EP2350353B1 - Procédé et moyen d'extraction de chaleur de cellules d'électrolyse d'aluminium - Google Patents

Procédé et moyen d'extraction de chaleur de cellules d'électrolyse d'aluminium Download PDF

Info

Publication number
EP2350353B1
EP2350353B1 EP09823878.5A EP09823878A EP2350353B1 EP 2350353 B1 EP2350353 B1 EP 2350353B1 EP 09823878 A EP09823878 A EP 09823878A EP 2350353 B1 EP2350353 B1 EP 2350353B1
Authority
EP
European Patent Office
Prior art keywords
anode
stem
heat
cooling
superstructure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09823878.5A
Other languages
German (de)
English (en)
Other versions
EP2350353A1 (fr
EP2350353A4 (fr
Inventor
Sigmund GJØRVEN
Yves Ladam
Bjørn Petter MOXNES
Petter NEKSÅ
ASBJøRN SOLHEIM
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Norsk Hydro ASA
Original Assignee
Norsk Hydro ASA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norsk Hydro ASA filed Critical Norsk Hydro ASA
Publication of EP2350353A1 publication Critical patent/EP2350353A1/fr
Publication of EP2350353A4 publication Critical patent/EP2350353A4/fr
Application granted granted Critical
Publication of EP2350353B1 publication Critical patent/EP2350353B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/20Automatic control or regulation of cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing

Definitions

  • the present invention relates to a method and means for extracting heat from an electrolysis cell for production of aluminium. Specifically, it relates to the cooling of the anode/stubs/yoke assembly by heat conduction upwards along the anode stem, and the enhancement and control of this cooling effect.
  • the anode assembly in aluminium cells consists of the anode stem (rod), the anode yoke with stubs (studs), and the carbon anode block.
  • the stem is attached at its upper end to the anode beam by means of a clamp, and its lower end is connected to the anode yoke.
  • the stubs are integrated with the anode carbon block.
  • the anode stem can be made of aluminium or copper, while the yoke is made of aluminium, copper or as normal made of steel.
  • the stubs are made of steel.
  • the electric and mechanic connection between the stem and the yoke is constituted by a bimetallic plate.
  • One conventional way of fastening the stubs in holes in the carbon block is by means of cast iron.
  • the anode stem plays an important role in the energy balance of the cell. Approximately 50 percent of the electrical energy input to the cell is lost as heat. Up to 50 percent of the heat loss takes place at the top of the cell, and the major part of this again is through the anode.
  • each anode carbon block from the electrolyte and upwards. Some of this passes through the anode cover material on top of the anode, but most of the heat (about 5 kW per anode) is conducted through the stubs and into the yoke. About 4 kW is then dissipated from the yoke and stubs by electromagnetic radiation and convective heat transfer, while the remaining 1 kW is conducted into the anode rod. Part of the latter heat is dissipated into the gas between the top crust and the superstructure, and part of it is dissipated outside the superstructure.
  • the easiest way to increase the heat losses is by increasing the number of stubs in each anode, or by increasing the diameter of the stubs. Besides increasing the heat loss, this has the inherent benefit of decreasing the electric resistance of the anode assembly.
  • the increase in the heat loss through the stubs is less than proportional to the increase in the cross-sectional area, and the larger stub dimensions may give problems with anode cracking.
  • NO 318 164 B1 corresponds to WO 2004/018737 that discloses a method for control of inert electrodes in an electrolysis cell for aluminium production.
  • the problem to be solved is to reduce dissolution of the anode material by transporting heat away from the active anode surface and to reduce deposit formation on the active surface of the cathode by preferably keeping the temperature of this surface higher than that of the electrolyte. By solving this problem, the electrolytic process based on inert electrodes can be enhanced.
  • US 4,737,247 relates to an inert electrically nonconductive material for spaces in inert anode-inert cathode assemblies.
  • a spacer is provided having a hollow cavity through which a heat pipe coolant, such as potassium or sodium, could be passed to freeze a protective layer of bath around the spacer.
  • a layer of frozen bath forming around the spacer protects the inert anode-inert cathode assembly form attack by the corrosive fluoride-containing molten salt bath of the cell.
  • WO 2006/007863 discloses an apparatus for the production of metals comprising an anodic system of dimensionally stable anodes with their lower portion immersed in a liquid electrolytic bath, wherein a solid electrically conductive layer is maintained on the external surface of the anodes by providing cooling on the internal body of the anodes by using manifolds for the intake and exit of the cooling fluid.
  • the cathodic system can be provided with a cooling system.
  • One main purpose of cooling the anode assembly as described in accordance with the present invention is to be able to raise the amperage on the cell while maintaining the side and end ledge (frozen bath) in the bath phase without reducing the ACD, without increasing the dimension of the stub and yoke and thereby without increasing the temperature of the raw gas.
  • Removing heat from the anode with an active cooling will also increase the efficiency of stub, yoke and stem as a heat sink for heat leaving the interpolar distance where most of the heat is generated. The reason for this is because the specific electrical and thermal conductivity of steel will increase and thereby leading to an increased heat loss through the stub and yoke and also because less internal heat will be generated in the material (steel). Calculation on a heat balance model with active cooling of the anodes has shown possibility for a 10 % increase in the amperage maintaining the interpolar distance and keeping the side ledge constant.
  • the basic idea in the present invention is to extract more heat from the interior of the cell, as well as reducing the heat dissipated into the raw gas, by increasing the amount of heat conducted from the cell along the anode stem. Enhancement of the heat removal from the cell can be achieved by improvement of the conduction along the stem or by installing a convective heat transfer circuit machined inside or fixed on the stem. The heat transfer fluid is circulated down to the yoke where it is heated up. It brings back this heat outside of the superstructure where the heat is released. Heat intake and release can be enhanced by phase transition of the refrigerant (boiling and condensation).
  • the raw gas temperature can be reduced by applying thermal insulation at least partly at the anode stem inside the superstructure in that it limits the dissipation of heat into the raw gas.
  • anode assembly for an electrolysis cell that comprises an anode stem 1 which is connected to an anode beam 2 and an anode yoke 3 from which stubs 4 provide further electric contact to a carbon anode 5.
  • the anode stem is cooled by increasing the surface area of the stem above the cell's superstructure 6, or by applying a cooling medium that circulates along the stem.
  • the anode cooling is combined with the use of a thermal insulation material 7 at the anode stem below (inside) the superstructure.
  • FIG. 2a and 2b there is shown two embodiments for arranging medium transport inside the anode stem 1.
  • the Figures show possible technical solutions, which may also be used in combination with cooling of the anode yoke ( WO 2006 088375 ).
  • the anode stem 1 contains a longitudinal pipe 22 for the cold fluid supplied or recycled at the top, and another longitudinal pipe 23 for the hot fluid coming from the bottom of the stem or from the yoke and the bottom of the stem.
  • the latter pipe is thermally insulated 24 in order to avoid heating of the cold fluid or the anode stem itself.
  • the pipes can be made two in parallel as in Fig. 2a or concentric as in Fig. 2b .
  • the anode stem 1' contains a longitudinal pipe 22' for cold fluid supplied or recycled at the top, and another longitudinal pipe 23' for hot fluid coming from the bottom of the stem or from the yoke and the bottom of the stem.
  • the pipes are arranged concentric with a layer of insulation 24' between them.
  • the preferred technical solution should as earlier stated be a fluid that evaporates at the lower part of the stem or within the anode yoke, and is condensed at the upper part of the stem. Since there is a relatively large surface of contact between the anode beam and the stem, the heat from the top of the stem can be extracted by cooling the anode beam. This eliminates the extra work needed during anode replacement, if the fluid supply to and from the stem or yoke must be connected and disconnected.
  • the anode stem should be supplied with a relief valve, in case increasing temperature should lead to an unacceptable pressure build-up.
  • Circulation of the cooling medium can be forced by a pump or a compressor. Circulation can also be simply triggered by buoyancy.
  • This is the classical concept of thermosiphon.
  • the heat transfer fluid is heated at the bottom (yoke). It expands and flows to the top (outside the electrolysis cell) where it is cooled. Its density increases and it falls back to the yoke.
  • CO2 based thermosiphon was found particularly promising. CO2 is an inert gas reducing safety issues, and heat exchange properties are very good. Calculations showed that 0.014kg/s of CO2 at 50bars could carry 3kW between the hot side (yoke) at 300°C and the top of the stem maintained at 100°C.
  • thermosiphon operates in transcritical mode. Very large density difference between the cold and hot sides, and then large flows can be achieved without phase transition which greatly reduces the risk of instabilities.
  • the heat transfer fluid In order ensure a large heat extraction, the heat transfer fluid must be cooled above the superstructure. There are numerous ways of realising this cooling. The simplest way, but not the more effective, is to increase the surface area of heat transfer circuit above the superstructure with cooling fins. Those fins could for instance be sprayed by water or by a forced flow of air. The forced air flow can be provided by a fan, a lance delivering pressurized air, or by any other appropriate means.
  • a more advanced solution would be to couple the top the heat transfer circuit with an external cooling module. Heat exchange between the heat transfer fluid and refrigerant could be ensured by a proper heat exchanger.
  • the pipe that transport the warm gas upwards through the hanger is widened at the top of the hanger, i.e. to a small container. The container should be placed above the area where the current goes into the hanger from the anode beam.
  • An option that would solve all problems related to connection and disconnection during replacement of an anode would be to dissipate the heat into the anode beam by conduction across the electrical contact surface. This may require cooling of the anode beam, which would lead to added benefits such as decreased ohmic resistance and better mechanical properties of the anode beam (increased creep resistance).
  • the cooling circuit would then preferably be of Rankine type with an expansion turbine driving a generator.
  • Heat extracted from several anode stems can be collected and led to an energy conversion unit conveniently arranged outside the pot room.
  • the model takes into account the thermal conduction along the anode stem and the heat dissipated from the stem.
  • the heat transferred from the stem to the surroundings was calculated using a single heat transfer coefficient intended to contain both the convectional heat transfer and the electromagnetic radiation.
  • the model was not intended to be very accurate, but still, the results should be regarded as much better than order-of-magnitude-estimates.
  • the boundary between the lower end of the anode stem and the bimetallic plate was assumed to be constant (280 °C).
  • Case 1 No thermal insulation on stem, no extra cooling (reference case, today's standard).
  • Case 2 No thermal insulation on stem, stem cooled to 50 °C 1 m from the lower end.
  • Case 3 Stem thermally insulated below (inside) the superstructure, and cooled to 50 °C 1 m from the lower end.
  • Case 4 Stem thermally insulated below (inside) the superstructure, but no extra cooling.
  • Case 3 is comparable to Case 2, except that the stem is thermally insulated below (inside) the superstructure. In this case, the amount of heat conducted into the stem becomes lower, but on the other hand, the heat dissipated into the raw gas is eliminated. Insulating the yoke is therefore an effective means of reducing the raw gas temperature. When comparing Case 3 and Case 4, however, it is clear that insulating the stem should only be done in combination with cooling, or else there will be a considerable decrease in the heat conducted into the stem.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Claims (14)

  1. Procédé d'extraction de chaleur à partir d'une cellule électrolytique pour la production d'aluminium, la cellule comprenant une superstructure (6) avec une partie intérieure comprenant une ou plusieurs anode(s) de carbone suspendue(s), chaque anode étant suspendue à l'aide d'un joug pour anode (3) attaché à une extrémité basse d'une tige d'anode (1) qui est attachée à une barre anodique à son extrémité supérieure, la barre anodique (2) étant arrangé à l'extérieur de la superstructure (6), où la chaleur est extraite via la tige d'anode (1),
    caractérisé en ce que la tige d'anode (1) est refroidie de sorte qu'elle extrait la chaleur de l'intérieur vers l'extérieur de la superstructure, et dans lequel un matériau pour isolation thermique (7) est appliqué au moins à une partie de la tige d'anode (1) qui est à l'intérieur de la superstructure.
  2. Procédé selon la revendication 1,
    caractérisé en ce que l'isolation thermique est appliquée à l'entière partie de la tige d'anode qui est à l'intérieur de la superstructure.
  3. Procédé selon la revendication 1,
    caractérisé en ce que le refroidissement a lieu par une perte de chaleur accrue depuis la tige (1) au-dessus de la superstructure (6) de la cellule par une surface accrue de la tige (1).
  4. Procédé selon la revendication 1,
    caractérisé en ce que la chaleur est extraite via la tige d'anode (1) en refroidissant la barre anodique (2).
  5. Procédé selon la revendication 1,
    caractérisé en ce que le refroidissement a lieu en appliquant un milieu de refroidissement qui circule le long de la tige d'anode (1).
  6. Procédé selon la revendication 5,
    caractérisé en ce qu'un circuit de refroidissement fermé séparé est intégré dans les éléments de la tige, et possiblement le joug et les tiges, ou des circuits individuels dans chacun d'entre eux, transférant la chaleur à un milieu de refroidissement qui circule le long de la tige d'anode (1), directement par le même milieu de refroidissement ou indirectement.
  7. Procédé selon la revendication 5,
    caractérisé en ce qu'on applique un milieu de refroidissement qui est un gaz, un liquide, ou un liquide qui peut s'évaporer et se condenser, en particulier CO2, afin d'éviter une connexion à haute pression à la boucle de refroidissement ce qui simplifie les procédures de changement d'anode.
  8. Procédé selon la revendication 5,
    caractérisé en ce que le milieu de refroidissement est mis en circulation par une convection naturelle ou par une convection forcée en utilisant une pompe ou un compresseur.
  9. Procédé selon les revendications 1 à 8,
    caractérisé en ce que la chaleur est transportée depuis la partie inférieure de la tige d'anode (1) et dissipée dans la salle de pots par convection naturelle à partir d'ailettes de refroidissement qui de préférence sont de l'eau pulvérisée ou exposées à un flux d'air forcé.
  10. Procédé selon les revendications 1 à 8,
    caractérisé en ce que la chaleur est transportée depuis la partie inférieure de la tige d'anode (1) au moyen d'un agent de refroidissement et dissipée à l'extérieur de la salle de pots ou au sein d'un échangeur thermique, où la chaleur peut être recouvrée pour une production énergétique.
  11. Procédé selon les revendications 1 à 8, caractérisé en ce que la chaleur est transportée depuis la partie inférieure de la tige d'anode (1) au moyen d'un agent de refroidissement et dissipée par un matériau thermoïnique produisant de l'électricité.
  12. Procédé selon la revendication 5,
    caractérisé en ce que le milieu de refroidissement est appliqué à la tige (1) via des tuyaux (22, 23) attachés à l'extérieur de la tige, ou dans des canaux au sein de la tige.
  13. Moyen d'extraction de chaleur à partir d'une cellule électrolytique pour la production d'aluminium, la cellule comprenant une superstructure (6) avec une partie intérieure comprenant une ou plusieurs anode(s) de carbone suspendue(s) (5), la (les) anode(s) étant suspendue(s) à l'aide d'un joug pour anode (3) attaché à une extrémité basse d'une tige d'anode (1) qui est attachée à son extrémité supérieure à une barre anodique (2) arrangé à l'extérieur de la superstructure (6), caractérisé en ce que la tige d'anode (1) à l'intérieur de la superstructure (6) est au moins partiellement isolée thermiquement avec un matériau pour isolation thermique (7) et est en outre adaptée pour être refroidie à l'aide d'un milieu de refroidissement qui est mis en circulation le long de la tige d'anode (1) via des tuyaux (22, 23) attachés à l'extérieur de la tige, ou dans des canaux à l'intérieur de la tige, selon lequel la chaleur est extraite de l'intérieur de la superstructure vers l'extérieur de la superstructure par un circuit de refroidissement fermé.
  14. Moyen selon la revendication 13,
    caractérisé en ce qu'on applique un milieu de refroidissement qui est un gaz, un liquide, ou un liquide qui peut s'évaporer et se condenser, en particulier CO2, afin d'éviter une connexion à haute pression à la boucle de refroidissement ce qui simplifie les procédures de changement d'anode.
EP09823878.5A 2008-10-31 2009-10-26 Procédé et moyen d'extraction de chaleur de cellules d'électrolyse d'aluminium Not-in-force EP2350353B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NO20084611 2008-10-31
NO20084938A NO337977B1 (no) 2008-10-31 2008-11-24 Fremgangsmåte og anordning for ekstrahering av varme fra aluminium elektrolyseceller
PCT/NO2009/000371 WO2010050823A1 (fr) 2008-10-31 2009-10-26 Procédé et moyen d'extraction de chaleur de cellules d'électrolyse d'aluminium

Publications (3)

Publication Number Publication Date
EP2350353A1 EP2350353A1 (fr) 2011-08-03
EP2350353A4 EP2350353A4 (fr) 2012-08-08
EP2350353B1 true EP2350353B1 (fr) 2016-06-29

Family

ID=42129020

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09823878.5A Not-in-force EP2350353B1 (fr) 2008-10-31 2009-10-26 Procédé et moyen d'extraction de chaleur de cellules d'électrolyse d'aluminium

Country Status (10)

Country Link
EP (1) EP2350353B1 (fr)
CN (1) CN102203325B (fr)
AR (1) AR074082A1 (fr)
AU (1) AU2009310492B2 (fr)
BR (1) BRPI0919993A2 (fr)
CA (1) CA2741168C (fr)
EA (1) EA020514B1 (fr)
NO (2) NO337977B1 (fr)
NZ (1) NZ592384A (fr)
WO (1) WO2010050823A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR083049A1 (es) * 2010-09-22 2013-01-30 Goodtech Recovery Technology As Revestimiento lateral
CN103031572B (zh) * 2011-09-30 2016-02-17 湖南创元铝业有限公司 一种建立铝电解槽小炉膛的方法
EP2766517B1 (fr) * 2011-10-10 2017-11-08 Goodtech Recovery Technology AS Système et procédé de contrôle de la formation de couches dans une cuve d'électrolyse d'aluminium
NO336846B1 (no) * 2012-01-12 2015-11-16 Goodtech Recovery Technology As Forgrenet varmerør
CN103820817A (zh) * 2014-01-17 2014-05-28 饶云福 一种电解铝用内冷式惰性阳极
GB2564456A (en) * 2017-07-12 2019-01-16 Dubai Aluminium Pjsc Electrolysis cell for Hall-Héroult process, with cooling pipes for forced air cooling
GB2569382A (en) * 2017-12-18 2019-06-19 Dubai Aluminium Pjsc Anode yoke, anode hanger and anode assembly for a Hall-Heroult cell
CN108866574B (zh) * 2018-09-05 2020-06-12 辽宁石油化工大学 一种用于铝电解槽的热交换装置
RU2756676C1 (ru) * 2021-03-15 2021-10-04 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Устройство для охлаждения самообжигающегося анода алюминиевого электролизера
FR3121938B1 (fr) * 2021-04-16 2023-03-10 Rio Tinto Alcan Int Ltd Multipode et ensemble anodique

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE15503T1 (de) * 1980-10-27 1985-09-15 Conradty Nuernberg Elektrode fuer schmelzflusselektrolyse.
US4737247A (en) * 1986-07-21 1988-04-12 Aluminum Company Of America Inert anode stable cathode assembly
NO318164B1 (no) * 2002-08-23 2005-02-07 Norsk Hydro As Metode for elektrolytisk produksjon av aluminiummetall fra en elektrolytt samt anvendelse av samme.
FR2848875B1 (fr) 2002-12-18 2005-02-11 Pechiney Aluminium Procede et dispositif de traitement des effluents de cellule d'electrolyse pour la production d'aluminium
WO2006007863A1 (fr) * 2004-07-16 2006-01-26 Cathingots Limited Appareil d'electrolyse a electrodes pour electrolyte solide
NO20043150D0 (no) 2004-07-23 2004-07-23 Ntnu Technology Transfer As "Fremgangsmate og utstyr for varmegjenvining"
NO20050844D0 (no) * 2005-02-16 2005-02-16 Norsk Hydro As Fremgangsmate og anordning for varmebalanse

Also Published As

Publication number Publication date
NO20110740A1 (no) 2011-05-19
CN102203325B (zh) 2015-04-08
CN102203325A (zh) 2011-09-28
EP2350353A1 (fr) 2011-08-03
EP2350353A4 (fr) 2012-08-08
CA2741168A1 (fr) 2010-05-06
AR074082A1 (es) 2010-12-22
AU2009310492A1 (en) 2010-05-06
EA201100709A1 (ru) 2011-12-30
NO20084938L (no) 2010-05-03
BRPI0919993A2 (pt) 2015-12-15
AU2009310492B2 (en) 2015-10-08
CA2741168C (fr) 2016-08-16
WO2010050823A1 (fr) 2010-05-06
NZ592384A (en) 2013-06-28
NO337977B1 (no) 2016-07-18
EA020514B1 (ru) 2014-11-28
WO2010050823A8 (fr) 2010-09-30

Similar Documents

Publication Publication Date Title
EP2350353B1 (fr) Procédé et moyen d'extraction de chaleur de cellules d'électrolyse d'aluminium
EP1805349B1 (fr) Refroidissement interne d une cellule de fusion électrolytique
RU2241789C2 (ru) Электролизер для получения алюминия и способы поддержания корки на боковой стенке и регенерации электричества
ZA200500161B (en) Method and system for cooling an electrolytic cell for aluminium production
EP0228443A1 (fr) Agencement de cellules destine a etre utilise en electrometallurgie, et en particulier pour l'electrolyse de l'aluminium.
Ladam et al. Heat recovery from aluminium reduction cells
AU2001264422A1 (en) Electrolytic cell for the production of aluminium and a method for maintaining a crust on a sidewall and for recovering electricity
RU2002135593A (ru) Электролизер для получения алюминия и способ поддержания корки на боковой стенке и регенерирования электричества
EP2766517B1 (fr) Système et procédé de contrôle de la formation de couches dans une cuve d'électrolyse d'aluminium
EP2994557B1 (fr) Cellule d'électrolyse de l'aluminium comprenant un système de régulation thermique de parois latérales
Namboothiri et al. Controlled cooling of aluminium smelting cell sidewalls using heat exchangers supplied with air
CN213570785U (zh) 侧部带热管换热器的铝电解槽
RU2318922C1 (ru) Устройство для охлаждения катодного кожуха алюминиевого электролизера
CN211851945U (zh) 一种用于电解槽余热回收的发电系统
AU2005306566B2 (en) Internal cooling of electrolytic smelting cell

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110531

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LADAM, YVES

Inventor name: MOXNES, BJORN, PETTER

Inventor name: NEKSA, PETTER

Inventor name: SOLHEIM, ASBJORN

Inventor name: GJORVEN, SIGMUND

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20120709

RIC1 Information provided on ipc code assigned before grant

Ipc: C25C 3/06 20060101ALI20120703BHEP

Ipc: C25C 3/08 20060101ALI20120703BHEP

Ipc: C25C 7/06 20060101ALI20120703BHEP

Ipc: C25C 3/12 20060101AFI20120703BHEP

17Q First examination report despatched

Effective date: 20150717

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160413

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 809192

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009039511

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160929

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160930

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 809192

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161029

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161020

Year of fee payment: 8

Ref country code: FR

Payment date: 20161020

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160629

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161031

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009039511

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20170330

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161026

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161026

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161026

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161026

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009039511

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091026

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031