EP2350353A1 - Verfahren und mittel zur wärmeextraktion aus aluminium-elektrolysezellen - Google Patents

Verfahren und mittel zur wärmeextraktion aus aluminium-elektrolysezellen

Info

Publication number
EP2350353A1
EP2350353A1 EP09823878A EP09823878A EP2350353A1 EP 2350353 A1 EP2350353 A1 EP 2350353A1 EP 09823878 A EP09823878 A EP 09823878A EP 09823878 A EP09823878 A EP 09823878A EP 2350353 A1 EP2350353 A1 EP 2350353A1
Authority
EP
European Patent Office
Prior art keywords
anode
stem
heat
accordance
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09823878A
Other languages
English (en)
French (fr)
Other versions
EP2350353B1 (de
EP2350353A4 (de
Inventor
Sigmund GJØRVEN
Yves Ladam
Bjørn Petter MOXNES
Petter NEKSÅ
ASBJøRN SOLHEIM
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Norsk Hydro ASA
Original Assignee
Norsk Hydro ASA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norsk Hydro ASA filed Critical Norsk Hydro ASA
Publication of EP2350353A1 publication Critical patent/EP2350353A1/de
Publication of EP2350353A4 publication Critical patent/EP2350353A4/de
Application granted granted Critical
Publication of EP2350353B1 publication Critical patent/EP2350353B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing

Definitions

  • the present invention relates to a method and means for extracting heat from an electrolysis cell for production of aluminium. Specifically, it relates to the cooling of the anode/stubs/yoke assembly by heat conduction upwards along the anode stem, and the enhancement and control of this cooling effect.
  • the anode assembly in aluminium cells consists of the anode stem (rod), the anode yoke with stubs (studs), and the carbon anode block.
  • the stem is attached at its upper end to the anode beam by means of a clamp, and its lower end is connected to the anode yoke.
  • the stubs are integrated with the anode carbon block.
  • the anode stem can be made of aluminium or copper, while the yoke is made of aluminium, copper or as normal made of steel.
  • the stubs are made of steel.
  • the electric and mechanic connection between the stem and the yoke is constituted by a bimetallic plate.
  • One conventional way of fastening the stubs in holes in the carbon block is by means of cast iron.
  • the anode stem plays an important role in the energy balance of the cell. Approximately 50 percent of the electrical energy input to the cell is lost as heat. Up to 50 percent of the heat loss takes place at the top of the cell, and the major part of this again is through the anode.
  • each anode carbon block from the electrolyte and upwards. Some of this passes through the anode cover material on top of the anode, but most of the heat (about 5 kW per anode) is conducted through the stubs and into the yoke. About 4 kW is then dissipated from the yoke and stubs by electromagnetic radiation and convective heat transfer, while the remaining 1 kW is conducted into the anode rod. Part of the latter heat is dissipated into the gas between the top crust and the superstructure, and part of it is dissipated outside the superstructure.
  • the easiest way to increase the heat losses is by increasing the number of stubs in each anode, or by increasing the diameter of the stubs. Besides increasing the heat loss, this has the inherent benefit of decreasing the electric resistance of the anode assembly.
  • the increase in the heat loss through the stubs is less than proportional to the increase in the cross-sectional area, and the larger stub dimensions may give problems with anode cracking.
  • Increased heat losses from the stubs/yoke will also lead to increased temperature in the raw gas. There are, at least, three reasons why this is not desired; 1 ) Increased maintenance costs related to the filter bags in the dry scrubber if the temperature increases above their designed operating temperature, 2) It is important to keep the temperature of the superstructure below certain limits due to the numerous electromechanical installations in this area, and 3) There may be increased heat stress on the operators working in the vicinity of the cell. The extra heat losses must therefore be compensated by increased air suction into the cells.
  • the air flow in the exhaust ducts and the gas scrubbing system is the far largest mass flow in an aluminium plant (e.g., 80 t air/t Al), and the cost of transporting the gas is approximately proportional to the cube of the volumetric flow.
  • increased suction rate may also require a scaling up of the equipment related to the dry scrubbing system.
  • NO 318 164 B1 discloses a method for control of inert electrodes in an electrolysis cell for aluminium production.
  • the problem to be solved is to reduce dissolution of the anode material by transporting heat away from the active anode surface and to reduce deposit formation on the active surface of the cathode by preferably keeping the temperature of this surface higher than that of the electrolyte.
  • the electrolytic process based on inert electrodes can be enhanced.
  • One main purpose of cooling the anode assembly as described in accordance with the present invention is to be able to raise the amperage on the cell while maintaining the side and end ledge (frozen bath) in the bath phase without reducing the ACD, without increasing the dimension of the stub and yoke and thereby without increasing the temperature of the raw gas.
  • Removing heat from the anode with an active cooling will also increase the efficiency of stub, yoke and stem as a heat sink for heat leaving the interpolar distance where most of the heat is generated. The reason for this is because the specific electrical and thermal conductivity of steel will increase and thereby leading to an increased heat loss through the stub and yoke and also because less internal heat will be generated in the material (steel). Calculation on a heat balance model with active cooling of the anodes has shown possibility for a 10 % increase in the amperage maintaining the interpolar distance and keeping the side ledge constant.
  • the basic idea in the present invention is to extract more heat from the interior of the cell, as well as reducing the heat dissipated into the raw gas, by increasing the amount of heat conducted from the cell along the anode stem. Enhancement of the heat removal from the cell can be achieved by improvement of the conduction along the stem or by installing a convective heat transfer circuit machined inside or fixed on the stem. The heat transfer fluid is circulated down to the yoke where it is heated up. It brings back this heat outside of the superstructure where the heat is released. Heat intake and release can be enhanced by phase transition of the refrigerant (boiling and condensation).
  • Fig. 1 discloses in general an anode assembly
  • Fig. 2 a-b disclose two embodiments of cross sectional views of anode stems in accordance with the invention
  • Fig. 3 discloses a diagram showing temperature gradients along an anode stem, calculated for four cases as discussed in the following text.
  • anode assembly for an electrolysis cell that comprises an anode stem 1 which is connected to an anode beam 2 and an anode yoke 3 from which stubs 4 provide further electric contact to a carbon anode 5.
  • the anode stem is cooled by increasing the surface area of the stem above the cell's superstructure 6, or by applying a cooling medium that circulates along the stem.
  • the anode cooling can be combined with the use of a thermal insulation material 7 at the anode stem below (inside) the superstructure.
  • FIG. 2a and 2b there is shown two embodiments for arranging medium transport inside the anode stem 1.
  • the Figures show possible technical solutions, which may also be used in combination with cooling of the anode yoke (WO 2006 088375).
  • the anode stem 1 contains a longitudinal pipe 22 for the cold fluid supplied or recycled at the top, and another longitudinal pipe 23 for the hot fluid coming from the bottom of the stem or from the yoke and the bottom of the stem.
  • the latter pipe is thermally insulated 24 in order to avoid heating of the cold fluid or the anode stem itself.
  • the pipes can be made two in parallel as in Fig. 2a or concentric as in Fig. 2b.
  • the anode stem 1 ' contains a longitudinal pipe 22' for cold fluid supplied or recycled at the top, and another longitudinal pipe 23' for hot fluid coming from the bottom of the stem or from the yoke and the bottom of the stem.
  • the pipes are arranged concentric with a layer of insulation 24' between them.
  • the preferred technical solution should as earlier stated be a fluid that evaporates at the lower part of the stem or within the anode yoke, and is condensed at the upper part of the stem. Since there is a relatively large surface of contact between the anode beam and the stem, the heat from the top of the stem can be extracted by cooling the anode beam. This eliminates the extra work needed during anode replacement, if the fluid supply to and from the stem or yoke must be connected and disconnected.
  • the anode stem should be supplied with a relief valve, in case increasing temperature should lead to an unacceptable pressure build-up.
  • Circulation of the cooling medium can be forced by a pump or a compressor. Circulation can also be simply triggered by buoyancy.
  • This is the classical concept of thermosiphon.
  • the heat transfer fluid is heated at the bottom (yoke). It expands and flows to the top (outside the electrolysis cell) where it is cooled. Its density increases and it falls back to the yoke.
  • CO2 based thermosiphon was found particularly promising. CO2 is an inert gas reducing safety issues, and heat exchange properties are very good. Calculations showed that 0.014kg/s of CO2 at 50bars could carry 3kW between the hot side (yoke) at 300 0 C and the top of the stem maintained at 100 0 C.
  • thermosiphon operates in transcritical mode. Very large density difference between the cold and hot sides, and then large flows can be achieved without phase transition which greatly reduces the risk of instabilities.
  • the heat transfer fluid In order ensure a large heat extraction, the heat transfer fluid must be cooled above the superstructure. There are numerous ways of realising this cooling. The simplest way, but not the more effective, is to increase the surface area of heat transfer circuit above the superstructure with cooling fins. Those fins could for instance be sprayed by water or by a forced flow of air. The forced air flow can be provided by a fan, a lance delivering pressurized air, or by any other appropriate means.
  • a more advanced solution would be to couple the top the heat transfer circuit with an external cooling module. Heat exchange between the heat transfer fluid and refrigerant could be ensured by a proper heat exchanger.
  • the pipe that transport the warm gas upwards through the hanger is widened at the top of the hanger, i.e. to a small container. The container should be placed above the area where the current goes into the hanger from the anode beam.
  • An option that would solve all problems related to connection and disconnection during replacement of an anode would be to dissipate the heat into the anode beam by conduction across the electrical contact surface. This may require cooling of the anode beam, which would lead to added benefits such as decreased ohmic resistance and better mechanical properties of the anode beam (increased creep resistance). Ideally the heat extracted should be utilized for power production.
  • the cooling circuit would then preferably be of Rankine type with an expansion turbine driving a generator.
  • Heat extracted from several anode stems can be collected and led to an energy conversion unit conveniently arranged outside the pot room.
  • the invention will help stabilizing the temperature in the hanger and yoke at a lower level than today and make it possible to remove the bimetallic joint. If not removing it, it will live for a longer period.
  • the proposed technical solution can also be used by regulating the effect input to the cell under normal operation instead of moving the anode up and down (power pulsing). If the cell needs more heat, less heat is removed from all or some of the anode assemblies on the cell, and if the cell needs less heat more heat could be removed from the anode assemblies than normal. In this way the need for upwards and downwards movements of the anode to increase or reduce the heat input to the cell will be less and therefore it will be possible to keep a more constant interpolar distance (ACD). By keeping the ACD more constant the fluctuation in the bath level will be reduced, and also the process control will be improved since movements of the anode normally will disturb the resistance signal to the regulator deciding the alumina addition.
  • ACD interpolar distance
  • a lower temperature on the yoke will also make it more easy to use other materials in the yoke than steel, by instance copper with a higher thermal conductivity and higher electrical conductivity than steel. Even an aluminium yoke could be considered.
  • a simplified model of the anode stem and its surroundings was made.
  • the model takes into account the thermal conduction along the anode stem and the heat dissipated from the stem.
  • the heat transferred from the stem to the surroundings was calculated using a single heat transfer coefficient intended to contain both the convectional heat transfer and the electromagnetic radiation.
  • the model was not intended to be very accurate, but still, the results should be regarded as much better than order-of-magnitude-estimates.
  • the boundary between the lower end of the anode stem and the bimetallic plate was assumed to be constant (280 0 C).
  • Case 2 No thermal insulation on stem, stem cooled to 50 0 C 1 m from the lower end.
  • Case 3 Stem thermally insulated below (inside) the superstructure, and cooled to 50 0 C 1 m from the lower end.
  • Case 4 Stem thermally insulated below (inside) the superstructure, but no extra cooling.
  • Case 3 is comparable to Case 2, except that the stem is thermally insulated below (inside) the superstructure. In this case, the amount of heat conducted into the stem becomes lower, but on the other hand, the heat dissipated into the raw gas is eliminated. Insulating the yoke is therefore an effective means of reducing the raw gas temperature. When comparing Case 3 and Case 4, however, it is clear that insulating the stem should only be done in combination with cooling, or else there will be a considerable decrease in the heat conducted into the stem.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
EP09823878.5A 2008-10-31 2009-10-26 Verfahren und mittel zur wärmeextraktion aus aluminium-elektrolysezellen Not-in-force EP2350353B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NO20084611 2008-10-31
NO20084938A NO337977B1 (no) 2008-10-31 2008-11-24 Fremgangsmåte og anordning for ekstrahering av varme fra aluminium elektrolyseceller
PCT/NO2009/000371 WO2010050823A1 (en) 2008-10-31 2009-10-26 Method and means for extracting heat from aluminium electrolysis cells

Publications (3)

Publication Number Publication Date
EP2350353A1 true EP2350353A1 (de) 2011-08-03
EP2350353A4 EP2350353A4 (de) 2012-08-08
EP2350353B1 EP2350353B1 (de) 2016-06-29

Family

ID=42129020

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09823878.5A Not-in-force EP2350353B1 (de) 2008-10-31 2009-10-26 Verfahren und mittel zur wärmeextraktion aus aluminium-elektrolysezellen

Country Status (10)

Country Link
EP (1) EP2350353B1 (de)
CN (1) CN102203325B (de)
AR (1) AR074082A1 (de)
AU (1) AU2009310492B2 (de)
BR (1) BRPI0919993A2 (de)
CA (1) CA2741168C (de)
EA (1) EA020514B1 (de)
NO (2) NO337977B1 (de)
NZ (1) NZ592384A (de)
WO (1) WO2010050823A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR083049A1 (es) * 2010-09-22 2013-01-30 Goodtech Recovery Technology As Revestimiento lateral
CN103031572B (zh) * 2011-09-30 2016-02-17 湖南创元铝业有限公司 一种建立铝电解槽小炉膛的方法
US20140202873A1 (en) * 2011-10-10 2014-07-24 Mitsubishi Electric Corporation System and method for control pf layer formation in an aluminum electrolysis cell
NO336846B1 (no) * 2012-01-12 2015-11-16 Goodtech Recovery Technology As Forgrenet varmerør
CN103820817A (zh) * 2014-01-17 2014-05-28 饶云福 一种电解铝用内冷式惰性阳极
GB2564456A (en) * 2017-07-12 2019-01-16 Dubai Aluminium Pjsc Electrolysis cell for Hall-Héroult process, with cooling pipes for forced air cooling
GB2569382A (en) * 2017-12-18 2019-06-19 Dubai Aluminium Pjsc Anode yoke, anode hanger and anode assembly for a Hall-Heroult cell
CN108866574B (zh) * 2018-09-05 2020-06-12 辽宁石油化工大学 一种用于铝电解槽的热交换装置
RU2756676C1 (ru) * 2021-03-15 2021-10-04 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Устройство для охлаждения самообжигающегося анода алюминиевого электролизера
FR3121938B1 (fr) * 2021-04-16 2023-03-10 Rio Tinto Alcan Int Ltd Multipode et ensemble anodique

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4737247A (en) * 1986-07-21 1988-04-12 Aluminum Company Of America Inert anode stable cathode assembly
WO2006007863A1 (en) * 2004-07-16 2006-01-26 Cathingots Limited Electrolysis apparatus with solid electrolyte electrodes

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0050681B1 (de) * 1980-10-27 1985-09-11 C. CONRADTY NÜRNBERG GmbH & Co. KG Elektrode für Schmelzflusselektrolyse
NO318164B1 (no) * 2002-08-23 2005-02-07 Norsk Hydro As Metode for elektrolytisk produksjon av aluminiummetall fra en elektrolytt samt anvendelse av samme.
FR2848875B1 (fr) 2002-12-18 2005-02-11 Pechiney Aluminium Procede et dispositif de traitement des effluents de cellule d'electrolyse pour la production d'aluminium
NO20043150D0 (no) 2004-07-23 2004-07-23 Ntnu Technology Transfer As "Fremgangsmate og utstyr for varmegjenvining"
NO20050844D0 (no) * 2005-02-16 2005-02-16 Norsk Hydro As Fremgangsmate og anordning for varmebalanse

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4737247A (en) * 1986-07-21 1988-04-12 Aluminum Company Of America Inert anode stable cathode assembly
WO2006007863A1 (en) * 2004-07-16 2006-01-26 Cathingots Limited Electrolysis apparatus with solid electrolyte electrodes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2010050823A1 *

Also Published As

Publication number Publication date
NO20110740A1 (no) 2011-05-19
AR074082A1 (es) 2010-12-22
CA2741168A1 (en) 2010-05-06
EP2350353B1 (de) 2016-06-29
WO2010050823A1 (en) 2010-05-06
AU2009310492B2 (en) 2015-10-08
NZ592384A (en) 2013-06-28
CA2741168C (en) 2016-08-16
NO337977B1 (no) 2016-07-18
BRPI0919993A2 (pt) 2015-12-15
EA020514B1 (ru) 2014-11-28
AU2009310492A1 (en) 2010-05-06
NO20084938L (no) 2010-05-03
CN102203325B (zh) 2015-04-08
EA201100709A1 (ru) 2011-12-30
EP2350353A4 (de) 2012-08-08
WO2010050823A8 (en) 2010-09-30
CN102203325A (zh) 2011-09-28

Similar Documents

Publication Publication Date Title
CA2741168C (en) Method and means for extracting heat from aluminium electrolysis cells
EP1805349B1 (de) Interne kühlung einer elektrolytischen schmelzzelle
AU2001264422B2 (en) Electrolytic cell for the production of aluminium and a method for maintaining a crust on a sidewall and for recovering electricity
ZA200500161B (en) Method and system for cooling an electrolytic cell for aluminium production
Ladam et al. Heat recovery from aluminium reduction cells
EP0228443A1 (de) Zellenanordnung für elektrometallurgische zwecke, insbesondere aluminiumelektrolyse.
AU2001264422A1 (en) Electrolytic cell for the production of aluminium and a method for maintaining a crust on a sidewall and for recovering electricity
US20140332400A1 (en) Aluminium electrolysis cell comprising sidewall temperature control system
RU2002135593A (ru) Электролизер для получения алюминия и способ поддержания корки на боковой стенке и регенерирования электричества
EP2766517B1 (de) System und verfahren zur steuerung der schichtbildung bei einer aluminiumelektrolysezelle
WO2006088375A1 (en) Method and means for control of heat balance
EP2994557B1 (de) Aluminiumelektrolysezelle mit seitenwandtemperaturregelungssystem
Namboothiri et al. Controlled cooling of aluminium smelting cell sidewalls using heat exchangers supplied with air
CN111042887A (zh) 一种用于电解槽余热回收的发电系统
RU2318922C1 (ru) Устройство для охлаждения катодного кожуха алюминиевого электролизера
CN211851945U (zh) 一种用于电解槽余热回收的发电系统
RU2376402C2 (ru) Способ крепления ребер охлаждения на катодный кожух алюминиевого электролизера
AU2005306566A1 (en) Internal cooling of electrolytic smelting cell

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110531

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LADAM, YVES

Inventor name: MOXNES, BJORN, PETTER

Inventor name: NEKSA, PETTER

Inventor name: SOLHEIM, ASBJORN

Inventor name: GJORVEN, SIGMUND

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20120709

RIC1 Information provided on ipc code assigned before grant

Ipc: C25C 3/06 20060101ALI20120703BHEP

Ipc: C25C 3/08 20060101ALI20120703BHEP

Ipc: C25C 7/06 20060101ALI20120703BHEP

Ipc: C25C 3/12 20060101AFI20120703BHEP

17Q First examination report despatched

Effective date: 20150717

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160413

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 809192

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009039511

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160929

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160930

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 809192

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161029

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161020

Year of fee payment: 8

Ref country code: FR

Payment date: 20161020

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160629

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161031

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009039511

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20170330

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161026

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161026

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161026

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161026

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009039511

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091026

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031