EP2344821B1 - Method for producing liquid and gaseous nitrogen streams, a helium-rich gaseous stream, and a denitrogened hydrocarbon stream, and associated plant - Google Patents

Method for producing liquid and gaseous nitrogen streams, a helium-rich gaseous stream, and a denitrogened hydrocarbon stream, and associated plant Download PDF

Info

Publication number
EP2344821B1
EP2344821B1 EP09755956.1A EP09755956A EP2344821B1 EP 2344821 B1 EP2344821 B1 EP 2344821B1 EP 09755956 A EP09755956 A EP 09755956A EP 2344821 B1 EP2344821 B1 EP 2344821B1
Authority
EP
European Patent Office
Prior art keywords
stream
nitrogen
heat exchanger
rich
order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09755956.1A
Other languages
German (de)
French (fr)
Other versions
EP2344821A2 (en
Inventor
Henri Paradowski
Sylvain Vovard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technip Energies France SAS
Original Assignee
Technip France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technip France SAS filed Critical Technip France SAS
Publication of EP2344821A2 publication Critical patent/EP2344821A2/en
Application granted granted Critical
Publication of EP2344821B1 publication Critical patent/EP2344821B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0208Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0219Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. using a deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0267Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using flash gas as heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/028Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases
    • F25J3/029Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases of helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/76Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/30Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/30Dynamic liquid or hydraulic expansion with extraction of work, e.g. single phase or two-phase turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/42Quasi-closed internal or closed external nitrogen refrigeration cycle

Definitions

  • the present invention relates to a process for producing a liquid nitrogen stream, a nitrogen gas stream, a helium rich gas stream and a denitrogenized hydrocarbon stream, from a stream charge containing hydrocarbons, helium and nitrogen.
  • Such a method is particularly applicable to the treatment of charge streams consisting of liquefied natural gas (LNG) or also natural gas (NG) in gaseous form.
  • LNG liquefied natural gas
  • NG natural gas
  • This process applies to new natural gas liquefaction units or new natural gas processing units.
  • the invention also applies to improving the performance of existing units.
  • natural gas must be de-nitrogenized before being sent to the consumer, or before being stored or transported.
  • natural gas extracted from underground deposits often contains a significant amount of nitrogen. It also frequently contains helium.
  • the known denitrogenization processes make it possible to obtain a denitrogenated hydrocarbon stream which can be sent to a storage unit in liquid form in the case of LNG, or to a gas distribution unit in the case of the NG.
  • These denitrogenation processes also produce nitrogen-rich streams which are used either to supply nitrogen necessary for the operation of the plant or to provide a nitrogen-rich fuel gas which serves as a fuel for the gas turbines of the compressors. used during the implementation of the method.
  • these nitrogen-rich streams are released into the atmosphere in a torch after incineration of impurities, such as methane.
  • the fuel streams produced by the process and intended for use in gas turbines must, on the contrary, contain less than 15 to 30% of nitrogen for burning in special burners designed to limit the production of nitrogen oxides. released into the atmosphere. These discharges occur in particular during the start-up phases of the installations used for the implementation of the process, in which the denitrogenation process is not yet very effective.
  • US 2007/0245771 discloses a process of the aforementioned type, which simultaneously produces a stream of liquid nitrogen, a helium-rich stream, and a gas stream containing about 30% nitrogen and about 70% hydrocarbons. This gas stream rich in nitrogen is intended in this installation to form a fuel stream.
  • US 2004/231359 discloses a method of removing nitrogen from condensed natural gas to produce a subcooled liquefied natural gas. This process is not intended to produce a stream of liquid nitrogen, nor a gaseous stream rich in helium.
  • US 4,778,498 discloses a process for producing methane gas under pressure producing a gaseous phase containing helium.
  • An object of the invention is to obtain an economical process of denitrogenation of a hydrocarbon feed stream, which makes it possible to recover the nitrogen and helium contained in the feed stream, while limiting emissions to a minimum. harmful to the environment.
  • the subject of the invention is a method according to claim 1.
  • the method according to the invention may comprise one or more of the features of claims 2 to 10.
  • the installation according to the invention may comprise one or more of the features claims 12 and 13.
  • the Figure 1 illustrates a first installation 10 according to the invention for producing, from a liquid feed stream 12 obtained from a charge of liquefied natural gas (LNG), a hydrocarbon-rich denitrogenated LNG stream 14, a stream of nitrogen gas 16 for use in the plant 10, a stream of liquid nitrogen 18, and a stream 20 rich in helium.
  • LNG liquefied natural gas
  • the installation 10 comprises an upstream portion 22 for cooling the load, and a downstream portion 24 for fractionation.
  • the upstream portion 22 comprises a liquid expansion turbine 26, an upstream heat exchanger 28, for cooling the charging current 12 by means of a cooling cycle 30.
  • the cooling cycle 30 is an inverted Brayton type closed cycle. It comprises a cycle heat exchanger 32, an upstream compressor 34 with stages, and a dynamic expansion turbine 36.
  • the upstream stage compression apparatus 34 comprises two stages, each stage comprising a compressor 38A, 38B and a refrigerant 40A, 40B cooled in air or in water. At least one of the compressors 38A of the upstream apparatus 34 is coupled to the dynamic expansion turbine 36 to increase the efficiency of the process.
  • the downstream fractionation portion 24 comprises a fractionation column 50 having a plurality of theoretical fractionation stages.
  • the downstream portion 24 further comprises a first downstream downstream heat exchanger 52, a second downstream heat exchanger 54, and a third downstream heat exchanger 56.
  • the downstream portion 24 further comprises a downstream compressor apparatus 58 with stages and a first separation flask 60 at the top of the column.
  • the downstream compression apparatus 58 in this example comprises three compression stages connected in series, each stage comprising a compressor 62A, 62B, 62C placed in series with a refrigerant 64A, 64B, 64C cooled with water or with air .
  • the liquid charging stream 12 is a stream of liquefied natural gas (LNG) comprising in moles 0.1009% helium, 8.9818% nitrogen, 86.7766% methane, 2.9215% d. ethane, 0.8317% propane, 0.2307% i-C4 hydrocarbons, 0.1299% n-C4 hydrocarbons, 0.0128% i-C5 hydrocarbons, 0.0084% n-C5 hydrocarbons, 0.0005% n-C6 hydrocarbons, 0.0001% benzene, 0.0050% carbon dioxide.
  • LNG liquefied natural gas
  • this stream 12 comprises a hydrocarbon molar content greater than 70%, a molar nitrogen content of between 5% and 30%, and a molar helium content of between 0.01% and 0.5%.
  • the charging current 12 has a temperature below -130 ° C, for example below -145 ° C. This current has a pressure greater than 25 bars, and in particular equal to 34 bars.
  • the charging current 12 is liquid, so that it constitutes a liquid charge stream 68 that can be used directly in the process.
  • the liquid charging stream 68 is introduced into the liquid expansion turbine 26, where it is expanded to a pressure of less than 15 bar, in particular equal to 6 bar up to a temperature below -130 ° C. and in particular equal to -150.7 ° C.
  • a relaxed charge stream 70 is formed. This relaxed charge current 70 is divided into a first main feed stream 72, to be refrigerated by the refrigeration cycle 30, and a second secondary feed stream 74.
  • the first feed stream 72 has a mass flow rate greater than 10% of the expanded feed stream 70. It is introduced into the upstream heat exchanger 28, where it is cooled to a temperature below -150 ° C and in particular equal to -160 ° C to give a first cooled introduction stream 76.
  • the first introduction stream 72 is placed in heat exchange relation with the refrigerant stream flowing in the cycle 30, as will be described below.
  • the first cooled introduction stream 76 is expanded in a first expansion valve 78 to a pressure of less than 3 bars and is then introduced to an intermediate stage N1 of the fractionation column 50.
  • the second feed stream 74 is conveyed to the first downstream exchanger 52 at the bottom of the column, where it is cooled to a temperature below -150 ° C. and in particular equal to -160 ° C. to give a second stream. cooled introduction 80.
  • the second cooled introduction stream 80 is expanded in a second expansion valve 82 to a pressure of less than 3 bars, and is then introduced to an intermediate stage N1 of the fractionation column 50.
  • the first cooled introduction stream 76 and the second cooled introduction stream 80 are introduced to the same stage N1 of the column 50.
  • a reboiling stream 84 is withdrawn from a lower stage N2 of the fractionation column 50 located under the intermediate stage N1.
  • the reboiling current 84 passes into the first downstream exchanger 52, to be placed in heat exchange relation with the second introduction stream 74 and to cool the second stream 74. It is then reintroduced near the foot of the column. fractionation 50, below the lower stage N2.
  • the fractionation column 50 operates at low pressure, in particular less than 5 bar, advantageously less than 3 bar. In this example, the column 50 operates substantially at 1.3 bars.
  • the fractionation column 50 produces a bottom stream 86 for forming the nitrogen-rich liquefied stream 14.
  • This denitrogenated LNG stream contains a controlled amount of nitrogen, for example less than 1 mol%.
  • the foot stream 86 is pumped at 5 bar in a pump 88 to form the hydrocarbon-rich denitrogen stream 14 and to be shipped to a storage operating at atmospheric pressure and form the denitrogenated LNG stream for exploitation.
  • the stream 14 is a stream of LNG that can be transported in liquid form, for example in a LNG carrier.
  • the fractionation column 50 also produces a nitrogen-rich overhead stream 90 which is extracted from the top of this column 50.
  • This overhead stream 90 has a molar content of hydrocarbons preferably less than 1%, and even more advantageously less than 1%. 0.1%. It has a molar helium content greater than 0.2% and advantageously greater than 0.5%.
  • the molar composition of the overhead stream 90 is as follows: 0.54% helium, 99.40% nitrogen and 0.06% methane.
  • the nitrogen-rich overhead stream 90 is then passed successively into the second downstream heat exchanger 54, into the first downstream heat exchanger 52, then into the third downstream heat exchanger 56 to be successively heated to -20 ° C.
  • a stream rich in heated nitrogen 92 is obtained. This stream 92 is then divided into a first minority portion 94 of nitrogen produced, and a second portion 96 of recycled nitrogen.
  • the minority portion 94 has a mass flow rate of between 10% and 50% of the mass flow rate of the stream 92.
  • the minority portion 94 is expanded through a third expansion valve 98 to form the nitrogen gas stream 16.
  • This stream of nitrogen gas 16 has a pressure greater than atmospheric pressure and in particular greater than 1.1 bar. It has a molar nitrogen content greater than 99%.
  • the majority part 96 is then introduced into the downstream compression apparatus 58, where it passes successively into each compression stage through a compressor 62A, 62B, 62C and a refrigerant 64A, 64B, 64C.
  • the majority part 96 is thus compressed to a pressure greater than 20 bar and in particular substantially equal to 21 bar, to form a compressed recycled nitrogen stream 100.
  • the recycled compressed nitrogen stream 100 thus has a temperature above 10 ° C and in particular equal to 38 ° C.
  • the compressed recycled nitrogen stream 100 passes successively through the third downstream heat exchanger 56, then through the first bottom downstream heat exchanger 52, and then through the first downstream heat exchanger 54.
  • the recycled nitrogen stream 100 circulates against the current and in heat exchange relation with the top nitrogen stream 90.
  • the nitrogen stream of head 90 yields frigories to the recycled nitrogen stream 100.
  • the recycled nitrogen stream 100 is further placed in heat exchange relationship with the reboilage stream 84 to be cooled by this stream 84.
  • the recycled nitrogen stream 100 After passing through the second downstream heat exchanger 54, the recycled nitrogen stream 100 forms a stream 102 of condensed, essentially liquid, recycled nitrogen.
  • This liquid stream contains a liquid fraction greater than 90% and has a temperature below -160 ° C and advantageously equal to -170 ° C.
  • the condensed stream 102 is expanded in a fourth expansion valve 104 to give a two-phase flow 106 which is introduced into the first separator tank 60.
  • the first separator balloon 60 produces a helium-rich gaseous head stream which, after passing through a fifth expansion valve 108, forms the helium rich gas stream 20.
  • the helium rich gas stream has a helium content of greater than 10 mol%. It is intended to be conveyed to a pure helium production unit for treatment.
  • the method according to the invention makes it possible to recover at least 60 mol% of the helium present in the charging stream 12.
  • the first separator flask 60 produces a bottom stream of liquid nitrogen 110 at the bottom. This bottom stream 110 is separated into a minor portion of produced liquid nitrogen 112 and a major portion of reflux nitrogen 114.
  • the minority part 112 has a mass flow rate of less than 10%, and in particular between 0% and 10% of the mass flow rate of the bottom stream 110.
  • the minority part 112 is expanded in a sixth expansion valve 116 to form the flow of liquid nitrogen product 18.
  • the product nitrogen stream has a molar nitrogen content greater than 99%.
  • the major portion 114 is expanded to the column pressure through a seventh expansion valve 118, to form a first reflux stream, and then introduced to a top stage N3 of the fractionation column 50, located under the head of this column and above the intermediate stage N1.
  • the molar fraction of nitrogen in the majority part 114 is greater than 99%.
  • the cooling cycle 30 is an inverted Brayton type closed cycle using an exclusively gaseous refrigerant stream.
  • the refrigerant stream is formed by substantially pure nitrogen whose nitrogen content is greater than 99%.
  • the refrigerant stream 130 delivered to the upstream exchanger 28 has a temperature below -150 ° C, and especially equal to -165 ° C and a pressure greater than 5 bar and in particular substantially equal to 9.7 bars.
  • the coolant stream 130 flows through the cycle heat exchanger 32, where it is reheated by heat exchange with the first main feed stream 72.
  • the temperature of the heated refrigerant stream 132 at the outlet of the upstream exchanger 28 is less than -150 ° C and in particular equal to -153 ° C.
  • the heated stream 132 is reheated in the cycle heat exchanger 32 before being introduced into the succession of compressors 38A, 38B and refrigerants 40A, 40B of the upstream stage compression apparatus 34.
  • the upstream apparatus 34 At the outlet of the upstream apparatus 34, it forms a compressed refrigerant stream 134 which is cooled by heat exchange with the cooling stream. heated refrigerant 132 from the upstream exchanger 28 in the cycle heat exchanger 32.
  • the cooled compressed current 136 thus has a pressure greater than 15 bar and in particular substantially equal to 20 bar and a temperature below -130 ° C and in particular substantially equal to -141 ° C.
  • the cooled compressed stream 136 is then introduced into the dynamic expansion turbine 36. It is dynamically expanded in the expansion turbine 36 to provide the refrigerant stream 130 at the temperature and pressure described above.
  • the upstream and downstream compression devices 34 and 58 are integrated in the same multi-body machine, with a single motor for propelling the compressors 38A, 38B and the compressors 62A to 62C.
  • Compressor 62A 1300 kW
  • Compressor 62B 1358 kW
  • Compressor 62C 1365 kW
  • Compressor 38B 2023 kW Total: 6046 kW
  • a second installation 140 according to the invention is represented on the Figure 2 .
  • This second installation 140 is intended for the implementation of a second production method according to the invention.
  • This installation 140 differs from the first installation 10 in that it comprises a second separator tank 142 interposed between the outlet of the fourth expansion valve 104 and the inlet of the first separator tank 60.
  • the second method according to the invention differs from the first method in that only part of the two-phase flow 106 resulting from the expansion of the cooled recycled nitrogen stream 102 in the fourth expansion valve 104 is received in the first separator tank 60.
  • the two-phase flow 106 formed at the outlet of the fourth expansion valve 104 is introduced into the second separator tank 142, and not directly into the first separator tank 60.
  • the cooled nitrogen stream 102 does not pass through. through the second downstream exchanger 54.
  • the head stream 144 produced in the second separator tank 142 is passed through the second downstream exchanger 54 to be cooled, and is introduced as a cooled head stream 146 into the first separator tank 60.
  • Foot stream 148 pulled from the bottom of the second separator tank 142 is divided into a second nitrogen reflux stream 150 and a makeup supplement stream 152.
  • the second nitrogen reflux stream 150 is introduced, after expansion in an eighth expansion valve 154, to a top stage N4 of the fractionation column 50 located in the vicinity and below the N3 introduction stage of the first reflux stream 114 in the fractionation column 50.
  • the mass flow rate of the second reflux stream 150 is greater than 90% of the flow of the mass flow of the foot stream 148.
  • the second additional cooling stream 152 is reintroduced into the overhead stream 90, upstream of the second downstream heat exchanger 54, in order to provide frigories for partially cooling and condensing the overhead flow 144 passing through the second downstream heat exchanger 54.
  • the mixing stream 156 resulting from the mixing of the overhead stream 90 and the cooling makeup stream 152 is introduced successively into the second downstream heat exchanger 54 and then into the first downstream heat exchanger 52 where it enters into a heat exchange relationship with the recycled nitrogen stream 100 and the second introduction stream 74 to cool these streams.
  • the second method according to the invention is also operated in a similar manner to the first method according to the invention.
  • the feed stream 12 is a stream of liquefied natural gas (LNG) comprising a composition identical to that described above.
  • LNG liquefied natural gas
  • the molar composition of the overhead stream 90 is as follows: helium 0.54%, nitrogen 99.35% and methane 0.11%.
  • Compressor 62A 1482 kW
  • Compressor 62B 912 kW
  • Compressor 62C 708 kW
  • Compressor 38B 2584 kW Total: 5686 kW
  • a third installation 160 according to the invention, for the implementation of a third method according to the invention is illustrated by the Figure 3 .
  • the third installation 160 differs from the first installation 10 by the presence of a fractionation section 162 and an upstream liquefaction exchanger 164 placed upstream of the liquid expansion turbine 26.
  • the charging current 12 is natural gas (NG) in gaseous form. It is introduced firstly into the liquefaction exchanger 164 to be cooled to a temperature below -20 ° C and substantially equal to -30 ° C.
  • NG natural gas
  • the feed stream 12 is then fed to the fractionation section 162 which produces a treated gas 166 having a low C 5 + hydrocarbon content and a section 168 of a C 5 + hydrocarbon rich liquefied gas.
  • the molar content of C 5 + hydrocarbons in the treated gas 166 is less than 300 ppm.
  • the treated gas 166 is reintroduced into the liquefying exchanger 164 to be liquefied and to give a liquid charge stream 68 at the outlet of the liquefying exchanger 164.
  • the treated gas 166 is devoid of heavy constituents, such as benzene, the crystallization temperature of which is high, it can be liquefied easily and without risk of clogging in the liquefaction exchanger 164.
  • the third method according to the invention comprises passing the nitrogen-rich hydrocarbon stream 14 through the exchanger 164 after passing through the pump 88.
  • the liquid foot stream 86 of the fractionation column 50 is pumped at a pressure greater than 20 bar, advantageously at 28 bar, to be vaporized in the liquefaction exchanger 164 and to allow the cooling of the charging stream 12 and liquefaction of the treated gas 166.
  • the refrigeration provided by the vaporization of the denitrogenized hydrocarbon stream 14 represents more than 90%, advantageously more than 98%, of the refrigeration necessary for the liquefaction of the feed stream 12.
  • a withdrawal stream 170 is taken from the stream of nitrogen 102 after it has passed through the bottom downstream exchanger 52 and before its introduction into the third downstream heat exchanger 56.
  • the withdrawing stream 170 is then introduced into the liquefaction exchanger 164 before being delivered in the form of a stream of auxiliary nitrogen gas 172 at the outlet of the exchanger 164.
  • the mass flow rate of the withdrawal fraction 170 with respect to the mass flow rate of the nitrogen-rich top stream 90 is, for example, between 0% and 50%.
  • the third method according to the invention also operates in a similar manner to the first method according to the invention.
  • the charging current 12 is a stream of natural gas in gaseous form comprising in moles 0.1000% helium, 8.9000% nitrogen, 85.9950% methane, 3.0000% ethane. , 1.0000% of propane, 0.4000% of i-C4 hydrocarbons, 0.3000% of n-C4 hydrocarbons, 0.1000% of i-C5 hydrocarbons, 0.1000% of hydrocarbons. n-C5 hydrocarbons, 0.0800% n-C6 hydrocarbons, 0.0200% benzene, 0.0050% carbon dioxide.
  • the liquid charging stream 68 then comprises the same composition as the LNG stream 12 described for the first and second processes according to the invention.
  • the molar composition of the overhead stream 90 is as follows: helium 1.19%, nitrogen 98.64% and methane 0.16%.
  • Compressor 62A 632 kW
  • Compressor 62B 388 kW
  • Compressor 62C 325 kW
  • Compressor 38B 1440 kW Total: 2785 kW
  • a fourth installation 180 according to the invention, intended for the implementation of a fourth method according to the invention is represented on the figure 4 .
  • This fourth installation 180 differs from the third installation 170 by the presence of two separator balloons 60, 142 as in the second installation.
  • a fifth installation 190 according to the invention is represented on the Figure 5 for the implementation of a fifth method according to the invention.
  • the fifth installation 190 differs from the fourth installation 180 in that the cooling cycle 30 is a semi-open cycle.
  • the refrigerating fluid of the refrigeration cycle 30 is formed by a bypass stream 192 of the compressed recycled nitrogen stream 100 taken at the outlet of the upstream compression apparatus 58, at a first pressure P1 substantially equal to 40 bars.
  • the mass flow rate of the bypass stream 192 is less than 99% of the mass flow rate of the majority portion 96.
  • the bypass current 192 is introduced into the cycle heat exchanger 32 to form, at the outlet of the exchanger 32, the cooled compressed stream 136, and then after expansion in the turbine 36, the refrigeration stream 130 introduced into the upstream exchanger 28.
  • the refrigerating stream 130 thus has a molar nitrogen content greater than 99% and a hydrocarbon content of less than 0.1%.
  • the heated refrigerating stream 132 is introduced into the compressor 38A coupled to the turbine 36, then to the refrigerant 40A, before being reintroduced into the compressed recycled nitrogen stream 100, between the the penultimate stage and the last stage of the compression apparatus 58, at a second pressure P2 less than the first pressure P1.
  • a sixth installation 200 according to the invention is represented on the figure 6 .
  • the sixth installation 200 according to the invention differs from the fourth installation 180 in that the cycle exchanger 32 is constituted by the same heat exchanger as the third downstream exchanger 56.
  • the heated refrigerant stream 132 coming from the upstream exchanger 28 is introduced into the third downstream heat exchanger 56 where it is placed in heat exchange relation with the mixing stream 156 coming from the second downstream heat exchanger 52 and with the nitrogen stream. recycled tablet 100 from the downstream compression apparatus 58.
  • the compressed refrigerant stream 134 passes into the third downstream heat exchanger 56 to be cooled before it is introduced into the dynamic expansion turbine 36.
  • the process further produces a denitrogenated hydrocarbon rich stream 14 which may be used in liquid or gaseous form.
  • This process can be used indifferently with a charging stream 12 consisting of liquefied natural gas or natural gas in gaseous form.
  • the amount of liquid nitrogen produced by the process can be controlled in a simple manner by adjusting the thermal power taken by the second feed stream 72 into the refrigerant stream 130 of the refrigeration cycle 30.

Description

La présente invention concerne un procédé de production d'un courant d'azote liquide, d'un courant d'azote gazeux, d'un courant gazeux riche en hélium et d'un courant d'hydrocarbures déazoté, à partir d'un courant de charge contenant des hydrocarbures, de l'hélium et de l'azote.The present invention relates to a process for producing a liquid nitrogen stream, a nitrogen gas stream, a helium rich gas stream and a denitrogenized hydrocarbon stream, from a stream charge containing hydrocarbons, helium and nitrogen.

Un tel procédé s'applique notamment au traitement des courants de charge constitués de gaz naturel liquéfié (GNL) ou également de gaz naturel (GN) sous forme gazeuse.Such a method is particularly applicable to the treatment of charge streams consisting of liquefied natural gas (LNG) or also natural gas (NG) in gaseous form.

Ce procédé s'applique aux nouvelles unités de liquéfaction de gaz naturel ou aux nouvelles unités de traitement de gaz naturel sous forme gazeuse. L'invention s'applique également à l'amélioration des performances des unités existantes.This process applies to new natural gas liquefaction units or new natural gas processing units. The invention also applies to improving the performance of existing units.

Dans ces installations, le gaz naturel doit être déazoté avant d'être envoyé au consommateur, ou avant d'être stocké ou transporté. En effet, le gaz naturel extrait des gisements souterrains contient souvent une quantité non négligeable d'azote. Il contient en outre fréquemment de l'hélium.In these installations, natural gas must be de-nitrogenized before being sent to the consumer, or before being stored or transported. Indeed, natural gas extracted from underground deposits often contains a significant amount of nitrogen. It also frequently contains helium.

Les procédés de déazotation connus permettent d'obtenir un courant d'hydrocarbures déazoté qui peut être envoyé vers une unité de stockage sous forme liquide dans le cas du GNL, ou vers une unité de distribution de gaz dans le cas du GN.The known denitrogenization processes make it possible to obtain a denitrogenated hydrocarbon stream which can be sent to a storage unit in liquid form in the case of LNG, or to a gas distribution unit in the case of the NG.

Ces procédés de déazotation produisent en outre des courants riches en azote qui sont utilisés soit pour fournir de l'azote nécessaire au fonctionnement de l'installation, soit pour fournir un gaz combustible riche en azote qui sert de combustible pour les turbines à gaz des compresseurs utilisés lors de la mise en oeuvre du procédé. En variante, ces courants riches en azote sont relâchés dans l'atmosphère dans une torche après incinération des impuretés, telles que le méthane.These denitrogenation processes also produce nitrogen-rich streams which are used either to supply nitrogen necessary for the operation of the plant or to provide a nitrogen-rich fuel gas which serves as a fuel for the gas turbines of the compressors. used during the implementation of the method. Alternatively, these nitrogen-rich streams are released into the atmosphere in a torch after incineration of impurities, such as methane.

Les procédés précités ne donnent pas entière satisfaction, notamment en raison des nouvelles contraintes environnementales s'appliquant à la production d'hydrocarbures. En effet, pour que l'azote produit par le procédé puisse être utilisé dans l'unité de production, ou relâché dans l'atmosphère, il doit être tres pur.The aforementioned methods are not entirely satisfactory, particularly because of the new environmental constraints applying to the production of hydrocarbons. Indeed, so that the nitrogen produced by the process can be used in the production unit, or released into the atmosphere, it must be very pure.

Les courants de combustible produits par le procédé et destinés à être utilisés dans les turbines à gaz doivent au contraire contenir moins de 15 à 30 % d'azote pour être brûlés dans des brûleurs spéciaux conçus pour limiter, la production d'oxydes d'azotes rejetés dans l'atmosphère. Ces rejets se produisent notamment lors des phases de démarrage des installations servant à la mise en oeuvre du procédé, dans lesquelles le procédé de déazotation n'est pas encore très efficace.The fuel streams produced by the process and intended for use in gas turbines must, on the contrary, contain less than 15 to 30% of nitrogen for burning in special burners designed to limit the production of nitrogen oxides. released into the atmosphere. These discharges occur in particular during the start-up phases of the installations used for the implementation of the process, in which the denitrogenation process is not yet very effective.

En outre, pour des raisons économiques, le rendement énergétique de tels procédés de déazotation doit en permanence être amélioré. Les procédés du type précité ne permettent pas de valoriser l'hélium contenu dans le gaz naturel extrait du sous sol, cet hélium étant pourtant un gaz rare d'une grande valeur économique.In addition, for economic reasons, the energy efficiency of such denitrogenation processes must be continuously improved. Processes of the above-mentioned type do not make it possible to valorize the helium contained in the natural gas extracted from the subsoil, this helium nevertheless being a rare gas of great economic value.

Pour pallier au moins partiellement ces problèmes, US 2007/0245771 décrit un procédé du type précité, qui produit simultanément un courant d'azote liquide, un courant riche en hélium, et un courant gazeux contenant environ 30 % d'azote et environ 70 % d'hydrocarbures. Ce courant gazeux riche en azote est destiné, dans cette installation, à former un courant de combustible.To at least partially overcome these problems, US 2007/0245771 discloses a process of the aforementioned type, which simultaneously produces a stream of liquid nitrogen, a helium-rich stream, and a gas stream containing about 30% nitrogen and about 70% hydrocarbons. This gas stream rich in nitrogen is intended in this installation to form a fuel stream.

Toutefois ce procédé n'est pas entièrement satisfaisant, puisque la quantité d'azote pur produite est relativement faible. En outre, le courant de combustible contient une forte quantité d'azote qui n'est pas compatible avec toutes les turbines à gaz existantes, et qui est susceptible de générer de nombreuses émissions polluantes.However, this process is not entirely satisfactory since the quantity of pure nitrogen produced is relatively small. In addition, the fuel stream contains a large amount of nitrogen that is not compatible with all existing gas turbines, and is likely to generate many polluting emissions.

US 2004/231359 décrit un procédé d'élimination d'azote à partir de gaz naturel condensé pour produire un gaz naturel liquéfié sous-refroidi. Ce procédé n'est pas destiné à produire un courant d'azote liquide, ni un courant gazeux riche en hélium. US 2004/231359 discloses a method of removing nitrogen from condensed natural gas to produce a subcooled liquefied natural gas. This process is not intended to produce a stream of liquid nitrogen, nor a gaseous stream rich in helium.

US 4 778 498 décrit un procédé de production de gaz méthane sous pression produisant une phase gazeuse contenant de l'hélium. US 4,778,498 discloses a process for producing methane gas under pressure producing a gaseous phase containing helium.

US 5 339 641 décrit un procédé de production d'azote liquide et d'un gaz riche en hélium. US 5,339,641 describes a process for producing liquid nitrogen and a helium-rich gas.

Un but de l'invention est d'obtenir un procédé économique de déazotation d'un courant de charge d'hydrocarbures, qui permet de valoriser l'azote et l'hélium contenu dans le courant de charge, tout en limitant au minimum les émissions nocives pour l'environnement.An object of the invention is to obtain an economical process of denitrogenation of a hydrocarbon feed stream, which makes it possible to recover the nitrogen and helium contained in the feed stream, while limiting emissions to a minimum. harmful to the environment.

A cet effet, l'invention a pour objet un procédé selon la revendication 1.For this purpose, the subject of the invention is a method according to claim 1.

Le procédé selon l'invention peut comprendre l'une ou plusieurs des caractéristiques des revendications 2 à 10.The method according to the invention may comprise one or more of the features of claims 2 to 10.

L'invention a également pour objet une installation

  • selon la revendication 11.
The invention also relates to an installation
  • according to claim 11.

L'installation selon l'invention peut comprendre l'une ou plusieurs des caractéristiques
des revendications 12 et 13.
The installation according to the invention may comprise one or more of the features
claims 12 and 13.

L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et faite en ce référant aux dessins annexés, sur lesquels :

  • la Figure 1 est un schéma synoptique fonctionnel d'une première installation de mise en oeuvre d'un premier procédé de production selon l'invention ;
  • la Figure 2 est une vue analogue à la figure 1 d'une deuxième installation de mise en oeuvre d'un deuxième procédé de production selon l'invention ;
  • la Figure 3 est une vue analogue à la figure 1 d'une troisième installation de mise en oeuvre d'un troisième procédé de production selon l'invention ;
  • la Figure 4 est une vue analogue à la figure 1 d'une quatrième installation de mise en oeuvre d'un quatrième procédé de production selon l'invention ;
  • la Figure 5 est une vue analogue à la figure 1 d'une cinquième installation de mise en oeuvre d'un cinquième procédé de production selon l'invention ; et
  • la Figure 6 est une vue analogue à la figure 1 d'une sixième installation de mise en oeuvre d'un sixième procédé de production selon l'invention.
The invention will be better understood on reading the description which follows, given solely by way of example, and with reference to the appended drawings, in which:
  • the Figure 1 is a functional block diagram of a first installation for implementing a first production method according to the invention;
  • the Figure 2 is a view similar to the figure 1 a second installation for implementing a second production method according to the invention;
  • the Figure 3 is a view similar to the figure 1 a third installation for implementing a third production method according to the invention;
  • the Figure 4 is a view similar to the figure 1 a fourth installation for implementing a fourth production method according to the invention;
  • the Figure 5 is a view similar to the figure 1 a fifth installation for implementing a fifth production method according to the invention; and
  • the Figure 6 is a view similar to the figure 1 of a sixth installation for implementing a sixth production method according to the invention.

La Figure 1 illustre une première installation 10 selon l'invention destinée à produire, à partir d'un courant de charge liquide 12 obtenu à partir d'une charge de gaz naturel liquéfié (GNL), un courant 14 de GNL déazoté riche en hydrocarbures, un courant d'azote gazeux 16 destiné à être utilisé dans l'installation 10, un courant d'azote liquide 18, et un courant 20 riche en hélium.The Figure 1 illustrates a first installation 10 according to the invention for producing, from a liquid feed stream 12 obtained from a charge of liquefied natural gas (LNG), a hydrocarbon-rich denitrogenated LNG stream 14, a stream of nitrogen gas 16 for use in the plant 10, a stream of liquid nitrogen 18, and a stream 20 rich in helium.

Comme illustré par la Figure 1, l'installation 10 comprend une partie amont 22 de refroidissement de la charge, et une partie aval 24 de fractionnement.As illustrated by Figure 1 , the installation 10 comprises an upstream portion 22 for cooling the load, and a downstream portion 24 for fractionation.

La partie amont 22 comprend une turbine liquide de détente 26, un échangeur de chaleur amont 28, destiné au refroidissement du courant de charge 12 à l'aide d'un cycle de refroidissement 30.The upstream portion 22 comprises a liquid expansion turbine 26, an upstream heat exchanger 28, for cooling the charging current 12 by means of a cooling cycle 30.

Dans cet exemple, le cycle de refroidissement 30 est un cycle fermé de type Brayton inversé. Il comprend un échangeur thermique de cycle 32, un appareil amont 34 de compression à étages, et une turbine de détente dynamique 36.In this example, the cooling cycle 30 is an inverted Brayton type closed cycle. It comprises a cycle heat exchanger 32, an upstream compressor 34 with stages, and a dynamic expansion turbine 36.

Dans l'exemple de la Figure 1, l'appareil amont de compression à étages 34 comprend deux étages, chaque étage comprenant un compresseur 38A, 38B et un réfrigérant 40A, 40B refroidi à l'air ou à l'eau. Au moins un des compresseurs 38A de l'appareil amont 34 est couplé à la turbine de détente dynamique 36 pour augmenter l'efficacité du procédé.In the example of the Figure 1 , the upstream stage compression apparatus 34 comprises two stages, each stage comprising a compressor 38A, 38B and a refrigerant 40A, 40B cooled in air or in water. At least one of the compressors 38A of the upstream apparatus 34 is coupled to the dynamic expansion turbine 36 to increase the efficiency of the process.

La partie aval de fractionnement 24 comprend une colonne de fractionnement 50 présentant une pluralité d'étages théoriques de fractionnement. La partie aval 24 comprend en outre un premier échangeur aval 52 de fond de colonne, un deuxième échangeur aval 54, et un troisième échangeur aval 56.The downstream fractionation portion 24 comprises a fractionation column 50 having a plurality of theoretical fractionation stages. The downstream portion 24 further comprises a first downstream downstream heat exchanger 52, a second downstream heat exchanger 54, and a third downstream heat exchanger 56.

La partie aval 24 comprend en outre un appareil aval 58 de compression à étages et un premier ballon de séparation 60 de tête de colonne.The downstream portion 24 further comprises a downstream compressor apparatus 58 with stages and a first separation flask 60 at the top of the column.

L'appareil de compression aval 58 comprend dans cet exemple trois étages de compression montés en série, chaque étage comprenant un compresseur 62A, 62B, 62C placé en série avec un réfrigérant 64A, 64B, 64C refroidi à l'eau ou à l'air.The downstream compression apparatus 58 in this example comprises three compression stages connected in series, each stage comprising a compressor 62A, 62B, 62C placed in series with a refrigerant 64A, 64B, 64C cooled with water or with air .

Un premier procédé de production selon l'invention va maintenant être décrit.A first production method according to the invention will now be described.

Dans tout ce qui suit, on désignera par une même référence un courant de fluide et la conduite qui le véhicule. De même, les pressions considérées sont des pressions absolues, et sauf indication contraire, les pourcentages considérés sont des pourcentages molaires.In what follows, we will designate by a single reference a fluid stream and the pipe that carries it. Similarly, the pressures considered are absolute pressures, and unless otherwise indicated, the percentages considered are molar percentages.

Le courant de charge liquide 12 est dans cet exemple un courant de gaz naturel liquéfié (GNL) comprenant en moles 0,1009% d'hélium, 8,9818% d'azote, 86,7766% de méthane, 2,9215% d'éthane, 0,8317% de propane, 0,2307% d'hydrocarbures en i-C4, 0,1299% d'hydrocarbures en n-C4, 0,0128% d'hydrocarbures en i-C5, 0,0084% d'hydrocarbures en n-C5, 0,0005% d'hydrocarbures en n-C6, 0,0001% de benzène, 0,0050 % de dioxyde de carbone.In this example, the liquid charging stream 12 is a stream of liquefied natural gas (LNG) comprising in moles 0.1009% helium, 8.9818% nitrogen, 86.7766% methane, 2.9215% d. ethane, 0.8317% propane, 0.2307% i-C4 hydrocarbons, 0.1299% n-C4 hydrocarbons, 0.0128% i-C5 hydrocarbons, 0.0084% n-C5 hydrocarbons, 0.0005% n-C6 hydrocarbons, 0.0001% benzene, 0.0050% carbon dioxide.

Ainsi, ce courant 12 comprend une teneur molaire en hydrocarbures supérieure à 70 %, une teneur molaire en azote comprise entre 5 % et 30 %, et une teneur molaire en hélium comprise entre 0,01 % et 0.5 %.Thus, this stream 12 comprises a hydrocarbon molar content greater than 70%, a molar nitrogen content of between 5% and 30%, and a molar helium content of between 0.01% and 0.5%.

Le courant de charge 12 présente une température inférieure à -130°C, par exemple inférieure à -145°C. Ce courant présente une pression supérieure à 25 bars, et notamment égale à 34 bars.The charging current 12 has a temperature below -130 ° C, for example below -145 ° C. This current has a pressure greater than 25 bars, and in particular equal to 34 bars.

Dans ce premier mode de réalisation, le courant de charge 12 est liquide, de sorte qu'il constitue un courant de charge liquide 68 directement utilisable dans le procédé.In this first embodiment, the charging current 12 is liquid, so that it constitutes a liquid charge stream 68 that can be used directly in the process.

Le courant de charge liquide 68 est introduit dans la turbine de détente liquide 26, où il est détendu jusqu'à une pression inférieure à 15 bars, notamment égale à 6 bars jusqu'à une température inférieure à -130°C et notamment égale à -150,7°C.The liquid charging stream 68 is introduced into the liquid expansion turbine 26, where it is expanded to a pressure of less than 15 bar, in particular equal to 6 bar up to a temperature below -130 ° C. and in particular equal to -150.7 ° C.

A la sortie de la turbine de détente liquide 26, un courant de charge détendu 70 est formé. Ce courant de charge détendu 70 est divisé en un premier courant principal d'introduction 72, destiné à être réfrigéré par le cycle de réfrigération 30, et en un deuxième courant secondaire d'introduction 74.At the outlet of the liquid expansion turbine 26, a relaxed charge stream 70 is formed. This relaxed charge current 70 is divided into a first main feed stream 72, to be refrigerated by the refrigeration cycle 30, and a second secondary feed stream 74.

Le premier courant d'introduction 72 présente un débit massique supérieur à 10 % du courant de charge détendu 70. Il est introduit dans l'échangeur de chaleur amont 28, où il est refroidi jusqu'à une température inférieure à -150 °C et notamment égale à -160°C pour donner un premier courant d'introduction refroidi 76.The first feed stream 72 has a mass flow rate greater than 10% of the expanded feed stream 70. It is introduced into the upstream heat exchanger 28, where it is cooled to a temperature below -150 ° C and in particular equal to -160 ° C to give a first cooled introduction stream 76.

Dans l'échangeur amont 28, le premier courant d'introduction 72 est placé en relation d'échange thermique avec le courant de réfrigérant circulant dans le cycle 30, comme on le décrira plus bas.In the upstream exchanger 28, the first introduction stream 72 is placed in heat exchange relation with the refrigerant stream flowing in the cycle 30, as will be described below.

Le premier courant d'introduction refroidi 76 est détendu dans une première vanne de détente 78 jusqu'à une pression inférieure à 3 bars puis est introduit à un étage intermédiaire N1 de la colonne de fractionnement 50.The first cooled introduction stream 76 is expanded in a first expansion valve 78 to a pressure of less than 3 bars and is then introduced to an intermediate stage N1 of the fractionation column 50.

Le deuxième courant d'introduction 74 est convoyé jusqu'au premier échangeur aval 52 de fond de colonne, où il est refroidi jusqu'à une température inférieure à -150°C, et notamment égale à -160°C pour donner un deuxième courant d'introduction refroidi 80.The second feed stream 74 is conveyed to the first downstream exchanger 52 at the bottom of the column, where it is cooled to a temperature below -150 ° C. and in particular equal to -160 ° C. to give a second stream. cooled introduction 80.

Le deuxième courant d'introduction refroidi 80 est détendu dans une deuxième vanne 82 de détente jusqu'à une pression inférieure à 3 bars, puis est introduit à un étage intermédiaire N1 de la colonne de fractionnement 50.The second cooled introduction stream 80 is expanded in a second expansion valve 82 to a pressure of less than 3 bars, and is then introduced to an intermediate stage N1 of the fractionation column 50.

Dans cet exemple, le premier courant d'introduction refroidi 76 et le deuxième courant d'introduction refroidi 80 sont introduits au même étage N1 de la colonne 50.In this example, the first cooled introduction stream 76 and the second cooled introduction stream 80 are introduced to the same stage N1 of the column 50.

Un courant de rebouillage 84 est soutiré d'un étage inférieur N2 de la colonne de fractionnement 50 situé sous l'étage intermédiaire N1. Le courant de rebouillage 84 passe dans le premier échangeur aval de fond 52, pour être placé en relation d'échange thermique avec le deuxième courant d'introduction 74 et refroidir ce deuxième courant 74. Il est ensuite réintroduit au voisinage du pied de la colonne de fractionnement 50, au-dessous de l'étage inférieur N2.A reboiling stream 84 is withdrawn from a lower stage N2 of the fractionation column 50 located under the intermediate stage N1. The reboiling current 84 passes into the first downstream exchanger 52, to be placed in heat exchange relation with the second introduction stream 74 and to cool the second stream 74. It is then reintroduced near the foot of the column. fractionation 50, below the lower stage N2.

La colonne de fractionnement 50 opère à basse pression, notamment inférieure à 5 bars, avantageusement inférieure à 3 bars. Dans cet exemple, la colonne 50 opère sensiblement à 1,3 bars.The fractionation column 50 operates at low pressure, in particular less than 5 bar, advantageously less than 3 bar. In this example, the column 50 operates substantially at 1.3 bars.

La colonne de fractionnement 50 produit un courant de pied 86 destiné à former le courant riche de GNL déazoté 14. Ce courant de GNL déazoté contient une quantité d'azote contrôlée, par exemple inférieure à 1 % molaire.The fractionation column 50 produces a bottom stream 86 for forming the nitrogen-rich liquefied stream 14. This denitrogenated LNG stream contains a controlled amount of nitrogen, for example less than 1 mol%.

Le courant de pied 86 est pompé à 5 bars dans une pompe 88 pour former le courant déazoté 14 riche en hydrocarbures et pour être expédié vers un stockage opérant à pression atmosphérique et former le courant de GNL déazoté destiné à être exploité. Le courant 14 est un courant de GNL qui peut être transporté sous forme liquide, par exemple dans un méthanier.The foot stream 86 is pumped at 5 bar in a pump 88 to form the hydrocarbon-rich denitrogen stream 14 and to be shipped to a storage operating at atmospheric pressure and form the denitrogenated LNG stream for exploitation. The stream 14 is a stream of LNG that can be transported in liquid form, for example in a LNG carrier.

La colonne de fractionnement 50 produit en outre un courant de tête 90 riche en azote qui est extrait de la tête de cette colonne 50. Ce courant de tête 90 présente une teneur molaire en hydrocarbures inférieure avantageusement à 1 %, et encore plus avantageusement inférieure à 0,1 %. Il présente une teneur molaire en hélium supérieure à 0,2 % et avantageusement supérieure à 0,5 %.The fractionation column 50 also produces a nitrogen-rich overhead stream 90 which is extracted from the top of this column 50. This overhead stream 90 has a molar content of hydrocarbons preferably less than 1%, and even more advantageously less than 1%. 0.1%. It has a molar helium content greater than 0.2% and advantageously greater than 0.5%.

Dans l'exemple représenté sur la figure 1, la composition molaire du courant de tête 90 est la suivante : hélium 0,54 %, azote 99,40 % et méthane 0,06 %.In the example shown on the figure 1 the molar composition of the overhead stream 90 is as follows: 0.54% helium, 99.40% nitrogen and 0.06% methane.

Le courant de tête riche en azote 90 est alors successivement passé dans le deuxième échangeur aval 54, dans le premier échangeur aval 52, puis dans le troisième échangeur aval 56 pour être réchauffé successivement jusqu'à -20°C.The nitrogen-rich overhead stream 90 is then passed successively into the second downstream heat exchanger 54, into the first downstream heat exchanger 52, then into the third downstream heat exchanger 56 to be successively heated to -20 ° C.

A la sortie du troisième échangeur aval 56, un courant riche en azote réchauffé 92 est obtenu. Ce courant 92 est alors divisé en une première partie minoritaire 94 d'azote produit, et en une deuxième partie 96 d'azote recyclé.At the outlet of the third downstream exchanger 56, a stream rich in heated nitrogen 92 is obtained. This stream 92 is then divided into a first minority portion 94 of nitrogen produced, and a second portion 96 of recycled nitrogen.

La partie minoritaire 94 présente un débit massique compris entre 10 % et 50 % du débit massique du courant 92. La partie minoritaire 94 est détendue à travers une troisième vanne de détente 98 pour former le courant d'azote gazeux 16.The minority portion 94 has a mass flow rate of between 10% and 50% of the mass flow rate of the stream 92. The minority portion 94 is expanded through a third expansion valve 98 to form the nitrogen gas stream 16.

Ce courant d'azote gazeux 16 présente une pression supérieure à la pression atmosphérique et notamment supérieure à 1,1 bars. Il présente une teneur molaire en azote supérieure à 99%.This stream of nitrogen gas 16 has a pressure greater than atmospheric pressure and in particular greater than 1.1 bar. It has a molar nitrogen content greater than 99%.

La partie majoritaire 96 est ensuite introduite dans l'appareil de compression aval 58, où elle passe successivement dans chaque étage de compression à travers un compresseur 62A, 62B, 62C et un réfrigérant 64A, 64B, 64C.The majority part 96 is then introduced into the downstream compression apparatus 58, where it passes successively into each compression stage through a compressor 62A, 62B, 62C and a refrigerant 64A, 64B, 64C.

La partie majoritaire 96 est ainsi comprimée jusqu'à une pression supérieure à 20 bars et notamment sensiblement égale à 21 bars, pour former un courant d'azote recyclé comprimé 100.The majority part 96 is thus compressed to a pressure greater than 20 bar and in particular substantially equal to 21 bar, to form a compressed recycled nitrogen stream 100.

Le courant d'azote recyclé comprimé 100 présente ainsi une température supérieure à 10°C et notamment égale à 38°C.The recycled compressed nitrogen stream 100 thus has a temperature above 10 ° C and in particular equal to 38 ° C.

Le courant d'azote recyclé comprimé 100 passe successivement à travers le troisième échangeur aval 56, puis à travers le premier échangeur aval de fond 52, et ensuite à travers le premier échangeur aval 54.The compressed recycled nitrogen stream 100 passes successively through the third downstream heat exchanger 56, then through the first bottom downstream heat exchanger 52, and then through the first downstream heat exchanger 54.

Dans le deuxième échangeur aval 54 et dans le troisième échangeur aval 56, le courant d'azote recyclé 100 circule à contre courant et en relation d'échange thermique avec le courant d'azote de tête 90. Ainsi, le courant d'azote de tête 90 cède des frigories au courant d'azote recyclé 100.In the second downstream heat exchanger 54 and in the third downstream heat exchanger 56, the recycled nitrogen stream 100 circulates against the current and in heat exchange relation with the top nitrogen stream 90. Thus, the nitrogen stream of head 90 yields frigories to the recycled nitrogen stream 100.

Dans le premier échangeur de chaleur 52 de fond, le courant d'azote recyclé 100 est de plus placé en relation d'échange thermique avec le courant de rebouillage 84 pour être refroidi par ce courant 84.In the first bottom heat exchanger 52, the recycled nitrogen stream 100 is further placed in heat exchange relationship with the reboilage stream 84 to be cooled by this stream 84.

Après son passage dans le deuxième échangeur aval 54, le courant d'azote recyclé 100 forme un courant 102 d'azote recyclé condensé, essentiellement liquide. Ce courant liquide contient une fraction de liquide supérieure à 90 % et présente une température inférieure à -160°C et avantageusement égale à - 170°C.After passing through the second downstream heat exchanger 54, the recycled nitrogen stream 100 forms a stream 102 of condensed, essentially liquid, recycled nitrogen. This liquid stream contains a liquid fraction greater than 90% and has a temperature below -160 ° C and advantageously equal to -170 ° C.

Puis, le courant condensé 102 est détendu dans une quatrième vanne de détente 104 pour donner un flux diphasique 106 qui est introduit dans le premier ballon séparateur 60.Then, the condensed stream 102 is expanded in a fourth expansion valve 104 to give a two-phase flow 106 which is introduced into the first separator tank 60.

Le premier ballon séparateur 60 produit en tête un courant de tête gazeux riche en hélium qui, après passage dans une cinquième vanne de détente 108, forme le courant gazeux riche en hélium 20.The first separator balloon 60 produces a helium-rich gaseous head stream which, after passing through a fifth expansion valve 108, forms the helium rich gas stream 20.

Le courant gazeux riche en hélium 20 présente une teneur en hélium supérieure à 10% molaire. Il est destiné à être convoyé jusqu'à une unité de production d'hélium pur pour y être traité. Le procédé selon l'invention permet de récupérer au moins 60 % en moles de l'hélium présent dans le courant de charge 12.The helium rich gas stream has a helium content of greater than 10 mol%. It is intended to be conveyed to a pure helium production unit for treatment. The method according to the invention makes it possible to recover at least 60 mol% of the helium present in the charging stream 12.

Le premier ballon séparateur 60 produit en pied un courant de pied d'azote liquide 110. Ce courant de pied 110 est séparé en une partie minoritaire d'azote liquide produit 112 et une partie majoritaire d'azote de reflux 114.The first separator flask 60 produces a bottom stream of liquid nitrogen 110 at the bottom. This bottom stream 110 is separated into a minor portion of produced liquid nitrogen 112 and a major portion of reflux nitrogen 114.

La partie minoritaire 112 présente un débit massique inférieur à 10 %, et notamment compris entre 0 % et 10 % du débit massique du courant de pied 110. La partie minoritaire 112 est détendue dans une sixième vanne de détente 116 pour former le courant d'azote liquide produit 18. Le courant d'azote produit présente une teneur molaire en azote supérieure à 99%.The minority part 112 has a mass flow rate of less than 10%, and in particular between 0% and 10% of the mass flow rate of the bottom stream 110. The minority part 112 is expanded in a sixth expansion valve 116 to form the flow of liquid nitrogen product 18. The product nitrogen stream has a molar nitrogen content greater than 99%.

La partie majoritaire 114 est détendue jusqu'à la pression de colonne à travers une septième vanne de détente 118, pour former un premier courant de reflux, puis est introduite à un étage de tête N3 de la colonne de fractionnement 50, situé sous la tête de cette colonne et au-dessus de l'étage intermédiaire N1. La fraction molaire d'azote dans la partie majoritaire 114 est supérieure à 99 %.The major portion 114 is expanded to the column pressure through a seventh expansion valve 118, to form a first reflux stream, and then introduced to a top stage N3 of the fractionation column 50, located under the head of this column and above the intermediate stage N1. The molar fraction of nitrogen in the majority part 114 is greater than 99%.

Dans l'exemple représenté sur la Figure 1, le cycle de refroidissement 30 est un cycle fermé de type Brayton inversé utilisant un courant de réfrigérant exclusivement gazeux.In the example shown on the Figure 1 , the cooling cycle 30 is an inverted Brayton type closed cycle using an exclusively gaseous refrigerant stream.

Dans cet exemple, le courant de réfrigérant est formé par de l'azote sensiblement pur dont la teneur en azote est supérieure à 99 %.In this example, the refrigerant stream is formed by substantially pure nitrogen whose nitrogen content is greater than 99%.

Le courant de réfrigérant 130 livré à l'échangeur amont 28 présente une température inférieure à -150°C, et notamment égale à -165°C et une pression supérieure à 5 bars et notamment sensiblement égale à 9,7 bars. Le courant de réfrigérant 130 circule à travers l'échangeur thermique de cycle 32, où il est réchauffé par échange thermique avec le premier courant principal d'introduction 72.The refrigerant stream 130 delivered to the upstream exchanger 28 has a temperature below -150 ° C, and especially equal to -165 ° C and a pressure greater than 5 bar and in particular substantially equal to 9.7 bars. The coolant stream 130 flows through the cycle heat exchanger 32, where it is reheated by heat exchange with the first main feed stream 72.

Ainsi, la température du courant de réfrigérant réchauffé 132 à la sortie de l'échangeur amont 28 est inférieure à -150°C et notamment égale à -153°C.Thus, the temperature of the heated refrigerant stream 132 at the outlet of the upstream exchanger 28 is less than -150 ° C and in particular equal to -153 ° C.

Le courant réchauffé 132 subit un nouveau réchauffage dans l'échangeur thermique de cycle 32, avant d'être introduit dans la succession de compresseurs 38A, 38B et de réfrigérants 40A, 40B de l'appareil amont de compression à étages 34.The heated stream 132 is reheated in the cycle heat exchanger 32 before being introduced into the succession of compressors 38A, 38B and refrigerants 40A, 40B of the upstream stage compression apparatus 34.

A la sortie de l'appareil amont 34, il forme un courant comprimé de réfrigérant 134 qui est refroidi par échange thermique avec le courant de réfrigérant réchauffé 132 issu de l'échangeur amont 28 dans l'échangeur thermique de cycle 32.At the outlet of the upstream apparatus 34, it forms a compressed refrigerant stream 134 which is cooled by heat exchange with the cooling stream. heated refrigerant 132 from the upstream exchanger 28 in the cycle heat exchanger 32.

Le courant comprimé refroidi 136 présente ainsi une pression supérieure à 15 bars et notamment sensiblement égale à 20 bars et une température inférieure à -130°C et notamment sensiblement égale à -141°C.The cooled compressed current 136 thus has a pressure greater than 15 bar and in particular substantially equal to 20 bar and a temperature below -130 ° C and in particular substantially equal to -141 ° C.

Le courant comprimé refroidi 136 est ensuite introduit dans la turbine de détente dynamique 36. Il subit une détente dynamique dans la turbine de détente 36 pour donner le courant de réfrigérant 130 à la température et à la pression décrites plus haut.The cooled compressed stream 136 is then introduced into the dynamic expansion turbine 36. It is dynamically expanded in the expansion turbine 36 to provide the refrigerant stream 130 at the temperature and pressure described above.

Dans une variante avantageuse, les appareils de compression amont et aval 34 et 58 sont intégrés dans une même machine à plusieurs corps, avec un seul moteur pour propulser les compresseurs 38A, 38B et les compresseurs 62A à 62C.In an advantageous variant, the upstream and downstream compression devices 34 and 58 are integrated in the same multi-body machine, with a single motor for propelling the compressors 38A, 38B and the compressors 62A to 62C.

Des exemples de température, de pression, et de débits massiques des différents courants illustrés dans le procédé de la Figure 1 sont résumés dans les Tableaux ci-dessous. COURANT TEMPERATURE (°C) PRESSION (Bars) DEBIT (Kg/h) 12 - 149,5 34 177 365 70 - 150,7 6 177365 76 - 160 6 135 142 80 - 160 6 42 223 84 -163.6 1.4 168 931 86 - 159,7 1,4 154 923 14 -159.5 5 154 923 90 - 193,4 1,3 55 761 92 -20 1,3 55 761 16 -20.4 1,1 20219 100 38 21 35 541 106 - 173 9 35 541 20 -180.5 4 1 663 18 -182 4 560 114 -173 9 33 319 130 - 165 9,7 86 840 132 - 153 9,7 86 840 136 - 141,5 19,5 86 840 Examples of temperature, pressure, and mass flow rates of the different streams illustrated in the process of the Figure 1 are summarized in the tables below. CURRENT TEMPERATURE (° C) PRESSURE (Bars) FLOW (Kg / h) 12 - 149.5 34 177,365 70 - 150.7 6 177365 76 - 160 6 135,142 80 - 160 6 42,223 84 -163.6 1.4 168,931 86 - 159.7 1.4 154,923 14 -159.5 5 154,923 90 - 193.4 1.3 55,761 92 -20 1.3 55,761 16 -20.4 1.1 20219 100 38 21 35,541 106 - 173 9 35,541 20 -180.5 4 1,663 18 -182 4 560 114 -173 9 33,319 130 - 165 9.7 86,840 132 - 153 9.7 86,840 136 - 141.5 19.5 86,840

La consommation énergétique du procédé est la suivante : Compresseur 62A : 1300 kW Compresseur 62B : 1358 kW Compresseur 62C : 1365 kW Compresseur 38B 2023 kW Total : 6046 kW The energy consumption of the process is as follows: Compressor 62A: 1300 kW Compressor 62B: 1358 kW Compressor 62C: 1365 kW Compressor 38B 2023 kW Total: 6046 kW

Une deuxième installation 140 selon l'invention est représentée sur la Figure 2. Cette deuxième installation 140 est destinée à la mise en oeuvre d'un deuxième procédé de production selon l'invention.A second installation 140 according to the invention is represented on the Figure 2 . This second installation 140 is intended for the implementation of a second production method according to the invention.

Cette installation 140 diffère de la première installation 10 en ce qu'elle comprend un deuxième ballon séparateur 142 interposé entre la sortie de la quatrième vanne de détente 104 et l'entrée du premier ballon séparateur 60.This installation 140 differs from the first installation 10 in that it comprises a second separator tank 142 interposed between the outlet of the fourth expansion valve 104 and the inlet of the first separator tank 60.

Le deuxième procédé selon l'invention diffère du premier procédé en ce qu'une partie seulement du flux diphasique 106 résultant de la détente du courant d'azote recyclé refroidi 102 dans la quatrième vanne de détente 104 est reçue dans le premier ballon séparateur 60.The second method according to the invention differs from the first method in that only part of the two-phase flow 106 resulting from the expansion of the cooled recycled nitrogen stream 102 in the fourth expansion valve 104 is received in the first separator tank 60.

Ainsi, le flux diphasique 106 formé à la sortie de la quatrième vanne de détente 104 est introduit dans le deuxième ballon séparateur 142, et non directement dans le premier ballon séparateur 60. En outre, le courant d'azote refroidi 102 ne passe pas à travers le deuxième échangeur aval 54.Thus, the two-phase flow 106 formed at the outlet of the fourth expansion valve 104 is introduced into the second separator tank 142, and not directly into the first separator tank 60. In addition, the cooled nitrogen stream 102 does not pass through. through the second downstream exchanger 54.

Le flux de tête 144 produit dans le deuxième ballon séparateur 142 est passé à travers le deuxième échangeur aval 54 pour y être refroidi, puis est introduit sous forme d'un flux de tête refroidi 146 dans le premier ballon séparateur 60.The head stream 144 produced in the second separator tank 142 is passed through the second downstream exchanger 54 to be cooled, and is introduced as a cooled head stream 146 into the first separator tank 60.

Le flux de pied 148 tiré du pied du deuxième ballon séparateur 142 est divisé en un deuxième courant de reflux d'azote 150 et en un courant d'appoint de refroidissement 152.Foot stream 148 pulled from the bottom of the second separator tank 142 is divided into a second nitrogen reflux stream 150 and a makeup supplement stream 152.

Le deuxième courant de reflux d'azote 150 est introduit, après détente dans une huitième vanne de détente 154, à un étage de tête N4 de la colonne de fractionnement 50 situé au voisinage et au-dessous de l'étage d'introduction N3 du premier courant de reflux 114 dans la colonne de fractionnement 50.The second nitrogen reflux stream 150 is introduced, after expansion in an eighth expansion valve 154, to a top stage N4 of the fractionation column 50 located in the vicinity and below the N3 introduction stage of the first reflux stream 114 in the fractionation column 50.

Dans une variante représentée en pointillés sur la Figure 2, les courants de reflux 114, 150 sont introduits au même étage de tête N3 de la colonne 50.In a variant shown in dotted lines on the Figure 2 the reflux streams 114, 150 are introduced at the same top stage N3 of the column 50.

Le débit massique du deuxième courant de reflux 150 est supérieur à 90 % du flux du débit massique du flux de pied 148.The mass flow rate of the second reflux stream 150 is greater than 90% of the flow of the mass flow of the foot stream 148.

Le deuxième courant de refroidissement d'appoint 152 est réintroduit dans le courant de tête 90, en amont du deuxième échangeur aval 54, afin de fournir des frigories destinées à refroidir et condenser partiellement le flux de tête 144 passant dans le deuxième échangeur aval 54.The second additional cooling stream 152 is reintroduced into the overhead stream 90, upstream of the second downstream heat exchanger 54, in order to provide frigories for partially cooling and condensing the overhead flow 144 passing through the second downstream heat exchanger 54.

Le courant de mélange 156 résultant du mélange du courant de tête 90 et du courant d'appoint de refroidissement 152 est introduit successivement dans le deuxième échangeur aval 54, puis dans le premier échangeur aval 52 où il entre en relation d'échange thermique avec le courant d'azote recyclé 100 et le deuxième courant d'introduction 74, pour refroidir ces courants.The mixing stream 156 resulting from the mixing of the overhead stream 90 and the cooling makeup stream 152 is introduced successively into the second downstream heat exchanger 54 and then into the first downstream heat exchanger 52 where it enters into a heat exchange relationship with the recycled nitrogen stream 100 and the second introduction stream 74 to cool these streams.

Le deuxième procédé selon l'invention est par ailleurs opéré de façon analogue au premier procédé selon l'invention.The second method according to the invention is also operated in a similar manner to the first method according to the invention.

Dans ce procédé, le courant de charge 12 est un courant de gaz naturel liquéfié (GNL) comprenant une composition identique à celle décrite ci-dessus.In this process, the feed stream 12 is a stream of liquefied natural gas (LNG) comprising a composition identical to that described above.

Dans l'exemple représenté sur la figure 2, la composition molaire du courant de tête 90 est la suivante : hélium 0,54 %, azote 99,35 % et méthane 0,11 %.In the example shown on the figure 2 the molar composition of the overhead stream 90 is as follows: helium 0.54%, nitrogen 99.35% and methane 0.11%.

Des exemples de température, de pression, et de débits massiques des différents courants illustrés dans le procédé de la Figure 2 sont résumés dans les Tableaux ci-dessous. COURANT TEMPERATURE (°C) PRESSION (Bars) DEBIT (Kg/h) 12 - 149,5 34 177 365 70 - 150,7 6 177 365 76 - 160 6 134 400 80 - 160 6 43 150 84 -163.6 1.4 169 069 86 - 159,7 1,4 155 100 14 -159.5 5 155 100 90 - 193,4 1,3 52 390 92 -32 1,3 52 678 16 -32.1 1,1 22 140 100 38 19,7 30 550 106 -180 5 30 550 146 - 186 4,7 3 940 150 -179.8 5 26 320 152 -179.8 5 288 20 -186.3 4.7 271 18 -186.3 4.7 28 114 -186.3 4.7 3 640 130 - 163 9,7 112 100 132 - 154 9,7 112 100 136 -140 19,2 112 100 Examples of temperature, pressure, and mass flow rates of the different streams illustrated in the process of the Figure 2 are summarized in the tables below. CURRENT TEMPERATURE (° C) PRESSURE (Bars) FLOW (Kg / h) 12 - 149.5 34 177,365 70 - 150.7 6 177,365 76 - 160 6 134,400 80 - 160 6 43,150 84 -163.6 1.4 169,069 86 - 159.7 1.4 155,100 14 -159.5 5 155,100 90 - 193.4 1.3 52,390 92 -32 1.3 52,678 16 -32.1 1.1 22 140 100 38 19.7 30,550 106 -180 5 30,550 146 - 186 4.7 3,940 150 -179.8 5 26,320 152 -179.8 5 288 20 -186.3 4.7 271 18 -186.3 4.7 28 114 -186.3 4.7 3,640 130 - 163 9.7 112,100 132 - 154 9.7 112,100 136 -140 19.2 112,100

La consommation énergétique du procédé est la suivante : Compresseur 62A : 1482 kW Compresseur 62B : 912 kW Compresseur 62C : 708 kW Compresseur 38B 2584 kW Total : 5686 kW The energy consumption of the process is as follows: Compressor 62A: 1482 kW Compressor 62B: 912 kW Compressor 62C: 708 kW Compressor 38B 2584 kW Total: 5686 kW

Une troisième installation 160 selon l'invention, pour la mise en oeuvre d'un troisième procédé selon l'invention est illustrée par la Figure 3.A third installation 160 according to the invention, for the implementation of a third method according to the invention is illustrated by the Figure 3 .

La troisième installation 160 diffère de la première installation 10 par la présence d'une section de fractionnement 162 et d'un échangeur amont de liquéfaction 164, placés en amont de la turbine de détente liquide 26.The third installation 160 differs from the first installation 10 by the presence of a fractionation section 162 and an upstream liquefaction exchanger 164 placed upstream of the liquid expansion turbine 26.

Dans cet exemple, le courant de charge 12 est du gaz naturel (GN) sous forme gazeuse. Il est introduit en premier lieu dans l'échangeur 164 de liquéfaction pour être refroidi à une température inférieure à -20°C et sensiblement égale à - 30°C.In this example, the charging current 12 is natural gas (NG) in gaseous form. It is introduced firstly into the liquefaction exchanger 164 to be cooled to a temperature below -20 ° C and substantially equal to -30 ° C.

Le courant de charge 12 est alors envoyé dans la section de fractionnement 162 qui produit un gaz traité 166 à faible teneur en hydrocarbures en C5 + et une coupe 168 de gaz liquéfié riche en hydrocarbures en C5 +. La teneur molaire en hydrocarbures en C5 + dans le gaz traité 166 est inférieure à 300 ppm.The feed stream 12 is then fed to the fractionation section 162 which produces a treated gas 166 having a low C 5 + hydrocarbon content and a section 168 of a C 5 + hydrocarbon rich liquefied gas. The molar content of C 5 + hydrocarbons in the treated gas 166 is less than 300 ppm.

Le gaz traité 166 est réintroduit dans l'échangeur de liquéfaction 164 pour être liquéfié et donner un courant de charge liquide 68 à la sortie de l'échangeur de liquéfaction 164.The treated gas 166 is reintroduced into the liquefying exchanger 164 to be liquefied and to give a liquid charge stream 68 at the outlet of the liquefying exchanger 164.

Le gaz traité 166 étant dépourvu de constituants lourds, tels que le benzène dont la température de cristallisation est élevée, il peut être liquéfié facilement et sans risque de bouchage dans l'échangeur de liquéfaction 164.Since the treated gas 166 is devoid of heavy constituents, such as benzene, the crystallization temperature of which is high, it can be liquefied easily and without risk of clogging in the liquefaction exchanger 164.

Pour fournir les frigories nécessaires au refroidissement du courant de charge 12 et du gaz traité 166, le troisième procédé selon l'invention comprend le passage du courant riche en hydrocarbures déazoté 14 à travers l'échangeur 164 après son passage dans la pompe 88.To provide the frigories necessary for cooling the charging current 12 and the treated gas 166, the third method according to the invention comprises passing the nitrogen-rich hydrocarbon stream 14 through the exchanger 164 after passing through the pump 88.

A cet effet, le courant de pied 86 liquide de la colonne de fractionnement 50 est pompé à une pression supérieure à 20 bars, avantageusement à 28 bars pour être vaporisé dans l'échangeur de liquéfaction 164 et permettre le refroidissement du courant de charge 12 et la liquéfaction du gaz traité 166.For this purpose, the liquid foot stream 86 of the fractionation column 50 is pumped at a pressure greater than 20 bar, advantageously at 28 bar, to be vaporized in the liquefaction exchanger 164 and to allow the cooling of the charging stream 12 and liquefaction of the treated gas 166.

La réfrigération fournie par la vaporisation du courant d'hydrocarbures déazoté 14 représente plus de 90 %, avantageusement plus de 98 %, de la réfrigération nécessaire à la liquéfaction du courant de charge 12.The refrigeration provided by the vaporization of the denitrogenized hydrocarbon stream 14 represents more than 90%, advantageously more than 98%, of the refrigeration necessary for the liquefaction of the feed stream 12.

De même, un courant 170 de prélèvement est prélevé dans le courant d'azote 102 après son passage dans l'échangeur aval de fond 52 et avant son introduction dans le troisième échangeur aval 56. Le courant de prélèvement 170 est ensuite introduit dans l'échangeur de liquéfaction 164 avant d'être délivré sous forme d'un courant d'azote gazeux auxiliaire 172 à la sortie de l'échangeur 164.Similarly, a withdrawal stream 170 is taken from the stream of nitrogen 102 after it has passed through the bottom downstream exchanger 52 and before its introduction into the third downstream heat exchanger 56. The withdrawing stream 170 is then introduced into the liquefaction exchanger 164 before being delivered in the form of a stream of auxiliary nitrogen gas 172 at the outlet of the exchanger 164.

Le débit massique de la fraction de prélèvement 170 par rapport au débit massique du courant de tête 90 riche en azote est par exemple compris entre 0 % et 50 %.The mass flow rate of the withdrawal fraction 170 with respect to the mass flow rate of the nitrogen-rich top stream 90 is, for example, between 0% and 50%.

Le troisième procédé selon l'invention fonctionne par ailleurs de manière analogue au premier procédé selon l'invention.The third method according to the invention also operates in a similar manner to the first method according to the invention.

Le courant de charge 12 est dans cet exemple un courant de gaz naturel sous forme gazeux comprenant en moles 0,1000% d'hélium, 8,9000% d'azote, 85,9950% de méthane, 3,0000% d'éthane, 1,0000% de propane, 0,4000% d'hydrocarbures en i-C4, 0,3000% d'hydrocarbures en n-C4, 0,1000% d'hydrocarbures en i-C5, 0,1000% d'hydrocarbures en n-C5, 0,0800% d'hydrocarbures en n-C6, 0,0200% de benzène, 0,0050 % de dioxyde de carbone.In this example, the charging current 12 is a stream of natural gas in gaseous form comprising in moles 0.1000% helium, 8.9000% nitrogen, 85.9950% methane, 3.0000% ethane. , 1.0000% of propane, 0.4000% of i-C4 hydrocarbons, 0.3000% of n-C4 hydrocarbons, 0.1000% of i-C5 hydrocarbons, 0.1000% of hydrocarbons. n-C5 hydrocarbons, 0.0800% n-C6 hydrocarbons, 0.0200% benzene, 0.0050% carbon dioxide.

Le courant de charge liquide 68 comprend alors la même composition que le courant de GNL 12 décrit pour le premier et le deuxième procédé selon l'invention.The liquid charging stream 68 then comprises the same composition as the LNG stream 12 described for the first and second processes according to the invention.

Dans l'exemple représenté sur la figure 3, la composition molaire du courant de tête 90 est la suivante : hélium 1,19 %, azote 98,64 % et méthane 0,16 %.In the example shown on the figure 3 the molar composition of the overhead stream 90 is as follows: helium 1.19%, nitrogen 98.64% and methane 0.16%.

Des exemples de température, de pression, et de débits massiques des différents courants illustrés dans le procédé de la Figure 3 sont résumés dans les Tableaux ci-dessous. COURANT TEMPERATURE (°C) PRESSION (Bars) DEBIT (Kg/h) 12 38 40 182 700 166 - 38 35 177 470 68 - 152 34 177 470 70 - 152,8 6 177 470 76 - 159,5 6 139 733 80 - 160 6 37 779 84 -161.5 2.7 174 559 86 - 158,3 2,7 165 811 14 -157.2 28 165 811 90 - 186,7 2,6 24 896 92 -20 2,6 24 896 16 -20.7 2,5 11 083 100 38 39,7 13 813 106 - 177 9 13 813 20 -180.41 5 370 18 -179.8 5 248 114 -176.9 9 13 195 130 - 165,8 9,7 61 629 132 - 155 9,7 61 629 136 -143 19,2 61 629 Examples of temperature, pressure, and mass flow rates of the different streams illustrated in the process of the Figure 3 are summarized in the tables below. CURRENT TEMPERATURE (° C) PRESSURE (Bars) FLOW (Kg / h) 12 38 40 182,700 166 - 38 35 177,470 68 - 152 34 177,470 70 - 152.8 6 177,470 76 - 159.5 6 139,733 80 - 160 6 37,779 84 -161.5 2.7 174,559 86 - 158.3 2.7 165,811 14 -157.2 28 165,811 90 - 186.7 2.6 24,896 92 -20 2.6 24,896 16 -20.7 2.5 11,083 100 38 39.7 13,813 106 - 177 9 13,813 20 -180.41 5 370 18 -179.8 5 248 114 -176.9 9 13,195 130 - 165.8 9.7 61,629 132 - 155 9.7 61,629 136 -143 19.2 61,629

La consommation énergétique du procédé est la suivante : Compresseur 62A : 632 kW Compresseur 62B : 388 kW Compresseur 62C : 325 kW Compresseur 38B 1440 kW Total : 2785 kW The energy consumption of the process is as follows: Compressor 62A: 632 kW Compressor 62B: 388 kW Compressor 62C: 325 kW Compressor 38B 1440 kW Total: 2785 kW

Une quatrième installation 180 selon l'invention, destinée à la mise en oeuvre d'un quatrième procédé selon l'invention est représentée sur la figure 4. Cette quatrième installation 180 diffère de la troisième installation 170 par la présence de deux ballons séparateurs 60, 142 comme dans la deuxième installation.A fourth installation 180 according to the invention, intended for the implementation of a fourth method according to the invention is represented on the figure 4 . This fourth installation 180 differs from the third installation 170 by the presence of two separator balloons 60, 142 as in the second installation.

Son fonctionnement est par ailleurs analogue à celui de la troisième installation 160.Its operation is moreover analogous to that of the third installation 160.

Une cinquième installation 190 selon l'invention est représentée sur la Figure 5, pour la mise en oeuvre d'un cinquième procédé selon l'invention.A fifth installation 190 according to the invention is represented on the Figure 5 for the implementation of a fifth method according to the invention.

La cinquième installation 190 diffère de la quatrième installation 180 en ce que le cycle de refroidissement 30 est un cycle semi-ouvert. A cet effet, le fluide réfrigérant du cycle de réfrigération 30 est formé par un courant de dérivation 192 du courant d'azote recyclé comprimé 100 prélevé à la sortie de l'appareil de compression amont 58, à une première pression P1 sensiblement égale à 40 bars.The fifth installation 190 differs from the fourth installation 180 in that the cooling cycle 30 is a semi-open cycle. For this purpose, the refrigerating fluid of the refrigeration cycle 30 is formed by a bypass stream 192 of the compressed recycled nitrogen stream 100 taken at the outlet of the upstream compression apparatus 58, at a first pressure P1 substantially equal to 40 bars.

Le débit massique du courant de dérivation 192 est inférieur à 99 % du débit massique de la partie majoritaire 96.The mass flow rate of the bypass stream 192 is less than 99% of the mass flow rate of the majority portion 96.

Le courant de dérivation 192 est introduit dans l'échangeur thermique de cycle 32 pour former, à la sortie de l'échangeur 32, le courant comprimé refroidi 136, puis après détente dans la turbine 36, le courant 130 de réfrigération introduit dans l'échangeur amont 28.The bypass current 192 is introduced into the cycle heat exchanger 32 to form, at the outlet of the exchanger 32, the cooled compressed stream 136, and then after expansion in the turbine 36, the refrigeration stream 130 introduced into the upstream exchanger 28.

Le courant de réfrigération 130 présente ainsi une teneur molaire en azote supérieure à 99 % et une teneur en hydrocarbures inférieure à 0.1 %.The refrigerating stream 130 thus has a molar nitrogen content greater than 99% and a hydrocarbon content of less than 0.1%.

Après son passage dans l'échangeur 32, le courant de réfrigération réchauffé 132 est introduit dans le compresseur 38A couplé à la turbine 36, puis dans le réfrigérant 40A, avant d'être réintroduit dans le courant d'azote recyclé comprimé 100, entre l'avant-dernier étage et le dernier étage de l'appareil de compression 58, à une deuxième pression P2 inférieure à la première pression P1.After passing through the exchanger 32, the heated refrigerating stream 132 is introduced into the compressor 38A coupled to the turbine 36, then to the refrigerant 40A, before being reintroduced into the compressed recycled nitrogen stream 100, between the the penultimate stage and the last stage of the compression apparatus 58, at a second pressure P2 less than the first pressure P1.

Une sixième installation 200 selon l'invention est représentée sur la figure 6.A sixth installation 200 according to the invention is represented on the figure 6 .

La sixième installation 200 selon l'invention diffère de la quatrième installation 180 en ce que l'échangeur de cycle 32 est constitué par le même échangeur thermique que le troisième échangeur aval 56.The sixth installation 200 according to the invention differs from the fourth installation 180 in that the cycle exchanger 32 is constituted by the same heat exchanger as the third downstream exchanger 56.

Le courant de réfrigérant réchauffé 132 issu de l'échangeur amont 28 est introduit dans le troisième échangeur aval 56 où il est placé en relation d'échange thermique avec le courant de mélange 156 issu du deuxième échangeur aval 52 et avec le courant d'azote recyclé comprimé 100 issu de l'appareil aval de compression 58.The heated refrigerant stream 132 coming from the upstream exchanger 28 is introduced into the third downstream heat exchanger 56 where it is placed in heat exchange relation with the mixing stream 156 coming from the second downstream heat exchanger 52 and with the nitrogen stream. recycled tablet 100 from the downstream compression apparatus 58.

De même, le courant comprimé de réfrigérant 134 passe dans le troisième échangeur aval 56 pour être refroidi avant son introduction dans la turbine de détente dynamique 36.Similarly, the compressed refrigerant stream 134 passes into the third downstream heat exchanger 56 to be cooled before it is introduced into the dynamic expansion turbine 36.

Le fonctionnement du sixième procédé selon l'invention est par ailleurs analogue à celui du quatrième procédé selon l'invention.The operation of the sixth method according to the invention is moreover analogous to that of the fourth method according to the invention.

Grâce aux procédés selon l'invention, il est possible de produire, de manière flexible et économique, de l'azote gazeux sensiblement pur 16, de l'azote liquide 18 sensiblement pur, et un courant riche en hélium 20 qui peut être valorisé ultérieurement dans une usine de production d'hélium.Thanks to the processes according to the invention, it is possible to produce, in a flexible and economical manner, substantially pure nitrogen gas 16, substantially pure liquid nitrogen 18, and a helium-rich stream which can be recovered later. in a helium production plant.

Le procédé produit en outre un courant 14 riche en hydrocarbure déazoté qui peut être utilisé sous forme liquide ou gazeuse.The process further produces a denitrogenated hydrocarbon rich stream 14 which may be used in liquid or gaseous form.

Tous les fluides produits par le procédé sont donc utilisables et valorisables en tant que tels.All the fluids produced by the process are therefore usable and recoverable as such.

Ce procédé peut être utilisé indifféremment avec un courant de charge 12 constitué de gaz naturel liquéfié ou de gaz naturel sous forme gazeuse.This process can be used indifferently with a charging stream 12 consisting of liquefied natural gas or natural gas in gaseous form.

La quantité d'azote liquide 18 produite par le procédé peut être commandée de manière simple en réglant la puissance thermique prélevée par le deuxième courant d'introduction 72 dans le courant de réfrigérant 130 du cycle de réfrigération 30.The amount of liquid nitrogen produced by the process can be controlled in a simple manner by adjusting the thermal power taken by the second feed stream 72 into the refrigerant stream 130 of the refrigeration cycle 30.

Claims (13)

  1. Process for producing a liquid nitrogen stream (18), a gaseous nitrogen stream (16), a gaseous stream (20) which is rich in helium and a denitrided stream (14) of hydrocarbons from a feed stream which contains hydrocarbons, nitrogen and helium, the process comprising the following steps:
    - expanding the feed stream (12) in order to form an expanded feed stream (70);
    - dividing the expanded feed stream (70) into a first introduction stream (72) and a second introduction stream (74);
    - cooling the first introduction stream (72) within an upstream heat exchanger (28) by heat exchange with a gaseous refrigerant stream (130) which is obtained by dynamic expansion in a cooling cycle (30) in order to obtain a first cooled introduction stream (76);
    - cooling the second introduction stream (74) by means of a first downstream heat exchanger (52) in order to form a second cooled introduction stream (80);
    - introducing the first cooled introduction stream (76) and the second cooled introduction stream (80) into a fractionating column (50) which comprises a plurality of theoretical fractionating stages;
    - tapping at least one reboiling stream (84) and circulating the reboiling stream (84) in the first downstream heat exchanger (52) in order to cool the second introduction stream (74);
    - tapping, at the bottom of the fractionating column (50), a bottom stream (86) which is intended to form the denitrided stream (14) of hydrocarbons;
    - tapping, at the head of the fractionating column (50), a head stream (90) which is rich in nitrogen;
    - reheating the head stream (90) which is rich in nitrogen by means of at least one second downstream heat exchanger (54, 56) in order to form a reheated stream (92) which is rich in nitrogen;
    - tapping and expanding a first portion (94) of the reheated stream (92) which is rich in nitrogen in order to form the gaseous nitrogen stream (16);
    - compressing a second portion (96) of the reheated stream (92) which is rich in nitrogen in order to form a compressed, recycled nitrogen stream (100), and cooling the compressed, recycled nitrogen stream (100) by means of circulation through the first downstream heat exchanger (52) and the or each second downstream heat exchanger (54, 56);
    - liquefying and partially expanding the recycled nitrogen stream (100) in order to form an expanded nitrogen rich stream (106);
    - introducing at least a portion (106; 146) obtained from the expanded nitrogen rich stream (106) into a first separation container (60);
    - recovering the gaseous head stream from the first separation container (60) in order to form the helium rich stream (20);
    - recovering the liquid stream (110) from the bottom of the first separation container (60) and separating that liquid stream (110) into a liquid nitrogen stream (18) and a first reflux stream (114);
    - introducing the first reflux stream (114) as reflux into the head of the fractionating column (50).
  2. Process according to claim 1, characterised in that the whole of the expanded nitrogen rich stream (106) is introduced into the first separation container (60) directly after the expansion thereof.
  3. Process according to claim 1, characterised in that the nitrogen rich expanded stream (106) is introduced into a second separation container (142) which is positioned upstream of the first separation container (60), the head stream (144) from the second separation container (142) being introduced into the first separation container (60), at least a portion of the bottom stream (148) of the second separation container (142) being introduced as reflux into the head of the fractionating column (50).
  4. Process according to claim 3, characterised in that the bottom stream (148) of the second separation container is separated into a second reflux stream (150) which is introduced into the fractionating column (50) and a supplementary cooling stream (152), the supplementary cooling stream (152) being mixed with the nitrogen rich head stream (90) before it is introduced into the second downstream heat exchanger (54).
  5. Process according to claim 4, characterised in that the operating pressure of the fractionating column (50) is less than 5 bar, advantageously less than 3 bar.
  6. Process according to any one of the preceding claims, characterised in that the cooling cycle (30) is a closed cycle of the inverted Brayton type, the process comprising the following steps:
    • reheating the refrigerant stream (130) in a cycle heat exchanger (32) up to substantially ambient temperature;
    • compressing the reheated refrigerant stream (132) in order to form a compressed refrigerant stream (134), and refrigerant in the cycle heat exchanger (32) by means of heat exchange with the reheated refrigerant stream (132) from the first upstream heat exchanger (28) in order to form a cooled, compressed refrigerant stream (136);
    • dynamically expanding of the cooled, compressed refrigerant stream (136) in order to form the refrigerant stream (130), and introducing the refrigerant stream (130) into the first upstream heat exchanger (28).
  7. Process according to claim 6, characterised in that the cycle heat exchanger (32) is formed by one (56) of the downstream heat exchangers (52, 54, 56), the compressed refrigerant stream (134) being cooled at least partially by heat exchange in the downstream heat exchanger (56) with the nitrogen rich head stream (90) from the head of the fractionating column (50).
  8. Process according to any one of claims 1 to 5, characterised in that the cooling cycle (30) is a semi-open cycle, the process comprising the following steps:
    • tapping at least one fraction of the nitrogen rich recycled stream (100) which is compressed at a first pressure (P1) in order to form a tapped stream (192) which is rich in nitrogen;
    • cooling the nitrogen rich tapped stream (192) which in a cycle heat exchanger (32) in order to form a cooled, tapped stream;
    • dynamically expanding of the cooled, tapped stream from the cycle heat exchanger (32) in order to form the refrigerating stream (130), and introducing the refrigerant stream (130) into the upstream heat exchanger (28);
    • compressing the refrigerant stream (132) from the upstream heat exchanger in a compressor and re-introducing that stream into the recycled nitrogen stream (100) which is compressed at a second pressure (P2) less than the first pressure (P1).
  9. Process according to any one of the preceding claims, characterised in that the feed stream (12) is a gaseous stream, the process comprising the following steps:
    • liquefying the feed stream (12) in order to form a liquid feed stream (68) by means of introduction through a liquefying heat exchanger (164);
    • vaporising the denitrided stream (14) of hydrocarbons from the bottom of the fractionating column (50) by means of heat exchange with a gaseous stream (166) which is from the feed stream (12) in the liquefying heat exchanger (164).
  10. Process according to claim 9, characterised in that the cooling provided by the vaporisation of the denitrided stream (14) of hydrocarbons constitutes more than 90%, advantageously more than 98%, of the cooling necessary for liquefying the feed stream (121).
  11. Installation (10; 140; 160; 180; 190; 200) for producing a liquid nitrogen stream (18), a gaseous nitrogen stream (16), a gaseous stream (20) which is rich in helium and a denitrided stream (14) of hydrocarbons from a feed stream (12) which contains hydrocarbons, nitrogen and helium, the installation comprising:
    - means (26) for expanding of the feed stream (12) in order to form an expanded feed stream (70);
    - means for dividing the expanded feed stream (70) into a first introduction stream (72) and a second introduction stream (74);
    - means (28; 30) for cooling the first introduction stream (72) comprising an upstream heat exchanger (28) and a cooling cycle (30), in order to obtain a first cooled introduction stream (76) by means of heat exchange with a gaseous refrigerant stream (130) which is obtained by dynamic expansion in the cooling cycle (30);
    - means for cooling the second introduction stream (74) comprising a first downstream heat exchanger (52) in order to form a second cooled introduction stream (80);
    - a fractionating column (50) comprising a plurality of theoretical fractionating stages;
    - means for introducing the first cooled introduction stream (76) and the second cooled introduction stream (80) into the fractionating column (50);
    - means for tapping at least one reboiling stream (84) and means for circulating the reboiling stream (84) in the first downstream heat exchanger (52) in order to cool the second introduction stream (74);
    - means for tapping, at the bottom of the fractionating column (50), a bottom stream (86) which is intended to form the denitrided stream (14) of hydrocarbons;
    - means for tapping, at the head of the fractionating column (50), an head stream (90) which is rich in nitrogen;
    - means for reheating the nitrogen rich head stream (90) comprising at least a second downstream heat exchanger (54, 56) in order to form a reheated stream (92) which is rich in nitrogen;
    - means for tapping and expanding a first portion (94) of the nitrogen rich reheated stream (92) in order to form the gaseous nitrogen stream (16);
    - means (58) for compressing a second portion (96) of the nitrogen rich reheated stream (92) in order to form a recycled nitrogen stream (100) and means for cooling the compressed, recycled nitrogen stream (100) by means of circulation through the first downstream heat exchanger (52) and the or each second downstream heat exchanger (54, 56);
    - means (104) for partially liquefying and expanding the recycled nitrogen stream (100) in order to form an expanded nitrogen rich stream (106);
    - a first separation container (60);
    - means for introducing at least a portion obtained from the expanded nitrogen rich stream (106) into the first separation container (60);
    - means for recovering the gaseous head stream from the first separation container (60) in order to form the helium rich stream (20);
    - means for recovering the liquid stream (110) from the bottom of the first separation container (60) and for separating that stream into a liquid nitrogen stream (112) and a first reflux stream (114);
    - means for introducing the first reflux stream (114) as reflux into the head of the fractionating column (50).
  12. Installation (10; 160) according to claim 11, characterised in that it comprises means for introducing the whole of the expanded nitrogen rich stream (106) into the first separation container (60).
  13. Installation (140; 180; 190; 200) according to claim 11, characterised in that it comprises a second separation container (142) which is positioned upstream of the first separation container (60) and means for introducing the expanded nitrogen rich stream (106) into the second separation container (142), the installation comprising means for introducing the head stream (144) from the second separation container (142) into the first separation container (60) and means for introducing at least a portion of the bottom stream (148) of the second separation container (142) as reflux into the head of the fractionating column (50).
EP09755956.1A 2008-10-07 2009-10-02 Method for producing liquid and gaseous nitrogen streams, a helium-rich gaseous stream, and a denitrogened hydrocarbon stream, and associated plant Active EP2344821B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0856788A FR2936864B1 (en) 2008-10-07 2008-10-07 PROCESS FOR THE PRODUCTION OF LIQUID AND GASEOUS NITROGEN CURRENTS, A HELIUM RICH GASEOUS CURRENT AND A DEAZOTE HYDROCARBON CURRENT, AND ASSOCIATED PLANT.
PCT/FR2009/051884 WO2010040935A2 (en) 2008-10-07 2009-10-02 Method for producing liquid and gaseous nitrogen streams, a helium-rich gaseous stream, and a denitrogened hydrocarbon stream, and associated plant

Publications (2)

Publication Number Publication Date
EP2344821A2 EP2344821A2 (en) 2011-07-20
EP2344821B1 true EP2344821B1 (en) 2018-01-24

Family

ID=40793055

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09755956.1A Active EP2344821B1 (en) 2008-10-07 2009-10-02 Method for producing liquid and gaseous nitrogen streams, a helium-rich gaseous stream, and a denitrogened hydrocarbon stream, and associated plant

Country Status (15)

Country Link
US (1) US9316434B2 (en)
EP (1) EP2344821B1 (en)
CN (1) CN102216711B (en)
AR (1) AR073416A1 (en)
AU (1) AU2009300946B2 (en)
BR (1) BRPI0920814B1 (en)
CA (1) CA2739696C (en)
EA (1) EA020215B1 (en)
ES (1) ES2665719T3 (en)
FR (1) FR2936864B1 (en)
IL (1) IL212087A (en)
MX (1) MX2011003757A (en)
MY (1) MY160839A (en)
NZ (1) NZ592143A (en)
WO (1) WO2010040935A2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130086939A1 (en) * 2011-10-11 2013-04-11 Guy D. Cusumano Distributed lng device
EA030308B1 (en) * 2013-04-22 2018-07-31 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Method and apparatus for producing a liquefied hydrocarbon stream
CA2909616C (en) * 2013-04-22 2021-03-09 Shell Internationale Research Maatschappij B.V. Method and apparatus for producing a liquefied hydrocarbon stream
US20150114034A1 (en) * 2013-10-25 2015-04-30 Air Products And Chemicals, Inc. Purification of Carbon Dioxide
US9945604B2 (en) 2014-04-24 2018-04-17 Air Products And Chemicals, Inc. Integrated nitrogen removal in the production of liquefied natural gas using refrigerated heat pump
US20150308737A1 (en) 2014-04-24 2015-10-29 Air Products And Chemicals, Inc. Integrated Nitrogen Removal in the Production of Liquefied Natural Gas Using Intermediate Feed Gas Separation
US9816754B2 (en) 2014-04-24 2017-11-14 Air Products And Chemicals, Inc. Integrated nitrogen removal in the production of liquefied natural gas using dedicated reinjection circuit
DE102015004120A1 (en) * 2015-03-31 2016-10-06 Linde Aktiengesellschaft Process for separating nitrogen from a hydrocarbon-rich fraction
TWI707115B (en) * 2015-04-10 2020-10-11 美商圖表能源與化學有限公司 Mixed refrigerant liquefaction system and method
US10619918B2 (en) * 2015-04-10 2020-04-14 Chart Energy & Chemicals, Inc. System and method for removing freezing components from a feed gas
TWI608206B (en) * 2015-07-15 2017-12-11 艾克頌美孚上游研究公司 Increasing efficiency in an lng production system by pre-cooling a natural gas feed stream
FR3038973B1 (en) * 2015-07-16 2019-09-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude HELIUM PRODUCTION FROM NATURAL GAS CURRENT
US10215488B2 (en) 2016-02-11 2019-02-26 Air Products And Chemicals, Inc. Treatment of nitrogen-rich natural gas streams
FR3048074B1 (en) * 2016-02-18 2019-06-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD FOR PREVENTING INSTANT EVAPORATION OF LIQUEFIED NATURAL GAS DURING TRANSPORT.
US11674749B2 (en) * 2020-03-13 2023-06-13 Air Products And Chemicals, Inc. LNG production with nitrogen removal

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2940271A (en) * 1959-03-24 1960-06-14 Fluor Corp Low temperature fractionation of natural gas components
US3355902A (en) * 1964-05-11 1967-12-05 Pullman Inc Helium recovery process
DE2110417A1 (en) * 1971-03-04 1972-09-21 Linde Ag Process for liquefying and subcooling natural gas
US4415345A (en) * 1982-03-26 1983-11-15 Union Carbide Corporation Process to separate nitrogen from natural gas
US4479871A (en) * 1984-01-13 1984-10-30 Union Carbide Corporation Process to separate natural gas liquids from nitrogen-containing natural gas
US4662919A (en) * 1986-02-20 1987-05-05 Air Products And Chemicals, Inc. Nitrogen rejection fractionation system for variable nitrogen content natural gas
US4710212A (en) * 1986-09-24 1987-12-01 Union Carbide Corporation Process to produce high pressure methane gas
DE3871220D1 (en) * 1987-04-07 1992-06-25 Boc Group Plc AIR SEPARATION.
US5345773A (en) * 1992-01-14 1994-09-13 Teisan Kabushiki Kaisha Method and apparatus for the production of ultra-high purity nitrogen
US5329775A (en) * 1992-12-04 1994-07-19 Praxair Technology, Inc. Cryogenic helium production system
US5339641A (en) * 1993-07-07 1994-08-23 Praxair Technology, Inc. Cryogenic liquid nitrogen production system
GB2297825A (en) * 1995-02-03 1996-08-14 Air Prod & Chem Process to remove nitrogen from natural gas
AR007346A1 (en) * 1996-06-05 1999-10-27 Shell Int Research A METHOD FOR SEPARATING CARBON DIOXIDE, ETHANE, AND HEAVIER COMPONENTS FROM A HIGH PRESSURE NATURAL GAS FLOW
US6298688B1 (en) * 1999-10-12 2001-10-09 Air Products And Chemicals, Inc. Process for nitrogen liquefaction
US6978638B2 (en) * 2003-05-22 2005-12-27 Air Products And Chemicals, Inc. Nitrogen rejection from condensed natural gas
EP1715267A1 (en) * 2005-04-22 2006-10-25 Air Products And Chemicals, Inc. Dual stage nitrogen rejection from liquefied natural gas
FR2891900B1 (en) * 2005-10-10 2008-01-04 Technip France Sa METHOD FOR PROCESSING AN LNG CURRENT OBTAINED BY COOLING USING A FIRST REFRIGERATION CYCLE AND ASSOCIATED INSTALLATION
US20110174017A1 (en) * 2008-10-07 2011-07-21 Donald Victory Helium Recovery From Natural Gas Integrated With NGL Recovery

Also Published As

Publication number Publication date
FR2936864A1 (en) 2010-04-09
EA201100584A1 (en) 2011-10-31
CA2739696A1 (en) 2010-04-15
EA020215B1 (en) 2014-09-30
IL212087A0 (en) 2011-06-30
NZ592143A (en) 2012-11-30
BRPI0920814A2 (en) 2015-12-22
CN102216711B (en) 2015-05-27
WO2010040935A2 (en) 2010-04-15
EP2344821A2 (en) 2011-07-20
CN102216711A (en) 2011-10-12
MY160839A (en) 2017-03-31
WO2010040935A3 (en) 2011-06-03
FR2936864B1 (en) 2010-11-26
CA2739696C (en) 2017-01-24
AU2009300946B2 (en) 2015-09-17
ES2665719T3 (en) 2018-04-26
US9316434B2 (en) 2016-04-19
IL212087A (en) 2015-04-30
US20110226009A1 (en) 2011-09-22
BRPI0920814B1 (en) 2020-04-07
AU2009300946A1 (en) 2010-04-15
AR073416A1 (en) 2010-11-03
MX2011003757A (en) 2011-06-20

Similar Documents

Publication Publication Date Title
EP2344821B1 (en) Method for producing liquid and gaseous nitrogen streams, a helium-rich gaseous stream, and a denitrogened hydrocarbon stream, and associated plant
EP2452140B1 (en) Method for producing methane-rich stream and c2+ hydrocarbon-rich stream, and related facility
EP1352203B1 (en) Method for refrigerating liquefied gas and installation therefor
FR3053771B1 (en) METHOD FOR LIQUEFACTING NATURAL GAS AND RECOVERING LIQUID EVENTS OF NATURAL GAS COMPRISING TWO NATURAL GAS SEMI-OPENING REFRIGERANT CYCLES AND A REFRIGERANT GAS REFRIGERANT CYCLE
EP1946026B1 (en) Method for treating a liquefied natural gas stream obtained by cooling using a first refrigerating cycle and related installation
EP2659211B1 (en) Method for producing a methane-rich stream and a c2+ hydrocarbon-rich stream, and associated equipment
FR2675891A1 (en) PROCESS FOR PRODUCING LIQUID NITROGEN USING LIQUEFIED NATURAL GAS AS THE ONLY REFRIGERANT.
EP1118827B1 (en) Partial liquifaction process for a hydrocarbon-rich fraction such as natural gas
FR2675890A1 (en) METHOD FOR THE REFRIGERATION TRANSFER OF NATURAL GAS LIQUEFIED TO A CRYOGENIC AIR SEPARATION UNIT USING THE HIGH PRESSURE NITROGEN CURRENT.
WO2003004951A1 (en) Method for the liquefaction and denitrogenation of natural gas, system for carrying out said method
CA2744450A1 (en) Method for producing a stream of subcooled liquefied natural gas using a natural gas feedstream, and associated facility
FR2772896A1 (en) METHOD FOR THE LIQUEFACTION OF A GAS, PARTICULARLY A NATURAL GAS OR AIR COMPRISING A MEDIUM PRESSURE PURGE AND ITS APPLICATION
CA2756632C (en) Method for processing a natural load gas for obtaining a natural processed gas and a reduction in c5+ hydrocarbons, and associated installation
WO2017081374A1 (en) Method for optimising liquefaction of natural gas
FR3053770A1 (en) METHOD FOR LIQUEFACTING NATURAL GAS AND RECOVERING LIQUID EVENTS OF NATURAL GAS COMPRISING A SEMI-OPENING REFRIGERANT CYCLE WITH NATURAL GAS AND TWO REFRIGERANT GAS REFRIGERANT CYCLES
FR2975478A1 (en) Method for liquefying gas stream rich in carbon dioxide, involves heating part of liquid flow in heat exchanger, and sending recycled molecules of refrigerant to be cooled in exchanger during partial or total failure of compressor
EP2661479A1 (en) Method for producing a c3+ hydrocarbon-rich fraction and a methane- and ethane-rich stream from a hydrocarbon-rich feed stream, and related facility
EP3060629B1 (en) Method for fractionating a stream of cracked gas, using an intermediate recirculation stream, and related plant
WO2018055264A1 (en) Process for purifying natural gas to be liquefied
WO2017081375A1 (en) Method for liquefying natural gas using a closed cycle refrigeration circuit
FR3137308A1 (en) DEVICE AND METHOD FOR CRYOGENIC CAPTURE OF CARBON DIOXIDE CONTAINED IN A TARGET FLUID FLOW
EP4244557A1 (en) Method for extracting ethane from an initial natural gas stream and corresponding plant
WO2017098099A1 (en) Method for liquefying natural gas and nitrogen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110505

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170825

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 965998

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009050551

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2665719

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180426

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180124

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 965998

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180424

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180524

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180424

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009050551

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20181025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009050551

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091002

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20200922

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20201012

Year of fee payment: 12

Ref country code: ES

Payment date: 20201103

Year of fee payment: 12

Ref country code: GB

Payment date: 20201015

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211002

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211003

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230921

Year of fee payment: 15