EP2355325B1 - Schaltungsanordnung mit einem Hochsetzsteller und Wechselrichterschaltung mit einer solchen Schaltungsanordnung - Google Patents

Schaltungsanordnung mit einem Hochsetzsteller und Wechselrichterschaltung mit einer solchen Schaltungsanordnung Download PDF

Info

Publication number
EP2355325B1
EP2355325B1 EP11000471.0A EP11000471A EP2355325B1 EP 2355325 B1 EP2355325 B1 EP 2355325B1 EP 11000471 A EP11000471 A EP 11000471A EP 2355325 B1 EP2355325 B1 EP 2355325B1
Authority
EP
European Patent Office
Prior art keywords
circuit
voltage
boost converter
inverter
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11000471.0A
Other languages
English (en)
French (fr)
Other versions
EP2355325A3 (de
EP2355325A2 (de
Inventor
Christoph Schill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEW Eurodrive GmbH and Co KG
Original Assignee
Platinum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Platinum GmbH filed Critical Platinum GmbH
Publication of EP2355325A2 publication Critical patent/EP2355325A2/de
Publication of EP2355325A3 publication Critical patent/EP2355325A3/de
Application granted granted Critical
Publication of EP2355325B1 publication Critical patent/EP2355325B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a circuit arrangement with a step-up converter for increasing a DC voltage provided and an inverter circuit having such a circuit arrangement.
  • the present invention relates to a circuit arrangement with a step-up converter for boosting a DC voltage provided by a photovoltaic generator and a solar inverter circuit having such a circuit arrangement.
  • An inverter usually requires an intermediate circuit voltage of a certain size to generate an alternating voltage. Optimum efficiency is achieved if this DC link voltage is adapted exactly to the AC voltage to be generated.
  • photovoltaic generators usually deliver a strongly fluctuating DC voltage.
  • an input voltage range of 1: 2 at full load or 1: 2.5 from full load to no load is desirable.
  • a circuit arrangement with a so-called boost converter is therefore generally used, which boosts the variable DC voltage to a relatively constant DC link voltage.
  • the construction of a conventional standard inverter circuit (step-up converter) is in FIG. 4 illustrated.
  • a photovoltaic generator 10 provides a variable DC voltage. This is set high with the boost converter, which includes a throttle 12, a power switch 14 and a diode 16, to the intermediate circuit voltage, which is applied to an intermediate circuit capacitor 18. The downstream inverter 20 then converts the intermediate circuit voltage into an alternating voltage.
  • the power switch 14 is periodically turned on and off.
  • the clock ratio is selected via an analog or digital control so that adjusts the desired DC link voltage.
  • the power switch 14 is closed, current flows from the photovoltaic generator 10 into the reactor 12 and is latched there. If the power switch 14 is then opened, the current flows from the photovoltaic generator 10 via the diode 16 into the DC link capacitor 18, whereby the energy previously stored in the throttle 12 is also delivered to the DC link capacitor 18.
  • FIG. 5 shows a development of this standard inverter circuit, as for example from the DE 10 2004 037 446 A1 is known.
  • inverter circuit is different from the standard circuit of FIG. 4 by the symmetrical arrangement of two chokes 12a and 12b and the additional diode 16b, which is necessary for reasons of symmetry.
  • the operation of this inverter circuit is the same as that of the above-described standard inverter circuit.
  • the symmetrical division of the chokes 12a, 12b causes the photovoltaic generator 10 to be at a different voltage level from ground, which is desirable for certain solar module types.
  • boost converter in an inverter circuit also leads to losses that reduce the overall efficiency of the inverter circuit.
  • the modified circuit of FIG. 5 there are still losses of the second diode 16b added, whereby the overall efficiency is even lower.
  • the use of a boost converter is always associated with additional weight, volume and cost.
  • Another conventional DC inverter inverter circuit is in the DE 10 2006 014 780 A1 described.
  • a photovoltaic generator is connected as a DC power source.
  • the DC-DC converter is controlled by a control unit so that the DC-side generator potentials are kept constantly symmetrical to the ground potential, so that no capacitive leakage currents occur on the generator side.
  • the DC-DC converter can be constructed from two independently controllable potential-connecting boost converters.
  • the US 2005/0270816 A1 shows a circuit arrangement for selectively converting a DC voltage from two DC voltage sources or an AC voltage into a DC voltage.
  • the WO 2006/106417 A1 shows in FIG. 1 a circuit arrangement with two boost converters for two DC voltage sources.
  • the US 3,459,957 A shows a circuit arrangement having batteries as a DC power source.
  • a switch which is formed by a transistor, the batteries can be selectively connected to each other in series or in parallel.
  • a capacitor adds up the voltage dropping across it.
  • a coil is provided, which is arranged after a merger of the branches formed from one of the batteries and one of the diodes.
  • the invention has for its object to provide a contrast improved circuit arrangement with a DC power source and a boost converter. Furthermore, an improved inverter circuit is to be provided with a boost converter.
  • the circuit arrangement includes a DC power source for providing a DC voltage; a boost converter for boosting the DC voltage supplied from the DC power source; and an intermediate circuit connected between the outputs of the boost converter.
  • the DC power source comprises a first DC power source having a first output and a second output and a second DC power source having a first output and a second output, wherein the first output of the first DC power source is connected to one side of the DC link and the second output of the second DC power source another side of the DC link is connected.
  • the boost converter is provided as a common boost converter for boosting both the DC voltage provided by the first DC power source and the DC voltage provided by the second DC power source.
  • the common step-up converter comprises a series connection of a first inductor (eg choke) and a first rectifier element (eg freewheeling diode or active power switch), which is connected between the second output of the first DC power source and the other side of the intermediate circuit, and a series circuit of a second Inductance and a second rectifier element, which is connected between the first output of the second DC power source and the one side of the intermediate circuit.
  • the common switching element of the common boost converter for the first and the second DC power source is formed by at least two power switches which are between the first and the second DC power source, in particular between the connection between the first inductor and the first rectifier element and the connection between the second inductance and the second rectifier element are connected.
  • the intermediate circuit according to the invention is formed by at least two capacitors connected in series.
  • a common boost converter for a first DC power source and a second DC power source is used.
  • the energy that must be cached in the boost converter or the circulating reactive power is much smaller.
  • the losses of the boost converter are significantly reduced, whereby the overall efficiency of the circuit increases. Further advantages are a reduced cooling capacity due to the better efficiency, a reduction in the load on the semiconductor components of the boost converter, lower requirements in the design of the individual components and a relatively small number of components required to achieve a high efficiency.
  • the common boost converter may include a common switching element connected between the first and second DC power sources.
  • This common switching element is connected, for example, between the connection between the first inductance and the first rectifier element and the connection between the second inductance and the second rectifier element.
  • this common switching element is preferably a power switch which can be clocked at a fixed or variable frequency.
  • first and second DC power sources may be parallel or series connected partial current sources of a DC power source.
  • the first and the second DC power source are different (partial) strings of a solar module or of a photovoltaic generator.
  • first and the second inductance of the common boost converter can optionally be coupled together or formed separately from each other.
  • the above-described circuit arrangement of the invention can be used advantageously in an inverter circuit which, in addition to this circuit arrangement, has an inverter for converting the DC voltage provided by the DC link into an AC voltage.
  • two or more boosters connected in parallel or in series can be connected to the input terminals of the inverter or to the intermediate circuit.
  • circuit breakers i.e., two, three, four, or more circuit breakers
  • the voltage load on the individual semiconductor devices can each be significantly reduced. This can lead to a better efficiency of the entire circuit arrangement with a suitable selection of the components.
  • a connection between two capacitances of the intermediate circuit is connected to a connection between two circuit breakers of the common switching element.
  • the at least two power switches of the common switching element can be synchronously clocked.
  • the at least two power switches of the common switching element can be clocked separately.
  • the circuit arrangement according to the invention can advantageously be used in an inverter circuit which, in addition to the circuit arrangement, has an inverter for converting the DC voltage provided by the DC link into an AC voltage.
  • the inverter is connected to a connection between two capacitances of the intermediate circuit.
  • At least two boost converters connected in parallel or in series are connected to the input terminals of the inverter or to the intermediate circuit.
  • FIG. 1 the structure of an inverter circuit is shown.
  • the photovoltaic generator constituting the DC power source is divided into two (partial) strings 10a, 10b each providing a DC voltage.
  • the first and second DC power supplies 10a, 10b are preferably symmetrical, ie, produce substantially the same DC voltage for best results.
  • the voltage per string 10a, 10b is at full load typically in the range between about 50% and about 100% of the intermediate circuit voltage. In this way, an input voltage range of about 1: 2 at full load is achieved.
  • both DC power sources 10a, 10b are connected to a common boost converter 12-16, to which an intermediate circuit capacitor 18 and finally an inverter 20 are connected downstream.
  • this common boost converter 12-16 includes a series circuit of a first throttle 12a and a first diode 16a, which is connected between an output of the first DC power source 10a and one side of the DC link capacitor 18, and a series circuit of a second throttle 12b and a second Diode 16b, which is connected between an output of the second DC power source 10b and another side of the DC link capacitor 18.
  • the common boost converter 12-16 includes a common power switch 14 connected between the first and second DC power sources 10a, 10b so as to be connected between the first reactor 12a and the first diode 16a and the connection between the second reactor 12b and the second diode 16b is connected.
  • the two DC power sources 10a, 10b are in series with the power switch 14 closed and in parallel with open switch 14 via the first and the second diode 16a, 16b.
  • energy is released into the DC link capacitor 18 both when the circuit breaker is closed and when the circuit breaker 14 is open.
  • the energy that must be stored in the chokes 12a, 12b of the boost converter 12-16, or the circulating in the boost converter reactive power is much smaller.
  • the two restrictors 12a, 12b must be designed only about half as large and is the burden of Circuit breaker 14 and other semiconductor devices reduced.
  • the losses in the boost converter are significantly reduced, the overall efficiency of the inverter circuit is greater and the required cooling capacity is lower.
  • the circuit breaker 14 If the DC voltage of the two strings 10a, 10b is about 50% or about 100% of the desired intermediate circuit voltage, then a static series or parallel connection of the two DC sources 10a, 10b is sufficient to generate the intermediate circuit voltage. Therefore, there are no switching losses on the circuit breaker 14. If the DC voltages of the two strings 10a, 10b each in the range between about 50% and 100% of the DC link voltage, the circuit breaker 14 is operated clocked. The duty cycle is controlled via a controller (not shown, analog or digital, for example, a conventional PWM control circuit) so that the desired DC link voltage arises. The duty cycle may vary between 100% (i.e., static series connection of 10a and 10b) and 0% (i.e., static parallel connection of 10a and 10b).
  • FIG. 2 a comparison of the efficiencies of the boost converter against the DC voltages provided by the power sources.
  • the overall efficiencies of boost converters 12-16 are for the conventional circuit of FIG. 4 (Curve ⁇ ) and the circuit arrangement of FIG. 1 (Curve ⁇ ) applied.
  • the overall efficiency of the modified conventional circuit of FIG. 5 is still slightly below that of FIG. 4 ,
  • the boost converter 12-16 does not clock, eliminating the switching losses of the circuit breaker 14 in both cases. In the circuit arrangement of FIG. 1 is this too at a DC voltage of 350 volts through the static series connection of the two partial strings 10a, 10b possible.
  • FIG. 2 clearly shows that the efficiency of the boost converter and thus also the overall efficiency of the inverter circuit by the circuit arrangement of FIG. 1 could be significantly improved with low component costs.
  • the dependence of the efficiency or the losses of the boost converter from the DC voltage, which is provided by the photovoltaic generator 10, is substantially lower.
  • the control of the circuit breaker 14 can be done either with fixed or variable frequency. If the DC voltage of the partial strings 10a, 10b is close to 50% or 100% of the intermediate circuit voltage, the clock frequency of the power switch 14 may be lowered, for example, in order to reduce the switching losses. At values of 50% and 100% of the desired intermediate circuit voltage, preferably no clocking of the boost converter takes place, but the two DC power sources 10a, 10b are operated statically in parallel or in series. In such a static operation, the semiconductors can be bridged for further increase in efficiency, for example with a relay.
  • FIG. 3 Below, an embodiment of a circuit arrangement according to the invention will be explained in more detail.
  • the same or corresponding components with the same reference numerals we in the circuit of FIG. 1 characterized.
  • the circuit arrangement of this embodiment differs from that in FIG. 1 shown circuit arrangement in that between the first and the second DC power source 10a, 10b, more precisely between the connection between the first throttle 12a and the first diode 16a and the connection between the second throttle 12b and the second diode 16b, two power switches 14a and 14b are connected , In other words, that is common Switching element 14 of the common boost converter 12-16 formed by two power switches 14a, 14b.
  • the intermediate circuit is formed of two capacitors 18a and 18b connected in series.
  • connection between the two power switches 14a, 14b is electrically conductively connected to a connection between the two capacitances 18a, 18b.
  • the inverter 20 is additionally connected to the center tap between the two capacitances 18a, 18b.
  • the voltage load of the semiconductor devices used in the circuit arrangement can be halved in this way. This in turn allows an even better efficiency of the inverter circuit, if the components are appropriately selected.
  • the two power switches 14a, 14b may be clocked synchronously.
  • the two throttles 12a, 12b may be either separate or coupled.
  • This variant shows a similar behavior as the circuit arrangement of FIG. 1 with only one power switch 14. However, an additional interaction with the inverter 20 is obtained via the center tap between the two capacitances 18a, 18b.
  • the two power switches 14a and 14b are clocked separately and also the two chokes 12a and 12b are disconnected.
  • an asymmetry arises between the voltages provided by the two capacitances 18a, 18b of the intermediate circuit, which must be compensated by the downstream inverter 20.
  • the maximum allowable asymmetry depends on the Photovoltaic voltage of the strings 10a, 10b and the ability of the inverter 20 to stabilize the center between the two capacitances 18a, 18b.
  • the boost converter circuit 12-16 can be easily adapted to this case, even if the improvement in efficiency decreases with increasing asymmetry.
  • the two DC sources or (partial) strings 10a, 10b may optionally consist of parallel or series-connected DC sources.
  • first and second rectifier elements 16a, 16b optionally also active circuit breakers.
  • the boost converter 12-16 can also be composed of two or more parallel and optionally out of phase working branches (multi-phase operation). In this case, individual branches can be completely switched off at partial load in order to increase the partial load efficiency.
  • Umschwingnetzwerke can be installed (resonant switching).
  • boost converter 12-16 can be connected in parallel or in series at the input of the inverter 20.
  • inverter 20 itself various topologies can be used. Suitable are, for example, half bridges (for single-phase feed) and three-phase bridges.
  • first and second DC power supplies 10a, 10b may also be used for the first and second DC power supplies 10a, 10b.
  • fuel cells, thermoelectric generators, electromagnetic generators, accumulators, supercapacitors and the like are also suitable as DC sources of the circuit arrangement according to the invention.
  • the circuit arrangement according to the invention with DC sources 10a, 10b, step-up converter 12-16 and DC link capacitances 18a, 18b can not only be used in combination with the downstream inverter 20, as in FIG FIG. 3 shown.
  • the circuit arrangement of the invention can be advantageously used, for example, also for the direct supply of DC consumers or for the supply of DC intermediate circuits in other devices such as motor frequency inverters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Schaltungsanordnung mit einem Hochsetzsteller zum Hochsetzen einer bereitgestellten Gleichspannung und eine Wechselrichterschaltung mit einer solchen Schaltungsanordnung. Die vorliegende Erfindung betrifft insbesondere eine Schaltungsanordnung mit einem Hochsetzsteller zum Hochsetzen einer von einem Photovoltaikgenerator bereitgestellten Gleichspannung und eine Solarwechselrichterschaltung mit einer solchen Schaltungsanordnung.
  • Ein Wechselrichter benötigt zur Erzeugung einer Wechselspannung in der Regel eine Zwischenkreisspannung einer bestimmten Größe. Ein optimaler Wirkungsgrad wird erzielt, wenn diese Zwischenkreisspannung genau an die zu erzeugende Wechselspannung angepasst ist.
  • Photovoltaikgeneratoren liefern abhängig von Lichteinfall, Temperatur und Anzahl der verschalteten Module üblicherweise eine stark schwankende Gleichspannung. Je breiter der Betriebsbereich der Eingangs-Gleichspannung ist, die ein Wechselrichter verarbeiten kann, desto mehr Möglichkeiten existieren bei der Installation, passende Modulkombinationen zu finden. Häufig ist ein Eingangsspannungsbereich von 1 : 2 bei voller Last bzw. von 1 : 2,5 von Volllast bis Leerlauf wünschenswert.
  • Zur Anpassung der vom Photovoltaikgenerator bereitgestellten Gleichspannung an den Wechselrichter wird daher im Allgemeinen eine Schaltungsanordnung mit einem so genannten Hochsetzsteller verwendet, der die variable Gleichspannung auf eine relativ konstante Zwischenkreisspannung hochsetzt. Der Aufbau einer herkömmlichen Standard-Wechselrichterschaltung (Step-Up-Converter) ist in Figur 4 veranschaulicht.
  • Ein Photovoltaikgenerator 10 liefert eine variable Gleichspannung. Diese wird mit dem Hochsetzsteller, der eine Drossel 12, einen Leistungsschalter 14 und eine Diode 16 umfasst, auf die Zwischenkreisspannung hochgesetzt, welche an einem Zwischenkreiskondensator 18 anliegt. Der nachgeschaltete Wechselrichter 20 setzt die Zwischenkreisspannung dann in eine Wechselspannung um.
  • Zum Hochsetzen der Gleichspannung des Photovoltaikgenerators 10 wird der Leistungsschalter 14 periodisch ein- und ausgeschaltet. Das Taktverhältnis wird dabei über eine analoge oder digitale Steuerung so gewählt, dass sich die gewünschte Zwischenkreisspannung einstellt. Wenn der Leistungsschalter 14 geschlossen ist, fließt Strom von dem Photovoltaikgenerator 10 in die Drossel 12 und wird dort zwischengespeichert. Wird dann der Leistungsschalter 14 geöffnet, fließt der Strom von dem Photovoltaikgenerator 10 über die Diode 16 in den Zwischenkreiskondensator 18, wobei auch die zuvor in der Drossel 12 gespeicherte Energie an den Zwischenkreiskondensator 18 abgegeben wird.
  • Figur 5 zeigt eine Weiterbildung dieser Standard-Wechselrichterschaltung, wie sie zum Beispiel aus der DE 10 2004 037 446 A1 bekannt ist. Die in Figur 5 dargestellte Wechselrichterschaltung unterscheidet sich von der Standard-Schaltung von Figur 4 durch die symmetrische Anordnung von zwei Drosseln 12a und 12b und die zusätzliche Diode 16b, welche aus Symmetriegründen notwendig ist. Die Funktionsweise dieser Wechselrichterschaltung ist gleich jener der oben beschriebenen Standard-Wechselrichterschaltung. Die symmetrische Aufteilung der Drosseln 12a, 12b bewirkt, dass der Photovoltaikgenerator 10 auf einem anderen Spannungspegel gegenüber Erde liegt, was bei bestimmten Solarmodultypen gewünscht ist.
  • Die Verwendung eines Hochsetzstellers in einer Wechselrichterschaltung führt allerdings auch zu Verlusten, die den Gesamtwirkungsgrad der Wechselrichterschaltung verringern. In der modifizierten Schaltungsanordnung von Figur 5 kommen noch Verluste der zweiten Diode 16b hinzu, wodurch der Gesamtwirkungsgrad noch geringer wird. Darüber hinaus ist die Verwendung eines Hochsetzstellers immer auch mit zusätzlichem Gewicht, Volumen und Kosten verbunden.
  • Die genannten Probleme dieser herkömmlichen Schaltungsanordnungen treten auch auf bei anderen Arten von Gleichstromquellen und bei direkter Nutzung der bereitgestellten Gleichspannung, d.h. ohne den Einsatz des Wechselrichters.
  • Eine weitere herkömmliche Wechselrichter-Schaltungsanordnung mit Gleichstromsteller ist in der DE 10 2006 014 780 A1 beschrieben. An den Gleichstromsteller ist ein Photovoltaikgenerator als eine Gleichstromquelle anschließbar. Der Gleichstromsteller wird über eine Steuerungseinheit so gesteuert, dass die gleichstromseitigen Generatorpotenziale ständig symmetrisch zum Erdpotenzial gehalten werden, sodass generatorseitig keine kapazitiven Ableitströme entstehen. Außerdem kann der Gleichstromsteller aus zwei unabhängig steuerbaren potenzialverbindenden Hochsetzstellern aufgebaut sein.
  • Die US 2005/0270816 A1 zeigt eine Schaltungsanordnung zum wahlweisen Umsetzen einer Gleichspannung aus zwei Gleichspannungsquellen oder einer Wechselspannung in eine Gleichspannung.
  • Die WO 2006/106417 A1 zeigt in Figur 1 eine Schaltungsanordnung mit zwei Hochsetzstellern für zwei Gleichspannungsquellen.
  • Die US 3,459,957 A zeigt eine Schaltungsanordnung, welche Batterien als Gleichstromquelle aufweist. Über einen Schalter, welcher durch einen Transistor gebildet ist, können die Batterien wahlweise miteinander in Reihe oder parallel zueinander geschaltet werden. Ein Kondensator summiert die an ihm abfallende Spannung auf. Dabei ist eine Spule vorgesehen, welche nach einer Zusammenführung der aus jeweils einer der Batterien und einer der Dioden gebildeten Zweige angeordnet ist.
  • Der Erfindung liegt die Aufgabe zugrunde, eine demgegenüber verbesserte Schaltungsanordnung mit einer Gleichstromquelle und einem Hochsetzsteller zu schaffen. Ferner soll auch eine verbesserte Wechselrichterschaltung mit einem Hochsetzsteller bereitgestellt werden.
  • Diese Aufgabe wird gelöst durch eine Schaltungsanordnung mit den Merkmalen des Anspruchs 1. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche.
  • Die Schaltungsanordnung enthält eine Gleichstromquelle zum Bereitstellen einer Gleichspannung; einen Hochsetzsteller zum Hochsetzen der von der Gleichstromquelle bereitgestellten Gleichspannung; und einen Zwischenkreis, der zwischen den Ausgängen des Hochsetzstellers geschaltet ist. Die Gleichstromquelle umfasst dabei eine erste Gleichstromquelle mit einem ersten Ausgang und einem zweiten Ausgang und eine zweite Gleichstromquelle mit einem ersten Ausgang und einem zweiten Ausgang, wobei der erste Ausgang der ersten Gleichstromquelle mit einer Seite des Zwischenkreises verbunden ist und der zweite Ausgang der zweiten Gleichstromquelle mit einer anderen Seite des Zwischenkreises verbunden ist. Der Hochsetzsteller ist als ein gemeinsamer Hochsetzsteller zum Hochsetzen sowohl der von der ersten Gleichstromquelle bereitgestellten Gleichspannung als auch der von der zweiten Gleichstromquelle bereitgestellten Gleichspannung vorgesehen. Ferner enthält der gemeinsame Hochsetzsteller eine Reihenschaltung aus einer ersten Induktivität (z.B. Drossel) und einem ersten Gleichrichterelement (z.B. Freilaufdiode oder aktiver Leistungsschalter), die zwischen den zweiten Ausgang der ersten Gleichstromquelle und die andere Seite des Zwischenkreises geschaltet ist, sowie eine Reihenschaltung aus einer zweiten Induktivität und einem zweiten Gleichrichterelement, die zwischen den ersten Ausgang der zweiten Gleichstromquelle und die eine Seite des Zwischenkreises geschaltet ist. Erfindungsgemäß ist das gemeinsame Schaltelement des gemeinsamen Hochsetzstellers für die erste und die zweite Gleichstromquelle durch wenigstens zwei Leistungsschalter gebildet, die zwischen die erste und die zweite Gleichstromquelle, insbesondere zwischen die Verbindung zwischen der ersten Induktivität und dem ersten Gleichrichterelement und die Verbindung zwischen der zweiten Induktivität und dem zweiten Gleichrichterelement geschaltet sind. Außerdem ist der Zwischenkreis erfindungsgemäß durch wenigstens zwei in Reihe geschaltete Kapazitäten gebildet.
  • Bei dieser Schaltungsanordnung wird ein gemeinsamer Hochsetzsteller für eine erste Gleichstromquelle und eine zweite Gleichstromquelle verwendet. Hierdurch ist die Energie, die im Hochsetzsteller zwischengespeichert werden muss bzw. die zirkulierende Blindleistung wesentlich kleiner. Als Folge sind die Verluste des Hochsetzstellers deutlich reduziert, wodurch der Gesamtwirkungsgrad der Schaltungsanordnung steigt. Weitere Vorteile liegen in einer reduzierten Kühlleistung aufgrund des besseren Wirkungsgrades, einer Reduzierung der Belastung der Halbleiterbauelemente des Hochsetzstellers, geringeren Anforderungen bei der Auslegung der einzelnen Bauteile und einer relativ geringen Anzahl benötigter Bauteile zum Erzielen eines hohen Wirkungsgrades.
  • Insbesondere kann der gemeinsame Hochsetzsteller ein gemeinsames Schaltelement enthalten, das zwischen die erste und die zweite Gleichstromquelle geschaltet ist. Dieses gemeinsame Schaltelement ist zum Beispiel zwischen die Verbindung zwischen der ersten Induktivität und dem ersten Gleichrichterelement und die Verbindung zwischen der zweiten Induktivität und dem zweiten Gleichrichterelement geschaltet. Außerdem ist dieses gemeinsame Schaltelement vorzugsweise ein Leistungsschalter, der mit fester oder variabler Frequenz getaktet werden kann.
  • Weiter können die erste und die zweite Gleichstromquelle parallel oder in Reihe geschaltete Teilstromquellen einer Gleichstromquelle sein. Beispielsweise sind die erste und die zweite Gleichstromquelle verschiedene (Teil-)Strings eines Solarmoduls bzw. eines Photovoltaikgenerators.
  • Ferner können die erste und die zweite Induktivität des gemeinsamen Hochsetzstellers wahlweise miteinander gekoppelt oder separat zueinander ausgebildet sein.
  • Die oben beschriebene Schaltungsanordnung der Erfindung ist in vorteilhafter Weise in einer Wechselrichterschaltung einsetzbar, die neben dieser Schaltungsanordnung einen Wechselrichter zum Umsetzen der von dem Zwischenkreis bereitgestellten Gleichspannung in eine Wechselspannung aufweist. Dabei können mit den Eingangsanschlüssen des Wechselrichters bzw. mit dem Zwischenkreis auch zwei oder mehr parallel oder in Reihe geschaltete Hochsetzsteller verbunden werden.
  • Durch die Verwendung von wenigstens zwei Leistungsschaltern (d.h. zwei, drei, vier oder mehr Leistungsschaltern) für das gemeinsame Schaltelement des gemeinsamen Hochsetzstellers kann die Spannungsbelastung für die einzelnen Halbleiterbauelemente jeweils deutlich reduziert werden. Dies kann bei einer geeigneten Auswahl der Komponenten zu einem besseren Wirkungsgrad der gesamten Schaltungsanordnung führen.
  • In einer Ausgestaltung der Erfindung ist eine Verbindung zwischen zwei Kapazitäten des Zwischenkreises mit einer Verbindung zwischen zwei Leistungsschaltern des gemeinsamen Schaltelements verbunden.
  • Ferner können die wenigstens zwei Leistungsschalter des gemeinsamen Schaltelements synchron getaktet sein.
  • Alternativ können die wenigstens zwei Leistungsschalter des gemeinsamen Schaltelements separat getaktet sind.
  • Die erfindungsgemäße Schaltungsanordnung ist in vorteilhafter Weise in einer Wechselrichterschaltung einsetzbar, die neben der Schaltungsanordnung einen Wechselrichter zum Umsetzen der von dem Zwischenkreis bereitgestellten Gleichspannung in eine Wechselspannung aufweist.
  • In einer Ausgestaltung der Erfindung ist der Wechselrichter mit einer Verbindung zwischen zwei Kapazitäten des Zwischenkreises verbunden.
  • In einer weiteren Ausgestaltung der Erfindung sind mit den Eingangsanschlüssen des Wechselrichters bzw. mit dem Zwischenkreis wenigstens zwei parallel oder in Reihe geschaltete Hochsetzsteller verbunden.
  • Obige sowie weitere Merkmale und Vorteile der Erfindung werden aus der nachfolgenden Beschreibung eines bevorzugten, nicht-einschränkenden Ausführungsbeispiels unter Bezugnahme auf die beiliegenden Zeichnungen besser verständlich. Darin zeigen:
  • Fig. 1
    eine schematische Darstellung des Aufbaus einer Wechselrichterschaltung;
    Fig. 2
    ein Diagramm zur Veranschaulichung der Verbesserung des Wirkungsgrades der Wechselrichterschaltung von Fig. 1 im Vergleich zu herkömmlichen Schaltungsanordnungen;
    Fig. 3
    eine schematische Darstellung des Aufbaus einer Wechselrichterschaltung gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
    Fig. 4
    eine schematische Darstellung des Aufbaus einer herkömmlichen Wechselrichterschaltung; und
    Fig. 5
    eine schematische Darstellung des Aufbaus einer weiteren herkömmlichen Wechselrichterschaltung.
  • In Figur 1 ist der Aufbau einer Wechselrichterschaltung dargestellt.
  • Der Photovoltaikgenerator, der die Gleichstromquelle bildet, ist in zwei (Teil-) Strings 10a, 10b aufgeteilt, die jeweils eine Gleichspannung bereitstellen. Die erste und die zweite Gleichstromquelle 10a, 10b sind vorzugsweise symmetrisch, d.h. erzeugen im Wesentlichen die gleiche Gleichspannung, um beste Ergebnisse zu erzielen. Die Spannung je String 10a, 10b bei Volllast liegt typischerweise im Bereich zwischen etwa 50% und etwa 100% der Zwischenkreisspannung. Auf diese Weise wird ein Eingangsspannungs-Bereich von etwa 1 : 2 bei Volllast erreicht.
  • Die Aufteilung eines Photovoltaikgenerators 10 in zwei Teilstrings 10a und 10b stellt bei Wechselrichtern größerer Leistung keine Einschränkung dar, da ohnehin meist mehrere identische Teilstrings parallel geschaltet sind.
  • Beide Gleichstromquellen 10a, 10b sind mit einem gemeinsamen Hochsetzsteller 12-16 verbunden, dem ein Zwischenkreiskondensator 18 und schließlich ein Wechselrichter 20 nachgeschaltet sind. Wie in Figur 1 dargestellt, enthält dieser gemeinsame Hochsetzsteller 12-16 eine Reihenschaltung aus einer ersten Drossel 12a und einer ersten Diode 16a, die zwischen einen Ausgang der ersten Gleichstromquelle 10a und eine Seite des Zwischenkreiskondensators 18 geschaltet ist, sowie eine Reihenschaltung aus einer zweiten Drossel 12b und einer zweiten Diode 16b, die zwischen einen Ausgang der zweiten Gleichstromquelle 10b und eine andere Seite des Zwischenkreiskondensators 18 geschaltet ist.
  • Weiter enthält der gemeinsame Hochsetzsteller 12-16 einen gemeinsamen Leistungsschalter 14, der so zwischen die erste und die zweite Gleichstromquelle 10a, 10b geschaltet ist, dass er zwischen die Verbindung zwischen der ersten Drossel 12a und der ersten Diode 16a und die Verbindung zwischen der zweiten Drossel 12b und der zweiten Diode 16b geschaltet ist. Auf diese Weise liegen die beiden Gleichstromquellen 10a, 10b bei geschlossenem Leistungsschalter 14 in Serie und bei offenem Schalter 14 über die erste und die zweite Diode 16a, 16b parallel. Im Gegensatz zur herkömmlichen Schaltungsanordnung von Figur 5 wird deshalb sowohl bei geschlossenem als auch bei geöffnetem Leistungsschalter 14 Energie in den Zwischenkreiskondensator 18 abgegeben.
  • Dadurch ist die Energie, die in den Drosseln 12a, 12b des Hochsetzstellers 12-16 zwischengespeichert werden muss, bzw. die im Hochsetzsteller zirkulierende Blindleistung wesentlich kleiner. Als Folge davon müssen die beiden Drosseln 12a, 12b nur etwa halb so groß ausgelegt sein und ist die Belastung des Leistungsschalters 14 und auch anderer Halbleiterbauelemente reduziert. Die Verluste im Hochsetzsteller sind deutlich reduziert, der Gesamtwirkungsgrad der Wechselrichterschaltung ist größer und die erforderliche Kühlleistung ist geringer.
  • Beträgt die Gleichspannung der beiden Strings 10a, 10b etwa 50% oder etwa 100% der gewünschten Zwischenkreisspannung, so reicht eine statische Serien- bzw. Parallelschaltung der beiden Gleichstromquellen 10a, 10b aus, um die Zwischenkreisspannung zu erzeugen. Es entstehen daher keinerlei Schaltverluste am Leistungsschalter 14. Liegen die Gleichspannungen der beiden Strings 10a, 10b jeweils im Bereich zwischen etwa 50% und 100% der Zwischenkreisspannung, so wird der Leistungsschalter 14 getaktet betrieben. Das Tastverhältnis wird über eine Steuerung (nicht dargestellt, analog oder digital, zum Beispiel eine konventionelle PWM-Steuerschaltung) so geregelt, dass die gewünschte Zwischenkreisspannung entsteht. Das Tastverhältnis kann zwischen 100% (d.h. statische Serienschaltung von 10a und 10b) und 0% (d.h. statische Parallelschaltung von 10a und 10b) variieren.
  • Zur Verdeutlichung der verbesserten Funktionsweise dieser Schaltungsanordnung gegenüber herkömmlichen Schaltungsanordnungen mit Hochsetzstellern zeigt Figur 2 einen Vergleich der Wirkungsgrade der Hochsetzsteller gegenüber den von den Stromquellen bereitgestellten Gleichspannungen. Bei den Betriebsbedingungen Volllast, konstante Taktfrequenz des Leistungsschalters 14 und einer Zwischenkreisspannung von 700 Volt sind die Gesamtwirkungsgrade der Hochsetzsteller 12-16 für die herkömmliche Schaltungsanordnung von Figur 4 (Kurve ■) und die Schaltungsanordnung von Figur 1 (Kurve ▲) aufgetragen. Der Gesamtwirkungsgrad der modifizierten herkömmlichen Schaltungsanordnung von Figur 5 liegt noch etwas unterhalb jenes von Figur 4.
  • Es sei angemerkt, dass bei einer Gleichspannung von 700 Volt der Hochsetzsteller 12-16 nicht taktet, wodurch die Schaltverluste des Leistungsschalters 14 in beiden Fällen entfallen. Bei der Schaltungsanordnung von Figur 1 ist dies auch bei einer Gleichspannung von 350 Volt durch die statische Serienschaltung der beiden Teilstrings 10a, 10b möglich.
  • Figur 2 zeigt eindeutig, dass der Wirkungsgrad des Hochsetzstellers und damit auch der Gesamtwirkungsgrad der Wechselrichterschaltung durch die Schaltungsanordnung von Figur 1 bei geringem Bauteilaufwand deutlich verbessert werden konnte. Darüber hinaus ist auch festzustellen, dass die Abhängigkeit des Wirkungsgrades bzw. der Verluste des Hochsetzstellers von der Gleichspannung, die von dem Photovoltaikgenerator 10 bereitgestellt wird, wesentlich geringer ist.
  • Die Ansteuerung des Leistungsschalters 14 kann wahlweise mit fester oder mit variabler Frequenz erfolgen. Liegt die Gleichspannung der Teilstrings 10a, 10b in der Nähe von 50% oder 100% der Zwischenkreisspannung, so kann die Taktfrequenz des Leistungsschalters 14 zum Beispiel abgesenkt werden, um die Schaltverluste zu verringern. Bei Werten von 50% und 100% der gewünschten Zwischenkreisspannung erfolgt vorzugsweise keine Taktung des Hochsetzstellers, sondern die beiden Gleichstromquellen 10a, 10b werden statisch parallel bzw. in Reihe geschaltet betrieben. Bei einem solchen statischen Betrieb können die Halbleiter zur weiteren Wirkungsgradsteigerung zum Beispiel mit einem Relais überbrückt werden.
  • Bezug nehmend auf Figur 3 wird nachfolgend ein Ausführungsbeispiel einer erfindungsgemäßen Schaltungsanordnung in mehr Einzelheiten erläutert. Dabei sind gleiche bzw. entsprechende Komponenten mit den gleichen Bezugsziffern wir bei der Schaltungsanordnung von Figur 1 gekennzeichnet.
  • Die Schaltungsanordnung dieses Ausführungsbeispiels unterscheidet sich von der in Figur 1 gezeigten Schaltungsanordnung dadurch, dass zwischen die erste und die zweite Gleichstromquelle 10a, 10b, genauer zwischen die Verbindung zwischen der ersten Drossel 12a und der ersten Diode 16a und die Verbindung zwischen der zweiten Drossel 12b und der zweiten Diode 16b zwei Leistungsschalter 14a und 14b geschaltet sind. Mit anderen Worten ist das gemeinsame Schaltelement 14 des gemeinsamen Hochsetzstellers 12-16 durch zwei Leistungsschalter 14a, 14b gebildet.
  • In ähnlicher Weise ist auch der Zwischenkreis aus zwei in Reihe geschalteten Kapazitäten 18a und 18b gebildet.
  • Ferner ist eine Verbindung zwischen den beiden Leistungsschaltern 14a, 14b mit einer Verbindung zwischen den beiden Kapazitäten 18a, 18b elektrisch leitend verbunden. Außerdem ist der Wechselrichter 20 zusätzlich mit dem Mittelabgriff zwischen den beiden Kapazitäten 18a, 18b verbunden.
  • Die Spannungsbelastung der in der Schaltungsanordnung verwendeten Halbleiterbauteile kann auf diese Weise halbiert werden. Dies wiederum ermöglicht einen noch besseren Wirkungsgrad der Wechselrichterschaltung, wenn die Bauteile entsprechend geeignet ausgewählt werden.
  • In einer Ausführungsform können die beiden Leistungsschalter 14a, 14b synchron getaktet werden. Dabei können die beiden Drosseln 12a, 12b entweder separat oder gekoppelt sein.
  • Diese Variante zeigt ein ähnliches Verhalten wie die Schaltungsanordnung von Figur 1 mit nur einem Leistungsschalter 14. Eine zusätzliche gegenseitige Beeinflussung mit dem Wechselrichter 20 erhält man jedoch über den Mittelabgriff zwischen den beiden Kapazitäten 18a, 18b.
  • In einer anderen Ausführungsform werden die beiden Leistungsschalter 14a und 14b separat getaktet und sind auch die beiden Drosseln 12a und 12b getrennt.
  • Bei einer unterschiedlichen Sonneneinstrahlung für die beiden Strings 10a und 10b des Photovoltaikgenerators 10 entsteht eine Asymmetrie zwischen den von den beiden Kapazitäten 18a, 18b des Zwischenkreises bereitgestellten Spannungen, welche vom nachgeschalteten Wechselrichter 20 ausgeglichen werden muss. Die maximal zulässige Asymmetrie hängt dabei ab von der Photovoltaikspannung der Strings 10a, 10b und der Fähigkeit des Wechselrichters 20 zur Stabilisierung des Mittelpunkts zwischen den beiden Kapazitäten 18a, 18b.
  • Bei dieser zweiten Ausführungsvariante ist es möglich, für die beiden Leistungsschalter 14a, 14b separate Ansteuerungen zum Beispiel in Form von MPPTs (maximum power point tracker) zu verwenden. Allerdings wird die Regelung der Schaltungsanordnung insgesamt etwas komplizierter.
  • Die Erfindung ist natürlich nicht nur auf das oben beschriebene Ausführungsbeispiel beschränkt. Der Fachmann wird sofort verschiedene Modifikationen und Varianten erkennen, die innerhalb des durch die angehängten Ansprüche definierten Schutzbereichs liegen.
  • So ist es zum Beispiel denkbar, mit unterschiedlichen Teilstrings 10a, 10b zu arbeiten, indem zum Beispiel unterschiedliche Anzahlen von Solarmodulen in den Teilstrings verwendet werden. Die Hochsetzstellerschaltung 12-16 kann problemlos auch auf diesen Fall ausgelegt werden, auch wenn die Verbesserung des Wirkungsgrades mit größer werdender Asymmetrie nachlässt.
  • Die beiden Gleichstromquellen bzw. (Teil-) Strings 10a, 10b können wahlweise aus parallel oder in Reihe geschalteten Gleichstromquellen bestehen.
  • Anstatt der Dioden können als erste und zweite Gleichrichterelemente 16a, 16b wahlweise auch aktive Leistungsschalter eingesetzt werden.
  • Während in dem Ausführungsbeispiel von Figur 3 jeweils zwei Leistungsschalter 14a, 14b und zwei Kapazitäten 18a, 18b für das gemeinsame Schaltelement bzw. den Zwischenkreis eingesetzt sind, ist es ebenso möglich jeweils drei, vier oder mehr dieser Bauteile zu verwenden.
  • Der Hochsetzsteller 12-16 kann auch aus zwei oder mehr parallel und gegebenenfalls phasenversetzt arbeitenden Zweigen aufgebaut sein (Multiphase-Betrieb). In diesem Fall können bei Teillast einzelne Zweige ganz abgeschaltet werden, um den Teillastwirkungsgrad zu erhöhen.
  • Zur Verringerung der Schaltverluste können optional Umschwingnetzwerke eingebaut werden (resonantes Schalten).
  • Ferner können auch zwei oder mehr Hochsetzsteller 12-16 am Eingang des Wechselrichters 20 parallel oder in Reihe geschaltet werden.
  • Für den Wechselrichter 20 selbst können verschiedene Topologien eingesetzt werden. Geeignet sind zum Beispiel Halbbrücken (für einphasige Einspeisung) und Drehstrombrücken.
  • Anstelle der oben beschriebenen Photovoltaikgeneratoren können für die ersten und zweiten Gleichstromquellen 10a, 10b auch andere speisende Quellen verwendet werden. Zum Beispiel sind auch Brennstoffzellen, thermoelektrische Generatoren, elektromagnetische Generatoren, Akkumulatoren, Superkondensatoren und dergleichen als Gleichstromquellen der erfindungsgemäßen Schaltungsanordnung geeignet.
  • Die erfindungsgemäße Schaltungsanordnung mit Gleichstromquellen 10a, 10b, Hochsetzsteller 12-16 und Zwischenkreiskapazitäten 18a, 18b kann nicht nur in Kombination mit dem nachgeschalteten Wechselrichter 20 verwendet werden, wie in Figur 3 dargestellt. Die Schaltungsanordnung der Erfindung kann in vorteilhafter Weise zum Beispiel auch zur direkten Speisung von Gleichstromverbrauchern oder zur Speisung von Gleichspannungs-Zwischenkreisen in anderen Geräten wie beispielsweise Motorfrequenzumrichtern genutzt werden.
  • BEZUGSZIFFERNLISTE
  • 10a
    erste Gleichstromquelle
    10b
    zweite Gleichstromquelle
    12a
    erste Induktivität
    12b
    zweite Induktivität
    14
    gemeinsames Schaltelement
    14a
    erster Leistungsschalter
    14b
    zweiter Leistungsschalter
    16a
    erstes Gleichrichterelement
    16b
    zweites Gleichrichterelement
    18
    Zwischenkreiskondensator
    18a
    erste Kapazität
    18b
    zweite Kapazität
    20
    Wechselrichter

Claims (7)

  1. Schaltungsanordnung, mit
    einer Gleichstromquelle (10) zum Bereitstellen einer Gleichspannung; einem Hochsetzsteller (12-16) zum Hochsetzen der von der Gleichstromquelle bereitgestellten Gleichspannung; und
    einem Zwischenkreis, der zwischen den Ausgängen des Hochsetzstellers (12-16) geschaltet ist,
    wobei die Gleichstromquelle (10) eine erste Gleichstromquelle (10a) mit einem ersten Ausgang und einem zweiten Ausgang und eine zweite Gleichstromquelle (10b) mit einem ersten Ausgang und einem zweiten Ausgang umfasst, wobei der erste Ausgang der ersten Gleichstromquelle (10a) mit einer Seite des Zwischenkreises verbunden ist und der zweite Ausgang der zweiten Gleichstromquelle (10b) mit einer anderen Seite des Zwischenkreises verbunden ist; und
    der Hochsetzsteller (12-16) als ein gemeinsamer Hochsetzsteller zum Hochsetzen sowohl der von der ersten Gleichstromquelle (10a) bereitgestellten Gleichspannung als auch der von der zweiten Gleichstromquelle (10b) bereitgestellten Gleichspannung vorgesehen ist,
    dadurch gekennzeichnet,
    dass der gemeinsame Hochsetzsteller (12-16) eine Reihenschaltung aus einer ersten Induktivität (12a) und einem ersten Gleichrichterelement (16a), die zwischen den zweiten Ausgang der ersten Gleichstromquelle (10a) und die andere Seite des Zwischenkreises geschaltet ist, und eine Reihenschaltung aus einer zweiten Induktivität (12b) und einem zweiten Gleichrichterelement (16b), die zwischen den ersten Ausgang der zweiten Gleichstromquelle (10b) und die eine Seite des Zwischenkreises (18) geschaltet ist, enthält;
    dass der gemeinsame Hochsetzsteller (12-16) ein gemeinsames Schaltelement enthält, das durch wenigstens zwei Leistungsschalter (14a, 14b) gebildet ist, die zwischen die Verbindung zwischen der ersten Induktivität (12a) und dem ersten Gleichrichterelement (16a) und die Verbindung zwischen der zweiten Induktivität (12b) und dem zweiten Gleichrichterelement (16b) geschaltet sind; und
    dass der Zwischenkreis durch wenigstens zwei in Reihe geschaltete Kapazitäten (18a, 18b) gebildet ist.
  2. Schaltungsanordnung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass eine Verbindung zwischen zwei Kapazitäten (18a, 18b) des Zwischenkreises mit einer Verbindung zwischen zwei Leistungsschaltern (14a, 14b) des gemeinsamen Schaltelements verbunden ist.
  3. Schaltungsanordnung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass die wenigstens zwei Leistungsschalter (14a, 14b) des gemeinsamen Schaltelements synchron getaktet sind.
  4. Schaltungsanordnung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass die wenigstens zwei Leistungsschalter (14a, 14b) des gemeinsamen Schaltelements separat getaktet sind.
  5. Wechselrichterschaltung, mit einer Schaltungsanordnung (10-18) nach einem der Ansprüche 1 bis 4 und einem Wechselrichter (20) zum Umsetzen der von dem Zwischenkreis bereitgestellten Gleichspannung in eine Wechselspannung.
  6. Wechselrichterschaltung nach Anspruch 5,
    dadurch gekennzeichnet,
    dass der Wechselrichter (20) mit einer Verbindung zwischen zwei Kapazitäten (18a, 18b) des Zwischenkreises verbunden ist.
  7. Wechselrichterschaltung nach Anspruch 5 oder 6,
    dadurch gekennzeichnet,
    dass mit den Eingangsanschlüssen des Wechselrichters (20) bzw. mit dem Zwischenkreis wenigstens zwei parallel oder in Reihe geschaltete Hochsetzsteller (12-16) verbunden sind.
EP11000471.0A 2010-01-29 2011-01-21 Schaltungsanordnung mit einem Hochsetzsteller und Wechselrichterschaltung mit einer solchen Schaltungsanordnung Active EP2355325B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010006124.7A DE102010006124B4 (de) 2010-01-29 2010-01-29 Schaltungsanordnung mit einem Hochsetzsteller und Wechselrichterschaltung mit einer solchen Schaltungsanordnung

Publications (3)

Publication Number Publication Date
EP2355325A2 EP2355325A2 (de) 2011-08-10
EP2355325A3 EP2355325A3 (de) 2012-01-25
EP2355325B1 true EP2355325B1 (de) 2016-07-20

Family

ID=44063905

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11000471.0A Active EP2355325B1 (de) 2010-01-29 2011-01-21 Schaltungsanordnung mit einem Hochsetzsteller und Wechselrichterschaltung mit einer solchen Schaltungsanordnung

Country Status (4)

Country Link
US (1) US8929112B2 (de)
EP (1) EP2355325B1 (de)
AU (1) AU2011200286B2 (de)
DE (1) DE102010006124B4 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051853A1 (en) 2007-10-15 2009-04-23 And, Llc Systems for highly efficient solar power
US9466737B2 (en) 2009-10-19 2016-10-11 Ampt, Llc Solar panel string converter topology
DE102010017746A1 (de) * 2010-05-03 2011-11-03 Sma Solar Technology Ag Verfahren zur Begrenzung der Generatorspannung einer photovoltaischen Anlage im Gefahrenfall und photovoltaische Anlage
DE102011011329B4 (de) 2010-11-05 2018-02-08 Sew-Eurodrive Gmbh & Co Kg Hochsetzsteller
DE102011018357B4 (de) 2011-04-20 2023-12-14 Sew-Eurodrive Gmbh & Co Kg Gleichspannungswandler
US9397497B2 (en) 2013-03-15 2016-07-19 Ampt, Llc High efficiency interleaved solar power supply system
DE102013005070B4 (de) 2013-03-22 2015-03-26 Platinum Gmbh Hoch-Tiefsetzsteller
DE102013005277B3 (de) * 2013-03-26 2014-07-03 Platinum Gmbh Verfahren zum Umwandeln von Gleichspannung in Wechselspannung und Wechselrichterschaltung dafür
DE102013005808B4 (de) 2013-04-04 2018-02-08 Sew-Eurodrive Gmbh & Co Kg Gleichspannungswandler
DE102013104529A1 (de) 2013-05-03 2014-11-06 Sma Solar Technology Ag Hoch- oder Tiefsetzsteller mit Entlastungskondensator
KR101741075B1 (ko) * 2013-09-02 2017-05-29 엘에스산전 주식회사 태양광 인버터
US9804627B2 (en) * 2013-12-06 2017-10-31 Sparq Systems Inc. Multi-input PV inverter with independent MPPT and minimum energy storage
DE202015104680U1 (de) 2014-09-12 2015-09-16 Sma Solar Technology Ag Umrichter mit Halbstrom-Hochsetzsteller und Windkraftanlage
DE102014114248A1 (de) 2014-09-30 2016-03-31 Sma Solar Technology Ag Energieerzeugungsanlage und Verfahren zum Betrieb eines Wechselrichters
JP6314882B2 (ja) * 2015-03-18 2018-04-25 トヨタ自動車株式会社 電源システム
CN105305859B (zh) * 2015-10-19 2018-06-22 南京信息工程大学 一种电池超级电容电动车开关磁阻电机功率变换器
CN105262138B (zh) * 2015-11-26 2017-12-19 浙江昱能科技有限公司 一种光伏组件优化器
CN216959682U (zh) * 2021-12-14 2022-07-12 阳光电源股份有限公司 功率设备及光伏发电设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3459957A (en) * 1967-07-19 1969-08-05 Ite Imperial Corp Voltage regulator circuit
US6963497B1 (en) * 2001-09-04 2005-11-08 Edward Herbert Power converter with an inductor input and switched capacitor outputs
DE10143279B4 (de) * 2001-09-04 2009-05-28 Semikron Elektronik Gmbh & Co. Kg Frequenzumrichter
US7106607B2 (en) * 2002-01-22 2006-09-12 American Power Conversion Denmark Aps Combined AC-DC to DC converter
DE102004037446B4 (de) * 2004-08-02 2006-11-02 Conergy Ag Trafoloser Wechselrichter für solare Netzeinspeisung
ITMO20050081A1 (it) 2005-04-08 2006-10-09 Meta System Spa Cicuito per la generazione di due bus di tensione simmetrici rispetto al negativo della tensione di alimentazione.
DE102006014780A1 (de) * 2006-03-29 2007-10-18 Schekulin, Ulrich Gleichstromsteller und Wechselrichter-Schaltungsanordnung
WO2007110954A1 (ja) * 2006-03-29 2007-10-04 Mitsubishi Denki Kabushiki Kaisha 電源装置
DE102007028077B4 (de) * 2007-06-15 2009-04-16 Sma Solar Technology Ag Vorrichtung zur Einspeisung elektrischer Energie in ein Energieversorgungsnetz und Gleichspannungswandler für eine solche Vorrichtung
DE102008050402A1 (de) * 2008-10-04 2010-04-08 Diehl Ako Stiftung & Co. Kg Schaltungsanordnung mit einem Hochsetzsteller und Wechselrichterschaltung mit einer solchen Schaltungsanordnung

Also Published As

Publication number Publication date
US8929112B2 (en) 2015-01-06
EP2355325A3 (de) 2012-01-25
DE102010006124A1 (de) 2011-08-04
AU2011200286A1 (en) 2011-08-18
DE102010006124B4 (de) 2015-04-09
AU2011200286B2 (en) 2014-11-06
US20110188276A1 (en) 2011-08-04
EP2355325A2 (de) 2011-08-10

Similar Documents

Publication Publication Date Title
EP2355325B1 (de) Schaltungsanordnung mit einem Hochsetzsteller und Wechselrichterschaltung mit einer solchen Schaltungsanordnung
EP2173024B1 (de) Schaltungsanordnung mit einem Hochsetzsteller und Wechselrichterschaltung mit einer solchen Schaltungsanordnung
EP2451064B1 (de) Hochsetzsteller
EP2363947B1 (de) Wechselrichter mit mehrfach versorgtem Bordnetz
EP2515424B1 (de) Gleichspannungswandler
EP3022835B1 (de) Wechselrichter mit mindestens zwei gleichstromeingängen, photovoltaikanlage mit einem derartigen wechselrichter und verfahren zur ansteuerung eines wechselrichters
EP3028376B1 (de) Hochsetzsteller, entsprechender wechselrichter und betriebsverfahren
DE102013005070B4 (de) Hoch-Tiefsetzsteller
EP2863528B1 (de) Einsatz eines Wechselrichters als Gleichstrom-Wander
EP2451065B1 (de) Wechselrichterschaltung mit einem tiefsetzsteller
EP2026457A1 (de) Wechselrichter mit zwei Zwischenkreisen
WO2012168338A2 (de) Hochsetzsteller
EP2515425B1 (de) Gleichspannungswandler
DE102010060687A1 (de) Leistungselektronische Wandlerstufe
EP1976103A2 (de) Weich schaltende Umrichterschaltung und Verfahren zu ihrer Steuerung
DE202018006394U1 (de) Photovoltaikeinheit sowie Photovoltaiksystem
DE102010052808A1 (de) Verfahren zum Betreiben eines Fahrzeugs mit einem Quasi-Z-Source-Umrichter
EP2826126B1 (de) Leistungselektronische anordnung mit symmetrierung eines spannungsknotens im zwischenkreis
EP2774255B1 (de) Spannungswandler mit einer ersten parallelschaltung
EP3139481B1 (de) Verfahren zum betrieb einer photovoltaikanlage
DE102013007077B4 (de) Schaltungsanordnung zur Wandlung zwischen Gleich- und Wechselspannung
WO2014184254A1 (de) Wandlerschaltung
DE102013005808B4 (de) Gleichspannungswandler
DE102013022311B3 (de) Verfahren zum Betreiben eines Hochsetzstellers und Hochsetzsteller
WO2013023981A1 (de) Verfahren und vorrichtung zum betreiben einer umrichterschaltung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: H02J 3/38 20060101ALN20111222BHEP

Ipc: H02M 3/158 20060101AFI20111222BHEP

17P Request for examination filed

Effective date: 20120307

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PLATINUM GMBH

17Q First examination report despatched

Effective date: 20150619

RIC1 Information provided on ipc code assigned before grant

Ipc: H02M 3/158 20060101AFI20151218BHEP

Ipc: H02J 3/38 20060101ALN20151218BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H02M 3/158 20060101AFI20160122BHEP

Ipc: H02J 3/38 20060101ALN20160122BHEP

INTG Intention to grant announced

Effective date: 20160210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 814782

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011010176

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HEPP WENGER RYFFEL AG, CH

Ref country code: CH

Ref legal event code: PUE

Owner name: SEW-EURODRIVE GMBH AND CO. KG, DE

Free format text: FORMER OWNER: PLATINUM GMBH, DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SEW-EURODRIVE GMBH & CO. KG

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160720

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161020

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161120

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170105 AND 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161021

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011010176

Country of ref document: DE

Owner name: SEW-EURODRIVE GMBH & CO KG, DE

Free format text: FORMER OWNER: PLATINUM GMBH, 88239 WANGEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011010176

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161020

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

26N No opposition filed

Effective date: 20170421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170121

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170121

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 814782

Country of ref document: AT

Kind code of ref document: T

Owner name: SEW-EURODRIVE GMBH & CO KG, DE

Effective date: 20180730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231130

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231213

Year of fee payment: 14

Ref country code: FR

Payment date: 20231212

Year of fee payment: 14

Ref country code: FI

Payment date: 20231218

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240109

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240131

Year of fee payment: 14

Ref country code: CH

Payment date: 20240202

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231212

Year of fee payment: 14