeübertragungsfluids, welches zusätzlich durch Rotationsrichtungsänderungen zweier entlang der Längsachse zueinander benachbart angeordneter Teilringscheiben verstärkt wird. Dieser Verwirbelungsprozess wird durch Vermischungsprozesse mehrerer Ringscheibenpaare unterstützt.The swirling is achieved primarily by the Teilscheibenturbolatoren, in which the heat transfer fluid is divided several times in the three partial streams described above and then mixed again. These processes mainly cause swirling of the heat transfer fluid, which in addition is amplified by rotational direction changes of two along the longitudinal axis adjacent to each other arranged part ring discs. This turbulence process is supported by mixing processes of several pairs of annular disks.

Vorteilhafte Ausgestaltungen der Erfindung sind jeweils Gegenstand der abhängigen Ansprüche. Es wird darauf hingewiesen, dass die in den Patentansprüchen einzeln aufgeführten Merkmale in beliebiger, technologisch sinnvoller Weise miteinander kombiniert werden können und weitere Ausgestaltungen der Erfindung aufzeigen. Die Beschreibung, insbesondere im Zusammenhang mit den Figuren, charakterisiert und spezifiziert die Erfindung zusätzlich.Advantageous embodiments of the invention are each the subject of the dependent claims. It should be noted that the features listed individually in the claims can be combined with each other in any technologically meaningful manner and show further embodiments of the invention. The description, in particular in connection with the figures, additionally characterizes and specifies the invention.

Weitere Vorteile und Merkmale der Erfindung werden in der nun folgenden Figurenbeschreibung beschrieben. In dieser zeigen:

Fig. 1:
eine schematische Darstellung einer Erdsonde mit einem Anschlussdeckel, einem Innenrohr und einem Außenrohr, wobei um das Innenrohr Mittel zur Verwirbelung des Wärmeübertragungsfluids angeordnet sind,
Fig. 2:
eine schematische Darstellung eines Erdsondenwärmekreislaufes mit mehreren Erdsonden, die in Reihe geschaltet sind,
Fig. 3
die Darstellung eines Erdsondenwärmekreislaufes aus Figur 2 in einer Seitenansicht mit in Erdreich angeordneten Erdsonden, die über Leitungen mit einem Wärmetauscher und einer Pumpe verbunden sind, wobei die Erdsonden in Reihe geschaltet sind,
Fig. 4
die schematische Darstellung einer beispielhaften Teilringscheibe,
Fig. 5
die schematische Darstellung eines Teilscheibenturbolators montiert in einer koaxialen Erdsonde und die dadurch verursachten Flussrichtungen des Wärmeübertragungsfluids,
Fig. 6
die schematische Darstellung einer Ringscheibe mit Öffnungen, und
Fig. 7
die schematische Darstellung eines Ringscheibenpaars.
Further advantages and features of the invention will be described in the following description of the figures. In this show:
Fig. 1:
a schematic representation of a ground probe with a connection cover, an inner tube and an outer tube, wherein means are arranged around the inner tube for swirling the heat transfer fluid,
Fig. 2:
a schematic representation of a Erdsondenwärmekreislaufes with multiple ground probes, which are connected in series,
Fig. 3
the representation of a Erdsondenwärmekreislaufes FIG. 2 in a side view with earth probes arranged in soil, which are connected via lines to a heat exchanger and a pump, wherein the ground probes are connected in series,
Fig. 4
the schematic representation of an exemplary partial annular disc,
Fig. 5
the schematic representation of a Partscheubenturbolators mounted in a coaxial earth probe and the resulting flow directions of the heat transfer fluid,
Fig. 6
the schematic representation of an annular disc with openings, and
Fig. 7
the schematic representation of an annular disc pair.

Bei der folgenden Beschreibung, sowohl des Teilscheibenturbolators, als auch des gesamten Erdsondenfluidturbolators, wird davon ausgegangen, dass die Erdsonde in vertikaler Richtung montiert wird. Bei schräger Montage der Erdsonde können sich die Lagen der einzelnen Komponenten zueinander ändern.In the following description, both the Particle Turbinator and the entire Earth Probe Fluid Turbulator, it will be assumed that the ground probe is mounted in the vertical direction. If the probe is mounted at an angle, the positions of the individual components may change.

Figur 1 zeigt eine schematische Darstellung einer Erdsonde 20. Über einen Zulauf 22 wird Wärmeübertragungsfluid in ein Außenrohr 32 geleitet. Das Außenrohr 32 ist ein zylindrisches Bauteil mit dem inneren Durchmesser da, gemessen an einer Außenrohrinnenfläche 60. Außen weist das Außenrohr 32 eine Außenrohraußenfläche 62 auf, die zum Erdreich 54 weist. Konzentrisch zum Außenrohr 32 ist innerhalb desselben ein Innenrohr 30 angeordnet. Es ist im Wesentlichen zylindrisch und weist an seiner nach innen weisenden Fläche eine Innenrohrinnenfläche 56 und an seiner nach außen weisenden Fläche eine Innenrohraußenfläche 58 auf. Das Wärmeübertragungsfluid strömt innerhalb eines Ringraumes 64 zwischen Innenrohr 30 und Außenrohr 32 die Erdsonde 20 hinab. Der Ringraum 64 ist horizontal durch die Außenrohrinnenfläche 60 und die Innenrohraußenfläche 58 und vertikal durch einen Verbindungsbereich 68 und das obere Ende 72 der Erdsonde 20 begrenzt. Im Bereich des oberen Endes 72 geht ein Zulauf 22 fluidleitend in den Ringraum 64 über, in dem Verbindungsbereich 68 geht der Ringraum 64 fluidleitend in einen Innenrohrinnenraum 66 über. Der Innenrohrinnenraum 66 ist horizontal durch die Innenrohrinnenfläche 56 und vertikal durch den Verbindungsbereich 68 und den Ablauf 40 begrenzt, in den der Innenrohrraum 66 fluidleitend mündet. FIG. 1 shows a schematic representation of a ground probe 20. Via an inlet 22 heat transfer fluid is passed into an outer tube 32. The outer tube 32 is a cylindrical member having the inner diameter there as measured on an outer tube inner surface 60. Externally, the outer tube 32 has an outer tube outer surface 62 facing the soil 54. Concentric with the outer tube 32, an inner tube 30 is disposed within the same. It is substantially cylindrical and has an inner tube inner surface 56 on its inwardly facing surface and an inner tube outer surface 58 on its outwardly facing surface. The heat transfer fluid flows within an annular space 64 between inner tube 30 and outer tube 32, the ground probe 20 down. The annulus 64 is bounded horizontally by the outer tube inner surface 60 and the inner tube outer surface 58 and vertically by a connecting portion 68 and the upper end 72 of the ground probe 20. In the region of the upper end 72, an inlet 22 flows into the annular space 64 in a fluid-conducting manner, in the connection region 68 the annular space 64 passes in a fluid-conducting manner into an inner tube interior 66. The inner tube interior 66 is bounded horizontally by the inner tube inner surface 56 and vertically by the connecting region 68 and the drain 40, into which the inner tube space 66 discharges in a fluid-conducting manner.

Am oberen Ende 72 ist an dem Außenrohr 32 ein Anschlussdeckel 24 angeordnet. Darin ist der Zulauf 22 fluidleitend mit dem Ringraum 64 und der Ablauf 40 fluidleitend mit dem Innenrohrinnenraum 66 verbunden. Der Anschlussdecke 24 bildet die Schnittstelle zwischen dem Teil der Erdsonde 20, der sich im Erdreich 54 befindet und dem Teil, der von außen zugänglich ist. Vorteilhafterweise weisen sowohl der Zulauf 22 als auch der Ablauf 40 Mittel zur Befestigung von Leitungen auf. In einer sehr einfachen Ausgestaltung ist der Anschlussdeckel 24 auf das Außenrohr 32 gesteckt und abgedichtet. Der gezeigte Anschlussdeckel 23 weist eine Heizwendel 34 auf, die aus einem elektrischen Leiter gebildet wird. Über Anschlußkontakte 28 kann ein Strom durch die Heizwendel 34 geleitet werden, um die Heizwendel 34 zu erhitzen, wodurch der Anschlussdeckel 24 mit dem Außenrohr 32 verschweißt werden kann.At the upper end 72, a connection cover 24 is arranged on the outer tube 32. Therein, the inlet 22 is fluid-conductively connected to the annular space 64 and the outlet 40 is fluid-conductively connected to the inner tube interior 66. The connection ceiling 24 forms the interface between the part of the ground probe 20, which is located in the ground 54 and the part that is accessible from the outside. Advantageously, both the inlet 22 and the outlet 40 have means for fastening lines. In a very simple embodiment of the Connection cover 24 placed on the outer tube 32 and sealed. The connection cover 23 shown has a heating coil 34, which is formed from an electrical conductor. Via connection contacts 28, a current can be passed through the heating coil 34 in order to heat the heating coil 34, whereby the connection cover 24 can be welded to the outer tube 32.

Die Erdsonde 20 weist eine Länge L auf, die entsprechend der erwünschten Tiefe variiert, beispielsweise zwischen 15m und 25 m. Das Wärmeübertragungsfluid nimmt während des Durchströmens des Ringraumes 64 eine Wärmeleistung aus dem Erdreich 54 auf. Das Außenrohr 32 ist dazu vorteilhafterweise aus einem Material gefertigt, welches eine verhältnismäßig hohen Wärmeübertragungskoeffizienten aufweist. Beispielsweise kann Highdensity-Polyethylen, kurz PE-HD verwendet werden. Das Wärmeübertragungsfluid steigt anschließend mit einer höheren Temperatur innerhalb des Innenrohres 30 wieder empor.The geothermal probe 20 has a length L which varies according to the desired depth, for example between 15m and 25m. The heat transfer fluid absorbs a heat output from the soil 54 during the passage of the annular space 64. The outer tube 32 is advantageously made of a material which has a relatively high heat transfer coefficient. For example, high-density polyethylene, PE-HD for short, can be used. The heat transfer fluid then rises again at a higher temperature inside the inner tube 30.

In einem unteren Ende 74 der Erdsonde 20 ist ein Sondenfuß 46 angeordnet, der konisch spitz zuläuft. Dieser Sondenfuß 46 erleichtert das Eindringen der Erdsonde 20 in eine Bohrung. Der Sondenfuß 46 kann mittels eines thermischen Schweißverfahrens, beispielsweise Stumpfscheißen, mit dem Außenrohr 32 verbunden werden.In a lower end 74 of the ground probe 20, a probe foot 46 is arranged, which tapers conically. This probe foot 46 facilitates penetration of the ground probe 20 into a bore. The probe foot 46 may be connected to the outer tube 32 by a thermal welding process, such as butt dies.

Das Außenrohr 32 weist üblicherweise eine Wandstärke wa zwischen 2,5 mm und 5 mm auf. Vorzugsweise weist es eine Wandstärke wa von 3,2 mm bis 3,8 mm auf. Der innere Durchmesser des Außenrohres 32 beträgt vorzugsweise 100 mm bis 180 mm. Der innere Durchmesser di des Innenrohres 30 liegt vorteilhaft zwischen 20 mm und 50 mm. Das Verhältnis des Durchmessers di des Innenrohres 30 zu dem Durchmesser da des Außenrohres 32 liegt also in einem Bereich zwischen 0,2 und 0,7, vorteilhaft in einem Bereich zwischen 0,25 und 0,35. Dadurch wird erreicht, dass der Ringraum 64 eine verhältnismäßig große Fläche aufweist und sich das Wärmeübertragungsfluid darin möglichst langsam bewegt. Gleichzeitig ist noch gewährleistet, dass der Durchmesser di des Innenrohres 30 nicht zu klein ist und sich hier kein zu großer Rohrwiderstand ausbildet.The outer tube 32 usually has a wall thickness wa between 2.5 mm and 5 mm. Preferably, it has a wall thickness wa of 3.2 mm to 3.8 mm. The inner diameter of the outer tube 32 is preferably 100 mm to 180 mm. The inner diameter di of the inner tube 30 is advantageously between 20 mm and 50 mm. The ratio of the diameter di of the inner tube 30 to the diameter da of the outer tube 32 is thus in a range between 0.2 and 0.7, advantageously in a range between 0.25 and 0.35. This ensures that the annular space 64 has a relatively large area and the heat transfer fluid moves therein as slowly as possible. At the same time, it is still ensured that the diameter di of the inner tube 30 is not too small and that no excessively large tube resistance is formed here.

Um die Erdsonde 20 entlüften zu können, weist die erfindungsgemäße Erdsonde 20 vorteilhaft eine Entlüftung 70 auf. Diese umfasst eine Entlüftungsöffnung 42, eine Entlüftungsleitung 36 und ein Entlüftungsventil 38. Die Entlüftungsöffnung 42 ist vorteilhaft an einer möglichst weit oben gelegenen Stelle des Anschlussdeckels 24 angeordnet. Die Entlüftungsleitung 36 ist an die Entlüftungsöffnung 42 angeschlossen. Am anderen Ende der Entlüftungsleitung 36 ist ein Entlüftungsventil 38 angeordnet, beispielsweise ein Kugelhahn. Zur Entlüftung der Erdsonde 20 wird das Wärmeübertragungsfluid unter Druck gesetzt und das Entlüftungsventil 38 geöffnet.To be able to vent the geothermal probe 20, the geothermal probe 20 according to the invention advantageously has a vent 70. This comprises a vent opening 42, a vent line 36 and a vent valve 38. The vent opening 42 is advantageously arranged at a location of the connection cover 24 located as high as possible. The vent line 36 is connected to the vent opening 42. At the other end of the vent line 36, a vent valve 38 is arranged, for example, a ball valve. For venting the geothermal probe 20, the heat transfer fluid is pressurized and the vent valve 38 is opened.

Figur 2 zeigt in der Draufsicht eine schematische Darstellung dreier Erdsonden 20a, 20b, 20c mit Leitungen 52, die zur Realisierung eines Erdsondenwärmekreislaufes 26 zusammengeschaltet sind. Dargestellt ist ein geschlossener Erdsondenwärmekreislauf 26, in dem das Wärmeübertragungsfluid zunächst mit einer Pumpe 48 auf ein höheres Druckniveau gebracht wird. Alsdann wird das Wärmeübertragungsfluid einer ersten Erdsonde 20a zugeführt. Das Wärmeübertragungsfluid wird dabei in den Ringraum 64a geleitet. Hierin strömt das Wärmeübertragungsfluid bis in den Verbindungsbereich 68, durch das Innenrohr 30a aus wieder hinauf und gelangt in die mittlere Erdsonde 20b. Danach wird das Wärmeübertragungsfluid von der mittleren Erdsonde 20b in den Ringraum 64c der dritten Erdsonde 20c geleitet. Hat das Wärmeübertragungsfluid alle drei Erdsonden 20a, 20b, 20c durchströmt, wird es einem Wärmetauscher 50 zugeführt. FIG. 2 shows in plan view a schematic representation of three ground probes 20a, 20b, 20c with lines 52 which are interconnected to realize a Erdsondenwärmekreislaufes 26. Shown is a closed Erdsondenwärmekreislauf 26, in which the heat transfer fluid is first brought by a pump 48 to a higher pressure level. Then, the heat transfer fluid is supplied to a first ground probe 20a. The heat transfer fluid is passed into the annular space 64a. Herein, the heat transfer fluid flows up into the connection region 68, up through the inner tube 30a again and enters the central ground probe 20b. Thereafter, the heat transfer fluid is conducted from the central earth probe 20b into the annulus 64c of the third earth probe 20c. When the heat transfer fluid has passed through all three ground probes 20a, 20b, 20c, it is fed to a heat exchanger 50.

Figur 3 zeigt eine Anordnung dreier Erdsonden 20a, 20b, 20c in der Reihenschaltung in einer Seitenansicht. Die Darstellung ist weniger schematisch, insbesondere sind die Leitungen 52 deutlicher als solche erkennbar. FIG. 3 shows an arrangement of three ground probes 20a, 20b, 20c in series in a side view. The representation is less schematic, in particular, the lines 52 are clearly recognizable as such.

Figur 4 zeigt beispielhafte Teilringscheiben 76a-76e. Diese umschließen im eingesetzten Zustand das Innenrohr 30 mit einem Außendurchmesser d1, einem Mittelpunkt mt und einem Innenrand 78. Die Teilringscheiben 76 können in beliebiger Art und Weise mit dem Innenrohr 30 verbunden werden, beispielsweise verschweißt oder verklebt. Die Komponenten des Erdsondenfluidturbulators können entsprechend aus dem gleichen Material, vorzugsweise aus thermoplastischem Kuststoff, wie das Innenrohr 30 gefertigt sein, wodurch eine leichte Verbindung zwischen den Teilringscheiben 76 und/oder den Ringscheiben 80 mit dem Innenrohr 30 gewährleistet ist. FIG. 4 shows exemplary partial ring discs 76a-76e. These enclose in the inserted state, the inner tube 30 having an outer diameter d1, a center mt and an inner edge 78. The partial annular discs 76 can be connected in any manner with the inner tube 30, for example, welded or glued. The components of the Erdsondenfluidturbulators can be made of the same material, preferably made of thermoplastic Kuststoff, such as the inner tube 30 accordingly be, whereby a slight connection between the annular discs 76 and / or the annular discs 80 is ensured with the inner tube 30.

Der Außendurchmesser d1 der Teilringscheibe 76 ist so gewählt, dass er geringfügig kleiner als der Innendurchmesser des Außenrohrs 32 ist. Einerseits wird dadurch ein Einschieben des Innenrohrs 30 samt befestigten Teilringscheiben 76 in das Außenrohr 32 vereinfacht, andererseits wirken die Teilringscheiben 76 dadurch im Betriebszustand als Abstandshalter zwischen Außenrohr 32 und Innenrohr 30, beziehungsweise stützen die beiden gegeneinander ab.The outer diameter d1 of the partial annular disc 76 is selected to be slightly smaller than the inner diameter of the outer tube 32. On the one hand this simplifies insertion of the inner tube 30 together with fixed partial annular discs 76 into the outer tube 32, on the other hand the partial annular discs 76 thereby act as spacers between the outer tube 32 and the inner tube 30, or support the two against each other.

Figur 5 zeigt eine schematische Darstellung eines Teilscheibenturbolators 84 im montierten Zustand. In der gezeigten Ausfertigung besteht dieser aus fünf Teilringscheiben 76a-76e, deren Außendurchmesser d1 kleiner als der Innendurchmesser des Außenrohrs 32 sind. Die Teilringscheiben 76a, 76d und 76e sind dabei vorzugsweise Teilringscheiben mit einem Mittelpunktwinkel von etwa 180°, bilden also in etwa halbe Ringscheiben. Die Teilringscheiben 76b und 76c sind Teilringscheiben von weniger als 180°. Eine solche wird vorzugsweise aus einer Halbringscheibe gefertigt, der endseitig ein Ringscheibensektor entnommen wird. Die Teilringscheiben 76a, 76c und 76e sind im Betriebszustand vorzugsweise so übereinander angeordnet, dass bei einer Draufsicht die Teilringscheiben 76c und 76e von der Teilringscheibe 76a verdeckt werden. Ferner liegen die Teilringscheiben 76a, 76c und 76e in Ebenen, die ähnliche Winkel bezüglich einer Orthogonalebene zur Längsachse 44 aufweisen. Teilringscheiben 76b und 76d sind in ähnlicher Weise zueinander angeordnet und liegen bezüglich der Längsachse den Teilringscheiben 76a, 76c und 76e gegenüber. Die Ebenen, in denen die Teilringscheiben 76b und 76d liegen, weisen bezüglich der Orthogonalebene einen ähnlichen Winkelwert, aber mit unterschiedlichem Vorzeichen wie die Ebenen der Teilringscheiben 76a, 76c und 76e auf. Sie sind also sozusagen in die entgegengesetzte Richtung geneigt. Vorteilhaft erweist sich dabei ein Winkelwert von etwa 5° bis 15°. Die Geometrie eines solche Teilscheibenturbolators 84 ähnelt einer Helix mit Aussparungen 88 (zwischen Teilringscheiben 76b-76c und 76c-76d). Dadurch erfährt das Wärmeübertragungsfluid beim Passieren dieses Teilscheibenturbolators 84 drei Strömungsrichtungen. Diese Strömungsrichtungen und Teilströme sind durch die Pfeile in Figur 5 angedeutet. Ein Teil des Wärmeübertragungsfluids passiert den Teilscheibenturbulator 84 in vertikaler Richtung zwischen der Außenrohrinnenfläche 60 und dem Teilscheibenturbulator 84. Ein zweiter Teil wird durch Teilringscheibe 76a des Teilscheibenturbulators 84 erfasst und erfährt dadurch eine schräge, rotatorische Richtung. Diese wird zwischen Teilringscheiben 76b-76c und 76c-76d zusätzlich in zwei Unterströmungen aufgeteilt. Ein Teil überquert die Aussparungen, die dadurch entsteht, dass sich zwei benachtbarte Teilringscheiben 76b-76c, 76c-76d nicht zu vollständigen Ringscheiben zusammensetzen lassen, sondern gemeinsam einen Mittelpunktwinkel von weniger als 360° aufweisen und hält seine rotatorische Bewegung bei. Der Rest fließt vertikal durch die Aussparungen 88 hindurch, wodurch eine zusätzliche Verwirbelung erzeugt wird. FIG. 5 shows a schematic representation of Teilscheibenturbolators 84 in the mounted state. In the illustrated embodiment, this consists of five partial annular discs 76a-76e, whose outer diameter d1 are smaller than the inner diameter of the outer tube 32. The partial annular discs 76a, 76d and 76e are preferably partial annular discs with a center angle of about 180 °, thus forming approximately half annular discs. The partial annular discs 76b and 76c are partial annular discs of less than 180 °. Such is preferably made of a half-ring disc, the end of a ring disk sector is removed. The partial annular discs 76a, 76c and 76e are preferably arranged one above the other in the operating state such that, in a plan view, the partial annular discs 76c and 76e are covered by the partial annular disc 76a. Further, the partial annular discs 76a, 76c and 76e lie in planes which have similar angles with respect to an orthogonal plane to the longitudinal axis 44. Partial ring disks 76b and 76d are arranged in a similar manner to one another and lie opposite the partial annular disks 76a, 76c and 76e with respect to the longitudinal axis. The planes in which the partial ring discs 76b and 76d lie have a similar angle value with respect to the orthogonal plane, but with a different sign than the planes of the partial ring discs 76a, 76c and 76e. So you are inclined in the opposite direction, so to speak. An angle value of approximately 5 ° to 15 ° proves advantageous. The geometry of such a partial disc turbulator 84 is similar to a helix with recesses 88 (between partial annular discs 76b-76c and 76c-76d). As a result, the heat transfer fluid undergoes three flow directions when passing through this Teilstubenturbolators 84. These flow directions and partial flows are through the Arrows in FIG. 5 indicated. A part of the heat transfer fluid passes through the Teilscheibenturbulator 84 in the vertical direction between the outer tube inner surface 60 and the Teilscheibenturbulator 84. A second part is detected by partial ring disc 76a of Teilscheibenturbulators 84 and thereby experiences an oblique, rotational direction. This is additionally split between partial annular discs 76b-76c and 76c-76d into two sub-flows. One part crosses the recesses resulting from the fact that two adjacent partial annular discs 76b-76c, 76c-76d can not be assembled into complete annular discs, but together have a center angle of less than 360 ° and maintain its rotational movement. The remainder flows vertically through the recesses 88, creating additional turbulence.

Figur 6 zeigt die schematische Darstellung einer Ringscheibe 80, mit einem Außendurchmesser d5, einem Innendurchmesser d3, einem Mittelpunkt mr und drei Öffnungen 82, wobei auch nur eine Öffnung ausreichen kann. Der Innendurchmesser d3 der Ringscheibe 80 ist dem Außendurchmesser des Innenrohrs 30 angepasst. Dadurch kann die Ringscheibe 80, ähnlich wie die oben beschriebene Teilringscheibe 76, an dem Innenrohr 30 befestigt werden. Vorzugsweise erfolgt diese Befestigung jedoch in einer Orthogonalebene der Längsachse 44. Der Außendurchmesser d5 der Ringscheibe 80 ist vorzugsweise dem Innendurchmesser da des Außenrohrs 32 angepasst. Einerseits wirkt die Ringscheibe 80 dadurch als Abstandshalter zwischen Außenrohr 32 und dem Innenrohr 30 und andererseits wird dadurch die vertikale Strömung des Wärmeübertragungsfluids, insbesondere auch in der Nähe der Außenrohrinnenfläche 60, unterbrochen. Das Wärmeübertragungsfluid strömt durch die drei Öffnung 82, wodurch ein Vermischen des Wärmeübertragungsfluid erfolgt. FIG. 6 shows the schematic representation of an annular disc 80, with an outer diameter d5, an inner diameter d3, a center mr and three openings 82, wherein only one opening may be sufficient. The inner diameter d3 of the annular disc 80 is adapted to the outer diameter of the inner tube 30. As a result, the annular disc 80, similar to the above-described partial ring disc 76, can be fastened to the inner tube 30. However, this attachment preferably takes place in an orthogonal plane of the longitudinal axis 44. The outer diameter d5 of the annular disc 80 is preferably matched to the inner diameter da of the outer tube 32. On the one hand, the annular disc 80 thereby acts as a spacer between the outer tube 32 and the inner tube 30 and on the other hand, the vertical flow of the heat transfer fluid, in particular in the vicinity of the outer tube inner surface 60, thereby interrupted. The heat transfer fluid flows through the three orifice 82, thereby mixing the heat transfer fluid.

Figur 7 zeigt eine schematische Darstellung einer vorteilhaften Kombination zweier um die Längsachse 44 zueinander verdrehter Ringscheiben 80a und 80b, die untereinander, mit einem Abstand a in Richtung der Längsachse 44, angeordnet sind. Eine solche Anordnung bildet ein Ringscheibenpaar 86. Durch die untereinander um Winkel ß verdrehte Lage, mit Abstand a, wird ein zusätzliches Vermischen des Wärmeübertragungsfluids erreicht. FIG. 7 shows a schematic representation of an advantageous combination of two about the longitudinal axis 44 to each other rotated annular discs 80a and 80b, which are mutually, with a distance a in the direction of the longitudinal axis 44, respectively. Such an arrangement forms an annular disk pair 86. By the angle rotated with each other by ß position, at a distance a, an additional mixing of the heat transfer fluid is achieved.

Über einen Längenabschnitt von etwa 15m bis 25m empfiehlt sich eine Kombination von circa 10 bis 15 Teilscheibenturbulatoren 84 mit mindestens zwei Ringscheibenpaaren 86. Eine solche Kombination weist im obersten Bereich des Längenabschnitts einige Ringscheibenturbolatoren 84 auf, auf welche ein Ringscheibenpaar 86 folgt. Diese Anordnung wiederholt sich und wird im unteren Teil entweder durch einen Teilscheibenturbolator 84 oder durch ein Ringscheibenpaar 86 abgeschlossen. Ferner empfiehlt es sich, die erzeugte rotatorische Strömungsrichtung der Teilscheibenturbulatoren 84 abzuwechseln: wenn in einer Draufsicht ein erster Teilscheibenturbolator 84 eine rotatorische Bewegung des Wärmeübertragungsfluids im Uhrzeigersinn erzeugt, sollte mindestens ein zweiter Teilscheibenturbolator 84 eine rotatorische Bewegung entgegen des Uhrzeigersinns erzeugen. Teilscheibenturbolatoren 84 und/oder Ringscheibenpaare 86 können abschnittsweise oder über die gesamte Länge der Erdsonde 20 angeordnet sein.Over a length of about 15m to 25m, a combination of about 10 to 15 Teilscheibenturbulatoren 84 is recommended with at least two annular disc pairs 86. Such a combination has in the uppermost portion of the length of some Ringscheibeurburbolatoren 84, which is followed by an annular disc pair 86. This arrangement is repeated and is completed in the lower part either by a Teilscheibenturbolator 84 or by an annular disk pair 86. It is also advisable to alternate the generated rotational flow direction of the partial disc turbulators 84: if in a plan view, a first Teilsububenturbolator 84 generates a rotational movement of the heat transfer fluid in a clockwise direction, at least a second Partisibenturbolator 84 generate a rotational movement in the counterclockwise direction. Teilscheibeiburbolatoren 84 and / or pairs of annular disks 86 may be arranged in sections or over the entire length of the ground probe 20.

Durch das Vermischen und Verwirbeln des Wärmeübertragungsfluids durch die Kombination von Teilscheibenturbolatoren 84 und Ringscheibenpaaren 86 findet ein optimaler und harmonischer Energieaustausch zwischen Erdreich und Wärmeübertragungsfluid statt. Daraus resultiert, dass die Wärmepumpe schon bei geringen Bohrtiefen von 15m-30m hocheffiziente Wirkungsgrade erzielen. Offensichtliche Vorteile einer geringeren Bohrtiefe sind unter anderem die geringen Anschaffungs- und Installationskosten und die Verwendbarkeit von Wärmepumpen in Bereichen mit Bohrtiefenbegrenzung.By mixing and swirling the heat transfer fluid through the combination of Teilteiliburburbulatoren 84 and pairs of annular disks 86 takes place an optimal and harmonious energy exchange between soil and heat transfer fluid. As a result, the heat pump achieves highly efficient efficiencies even with small drilling depths of 15m-30m. Obvious advantages of a lower drilling depth include the low purchase and installation costs and the usability of heat pumps in areas with drilling depth limitation.

Die vorliegende Erfindung ist selbstverständlich nicht auf das vorstehend beschriebene Ausführungsbeispiel beschränkt. So kann die Befestigung der Ringscheiben 80 und/oder der Teilringscheiben 76 alternativ oder zusätzlich auch an der Außenrohrinnenfläche 60 des Außenrohrs 32 erfolgen. Im Falle einer ausschließlichen oder teilweisen Befestigung an der Außenrohrinnenfläche 60 des Außenrohrs 32 können die Teilringscheiben 76 und/oder die Ringscheiben 80 dann vollständige oder teilweise Abstände vom Innenrohr 30 aufweisen, so dass dazwischen Wärmeübertragungsfluid in axialer Richtung strömen kann.Of course, the present invention is not limited to the embodiment described above. Thus, the fastening of the annular disks 80 and / or the partial annular disks 76 can alternatively or additionally also take place on the outer pipe inner surface 60 of the outer pipe 32. In the case of an exclusive or partial attachment to the outer tube inner surface 60 of the outer tube 32, the Teilringscheiben 76 and / or the annular discs 80 then complete or partial distances from the inner tube 30 so that between them heat transfer fluid can flow in the axial direction.

Anstelle eines Teilscheibenturbolators 84 kann für die Erzeugung der schräg, rotatorischen Bewegung des Wärmeübertragungsfluids eine Helix verwendet werden, die vorzugsweise Löcher aufweist. Die Löcher erzeugen dann die Aufspaltung der rotatorischen Strömung in einen rotatorischen und einen vertikalen Anteil.Instead of a Teilteilurburbenturbolators 84 can be used to generate the oblique, rotational movement of the heat transfer fluid, a helix, which preferably has holes. The holes then generate the splitting of the rotary flow into a rotational and a vertical portion.

Ferner können auf den Teilscheibenturbolatoren 84 Stopper angebracht sein. Diese erzeugen zusätzliche Verwirbelungen der schräg-rotatorische Strömung.Further, stoppers 84 may be mounted on the part-disk turbulators. These generate additional turbulences of the oblique-rotational flow.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

20.20th
ErdsondeErdsonde
22.22nd
ZulaufIntake
24.24th
Anschlussdeckelconnection cover
26.26th
ErdsondenwärmekreislaufErdsondenwärmekreislauf
28.28th
Anschlusskontaktconnection contact
30.30th
Innenrohrinner tube
32.32nd
Außenrohrouter tube
34.34th
Heizwendelnheating coils
36.36th
Entlüftungsleitungvent line
38.38th
Entlüftungsventilvent valve
40.40th
Ablaufprocedure
42.42nd
Entlüftungsöffnungvent
44.44th
Längsachselongitudinal axis
46.46th
Sondenfußprobe base
48.48th
Pumpepump
50.50th
Wärmetauscherheat exchangers
52.52nd
Leitungencables
54.54th
Erdreichsoil
56.56th
InnenrohrinnenflächeInner tube inner surface
58.58th
InnenrohraußenflächeInner tube outer surface
60.60th
AußenrohrinnenflächeOuter tube inner surface
62.62nd
AußenrohraußenflächeOuter tube outer surface
64.64th
Ringraumannulus
66.66th
InnenrohrraumInner tube space
68.68th
Verbindungsbereichconnecting area
70.70th
Entlüftungvent
72.72nd
unteres Endelower end
74.74th
unteres Endelower end
76.76th
TeilringscheibePart washer
78.78th
Innenrandinner edge
80.80th
Ringscheibewasher
82.82nd
Öffnungopening
84.84th
TeilscheibenturbolatorTeilscheibenturbolator
86.86th
RingscheibenpaarWasher pair
88.88th
Aussparungrecess

Claims (11)

  1. A borehole heat exchanger fluid turbolator for a coaxial borehole heat exchanger (20) provided for exchanging heat between a heat transfer fluid and the ground soil surrounding the borehole heat exchanger (1) in which the borehole heat exchanger (20) is disposed in the operating state, wherein at least two adjacent partial annular discs (76, 76a - 76e), which are disposed offset relative to one another along the longitudinal axis (44) and lie in the same plane, which is disposed at an angle to an orthogonal plane of a longitudinal axis (17) of the borehole heat exchanger (20), each comprise
    - a center point mt, which is located approximately on the longitudinal axis (44),
    - an inner edge (41) that serves for attaching the partial annular disc (76, 76a - 76e) to an inner pipe outer surface (58) of an inner pipe (30) of the borehole heat exchanger,
    characterized in that
    the adjacent partial annular discs (76, 76a - 76e)
    - are disposed substantially diametrically opposite to each other,
    - have angle values with different signs with respect to the orthogonal plane, and
    - have an outer diameter d1 that is smaller than an inner diameter da of the outer pipe (32) of the borehole heat exchanger (20).
  2. The fluid turbolator for a borehole heat exchanger according to claim 2 or 3, characterized in that two adjacent partial annular discs (76) together enclose the inner pipe (30) of the borehole heat exchanger over less than 360°.
  3. The fluid turbolator for a borehole heat exchanger according to any one of the above-mentioned claims, characterized in that three adjacent partial annular discs (76, 76a - 76e) together enclose the inner pipe (8) of the borehole heat exchanger over more than 360°.
  4. The fluid turbolator for a borehole heat exchanger according to any one of the above-mentioned claims, characterized in that at least one partial annular disc (76, 76a - 76e) has at least one cutout.
  5. The fluid turbolator for a borehole heat exchanger according to any one of the above-mentioned claims, characterized in that at least 3 partial annular discs (76, 76a - 76e) disposed one below the other form a partial disc turbolator (84).
  6. The fluid turbolator for a borehole heat exchanger according to claim 5, characterized in that at least 2 partial disc turbolators (84) are used, whose uppermost partial annular discs (76a) lie in planes that have approximately the same angle values with different signs with respect to the orthogonal plane.
  7. The fluid turbolator for a borehole heat exchanger according to any one of the above-mentioned claims, characterized in that at least one stopper is attached to a surface of at least one partial annular disc (76, 76a - 76e).
  8. The fluid turbolator for a borehole heat exchanger according to any one of the above-mentioned claims, characterized in that the fluid turbolator for a borehole heat exchanger additionally includes at least one annular disc (80), comprising
    - an annular-disc surface that preferably extends parallel to the orthogonal plane,
    - at least one opening (82) in the annular-disc surface,
    - a center point mr, which is located approximately on the longitudinal axis (44),
    - an inner diameter d3, which is equal to an outer diameter d4 of the inner pipe (30) of the borehole heat exchanger,
    - an outer diameter d5 that is smaller than or equal to the inner diameter da of the outer pipe (32) of the borehole heat exchanger.
  9. The fluid turbolator for borehole heat exchanger according to claim 8, characterized in that the outer diameter d5 of the annular disc is equal to the inner diameter da of the outer pipe (32) of the borehole heat exchanger.
  10. The fluid turbolator for a borehole heat exchanger according to claim 8 or 9, characterized in that two annular discs (80), which have a distance a from each other along the longitudinal axis (44) and whose openings (82) are disposed in a manner rotated relative to each other by an annular-disc angle β about the longitudinal axis (44), form an annular-disc pair (86).
  11. The fluid turbolator for a borehole heat exchanger according to claim 10, characterized in that a borehole heat exchanger (1) comprises at least 10 partial disc turbolators (84) and at least 2 annular-disc pairs (86) over lengths of approximately 20 m to approximately 25 m, disposed in such a way that partial disc turbolators (84) are provided above, between and below the annular-disc pairs (86).
EP11154105.8A 2010-02-11 2011-02-11 Fluid turbulator for geothermal probe Active EP2360438B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PL11154105T PL2360438T3 (en) 2010-02-11 2011-02-11 Fluid turbulator for geothermal probe
SI201130738T SI2360438T1 (en) 2010-02-11 2011-02-11 Fluid turbulator for geothermal probe
HRP20160160TT HRP20160160T1 (en) 2010-02-11 2016-02-15 Fluid turbulator for geothermal probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010001823A DE102010001823A1 (en) 2010-02-11 2010-02-11 Erdsondenfluidturbulator

Publications (3)

Publication Number Publication Date
EP2360438A2 EP2360438A2 (en) 2011-08-24
EP2360438A3 EP2360438A3 (en) 2014-08-27
EP2360438B1 true EP2360438B1 (en) 2016-02-10

Family

ID=43901264

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11154105.8A Active EP2360438B1 (en) 2010-02-11 2011-02-11 Fluid turbulator for geothermal probe

Country Status (8)

Country Link
EP (1) EP2360438B1 (en)
DE (1) DE102010001823A1 (en)
DK (1) DK2360438T3 (en)
ES (1) ES2563780T3 (en)
HR (1) HRP20160160T1 (en)
PL (1) PL2360438T3 (en)
RS (1) RS54604B1 (en)
SI (1) SI2360438T1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105579786B (en) * 2013-09-24 2018-08-07 动力蓝控股公司 Ground thermal probe with hybrid element
DE202014102027U1 (en) 2014-04-30 2015-08-03 Klaus Knof Erdsonde
DE102016109063A1 (en) 2016-05-17 2017-11-23 Anton LEDWON Geothermal probe and method for adjusting the length of a geothermal probe
DE102021108225A1 (en) * 2021-03-31 2022-10-06 Dynamic Blue Holding Gmbh Flow control element for cold heating networks

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3000157C2 (en) * 1980-01-04 1984-05-17 Klaus 3101 Hornbostel Prenzler Heat exchanger device for extracting thermal energy from the ground
JP2004340463A (en) * 2003-05-15 2004-12-02 K & S Japan Kk Air conditioner utilizing geothermal heat
ES2561947T3 (en) * 2007-09-08 2016-03-01 Dynamic Blue Holding Gmbh Closed circuit geothermal heat transfer
DE102008002048B4 (en) 2008-05-28 2011-03-10 Koenig & Bauer Aktiengesellschaft Use of a cleaning system for cleaning one or more printing cylinder of a printing unit of a printing press
DE202008012055U1 (en) * 2008-08-06 2009-02-19 Rausch Gmbh Probe head and probe for exchanging heat energy

Also Published As

Publication number Publication date
HRP20160160T1 (en) 2016-03-11
DK2360438T3 (en) 2016-04-18
EP2360438A2 (en) 2011-08-24
ES2563780T3 (en) 2016-03-16
EP2360438A3 (en) 2014-08-27
RS54604B1 (en) 2016-08-31
SI2360438T1 (en) 2016-04-29
PL2360438T3 (en) 2016-06-30
DE102010001823A1 (en) 2011-08-11

Similar Documents

Publication Publication Date Title
EP2360438B1 (en) Fluid turbulator for geothermal probe
EP2034252B1 (en) Geothermal heat exchanger circuit
EP0189733B1 (en) Heat pump installation for heat extraction from the ground
EP0386176B1 (en) Installation for energy exchange between the ground and an energy exchanger
EP3193117B1 (en) Heat exchange device
EP2357424B1 (en) Storage device for storing warm liquids at different temperatures
EP3748254B1 (en) Geothermal heat exchanger assembly comprising heat exchanger screw posts
DE102005020887B3 (en) Spiral filament heat exchanger for geothermal heat has outer and inner spirals held at spacing by one or more spacing tubes running perpendicularly
DE2333839A1 (en) FLOW THROTTLE DEVICE
EP2338012B1 (en) Geothermal energy probe
DE102014113750B4 (en) Storage probe with mixed bodies
WO2014000852A1 (en) Heat management system
WO2009129778A2 (en) Modular construction sensor base and components thereof
EP2060860B1 (en) Geo-thermal probe and method of installing it
DE19810713C2 (en) Core drilling device, device for insertion into a crown tube and method for cooling a drilling site
WO2016030076A1 (en) Insulating pipeline, use of an insulating pipeline, method for the production thereof and geothermal probe
WO1995030863A1 (en) Facility for effecting energy exchange between the ground and an energy exchanger
DE102010008710B4 (en) Method for laying geothermal probes and geothermal probes
EP4067670A1 (en) Flow guiding element for cooling and heating networks
DE29912335U1 (en) Earth probe
DE1800852A1 (en) Filter line for pipe wells
WO2013091853A1 (en) Geothermal probe assembly
DE202012004408U1 (en) Massive absorber in modular design
DE2603350A1 (en) WALL CONSTRUCTION FOR CASH UNITS OR DGL.
DE102010019728A1 (en) Heat exchanger device, use, heat exchanger assembly

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F24J 3/08 20060101AFI20140407BHEP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DYNAMIC BLUE HOLDING GMBH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DYNAMIC BLUE HOLDING GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F24J 3/08 20060101AFI20140718BHEP

17P Request for examination filed

Effective date: 20150226

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150730

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LEDWON, ANTON

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20160160

Country of ref document: HR

Ref country code: AT

Ref legal event code: REF

Ref document number: 774856

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20160160

Country of ref document: HR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2563780

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160316

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011008832

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20160411

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160613

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160610

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011008832

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20161111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160211

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20170222

Year of fee payment: 7

Ref country code: PL

Payment date: 20170127

Year of fee payment: 7

Ref country code: NL

Payment date: 20170220

Year of fee payment: 7

Ref country code: AT

Payment date: 20170217

Year of fee payment: 7

Ref country code: BE

Payment date: 20170220

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502011008832

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F24J0003080000

Ipc: F24T0010000000

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180221

Year of fee payment: 8

Ref country code: RO

Payment date: 20180130

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20180222

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160211

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20180228

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180301

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 774856

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20160160

Country of ref document: HR

Payment date: 20190305

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190226

Year of fee payment: 9

Ref country code: ES

Payment date: 20190319

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20190129

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190211

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

REG Reference to a national code

Ref country code: HR

Ref legal event code: PBON

Ref document number: P20160160

Country of ref document: HR

Effective date: 20200211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200211

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240216

Year of fee payment: 14

Ref country code: GB

Payment date: 20240222

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20240129

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RS

Payment date: 20240205

Year of fee payment: 14

Ref country code: FR

Payment date: 20240222

Year of fee payment: 14