EP2358649A1 - Utilisation d'au moins un ether de cellulose pour reduire le retrait et/ou la fissuration plastique dans le beton - Google Patents

Utilisation d'au moins un ether de cellulose pour reduire le retrait et/ou la fissuration plastique dans le beton

Info

Publication number
EP2358649A1
EP2358649A1 EP09784265A EP09784265A EP2358649A1 EP 2358649 A1 EP2358649 A1 EP 2358649A1 EP 09784265 A EP09784265 A EP 09784265A EP 09784265 A EP09784265 A EP 09784265A EP 2358649 A1 EP2358649 A1 EP 2358649A1
Authority
EP
European Patent Office
Prior art keywords
concrete
cellulose ether
substitution
plastic
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09784265A
Other languages
German (de)
English (en)
Inventor
Constantinos Xenopoulos
Isabelle Sgro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lafarge SA
Original Assignee
Lafarge SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lafarge SA filed Critical Lafarge SA
Publication of EP2358649A1 publication Critical patent/EP2358649A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/38Polysaccharides or derivatives thereof
    • C04B24/383Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/56Opacifiers
    • C04B2103/58Shrinkage reducing agents

Definitions

  • the present invention relates to the use of at least one cellulose ether for reducing or eliminating plastic shrinkage and / or plastic cracking in concrete.
  • the concrete may have a shrinkage and / or cracking of its structure at different stages of its development:
  • curing agents for example acrylic or vinyl polymers
  • plastic shrinkage and / or plastic cracking of hydraulic binder compositions such as for example concrete.
  • concrete tends to develop cracks.
  • These cracks have the disadvantage of weakening the concrete and altering its mechanical and aesthetic performance.
  • the climatic conditions for example humidity or temperature, accelerate the growth of these cracks when they are present, and deteriorate the concrete.
  • a main function of curing products is to reduce plastic cracking and delay its propagation through the concrete matrix. Following the reduction or removal of plastic shrinkage and / or plastic cracking, the life of the concrete is improved.
  • the curing products are not entirely satisfactory because they require to be sprayed on the surface of the concrete after pouring which adds an additional step in the placement of the concrete.
  • the efficacy of the curing product depends on the homogeneity of this product during spraying, that is to say the average amount of product per square meter, which makes its use difficult on site.
  • the problem to be solved by the invention is to provide a new means adapted to reduce or eliminate plastic shrinkage and / or plastic cracking in concrete.
  • the inventors have demonstrated that it is possible to use at least one cellulose ether having either a degree of substitution in methoxy radicals (DSM) or a degree of substitution (DS) of 1.17. at 2.33.
  • the present invention proposes the use to reduce or eliminate the plastic shrinkage and / or reduce the plastic cracking in the concrete of at least one cellulose ether having either a degree of substitution in methoxy radicals (DSM), or a degree of substitution (DS) ranging from 1.17 to 2.33.
  • DSM methoxy radicals
  • DS degree of substitution
  • the present invention also relates to a concrete comprising from 0.05 to 0.8% of at least one cellulose ether (% dry weight of cellulose ether relative to the dry mass of cement) as additive to reduce plastic shrinkage and / or reduce plastic cracking.
  • the invention offers decisive advantages, in particular since the cellulose ethers can be introduced directly into the concrete, in particular into the concrete present in the spin truck, or in the constituents of the concrete in dry form, ie say in powder form. This is very advantageous compared to other additives that need to be sprayed onto the concrete surface after pouring. Indeed the use according to the invention facilitates the implementation of the concrete on the site insofar as the treatment step after casting is removed.
  • the concrete containing a cellulose ether according to the invention is a fluid concrete or self-compacting (or self-compacting or self-leveling).
  • the invention offers another advantage that the compounds according to the invention can suppress plastic shrinkage and / or plastic cracking in concrete compositions.
  • Another advantage of the present invention is that the cellulose ethers used according to the invention disperse well in the concrete compositions.
  • the cellulose ethers used according to the invention have the advantage of presenting a performance insensitive to the chemical nature of the concrete.
  • the invention has the advantage of being implemented in all industries, including the building industry, the cement industry and in all construction markets (building, civil engineering or prefabrication plant).
  • hydraulic binder is meant according to the present invention any compound having the property of hydrating in the presence of water and whose hydration makes it possible to obtain a solid having mechanical characteristics.
  • the hydraulic binder according to the invention may in particular be a cement.
  • the hydraulic binder according to the invention is a cement.
  • crete is meant a mixture of hydraulic binders, aggregates, water, possibly additives, and possibly mineral additives such as high performance concrete, very high performance concrete, self-compacting concrete , self-leveling concrete, self-compacting concrete, fiber concrete, ready-mix concrete or colored concrete.
  • concrete By the term “concrete” is also meant concretes having undergone a finishing operation such as bush-hammered concrete, deactivated or washed concrete, or polished concrete. According to this definition, prestressed concrete is also meant.
  • the term “concrete” includes mortars, in this case the concrete comprises a mixture of hydraulic binder, sand, water and possibly additives.
  • the term “concrete” according to the invention denotes indistinctly fresh concrete or hardened concrete.
  • the term “aggregates” refers to chippings and / or sand.
  • the expression “mineral additions” denotes slags (as defined in the "cement” standard NF EN 197-1 section 5.2.2), pozzolanic materials (as defined in the “cement” standard NF EN 197-1 paragraph 5.2.3), fly ash (as defined in the “Cement” NF EN 197-1 paragraph 5.2.4), shales (as defined in the "Cement” NF EN 197-1 standard). section 5.2.5), limescale (as defined in the "Cement” standard NF EN 197-1 paragraph 5.2.6) or even fumed silica (as defined in the "cement” standard NF EN 197-1 paragraph 5.2.7).
  • fluid concrete is meant a concrete that can easily be used.
  • the workability of the fluid concretes is measured by the height of subsidence at the Abrams cone -or slump- value (according to the French standard NF P 18-451, of December 1981) and it is estimated that a concrete is fluid when this sag is at least 150 mm, preferably at least 180 mm.
  • self-compacting concrete or “self-compacting concrete” or “self-leveling concrete” is meant according to the present invention a fluid concrete, set up by gravity, without requiring vibration.
  • the workability of self-compacting concretes is generally measured from “slumpflow", or spreading, according to the procedure described in the document entitled “Specification and Guidelines for Concrete Compacting Concrete, EFNARC, February 2002, p. 19-23 "; the value of the spread is greater than 650 mm for self-compacting concretes (and in general less than 800 mm).
  • setting is meant according to the present invention the transition to the solid state by chemical reaction of hydration of the binder.
  • the setting is usually followed by the hardening period.
  • hardening is meant according to the present invention the acquisition of the mechanical properties of a hydraulic binder, after the end of setting.
  • rack is meant according to the present invention a fracture or breakage of a material, which results or not in the separation of said material into at least two separate pieces.
  • cracks By the term “cracking” is meant according to the present invention the appearance of cracks.
  • cure is meant according to the present invention the protection of concrete against desiccation too fast during its setting and the first days of hardening.
  • the concrete surface can be kept moist by spraying or protection with mats, wet bags, waterproof sheets, or by spraying a curing compound after pouring the concrete.
  • shrinkage is meant according to the invention the decrease in volume of the concrete.
  • plastic shrinkage is meant according to the invention the decrease in volume of the concrete during setting.
  • plastic cracking is meant according to the invention the appearance of cracks during setting.
  • drying shrinkage is meant according to the invention the decrease in volume of the concrete during hardening.
  • drying cracking is meant according to the invention the appearance of cracks during curing.
  • plastic is meant according to the invention the state of the concrete before and during setting.
  • elements for the field of construction any constituent element of a construction such as for example a floor, a screed, a foundation, a wall, a partition, a ceiling, a beam .
  • degree of substitution is meant according to the invention the average number of hydroxyls which have reacted per unit of glucose.
  • the value of the DS can vary from 0 to 3.
  • degree of substitution in methoxy radicals is meant according to the invention the average number of methoxy substituents carried per unit of glucose.
  • the value of the DSM can vary from 0 to 3.
  • SM molar substitution
  • the invention relates to the use to reduce the plastic shrinkage and / or to reduce the plastic cracking in the concrete of at least one cellulose ether having either a degree of substitution in methoxy radicals. (DSM), a degree of substitution (DS) of 1.17 to 2.33.
  • DSM methoxy radicals
  • DS degree of substitution
  • the reduction of the plastic shrinkage and / or the reduction of the plastic cracking in the concrete is obtained without increasing the retention of water in the concrete during its setting and the first days of hardening compared to a concrete not not containing the cellulose ether according to the invention.
  • the cellulose ether according to the invention has no effect of improving the retention of water, although it leads to a reduction in plastic shrinkage and / or plastic cracking in the concrete.
  • the use according to the invention comprises at least one cellulose ether having either a degree of substitution in methoxy radicals (DSM) or a degree of substitution (DS) of from 1.5 to 2.0.
  • the use according to the invention comprises at least one cellulose ether having either a degree of substitution in methoxy radicals (DSM) or a degree of substitution (DS) of from 1.7 to 1.9.
  • the degree of substitution in methoxy radicals (DSM), or a degree of substitution (DS) is equal to 1.8.
  • at least one cellulose ether used according to the invention has a molecular weight greater than or equal to 300 000 g / mol.
  • At least one cellulose ether used according to the invention has a molecular weight of 400,000 g / mol to 1,000,000 g / mol.
  • At least one cellulose ether used according to the invention has a molecular weight of 700 000 g / mol to 800 000 g / mol.
  • At least one cellulose ether used according to the invention has a Brookfield viscosity of 50 to 100,000 mPa.s measured for a 2% aqueous solution.
  • the cellulose ether used according to the invention has a Brookfield viscosity of 50 to 50,000 mPa.s measured for a 2% aqueous solution.
  • the cellulose ether used according to the invention has a Brookfield viscosity of 100 to 15,000 mPa.s measured for a 2% aqueous solution.
  • At least one cellulose ether used according to the invention has a Brookfield viscosity of 1000 to 10 000 mPa.s measured for a 2% aqueous solution.
  • the cellulose ether used according to the invention has a Brookfield viscosity of 3500 to 4500 mPa.s measured for a 2% aqueous solution.
  • the cellulose ether used according to the invention has a Brookfield viscosity equal to 4000 mPa.s measured for a 2% aqueous solution.
  • Brookfield viscosity is measured according to ASTM Monograph D1347 and D 2363.
  • the invention provides the use for reducing plastic shrinkage and / or reducing plastic cracking in the concrete of at least one cellulose ether having either a degree of substitution in methoxy radicals (DSM) or a degree of substitution (DS ) from 1.17 to 2.33, said cellulose ether having a molecular weight greater than or equal to 300 000 g / mol and a Brookfield viscosity of from 50 to 100 000 mPa.s measured for a 2% aqueous solution.
  • DSM methoxy radicals
  • DS degree of substitution
  • At least one cellulose ether used according to the invention has a molar substitution (SM) of 0 to 1.
  • SM molar substitution
  • At least one cellulose ether used according to the invention is methylhydroxypropylcellulose.
  • At least one cellulose ether used according to the invention is hydroxyethylcellulose.
  • the concentration of at least one cellulose ether used according to the invention in concrete is from 0.01 to 0.8%, preferably from 0.05 to 0.8% of cellulose ether (% dry weight of cellulose ether relative to the dry mass of cement).
  • the concentration of at least one cellulose ether used according to the invention in the concrete is from 0.01 to 0.6% of cellulose ether (% by dry weight of cellulose ether relative to dry mass of cement). More preferably, the concentration of at least one cellulose ether used according to the invention in the concrete is from 0.01 to 0.5%, preferably from 0.05 to 0.5% of cellulose ether (% dry weight of cellulose ether relative to the dry mass of cement).
  • the concentration of at least one cellulose ether used according to the invention in the concrete is from 0.01 to 0.35%, preferably from 0.05 to 0.35% of cellulose ether ( % dry weight of cellulose ether relative to the dry mass of cement).
  • the cellulose ether used according to the invention is the only additive that makes it possible to reduce or eliminate the plastic shrinkage and / or the plastic cracking present in said concrete.
  • At least one cellulose ether used according to the invention is methylcellulose.
  • the invention thus relates to the use for reducing the plastic shrinkage and / or reducing the plastic cracking in the concrete of at least one methylcellulose having either a degree of substitution in methoxy radicals (DSM) or a degree of substitution (DS) ranging from 1.17 to 2.33.
  • DSM methoxy radicals
  • DS degree of substitution
  • the use according to the invention comprises at least one methylcellulose having either a degree of substitution in methoxy radicals (DSM) or a degree of substitution (DS) of between 1.5 and 2.0.
  • the use according to the invention comprises at least one methylcellulose having either a degree of substitution in methoxy radicals (DSM) or a degree of substitution (DS) of from 1.7 to 1.9.
  • the degree of substitution in methoxy radicals (DSM) or a degree of substitution (DS) is equal to 1.8.
  • At least one methylcellulose used according to the invention has a molecular weight greater than or equal to 300 000 g / mol.
  • At least one methylcellulose used according to the invention has a molecular weight of 400 000 g / mol to 1 000 000 g / mol. Even more preferably at least one methylcellulose used according to the invention has a molecular weight of 700 000 g / mol to 800 000 g / mol.
  • At least one methylcellulose used according to the invention has a Brookfield viscosity of 50 to 100,000 mPa.s measured for a 2% aqueous solution. More particularly, the methylcellulose used according to the invention has a Brookfield viscosity of 50 to 50,000 mPa.s measured for a 2% aqueous solution.
  • the methylcellulose used according to the invention has a Brookfield viscosity of 100 to 15,000 mPa.s measured for a 2% aqueous solution.
  • Preferably at least the methylcellulose used according to the invention has a Brookfield viscosity of 1000 to 10 000 mPa.s measured for a 2% aqueous solution.
  • the methylcellulose used according to the invention has a Brookfield viscosity of 3500 to 4500 mPa.s measured for a 2% aqueous solution. Even more preferentially, the methylcellulose used according to the invention has a Brookfield viscosity equal to 4000 mPa.s measured for a 2% aqueous solution.
  • the Brookfield viscosity is measured according to ASTM Monograph D1347 and D 2363.
  • Preferably at least the methylcellulose used according to the invention has a molar substitution (SM) of 0 to 1.
  • the concentration of at least methylcellulose used according to the invention in the concrete is from 0.01 to 0.8%, preferably from 0.05 to 0.8% of cellulose ether (% by weight cellulose ether dry relative to the dry mass of cement).
  • the concentration of at least methylcellulose used according to the invention in the concrete is from 0.01 to 0.6% of cellulose ether (% by dry weight of cellulose ether relative to the dry mass). of cement). More preferably, the concentration of at least methylcellulose used according to the invention in the concrete is from 0.01 to 0.5%, preferably from 0.05 to 0.5% of cellulose ether (% by weight cellulose ether dry relative to the dry mass of cement). Even more preferably, the concentration of at least methylcellulose used according to the invention in the concrete is from 0.01 to 0.35%, preferably from 0.05 to 0.35% of cellulose ether (% by weight). dry mass of cellulose ether relative to the dry mass of cement).
  • the cellulose ether used according to the invention is not mixed with other additives as additives to reduce plastic shrinkage and / or to reduce plastic cracking in said concrete, it being understood that said concrete may contain other additives with functions other than reducing or eliminating plastic shrinkage and / or plastic cracking.
  • the cellulose ethers can also be introduced directly into the concrete, in particular into the concrete present in the router truck or in each constituent of the concrete.
  • the cellulose ethers can be introduced in powder form or in dry form directly into the various constituents of the concrete whatever their physical states (in the form of powder, paste, liquid or solid). It is possible to envisage that the cellulose ethers used according to the invention can be introduced in powder form or in dry form directly with the constituent granules of the concrete. In this case, it is preferably a mixture with the aggregates.
  • the cellulose ethers can also be introduced in the form of a liquid or semi-liquid solution in the mixing water.
  • the subject of the present invention is also a hydraulic binder comprising from 0.05 to 0.8% of at least one cellulose ether (% by dry weight of cellulose ether relative to the dry mass of cement) as additive to reduce plastic shrinkage and / or reduce plastic cracking.
  • the present invention also relates to a hydraulic binder comprising
  • cellulose ether % dry weight of cellulose ether relative to the dry mass of cement
  • Figure 1 shows a photo of a concrete made without use according to the invention of cellulose ether. This is a control concrete.
  • Figure 2 shows a photo of a concrete made with use according to the invention of methylcellulose at 0.14% by dry weight relative to the dry mass of cement.
  • Figure 3 shows a photo of a concrete made with use according to the invention of methylhydroxypropylcellulose at 0.35% by dry weight relative to the dry mass of cement.
  • FIG. 4 shows a photo of a concrete made with use according to the invention of methylhydroxypropylcellulose at 0.20% by dry weight relative to the dry mass of cement.
  • Figure 5 shows the evolution of the weight of several concrete plates as a function of time.
  • a calcareous mineral filler (CaCO 3 ) with a density of 2.73; sand of 0/4 particle size defined according to EN 12620; a PCP (PolycarboxylPolyox) superplasticizer; tap water. 2 / Concrete manufacturing:
  • the grid is fixed by iron wires in four zones of the mold.
  • the dry raw materials cement, sand, limestone, polypropylene fibers and cellulose ether
  • the mixer used is a Rayneri mixer capacity of 4OL and having a planetary rotation type.
  • the total water and the superplasticizer are introduced into the mixer in 30 seconds and maintaining a mixing speed of 30tr / min.
  • the kneading is maintained for another 5 minutes and 30 seconds at a kneading speed of 30tr / min.
  • the speed of the kneader is increased to 70 rpm and kneading is maintained for another 2 minutes.
  • the Applicant has demonstrated that, surprisingly, the reduction and / or the elimination of plastic cracking in concrete by using a cellulose ether according to the invention in concrete is not due to better retention. water in the concrete at the time of setting. Indeed, the Applicant has demonstrated that with the cellulose ethers according to the invention, no increase in water retention in the concrete is observed at the time of setting and in the first days following the taken while one observes a reduction, even a suppression of the plastic cracking. This is demonstrated with the following test: during the accelerated evaporation phase described above, the weight of concrete slabs is measured as a function of time. The weight loss is the evaporated water.
  • control 2 The concrete of control 2 is made without cellulose ether. However, the cure product marketed by Chryso under the name Chrysocure is sprayed onto the concrete slab with a quantity of 150 g / m 2 after setting.
  • the other concretes are made by introducing, as described above, the cellulose ether in the form of powder except for the examples for which it is indicated that the cellulose ether is diluted.
  • the cellulose ether is diluted beforehand in a portion of the mixing water, the solution obtained being introduced with the rest of the mixing water.
  • the accelerated evaporation phase starts after 5 hours after concreting.
  • control 1 which corresponds to a concrete containing no cellulose ether
  • control 2 which corresponds to a concrete containing no no cellulose ether but is covered with a cure product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

La présente invention a pour objet l'utilisation pour réduire le retrait plastique et/ou réduire la fissuration plastique dans le béton d'au moins un éther de cellulose présentant soit un degré de substitution en radicaux méthoxy (DSM), soit un degré de substitution (DS) compris de 1,17 à 2,33.

Description

UTILISATION D'AU MOINS UN ETHER DE CELLULOSE POUR REDUIRE LE RETRAIT ET/OU LA FISSURATION PLASTIQUE DANS LE BETON
La présente invention a pour objet l'utilisation d'au moins un éther de cellulose pour réduire ou supprimer le retrait plastique et/ou la fissuration plastique dans le béton. En effet le béton peut présenter un retrait et/ou une fissuration de sa structure à différents stades de son élaboration :
Retrait et/ou fissuration avant ou pendant la prise du béton (retrait et/ou fissuration plastique);
Retrait et/ou fissuration pendant le durcissement du béton (retrait et/ou fissuration de séchage).
Il est connu d'utiliser des additifs ou des mélanges d'additifs pour améliorer les performances mécaniques des bétons ou pour améliorer la rhéologie des compositions à base de liants hydrauliques.
Par exemple, il est connu d'utiliser des produits de cure (par exemple des polymères acryliques ou vinyliques) pour réduire le retrait plastique et/ou la fissuration plastique des compositions de liants hydrauliques, comme par exemple le béton. En effet, en raison d'un important retrait, le béton a tendance à développer des fissures. Ces fissures ont pour inconvénient de fragiliser le béton et d'altérer ses performances mécaniques et esthétiques. De plus, les conditions climatiques, par exemple l'humidité ou la température, accélèrent la croissance de ces fissures lorsqu'elles sont présentes, et détériorent le béton. Une fonction principale des produits de cure est de réduire la fissuration plastique et de retarder sa propagation à travers la matrice du béton. Suite à la réduction ou suppression du retrait plastique et/ou de la fissuration plastique, la durée de vie du béton est améliorée. Cependant, les produits de cure ne donnent pas entière satisfaction car ils nécessitent d'être pulvérisés sur la surface du béton après coulage ce qui ajoute une étape supplémentaire dans la mise en place du béton. De plus, l'efficacité du produit de cure dépend de l'homogénéité de ce produit lors de la pulvérisation, c'est-à-dire la quantité moyenne de produit par mètre carré, ce qui rend son utilisation délicate sur chantier.
Afin de répondre aux exigences des industriels, il est devenu nécessaire de trouver un autre moyen pour supprimer ou réduire le retrait plastique et/ou la fissuration plastique dans le béton.
Aussi le problème que se propose de résoudre l'invention est de fournir un nouveau moyen adapté pour réduire ou supprimer le retrait plastique et/ou la fissuration plastique dans le béton. De manière inattendue, les inventeurs ont mis en évidence qu'il est possible d'utiliser au moins un éther de cellulose présentant soit un degré de substitution en radicaux méthoxy (DSM), soit un degré de substitution (DS) compris de 1 ,17 à 2,33.
Dans ce but la présente invention propose l'utilisation pour réduire ou supprimer le retrait plastique et/ou réduire la fissuration plastique dans le béton d'au moins un éther de cellulose présentant soit un degré de substitution en radicaux méthoxy (DSM), soit un degré de substitution (DS) compris de 1,17 à 2,33.
La présente invention a également pour objet un béton comprenant de 0,05 à 0,8 % d'au moins un éther de cellulose (% en masse sèche d'éther de cellulose par rapport à la masse sèche de ciment) en tant qu'additif pour réduire le retrait plastique et/ou réduire la fissuration plastique.
L'invention offre des avantages déterminants, en particulier car les éthers de cellulose peuvent être introduits directement dans le béton, notamment dans le béton présent dans le camion-toupie, ou dans les constituants du béton sous forme sèche, c'est-à-dire sous forme de poudre. Ceci est très avantageux par rapport à d'autres additifs qui nécessitent d'être pulvérisés sur la surface du béton après coulage. En effet l'utilisation selon l'invention facilite la mise en oeuvre du béton sur le chantier dans la mesure où l'étape de traitement après coulage est supprimée.
Avantageusement, le béton contenant un éther de cellulose selon l'invention est un béton fluide ou autoplaçant (ou autocompactant ou autonivelant).
L'invention offre comme autre avantage que les composés selon l'invention peuvent supprimer le retrait plastique et/ou la fissuration plastique dans des compositions de bétons.
Un autre avantage de la présente invention est que les éthers de cellulose utilisés selon l'invention se dispersent bien dans les compositions de bétons.
De plus, les éthers de cellulose utilisés selon l'invention ont comme avantage de présenter une performance peu sensible à la nature chimique du béton.
Enfin l'invention a pour avantage de pouvoir être mise en œuvre dans toutes industries, notamment l'industrie du bâtiment, l'industrie cimentière et dans l'ensemble des marchés de la construction (bâtiment, génie civil ou usine de préfabrication).
D'autres avantages et caractéristiques de l'invention apparaîtront clairement à la lecture de la description et des exemples donnés à titre purement illustratifs et non limitatifs qui vont suivre.
Par l'expression « liant hydraulique », on entend selon la présente invention tout composé ayant la propriété de s'hydrater en présence d'eau et dont l'hydratation permet d'obtenir un solide ayant des caractéristiques mécaniques. Le liant hydraulique selon l'invention peut en particulier être un ciment. De préférence, le liant hydraulique selon l'invention est un ciment. Par le terme « béton », on entend un mélange de liants hydrauliques, de granulats, d'eau, éventuellement d'additifs, et éventuellement d'additions minérales comme par exemple le béton hautes performances, le béton très hautes performances, le béton autoplaçant, le béton autonivelant, le béton autocompactant, le béton fibre, le béton prêt à l'emploi ou le béton coloré. Par le terme « béton », on entend également les bétons ayant subi une opération de finition telle que le béton bouchardé, le béton désactivé ou lavé, ou le béton poli. On entend également selon cette définition le béton précontraint. Le terme « béton » comprend les mortiers, dans ce cas précis le béton comprend un mélange de liant hydraulique, de sable, d'eau et éventuellement d'additifs. Le terme « béton » selon l'invention désigne indistinctement le béton frais ou le béton durci.
Selon l'invention le terme « granulats » désigne des gravillons et / ou du sable. Selon l'invention l'expression « additions minérales» désigne les laitiers (tels que définis dans la norme « Ciment » NF EN 197-1 paragraphe 5.2.2), les matériaux pouzzolaniques (tels que définis dans la norme « Ciment » NF EN 197-1 paragraphe 5.2.3), les cendres volantes (telles que définies dans la norme « Ciment » NF EN 197-1 paragraphe 5.2.4), les schistes (tels que définis dans la norme « Ciment » NF EN 197-1 paragraphe 5.2.5), les calcaires (tels que définis dans la norme « Ciment » NF EN 197-1 paragraphe 5.2.6) ou encore les fumées de silices (telles que définies dans la norme « Ciment » NF EN 197-1 paragraphe 5.2.7).
Par l'expression « béton fluide », on désigne un béton pouvant facilement être mis en oeuvre. L'ouvrabilité des bétons fluides est mesurée par la hauteur d'affaissement au cône d'Abrams -ou valeur de slump- (selon la norme française NF P 18-451 , de décembre 1981) et on estime qu'un béton est fluide lorsque cet affaissement est d'au moins 150 mm, de préférence au moins 180 mm.
Par l'expression « béton autoplaçant » ou « béton autocompactant » ou « béton autonivelant », on entend selon la présente invention un béton fluide, mis en place par gravité, sans nécessiter de vibration. L'ouvrabilité des bétons autoplaçants (ou autocompactants ou autonivelants) est généralement mesurée à partir du "slumpflow", ou étalement, selon le mode opératoire décrit dans le document intitulé "Spécification and Guidelines for Self Compacting Concrète, EFNARC, February 2002, p. 19-23"; la valeur de l'étalement est supérieure à 650 mm pour les bétons autocompactants (et en général inférieure à 800 mm).
Par le terme « prise », on entend selon la présente invention le passage à l'état solide par réaction chimique d'hydratation du liant. La prise est généralement suivi par la période de durcissement.
Par le terme « durcissement», on entend selon la présente invention l'acquisition des propriétés mécaniques d'un liant hydraulique, après la fin de la prise. Par le terme « fissure », on entend selon la présente invention une fracture ou une rupture d'un matériau, qui aboutit ou non à la séparation dudit matériau en au moins deux morceaux distincts.
Par le terme « fissuration », on entend selon la présente invention l'apparition de fissures.
Par le terme « cure », on entend selon la présente invention la protection du béton contre une dessiccation trop rapide pendant sa prise et les premiers jours de son durcissement. La surface du béton peut être maintenue humide par arrosage ou par protection à l'aide de paillassons, de sacs humides, de feuilles imperméables, ou par pulvérisation d'un produit de cure après coulage du béton.
Par le terme « retrait », on entend selon l'invention la diminution de volume du béton.
Par l'expression « retrait plastique », on entend selon l'invention la diminution de volume du béton pendant la prise. Par l'expression « fissuration plastique », on entend selon l'invention l'apparition de fissures pendant la prise.
Par l'expression « retrait de séchage », on entend selon l'invention la diminution de volume du béton pendant le durcissement.
Par l'expression « fissuration de séchage», on entend selon l'invention l'apparition de fissures pendant le durcissement.
Par le terme « plastique », on entend selon l'invention l'état du béton avant et pendant la prise.
Par l'expression « éléments pour le domaine de la construction », on entend selon la présente invention tout élément constitutif d'une construction comme par exemple un sol, une chape, une fondation, un mur, une cloison, un plafond, une poutre.
Par l'expression « degré de substitution (DS) », on entend selon l'invention le nombre moyen d'hydroxyle qui ont réagi par unité de glucose. La valeur du DS peut varier de 0 à 3.
Par l'expression « degré de substitution en radicaux méthoxy (DSM) », on entend selon l'invention le nombre moyen de substituant méthoxy porté par unité de glucose. La valeur du DSM peut varier de 0 à 3.
Par l'expression « substitution molaire (SM) », on entend selon l'invention le nombre moyen de mole de monomère ayant réagi par mole d'unité glucose. La valeur du SM peut varier de 0 à 1. L'invention concerne l'utilisation pour réduire le retrait plastique et/ou réduire la fissuration plastique dans le béton d'au moins un éther de cellulose présentant soit un degré de substitution en radicaux méthoxy (DSM), soit un degré de substitution (DS) compris de 1 ,17 à 2,33. De façon surprenante, la réduction du retrait plastique et/ou la réduction de la fissuration plastique dans le béton est obtenue sans augmentation de la rétention d'eau dans le béton pendant sa prise et les premiers jours de son durcissement par rapport à un béton ne contenant pas l'éther de cellulose selon l'invention. Autrement dit l'éther de cellulose selon l'invention n'a pas d'effet d'améliorer la rétention d'eau bien qu'il entraîne une réduction du retrait plastique et/ou de la fissuration plastique dans le béton
De préférence l'utilisation selon l'invention comprend au moins un éther de cellulose présentant soit un degré de substitution en radicaux méthoxy (DSM), soit un degré de substitution (DS) compris de 1 ,5 à 2,0. Préférentiellement l'utilisation selon l'invention comprend au moins un éther de cellulose présentant soit un degré de substitution en radicaux méthoxy (DSM), soit un degré de substitution (DS) compris de 1 ,7 à 1 ,9.
Encore plus préférentiellement soit le degré de substitution en radicaux méthoxy (DSM), soit un degré de substitution (DS) est égal à 1 ,8. De préférence au moins un éther de cellulose utilisé selon l'invention présente un poids moléculaire supérieur ou égal à 300 000 g/mole.
Plus préférentiellement au moins un éther de cellulose utilisé selon l'invention présente un poids moléculaire de 400 000 g/mole à 1 000 000 g/mole.
Encore plus préférentiellement au moins un éther de cellulose utilisé selon l'invention présente un poids moléculaire de 700 000 g/mole à 800 000 g/mole.
De préférence au moins un éther de cellulose utilisé selon l'invention présente une viscosité Brookfield comprise de 50 à 100 000 mPa.s mesurée pour une solution aqueuse à 2%.
Plus particulièrement l'éther de cellulose utilisé selon l'invention présente une viscosité Brookfield de 50 à 50 000 mPa.s mesurée pour une solution aqueuse à 2%.
Encore plus particulièrement l'éther de cellulose utilisé selon l'invention présente une viscosité Brookfield de 100 à 15 000 mPa.s mesurée pour une solution aqueuse à 2%.
Préférentiellement au moins un éther de cellulose utilisé selon l'invention présente une viscosité Brookfield comprise de 1000 à 10 000 mPa.s mesurée pour une solution aqueuse à 2%.
Plus préférentiellement l'éther de cellulose utilisé selon l'invention présente une viscosité Brookfield de 3500 à 4500 mPa.s mesurée pour une solution aqueuse à 2%.
Encore plus préférentiellement l'éther de cellulose utilisé selon l'invention présente une viscosité Brookfield égal à 4000 mPa.s mesurée pour une solution aqueuse à 2%.
La viscosité Brookfield est mesurée selon la norme ASTM Monograph D1347 et D 2363. L'invention prévoit l'utilisation pour réduire le retrait plastique et/ou réduire la fissuration plastique dans le béton d'au moins un éther de cellulose présentant soit un degré de substitution en radicaux méthoxy (DSM), soit un degré de substitution (DS) compris de 1 ,17 à 2,33, ledit éther de cellulose présentant un poids moléculaire supérieur ou égal à 300 000 g/mole et une viscosité Brookfield comprise de 50 à 100 000 mPa.s mesurée pour une solution aqueuse à 2%.
De préférence au moins un éther de cellulose utilisé selon l'invention présente une substitution molaire (SM) comprise de 0 à 1.
Selon une variante de l'invention, au moins un éther de cellulose utilisé selon l'invention est la methylhydroxypropylcellulose.
Selon une autre variante de l'invention, au moins un éther de cellulose utilisé selon l'invention est l'hydroxyethylcellulose.
Plus particulièrement, la concentration en au moins un éther de cellulose utilisé selon l'invention dans le béton est comprise de 0,01 à 0,8 %, de préférence de 0,05 à 0,8 % d'éther de cellulose (% en masse sèche d'éther de cellulose par rapport à la masse sèche de ciment).
De préférence, la concentration en au moins un éther de cellulose utilisé selon l'invention dans le béton est comprise de 0,01 à 0,6 % d'éther de cellulose (% en masse sèche d'éther de cellulose par rapport à la masse sèche de ciment). Plus préférentiellement, la concentration en au moins un éther de cellulose utilisé selon l'invention dans le béton est comprise de 0,01 à 0,5 %, de préférence de 0,05 à 0,5 % d'éther de cellulose (% en masse sèche d'éther de cellulose par rapport à la masse sèche de ciment).
Encore plus préférentiellement, la concentration en au moins un éther de cellulose utilisé selon l'invention dans le béton est comprise de 0,01 à 0,35 %, de préférence de 0,05 à 0,35 % d'éther de cellulose (% en masse sèche d'éther de cellulose par rapport à la masse sèche de ciment).
Selon une variante de l'invention l'éther de cellulose utilisé selon l'invention est le seul additif permettant de réduire ou supprimer le retrait plastique et/ou la fissuration plastique présent dans ledit béton.
De préférence au moins un éther de cellulose utilisé selon l'invention est la methylcellulose. L'invention concerne alors l'utilisation pour réduire le retrait plastique et/ou réduire la fissuration plastique dans le béton d'au moins une methylcellulose présentant soit un degré de substitution en radicaux méthoxy (DSM), soit un degré de substitution (DS) compris de 1 , 17 à 2,33.
De préférence l'utilisation selon l'invention comprend au moins une methylcellulose présentant soit un degré de substitution en radicaux méthoxy (DSM), soit un degré de substitution (DS) compris de 1,5 à 2,0. Préférentiellement l'utilisation selon l'invention comprend au moins une méthylcellulose présentant soit un degré de substitution en radicaux méthoxy (DSM), soit un degré de substitution (DS) compris de 1 ,7 à 1 ,9.
Encore plus préférentiellement, soit le degré de substitution en radicaux méthoxy (DSM), soit un degré de substitution (DS) est égal à 1 ,8.
De préférence au moins une méthylcellulose utilisée selon l'invention présente un poids moléculaire supérieur ou égal à 300 000 g/mole.
Plus préférentiellement au moins une méthylcellulose utilisée selon l'invention présente un poids moléculaire de 400 000 g/mole à 1 000 000 g/mole. Encore plus préférentiellement au moins une méthylcellulose utilisée selon l'invention présente un poids moléculaire de 700 000 g/mole à 800 000 g/mole.
De préférence au moins une méthylcellulose utilisée selon l'invention présente une viscosité Brookfield comprise de 50 à 100 000 mPa.s mesurée pour une solution aqueuse à 2%. Plus particulièrement la méthylcellulose utilisée selon l'invention présente une viscosité Brookfield de 50 à 50 000 mPa.s mesurée pour une solution aqueuse à 2%.
Encore plus particulièrement la méthylcellulose utilisée selon l'invention présente une viscosité Brookfield de 100 à 15 000 mPa.s mesurée pour une solution aqueuse à 2%. Préférentiellement au moins la méthylcellulose utilisée selon l'invention présente une viscosité Brookfield comprise de 1000 à 10 000 mPa.s mesurée pour une solution aqueuse à 2%.
Plus préférentiellement la méthylcellulose utilisée selon l'invention présente une viscosité Brookfield de 3500 à 4500 mPa.s mesurée pour une solution aqueuse à 2%. Encore plus préférentiellement la méthylcellulose utilisée selon l'invention présente une viscosité Brookfield égal à 4000 mPa.s mesurée pour une solution aqueuse à 2%.
La viscosité Brookfield est mesurée selon la norme ASTM Monograph D1347 et D 2363. De préférence au moins la méthylcellulose utilisée selon l'invention présente une substitution molaire (SM) comprise de 0 à 1.
Plus particulièrement, la concentration en au moins la méthylcellulose utilisée selon l'invention dans le béton est comprise de 0,01 à 0,8 %, de préférence de 0,05 à 0,8 % d'éther de cellulose (% en masse sèche d'éther de cellulose par rapport à la masse sèche de ciment).
De préférence, la concentration en au moins la méthylcellulose utilisée selon l'invention dans le béton est comprise de 0,01 à 0,6 % d'éther de cellulose (% en masse sèche d'éther de cellulose par rapport à la masse sèche de ciment). Plus préférentiellement, la concentration en au moins la méthylcellulose utilisée selon l'invention dans le béton est comprise de 0,01 à 0,5 %, de préférence de 0,05 à 0,5 % d'éther de cellulose (% en masse sèche d'éther de cellulose par rapport à la masse sèche de ciment). Encore plus préférentiellement, la concentration en au moins la méthylcellulose utilisée selon l'invention dans le béton est comprise de 0,01 à 0,35 %, de préférence de 0,05 à 0,35 % d'éther de cellulose (% en masse sèche d'éther de cellulose par rapport à la masse sèche de ciment). Selon cette variante, l'éther de cellulose utilisé selon l'invention n'est pas mélangé avec d'autres additifs en tant qu'additifs pour réduire le retrait plastique et/ou de réduire la fissuration plastique dans ledit béton, étant entendu que ledit béton peut contenir d'autres additifs ayant d'autres fonctions que celle de réduire ou supprimer le retrait plastique et/ou la fissuration plastique.
Selon l'utilisation selon l'invention, les éthers de cellulose peuvent aussi être introduit directement dans le béton, notamment dans le béton présent dans le camion- toupie ou dans chaque constituant du béton.
Selon l'utilisation selon l'invention, les éthers de cellulose peuvent être introduits sous forme de poudre ou sous forme sèche directement dans les divers constituants du béton quels que soient leurs états physiques (sous forme de poudre, de pâte, de liquide ou de solide). II est possible d'envisager que les éthers de cellulose utilisés selon l'invention peuvent être introduits sous forme de poudre ou sous forme sèche directement avec les granulats constituants du béton. Dans ce cas, il s'agit de préférence d'un mélange avec les granulats.
Selon l'utilisation selon l'invention, les éthers de cellulose peuvent aussi être introduits sous forme de solution liquide ou semi-liquide dans l'eau de gâchage.
La présente invention a également pour objet un liant hydraulique comprenant de 0,05 à 0,8 % d'au moins un éther de cellulose (% en masse sèche d'éther de cellulose par rapport à la masse sèche de ciment) en tant qu'additif pour réduire le retrait plastique et/ou réduire la fissuration plastique. La présente invention a également pour objet un liant hydraulique comprenant de
0,05 à 0,8 % d'au moins un éther de cellulose (% en masse sèche d'éther de cellulose par rapport à la masse sèche de ciment) en tant qu'additif pour supprimer le retrait plastique et/ou supprimer la fissuration plastique.
La figure 1 présente une photo d'un béton réalisé sans utilisation selon l'invention d'éther de cellulose. Il s'agit d'un béton témoin.
La figure 2 présente une photo d'un béton réalisé avec utilisation selon l'invention de méthylcellulose à 0,14% en masse sèche par rapport à la masse sèche de ciment. La figure 3 présente une photo d'un béton réalisé avec utilisation selon l'invention de methylhydroxypropylcellulose à 0,35% en masse sèche par rapport à la masse sèche de ciment.
La figure 4 présente une photo d'un béton réalisé avec utilisation selon l'invention de methylhydroxypropylcellulose à 0,20% en masse sèche par rapport à la masse sèche de ciment.
La figure 5 représente l'évolution du poids de plusieurs plaques de béton en fonction du temps.
Les exemples suivants illustrent l'invention sans en limiter la portée.
EXEMPLES
1/ Constituants du béton :
Le tableau suivant décrit les ethers de cellulose qui ont été utilisés dans les exemples selon l'invention :
Les ciments suivants ont été utilisés selon l'invention :
- ciment provenant de la cimenterie du Val d'Azergue ;
- ciment provenant de la cimenterie Saint Pierre La Cour.
Les autres constituants suivants ont été utilisés selon l'invention : une charge minérale calcaire (CaCO3) de densité 2,73 ; un sable de granulométrie 0/4 défini selon la norme EN 12620 ; un superplastifiant type PCP (PolycarboxylPolyox) ; de l'eau du robinet. 2/ Fabrication du béton :
Quantités :
Le tableau suivant décrit les quantités des constituants qui sont utilisées dans une formualtion de béton selon l'invention.
Préparation du moule :
Un moule en bois présentant les dimensions suivantes : L 68.8 * I 48.8 * H4 cm, est ferraillé à l'aide d'une grille métallique, non galvanisée. La grille est fixée par des fils de fer en quatre zones du moule.
Fabrication d'une chape en béton :
Les matières premières sèches (ciment, sable, calcaire, fibres de polypropylène et éther de cellulose) sont introduites dans le bol du malaxeur et malaxées pendant 2 minutes à une vitesse de malaxage de 30tr/min, et à une température ambiante d'environ 2O0C. Le malaxeur utilisé est un malaxeur Rayneri de capacité maximale de 4OL et présentant une rotation de type planétaire.
Puis l'eau totale et le superplastifiant sont introduits dans le malaxeur en 30 secondes et en maintenant une vitesse de malaxage de 30tr/min. Le malaxage est maintenu pendant encore 5 minutes et 30 secondes à une vitesse de malaxage de 30tr/min. Puis la vitesse du malaxeur est augmentée pour atteindre 70tr/min et le malaxage est maintenu pendant encore 2 minutes.
3/ Test de fissuration et de retrait du béton :
On coule une plaque de béton de dimensions suivantes 63 X 49 X 40 cm. On met la plaque dans un dispositif d'évaporation accélérée pendant 24 heures à une température d'environ 35°C (température mesurée à la surface du béton) sous ventilation avec un débit d'air de 2,6 m/s.
La longueur des fissures est mesurée et estimée en mètre linéaire de fissures par m2 de surface de béton. 4/ Résultats des test de fissuration et de retrait du béton :
5/ Test de rétention d'eau dans le béton :
La demanderesse a mis en évidence que, de façon surprenante, la réduction et/ou la suppression de la fissuration plastique dans le béton par utilisation d'un éther de cellulose selon l'invention dans le béton n'est pas due à une meilleure rétention d'eau dans le béton au moment de la prise. En effet, la demanderesse a mis en évidence qu'avec les éthers de cellulose selon l'invention, on n'observe pas d'augmentation de la rétention d'eau dans le béton au moment de la prise et dans les premières jours suivants la prise alors que l'on observe une réduction, voire une suppression de la fissuration plastique. Ceci est mis en évidence avec le test suivant : pendant la phase d'évaporation accélérée décrite précédemment, on mesure le poids de plaques de béton en fonction du temps. La perte de poids correspond à l'eau évaporée.
Le béton du témoin 2 est réalisé sans éther de cellulose. Toutefois, le produit de cure commercialisé par la société Chryso sous l'appellation Chrysocure est pulvérisé sur la plaque de béton avec une quantité de 150 g/m2 après la prise.
Les autres bétons sont réalisés en introduisant, comme cela a été décrit précédemment, l'éther de cellulose sous la forme de poudre sauf pour les exemples pour lesquels il est indiqué que l'éther de cellulose est dilué. Dans ce cas, l'éther de cellulose est dilué au préalable dans une partie de l'eau de gâchage, la solution obtenue étant introduite avec le reste de l'eau de gâchage. En figure 5, la phase d'évaporation accélérée débute au bout de 5 heures après la réalisation des bétons. Comme cela apparaît sur la figure 5, on observe une amélioration de la rétention d'eau par rapport au témoin 1 , qui correspond à un béton ne contenant pas d'éther de cellulose, seulement pour le témoin 2 qui correspond à un béton ne contenant pas d'éther de cellulose mais qui est recouvert d'un produit de cure. Pour tous les exemples de béton contenant de l'éther de cellulose, on observe une perte de poids, c'est-à-dire une évaporation d'eau, similaire à celle obtenue pour le témoin 1 qui correspond à un béton ne contenant pas d'éther de cellulose. L'utilisation d'éthers de cellulose selon l'invention n'entraîne donc pas une augmentation de la rétention d'eau dans le béton. De façon surprenante, les éthers de cellulose selon l'invention procurent néanmoins une réduction et/ou une suppression de la fissuration plastique.

Claims

REVENDICATIONS
1. Utilisation pour réduire le retrait plastique et/ou réduire la fissuration plastique dans le béton d'au moins un éther de cellulose présentant soit un degré de substitution en radicaux méthoxy (DSM), soit un degré de substitution (DS) compris de 1,17 à 2,33.
2. Utilisation selon la revendication 1 caractérisée en ce qu'au moins un éther de cellulose présente un poids moléculaire supérieur ou égal à 300 000 g/mole.
3. Utilisation selon les revendications 1 à 2 caractérisée en ce qu'au moins un éther de cellulose présente une viscosité Brookfield comprise de 50 à 100 000 mPa.s mesurée pour une solution aqueuse à 2%.
4. Utilisation selon les revendications 1 à 3 caractérisée en ce qu'au moins un éther de cellulose présente une substitution molaire compris de 0 à 1.
5. Utilisation selon les revendications 1 à 4 caractérisée en ce qu'au moins un éther de cellulose est la methylcellulose.
6. Utilisation selon les revendications 1 à 5 caractérisée en ce que la concentration en au moins un éther de cellulose dans le béton est comprise de 0,01 à 0,8 % d'éther de cellulose (% en masse sèche d'éther de cellulose par rapport à la masse sèche de ciment).
7. Utilisation selon les revendications 1 à 6 caractérisée en ce que l'éther de cellulose est le seul additif permettant de réduire le retrait plastique et/ou de réduire la fissuration plastique présent dans ledit béton.
8. Béton comprenant de 0,01 à 0,8 % d'au moins un éther de cellulose (% en masse sèche d'éther de cellulose par rapport à la masse sèche de ciment) en tant qu'additif pour réduire le retrait plastique et/ou réduire la fissuration plastique, ledit éther de cellulose présentant soit un degré de substitution en radicaux méthoxy (DSM), soit un degré de substitution (DS) compris de 1 ,17 à 2,33.
9. Béton selon la revendication 8, dans lequel le béton est un béton fluide ou autoplaçant.
10. Liant hydraulique comprenant de 0,01 à 0,8 % d'au moins un éther de cellulose (% en masse sèche d'éther de cellulose par rapport à la masse sèche de ciment) en tant qu'additif pour réduire le retrait plastique et/ou réduire la fissuration plastique, ledit éther de cellulose présentant soit un degré de substitution en radicaux méthoxy (DSM), soit un degré de substitution (DS) compris de 1,17 à 2,33.
EP09784265A 2008-11-14 2009-07-10 Utilisation d'au moins un ether de cellulose pour reduire le retrait et/ou la fissuration plastique dans le beton Withdrawn EP2358649A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0806348A FR2938532B1 (fr) 2008-11-14 2008-11-14 Utilisation d'au moins un ether de cellulose pour reduire le retrait et/ou la fissuration plastique dans le beton
PCT/FR2009/000858 WO2010055214A1 (fr) 2008-11-14 2009-07-10 Utilisation d'au moins un ether de cellulose pour reduire le retrait et/ou la fissuration plastique dans le beton

Publications (1)

Publication Number Publication Date
EP2358649A1 true EP2358649A1 (fr) 2011-08-24

Family

ID=40383748

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09784265A Withdrawn EP2358649A1 (fr) 2008-11-14 2009-07-10 Utilisation d'au moins un ether de cellulose pour reduire le retrait et/ou la fissuration plastique dans le beton

Country Status (6)

Country Link
US (1) US8282732B2 (fr)
EP (1) EP2358649A1 (fr)
CA (1) CA2743556C (fr)
FR (1) FR2938532B1 (fr)
MA (1) MA32780B1 (fr)
WO (1) WO2010055214A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8430957B2 (en) 2011-06-09 2013-04-30 Hercules Incorporated Low molar, homogeneously substituted HEC for use in cement-based systems
JP5811054B2 (ja) * 2012-07-10 2015-11-11 信越化学工業株式会社 押出成形用水硬性組成物
US9145477B2 (en) 2012-09-25 2015-09-29 Dow Global Technologies Llc Nanocellular thermoplastic foam and process for making the same
JP6294331B2 (ja) 2012-10-18 2018-03-14 ダウ グローバル テクノロジーズ エルエルシー 自己緊結性コンクリート用ヒドロキシエチルメチルセルロース含有モルタル
JP6206340B2 (ja) * 2014-04-30 2017-10-04 信越化学工業株式会社 コンクリート組成物
FR3064000B1 (fr) * 2017-03-15 2022-09-09 Institut Francais Des Sciences Et Technologies Des Transp De Lamenagement Et Des Reseaux Agent de cure pour formulation cimentaire
CN110655345A (zh) * 2019-10-23 2020-01-07 南京钧正新材料有限公司 改性羟丙基甲基纤维素醚干粉料

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188231A (en) * 1977-06-17 1980-02-12 Valore Rudolph C Methods of preparing iron oxide mortars or cements with admixtures and the resulting products

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017357B2 (ja) * 1979-01-31 1985-05-02 信越化学工業株式会社 セメント系接着剤組成物
US4462836A (en) * 1983-02-15 1984-07-31 Gulf Oil Corporation Cement composition and method of cement casing in a well
JPS60204651A (ja) * 1984-03-29 1985-10-16 信越化学工業株式会社 コンクリ−ト組成物
SE520651C2 (sv) * 2001-12-03 2003-08-05 Akzo Nobel Nv Vattenhaltig cementkomposition
US20050241543A1 (en) * 2004-04-27 2005-11-03 Wolfgang Hagen Cement-based systems using plastification/extrusion auxiliaries prepared from raw cotton linters
KR100824116B1 (ko) * 2006-10-16 2008-04-21 삼성정밀화학 주식회사 셀룰로오스 에테르 및 이를 포함하는 균열 방지용 시멘트모르타르 조성물
JP4725742B2 (ja) * 2007-02-19 2011-07-13 信越化学工業株式会社 水硬性組成物

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188231A (en) * 1977-06-17 1980-02-12 Valore Rudolph C Methods of preparing iron oxide mortars or cements with admixtures and the resulting products

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of WO2010055214A1 *
T R: "NATROSOL Hydroxyethylcellulose A Nonionic Water-Soluble Polymer Physical and Chemical Properties", 31 December 1999 (1999-12-31), XP055093872, Retrieved from the Internet <URL:http://www.brenntagspecialties.com/en/downloads/Products/Multi_Market_Principals/Aqualon/Natrosol_HEC_Booklet.pdf> [retrieved on 20131217] *

Also Published As

Publication number Publication date
US20110203488A1 (en) 2011-08-25
FR2938532A1 (fr) 2010-05-21
MA32780B1 (fr) 2011-11-01
WO2010055214A1 (fr) 2010-05-20
CA2743556A1 (fr) 2010-05-20
FR2938532B1 (fr) 2011-08-12
CA2743556C (fr) 2017-02-28
US8282732B2 (en) 2012-10-09

Similar Documents

Publication Publication Date Title
CA2743556C (fr) Utilisation d&#39;au moins un ether de cellulose pour reduire le retrait et/ou la fissuration plastique dans le beton
EP2467349B1 (fr) Ciment geopolymerique et son utilisation
EP2576478B1 (fr) Liant hydraulique ou mortier a volume stable
WO2006131659A2 (fr) Compositions de liant rapide pour pieces et ouvrages en beton contenant un sel de calcium
EP3442929A1 (fr) Composition de mortier fortement allege et isolant thermique
EP2560929A1 (fr) Liant hydraulique rapide pour pieces et ouvrages en beton
FR3000060A1 (fr) Composition de beton ou mortier allege comprenant une mousse aqueuse
FR2963618A1 (fr) Composition pulverulente de mortier a adherence amelioree
CA2751577C (fr) Liant hydraulique rapide pour pieces et ouvrages en beton contenant un sel de calcium
FR2997394A1 (fr) Beton leger agrosource et son utilisation
FR3097859A1 (fr) Composition de liant pour matériau de construction
FR2961806A1 (fr) Beton permeable
WO2016051085A1 (fr) Bloc béton isolant et a base de granulats végétaux
FR2975096A1 (fr) Procede de cure d&#39;un beton permeable
CA2749418C (fr) Composition utile pour la preparation d&#39;un beton sans ajout d&#39;eau
EP3233753B1 (fr) Composition hydraulique pour la réalisation de chaussées
EP2474512B1 (fr) Béton léger à base de granulats recyclés et son utilisation
EP3392224A1 (fr) Utilisation d&#39;un agent entraineur d air pour diminuer le temps de sechage d&#39;une chape a base de sulfate de calcium
FR3064000A1 (fr) Agent de cure pour formulation cimentaire
FR3077568A1 (fr) Formulation de beton autoplacant leger structurel et son utilisation pour la realisation d&#39;elements de construction isolants
EP3464213A1 (fr) Utilisation de platre pour la fabrication d&#39;une chape fluide destinee aux pays chauds
FR2967688A1 (fr) Composition de demoulage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110614

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120405

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C04B 103/56 20060101ALI20170208BHEP

Ipc: C04B 24/38 20060101ALI20170208BHEP

Ipc: C04B 28/02 20060101AFI20170208BHEP

INTG Intention to grant announced

Effective date: 20170308

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170719