FR3038973B1 - HELIUM PRODUCTION FROM NATURAL GAS CURRENT - Google Patents

HELIUM PRODUCTION FROM NATURAL GAS CURRENT Download PDF

Info

Publication number
FR3038973B1
FR3038973B1 FR1556739A FR1556739A FR3038973B1 FR 3038973 B1 FR3038973 B1 FR 3038973B1 FR 1556739 A FR1556739 A FR 1556739A FR 1556739 A FR1556739 A FR 1556739A FR 3038973 B1 FR3038973 B1 FR 3038973B1
Authority
FR
France
Prior art keywords
column
helium
volume
pressure
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
FR1556739A
Other languages
French (fr)
Other versions
FR3038973A1 (en
Inventor
Paul TERRIEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Priority to FR1556739A priority Critical patent/FR3038973B1/en
Priority to EP16750950.4A priority patent/EP3322949B1/en
Priority to PL16750950.4T priority patent/PL3322949T3/en
Priority to RU2018103764A priority patent/RU2717666C2/en
Priority to PCT/FR2016/051786 priority patent/WO2017009573A1/en
Priority to US15/744,987 priority patent/US20180209725A1/en
Publication of FR3038973A1 publication Critical patent/FR3038973A1/en
Application granted granted Critical
Publication of FR3038973B1 publication Critical patent/FR3038973B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/028Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases
    • F25J3/029Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases of helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Procédé de production d'un courant gazeux (27) d'hélium à partir d'un courant gazeux source (1) comprenant au moins de l'hélium, du méthane, et de l'azote, comprenant au moins les étapes suivantes : Etape a) : introduction dudit courant gazeux source (1) dans une unité (6) de rejet d'azote à double colonne, ladite double colonne comprenant une colonne (5) de distillation à haute pression, une colonne (7) de distillation à basse pression et un condenseur (8) mettant en relation la colonne (5) à haute pression avec la colonne (7) à basse pression ; Etape b) : extraction en sortie dudit condenseur (8) d'au moins une partie (12) d'un mélange (11) produit en tête de colonne (5) à haute pression ; Etape c) : détente dudit mélange issu de l'étape b) à une pression intermédiaire comprise entre 8 bars et 20 bars absolus ; Etape d) : séparation du mélange (14) issu de l'étape c) dans un premier pot séparateur de phases (15) en une phase liquide (16) et une phase (17) gazeuse enrichie en hélium ; Etape e) : condensation au moins partielle de ladite phase gazeuse (17) enrichie en hélium dans un échangeur de chaleur (24); Etape f) : séparation du courant (25) issu de l'étape e) dans un deuxième pot séparateur de phases (26) en une phase liquide (28) et une phase gazeuse (27) contenant plus de 50% en volume d'hélium.Process for producing a gaseous stream (27) of helium from a source gas stream (1) comprising at least helium, methane, and nitrogen, comprising at least the following steps: Step a): introducing said source gas stream (1) into a double column nitrogen discharge unit (6), said double column comprising a high pressure distillation column (5), a low distillation column (7) pressure and a condenser (8) connecting the column (5) at high pressure with the column (7) at low pressure; Step b): extraction at the outlet of said condenser (8) of at least a portion (12) of a mixture (11) produced at the top of column (5) at high pressure; Step c): expanding said mixture from step b) to an intermediate pressure of between 8 bar and 20 bar absolute; Step d): separating the mixture (14) from step c) in a first phase separator pot (15) into a liquid phase (16) and a gas phase (17) enriched in helium; Step e): at least partial condensation of said gas phase (17) enriched in helium in a heat exchanger (24); Step f): separation of the stream (25) from step e) into a second phase separator pot (26) into a liquid phase (28) and a gas phase (27) containing more than 50% by volume of helium.

Description

La présente invention concerne un procédé de production d’hélium à partir d’un courant gazeux source comprenant au moins de l’hélium, du méthane et de l’azote. L'hélium est obtenu commercialement pratiquement exclusivement à partir d'un mélange de composants volatils du gaz naturel, ce mélange comprenant, ainsi que de l'hélium, typiquement du méthane et de l'azote et des traces d'hydrogène, de l'argon et d'autres gaz nobles.The present invention relates to a method for producing helium from a source gas stream comprising at least helium, methane and nitrogen. Helium is obtained commercially almost exclusively from a mixture of volatile components of natural gas, this mixture comprising, as well as helium, typically methane and nitrogen and traces of hydrogen, argon and other noble gases.

Au cours de la production de l'huile minérale, l'hélium est mis à disposition en tant que composant du gaz qui accompagne l'huile minérale, ou dans le cadre de la production de gaz naturel. Il est théoriquement possible d'obtenir de l'hélium dans l'atmosphère, mais ce n’est pas économique en raison des faibles concentrations (concentration typique de l’hélium dans l’air de l’ordre de 5,2 ppmv).During the production of mineral oil, helium is made available as a component of the gas that accompanies mineral oil, or as part of the production of natural gas. It is theoretically possible to obtain helium in the atmosphere, but it is not economical because of the low concentrations (typical concentration of helium in the air of the order of 5.2 ppmv).

Le gaz naturel brut peut contenir un grand nombre d’impuretés gênantes à retirer. L’azote en est un exemple. A partir d’une certaine concentration d’azote dans le gaz naturel, celui-ci n’est typiquement pas vendable à cause de son faible pouvoir calorifique. Pour retirer l’azote on utilise le plus souvent un procédé cryogénique mis en oeuvre dans une unité appelée unité de rejet d’azote [en anglais : Nitrogen Rejection Unit (NRU)].Raw natural gas can contain a large number of troublesome impurities to be removed. Nitrogen is one example. From a certain concentration of nitrogen in natural gas, it is typically not salable because of its low calorific value. To remove the nitrogen is most often used a cryogenic process implemented in a unit called Nitrogen Rejection Unit (NRU).

Si en plus de l’azote, il y a de l’hélium dans le gaz naturel, il y a un intérêt économique à extraire un courant riche en hélium séparément pour produire de l’hélium et le commercialiser. Typiquement, on concentre l’hélium dans le procédé cryogénique pour finalement le purifier dans un procédé par adsorption type PSA (en anglais Pressure Swing Adsorption).If in addition to nitrogen, there is helium in natural gas, there is economic interest in extracting a helium-rich stream separately to produce helium and market it. Typically, the helium is concentrated in the cryogenic process and finally purified in a PSA (Pressure Swing Adsorption) type adsorption process.

Plusieurs solutions existent aujourd’hui pour l’extraction de l’hélium dans une NRU, en particulier dans une unité NRU dite à double colonne.Several solutions exist today for the extraction of helium in a NRU, in particular in a so-called double-column NRU unit.

Il est possible d’ajouter une colonne pour distiller l’azote et l’hélium, tel que cela est décrit dans le brevet EP0633437 B1 par exemple, mais ceci pose plusieurs problèmes : • Complexification de l’installation. • Consommation énergétique augmentée à cause du besoin en réfrigération (cycle) lié à cette colonne. D’autres solutions existent en utilisant des condensations partielles et/ou des vaporisations instantanées (flashs) successives mais celles-ci ne permettent en général pas d’avoir à la fois une forte teneur en hélium et un haut rendement. Un tel exemple est décrit dans le brevet US4701201. Dans ce brevet, l’hélium est récupéré en tête de la colonne à haute pression (HP) après une condensation partielle. Cette simple condensation partielle oblige à choisir entre rendement et pureté en hélium. Dans le brevet il est également décrit qu’il est possible d’atteindre un rendement raisonnable (environ 92%) mais la pureté atteinte pour le courant enrichi en hélium est de 37,2%.It is possible to add a column to distill nitrogen and helium, as described in patent EP0633437 B1 for example, but this poses several problems: • Complexification of the installation. • Increased energy consumption due to the refrigeration requirement (cycle) associated with this column. Other solutions exist using partial condensations and / or flashes (flashes) successive but they generally do not allow to have both a high helium content and a high yield. Such an example is described in US4701201. In this patent, helium is recovered at the top of the high pressure column (HP) after partial condensation. This simple partial condensation makes it necessary to choose between yield and purity in helium. In the patent it is also described that it is possible to achieve a reasonable yield (about 92%) but the purity achieved for the helium-enriched stream is 37.2%.

Il existe donc un besoin de résoudre les problèmes décrits ci-dessus. C’est pourquoi la présente invention a pour objet un procédé de production d’un courant gazeux d’hélium à partir d’un courant gazeux source comprenant au moins de l’hélium, du méthane, et de l’azote, comprenant au moins les étapes suivantes :There is therefore a need to solve the problems described above. Therefore, the present invention relates to a method for producing a helium gas stream from a source gas stream comprising at least helium, methane, and nitrogen, comprising at least the following steps:

Etape a) : introduction dudit courant gazeux source dans une unité de rejet d’azote à double colonne, ladite double colonne comprenant une colonne de distillation à haute pression, une colonne de distillation à basse pression et un condenseur mettant en relation la colonne à haute pression avec la colonne à basse pression ;Step a): introduction of said source gas stream into a double column nitrogen discharge unit, said double column comprising a high pressure distillation column, a low pressure distillation column and a condenser connecting the high column pressure with the low pressure column;

Etape b) : extraction en sortie dudit condenseur d’au moins une partie d’un mélange produit en tête de colonne à haute pression ;Step b): extraction at the outlet of said condenser of at least a portion of a mixture produced at the top of the column at high pressure;

Etape c) : détente dudit mélange issu de l’étape b) à une pression intermédiaire comprise entre 8 bars et 20 bars absolusStep c): relaxation of said mixture resulting from step b) at an intermediate pressure of between 8 bar and 20 bar absolute

Etape d) : séparation du mélange issu de l’étape c) dans un premier pot séparateur de phases en une phase liquide et une phase gazeuse enrichie en hélium ;Step d): separation of the mixture from step c) in a first phase separator pot in a liquid phase and a helium-enriched gas phase;

Etape e) : condensation au moins partielle de ladite phase gazeuse enrichie en hélium dans un échangeur de chaleur ;Step e): at least partial condensation of said gas phase enriched in helium in a heat exchanger;

Etape f) : séparation du courant issu de l’étape e) dans un deuxième pot séparateur de phases en une phase liquide et une phase gazeuse contenant plus de 50% en volume d’hélium.Step f): separation of the stream from step e) in a second phase separator pot in a liquid phase and a gas phase containing more than 50% by volume of helium.

Selon d’autres modes de réalisation, la présente invention a aussi pour objet :According to other embodiments, the present invention also relates to:

Un procédé tel que défini ci-dessus caractérisé en ce qu’il comprend une étape g) : utilisation, comme réfrigérant, de la phase liquide après détente issue de l’étape f) dans ledit échangeur de chaleur mis en oeuvre à l’étape e).A process as defined above characterized in that it comprises a step g): use, as a refrigerant, of the liquid phase after expansion resulting from step f) in said heat exchanger implemented at step e).

Un procédé tel que défini ci-dessus caractérisé en ce qu’au cours de l’étape g), ladite phase liquide est vaporisée à une pression comprise entre 0,1 bar et 3 bar absolus.A process as defined above characterized in that during step g), said liquid phase is vaporized at a pressure between 0.1 bar and 3 bar absolute.

Un procédé tel que défini ci-dessus caractérisé en ce qu’au cours de l’étape a) le courant gazeux est introduit dans la colonne à haute pression à au moins deux niveaux d’alimentation, la fraction vapeur de la première alimentation étant plus faible que la fraction vapeur de la seconde et la première alimentation étant introduite à un niveau plus élevée de ladite colonne à haute pression que la seconde .A process as defined above characterized in that during step a) the gaseous stream is introduced into the high-pressure column at at least two feed levels, the steam fraction of the first feed being more weak that the vapor fraction of the second and the first feed being introduced at a higher level of said high pressure column than the second.

Un procédé tel que défini ci-dessus comprenant une étape h) : extraction de la phase gazeuse issue de l’étape f) comme produit riche en hélium, contenant au moins 75% en volume d’hélium.A process as defined above comprising a step h): extraction of the gaseous phase from step f) as a product rich in helium, containing at least 75% by volume of helium.

Un procédé tel que défini ci-dessus caractérisé en ce que la température en sortie de condenseur à l’étape b) est comprise entre - 150°C et - 165°C.A process as defined above characterized in that the temperature at the condenser outlet in step b) is between-150 ° C and -165 ° C.

Un procédé tel que défini ci-dessus caractérisé en ce que la pression dans la colonne à haute pression est comprise entre 20 bars absolus et 50 bars absolus et la pression dans la colonne à basse pression est comprise entre 1 bar absolu et 5 bars absolus.A process as defined above characterized in that the pressure in the high pressure column is between 20 bar absolute and 50 bar absolute and the pressure in the low pressure column is between 1 bar absolute and 5 bar absolute.

Un procédé tel que défini ci-dessus caractérisé en ce que la température de mise en oeuvre de l’étape c) est comprise entre - 160°C et -180°C.A process as defined above characterized in that the temperature of implementation of step c) is between - 160 ° C and -180 ° C.

Un procédé tel que défini ci-dessus caractérisé en que la température de mise en oeuvre de l’étape e) est comprise entre - 180°C et -210°C.A process as defined above characterized in that the operating temperature of step e) is between - 180 ° C and -210 ° C.

Un procédé tel que défini ci-dessus caractérisé en ce que la phase liquide issue de l’étape d) est introduite dans la colonne à basse pression de ladite unité de rejet.A process as defined above characterized in that the liquid phase from step d) is introduced into the low pressure column of said reject unit.

Un procédé tel que défini ci-dessus comprenant une étape supplémentaire de production d’un courant enrichi en azote comprenant moins de 2% en volume de méthane à partir d’un courant gazeux issu de la tête de la colonne à basse pression.A process as defined above comprising a further step of producing a nitrogen enriched stream comprising less than 2% by volume of methane from a gaseous stream from the low pressure column head.

Un procédé tel que défini ci-dessus caractérisé en ce que courant gazeux source comprend de 20% en volume à 80 % en volume de méthane, de 20% en volume à 80% en volume d’azote et de 0% en volume à 2% en volume d’hélium.A process as defined above characterized in that the source gas stream comprises from 20% by volume to 80% by volume of methane, from 20% by volume to 80% by volume of nitrogen and from 0% by volume to 2% by volume. % by volume of helium.

Une installation de production d’hélium à partir d’un mélange de gaz source comprenant du méthane, de l’hélium, et de l’azote ladite installation comprenant : au moins une unité de rejet d’azote munie d’une double colonne, ladite double colonne comprenant une colonne de distillation à haute pression, une colonne de distillation à basse pression et un condenseur mettant en relation la colonne à haute pression avec la colonne à basse pression, et une unité d’extraction d’hélium comprenant un premier pot séparateur de phases situé en amont d’un échangeur de chaleur lui-même situé en amont d’un deuxième pot séparateur de phases ; caractérisée en ce que l’unité de rejet d’azote est située en amont de l’unité d’extraction d’hélium ;A plant for producing helium from a mixture of source gas comprising methane, helium, and nitrogen, said installation comprising: at least one nitrogen rejection unit provided with a double column, said double column comprising a high pressure distillation column, a low pressure distillation column and a condenser connecting the high pressure column with the low pressure column, and a helium extraction unit comprising a first pot phase separator located upstream of a heat exchanger located upstream of a second phase separator pot; characterized in that the nitrogen rejection unit is located upstream of the helium extraction unit;

Une installation telle que définie précédemment caractérisée en ce que ladite unité d’extraction d’hélium ne contient pas de colonne de distillation ni de colonne de rectification ni de pot séparateur de phases à alimentations multiples.An installation as defined above, characterized in that said helium extraction unit does not contain a distillation column, a rectification column or a multi-feed phase separator pot.

La solution objet de la présente invention permet de séparer un courant composé de méthane, d’azote et d’hélium en trois courants de méthane pur, azote pur et riche en hélium.The solution that is the subject of the present invention makes it possible to separate a stream composed of methane, nitrogen and helium into three streams of pure methane, pure nitrogen and rich in helium.

La présente invention permet de résoudre le problème des solutions par condensation partielle en obtenant à la fois un fort rendement (>85%) et une forte teneur en hélium (>50%) et ceci sans utiliser une colonne dédiée à la séparation de l’hélium. L’intégration de l’extraction d’hélium dans une unité NRU avec un schéma à double colonne permet de minimiser le coût des équipements et la consommation énergétique de l’unité d’extraction d’hélium (hélium rejection unit, HRU) sans pénaliser la consommation et le coût d’installation des autres équipements de la NRU.The present invention solves the problem of solutions by partial condensation by obtaining both a high yield (> 85%) and a high helium content (> 50%) and this without using a column dedicated to the separation of the helium. The integration of helium extraction in a NRU unit with a double column scheme minimizes the equipment cost and the energy consumption of the helium rejection unit (HRU) without penalizing the consumption and installation cost of other NRU equipment.

Le procédé objet de l’invention consiste en une unité NRU double colonne dans lequel on condense totalement (ou presque en raison de la présence d’incondensables) au niveau du condenseur de la colonne à haute pression HP. Le liquide produit en tête de cette colonne HP est en partie utilisé comme reflux de la colonne HP et en partie destiné à être utilisé comme reflux de la colonne à basse pression BP.The method which is the subject of the invention consists of a double-column NRU unit in which the condenser of the HP high-pressure column is completely (or almost completely because of the presence of incondensables) condensed. The liquid produced at the top of this HP column is partly used as reflux of the HP column and partly for use as reflux of the LP low pressure column.

La particularité de l’invention est de détendre le liquide produit et non utilisé comme reflux de la colonne HP à une pression intermédiaire pour ainsi « flasher » ou vaporiser instantanément (par gaz de « flash », on entend : vapeur instantanée) tout l’hélium désiré dans un premier pot séparateur d’hélium (contrôle du rendement) puis d’effectuer une condensation partielle du gaz dudit « flash » (ou vapeur instantanée) pour obtenir un gaz ayant une forte teneur en hélium dans un deuxième pot séparateur d’hélium.The particularity of the invention is to relax the fluid produced and not used as reflux of the HP column at an intermediate pressure so as to "flash" or vaporize instantly (by "flash" gas is meant: instantaneous steam) all the helium desired in a first helium separator pot (performance control) and then to a partial condensation of the gas of said "flash" (or instantaneous vapor) to obtain a gas having a high helium content in a second separator pot of helium.

On pourra avantageusement produire le froid nécessaire à la condensation partielle du « flash » (vapeur instantanée) issu du premier pot séparateur d’hélium en vaporisant à basse pression le liquide de cuve du deuxième pot séparateur d’hélium.It will advantageously be possible to produce the cold necessary for the partial condensation of the "flash" (instantaneous vapor) coming from the first helium separator pot by vaporizing at low pressure the tank liquid of the second helium separating pot.

Le procédé objet de la présente invention est illustré sur la figure 1.The method that is the subject of the present invention is illustrated in FIG.

Sur la figure 1, un courant gazeux source 1 comprenant au moins de l’hélium, du méthane, et de l’azote est introduit à une pression d’environ 50 bars absolus dans un échangeur de chaleur 2. Le courant 3 en sortie dudit échangeur 2 est détendu à l’aide, par exemple, d’une vanne 4 avant d’être introduit dans une colonne à haute pression 5 d’une unité 6 à double colonne comprenant une colonne de distillation 5 à haute pression, une colonne de distillation 7 à basse pression et un condenseur 8 mettant en relation la colonne 5 à haute pression avec la colonne 7 à basse pression.In FIG. 1, a source gas stream 1 comprising at least helium, methane, and nitrogen is introduced at a pressure of approximately 50 bar absolute in a heat exchanger 2. The output stream 3 of said The exchanger 2 is expanded using, for example, a valve 4 before being introduced into a high-pressure column 5 of a double-column unit 6 comprising a high-pressure distillation column 5, a column of distillation 7 at low pressure and a condenser 8 connecting the column 5 at high pressure with the column 7 at low pressure.

Le courant gazeux source 1 comprend pour 100% en volume, par exemple, de 20% en volume à 80% en volume de méthane, de 20% en volume à 80% en volume d’azote et de 1 ppmen volume à 1% en volume d’hélium.The source gas stream 1 comprises 100% by volume, for example, from 20% by volume to 80% by volume of methane, from 20% by volume to 80% by volume of nitrogen and from 1% by volume to 1% by volume. helium volume.

La pression de la colonne à haute pression est par exemple de 30 bara et la pression dans la colonne à basse pression est par exemple de 2 bara.The pressure of the high pressure column is for example 30 bara and the pressure in the low pressure column is for example 2 bara.

Le principe d’une unité à double colonne est largement décrit dans l’état de la technique, par exemple dans le document de Ruheman, « the séparation of gases » Oxford University press, 1949, chapitre 7 ou encore dans le document de Barron, « Cryogénie Systems », mcGraw Hill, Inc., 1996, p. 230, Air Séparation Systems.The principle of a double-column unit is widely described in the state of the art, for example in Ruheman's paper, "The Separation of Gases" Oxford University Press, 1949, Chapter 7 or in the Barron paper, Cryogenics Systems, mcGraw Hill, Inc., 1996, p. 230, Air Separation Systems.

Le terme unité de rejet d’azote est relatif à un dispositif dans lequel l’azote et le méthane sont séparés rectification cryogénique.The term nitrogen rejection unit refers to a device in which nitrogen and methane are separated by cryogenic rectification.

Pour augmenter le rendement en hélium on peut en outre faire une introduction multiple dans la colonne à haute pression 5 : une partie (3d) du courant 3 étant introduite majoritairement sous forme liquide et une partie (3c) est introduite majoritairement sous forme gazeuse en cuve de colonne 5 pour vaporiser l’hélium qui serait autrement entraîné dans le méthane liquide.To increase the helium yield, it is also possible to make a multiple introduction into the high-pressure column 5: a part (3d) of the stream 3 being introduced mainly in liquid form and a part (3c) is introduced mainly in gaseous form in the tank column 5 to vaporize the helium that would otherwise be entrained in the liquid methane.

Une partie 9 du courant liquide 11 sortant du condenseur 8 situé en partie basse de la colonne 7 à basse pression est utilisé comme reflux dans la partie haute 10 de la colonne 5 à haute pression. Dans un schéma NRU double colonne classique, le reste du liquide 11 est refroidi puis détendu pour être directement utilisé comme reflux de la colonne basse pression. L’objet de la présente invention consiste à utiliser une partie 12 dudit courant liquide 11 pour en extraire l’hélium avant de l’utiliser comme reflux de la colonne à basse pression.A portion 9 of the liquid stream 11 leaving the condenser 8 located in the lower part of the column 7 at low pressure is used as reflux in the upper part of the column 5 at high pressure. In a conventional double column NRU scheme, the remainder of the liquid 11 is cooled and then expanded to be used directly as the reflux of the low pressure column. The object of the present invention is to use a portion 12 of said liquid stream 11 to extract the helium before using it as reflux of the low pressure column.

Ce courant liquide 11 contient typiquement moins de 2% en volume de méthane, plus de 95% en volume d’azote et de 0,5% en volume à 3% en volume d’hélium.This liquid stream 11 typically contains less than 2% by volume of methane, more than 95% by volume of nitrogen and 0.5% by volume to 3% by volume of helium.

La température du courant liquide 12 est par exemple comprise entre - 150°C et - 165°C.The temperature of the liquid stream 12 is for example between - 150 ° C and - 165 ° C.

Ce courant liquide 12 est détendu à une pression intermédiaire à l’aide, par exemple, d’une vanne 13. Cette pression intermédiaire est typiquement de l’ordre de 8 bara à 15 bara. Par exemple 12 bara.This liquid stream 12 is expanded to an intermediate pressure using, for example, a valve 13. This intermediate pressure is typically of the order of 8 bara to 15 bara. For example 12 bara.

Par cette détente, le courant liquide a été vaporisé, c'est-à-dire que du gaz a été formé instantanément (il s’agit de gaz de « flash »). Le courant 14 ainsi produit contient une majorité de liquide et une minorité de gaz. Ce gaz est enrichi en hélium. Ce gaz enrichi en hélium comporte au moins 80% en volume de l’hélium contenu dans le courant liquide 12. Le courant diphasique 14 est introduit dans un premier pot 15 séparateur de phases. Le pot 15 produit un courant liquide 16 et un courant gazeux 17. Le courant gazeux 17 contient plus de 80% en volume de l’hélium contenu dans le courant source 1. Néanmoins, ce courant gazeux 17 contient de l’azote. Le courant liquide 16 contenant une majorité d’azote, mais aussi de l’hélium et du méthane est introduit dans la partie haute 18 de la colonne 7 à basse pression après avoir été détendu, par exemple à l’aide d’une vanne 19 afin de servir de reflux de la colonne 7 à basse pression. Le courant 20 en sortie de la tête 21 de la colonne 7 est introduit dans un échangeur de chaleur 22 ou 2 afin de produire un courant 23 riche en azote voire pur en azote ne contenant pas d’hélium et contenant moins de 1,5% en volume de méthane.By this expansion, the liquid stream was vaporized, that is to say that gas was formed instantly (it is "flash" gas). The stream 14 thus produced contains a majority of liquid and a minority of gases. This gas is enriched in helium. This helium-enriched gas comprises at least 80% by volume of the helium contained in the liquid stream 12. The two-phase current 14 is introduced into a first phase separator pot. The pot 15 produces a liquid stream 16 and a gas stream 17. The gas stream 17 contains more than 80% by volume of the helium contained in the source stream 1. Nevertheless, this gas stream 17 contains nitrogen. The liquid stream 16 containing a majority of nitrogen, but also helium and methane is introduced into the upper part 18 of the column 7 at low pressure after being expanded, for example by means of a valve 19 to serve as reflux of the column 7 at low pressure. The stream 20 at the outlet of the head 21 of the column 7 is introduced into a heat exchanger 22 or 2 in order to produce a stream 23 rich in nitrogen or even pure nitrogen containing no helium and containing less than 1.5% in volume of methane.

Le courant gazeux 17 enrichi en hélium contient typiquement plus de 70% en volume d’azote, plus de 5% en volume d’hélium et moins de 2% en volume de méthane, par exemple 90% en volume d’azote, de 8% à 10% en volume d’hélium et moins de 0,5% en volume de méthane. Ce courant gazeux 17 est introduit dans un échangeur 24 de chaleur afin d’être condensé au moins partiellement. Le mélange 25 ainsi condensé est introduit dans un deuxième pot séparateur de phases 26. En tête du séparateur 26, un courant gazeux 27 est extrait. Ce courant gazeux 27 comporte plus de 50% en volume d’hélium, de préférence plus de 60% en volume d’hélium et plus particulièrement plus de 70% en volume d’hélium. Le courant gazeux 27 peut, optionnellement repasser dans un échangeur de chaleur 24.The gas stream 17 enriched with helium typically contains more than 70% by volume of nitrogen, more than 5% by volume of helium and less than 2% by volume of methane, for example 90% by volume of nitrogen, 8 % to 10% by volume of helium and less than 0.5% by volume of methane. This gaseous stream 17 is introduced into a heat exchanger 24 in order to be condensed at least partially. The mixture thus condensed is introduced into a second phase separator pot 26. At the top of the separator 26, a gas stream 27 is extracted. This gaseous stream 27 comprises more than 50% by volume of helium, preferably more than 60% by volume of helium and more particularly more than 70% by volume of helium. The gas stream 27 may, optionally, be ironed in a heat exchanger 24.

La phase liquide 28 issue du séparateur 26 sert à refroidir l’échangeur 24 après avoir été détendu à une pression inférieure à 3 bara, par exemple à l’aide d’un détendeur tel qu’une vanne 29. Ce courant liquide 28 est pur en azote, par exemple il contient plus de 99% en volume d’azote.The liquid phase 28 from the separator 26 serves to cool the exchanger 24 after being expanded to a pressure of less than 3 bara, for example by means of a pressure reducer such as a valve 29. This liquid stream 28 is pure in nitrogen, for example it contains more than 99% by volume of nitrogen.

Grâce à l’installation 31 comprenant l’unité 6 de rejet d’azote et l’unité 30 d’extraction d’hélium telle qu’illustrée en figure 1 et selon un procédé objet de l’invention tel que décrit précédemment, avec un courant source 1 contenant environ 50% en volume d’azote, 50% en volume de méthane et 0,3% en volume d’hélium, on obtient une pureté d’hélium dans le courant 27 d’environ 74% en volume et un rendement en hélium d’environ 91%.With the installation 31 comprising the nitrogen rejection unit 6 and the helium extraction unit 30 as illustrated in FIG. 1 and according to a method which is the subject of the invention as described above, with a 1 source stream containing about 50% by volume of nitrogen, 50% by volume of methane and 0.3% by volume of helium, we obtain a purity of helium in the stream 27 of about 74% by volume and a helium yield of about 91%.

Claims (12)

Revendicationsclaims 1. Procédé de production d’un courant gazeux (27) d’hélium à partir d’un courant gazeux source (1) comprenant au moins de l’hélium, du méthane, et de l’azote, comprenant au moins les étapes suivantes : Etape a) : introduction dudit courant gazeux source (1) dans une unité (6) de rejet d’azote à double colonne, ladite double colonne comprenant une colonne (5) de distillation à haute pression, une colonne (7) de distillation à basse pression et un condenseur (8) mettant en relation la colonne (5) à haute pression avec la colonne (7) à basse pression ; Etape b) : extraction en sortie dudit condenseur (8) d’au moins une partie (12) d’un mélange (11) produit en tête de colonne (5) à haute pression ; Etape c) : détente dudit mélange issu de l’étape b) à une pression intermédiaire comprise entre 8 bars et 20 bars absolus ; Etape d) : séparation du mélange (14) issu de l’étape c) dans un premier pot séparateur de phases (15) en une phase liquide (16) et une phase (17) gazeuse enrichie en hélium ; Etape e) : condensation au moins partielle de ladite phase gazeuse (17) enrichie en hélium dans un échangeur de chaleur (24); Etape f) : séparation du courant (25) issu de l’étape e) dans un deuxième pot séparateur de phases (26) en une phase liquide (28) et une phase gazeuse (27) contenant plus de 50% en volume d’hélium.A method for producing a gaseous stream (27) of helium from a source gas stream (1) comprising at least helium, methane, and nitrogen, comprising at least the following steps Step a): introducing said source gas stream (1) into a double column nitrogen discharge unit (6), said double column comprising a high pressure distillation column (5), a distillation column (7) at low pressure and a condenser (8) connecting the column (5) at high pressure with the column (7) at low pressure; Step b): extraction at the outlet of said condenser (8) of at least a portion (12) of a mixture (11) produced at the top of column (5) at high pressure; Step c): expanding said mixture from step b) to an intermediate pressure of between 8 bar and 20 bar absolute; Step d): separating the mixture (14) from step c) in a first phase separator pot (15) into a liquid phase (16) and a gas phase (17) enriched in helium; Step e): at least partial condensation of said gas phase (17) enriched in helium in a heat exchanger (24); Step f): separation of the stream (25) from step e) into a second phase separator pot (26) into a liquid phase (28) and a gas phase (27) containing more than 50% by volume of helium. 2. Procédé selon la revendication précédente caractérisé en ce qu’il comprend une étape g) : utilisation, comme réfrigérant, de la phase liquide (28) après détente issue de l’étape f) dans ledit échangeur (24) de chaleur mis en oeuvre à l’étape e).2. Method according to the preceding claim characterized in that it comprises a step g): use, as a refrigerant, of the liquid phase (28) after expansion from step f) in said heat exchanger (24) set work in step e). 3. Procédé selon la revendication 2 caractérisé en ce qu’au cours de l’étape g), ladite phase liquide (28) est vaporisée à une pression comprise entre 0,1 bar et 3 bar absolus.3. Method according to claim 2 characterized in that during step g), said liquid phase (28) is vaporized at a pressure between 0.1 bar and 3 bar absolute. 4. Procédé selon l’une des revendications précédentes caractérisé en ce qu’au cours de l’étape a) le courant gazeux est introduit dans la colonne (5) à haute pression à au moins deux niveaux d’alimentation, la fraction vapeur de la première alimentation (3d) étant plus faible que la fraction vapeur de la seconde (3c) et la première alimentation (3d) étant introduite à un niveau plus élevée de ladite colonne à haute pression (5) que la seconde (3c).4. Method according to one of the preceding claims characterized in that during step a) the gas stream is introduced into the column (5) at high pressure at least two levels of feed, the steam fraction of the first supply (3d) being lower than the vapor fraction of the second (3c) and the first supply (3d) being introduced at a higher level of said high pressure column (5) than the second (3c). 5. Procédé selon l’une des revendications précédentes comprenant une étape h) : extraction de la phase gazeuse (27) issue de l’étape f) comme produit riche en hélium, contenant au moins 75% en volume d’hélium.5. Method according to one of the preceding claims comprising a step h): extraction of the gas phase (27) from step f) as a product rich in helium, containing at least 75% by volume of helium. 6. Procédé selon la revendication précédente caractérisé en ce que la température en sortie de condenseur (8) à l’étape b) est comprise entre - 150°C et - 165°C.6. Method according to the preceding claim characterized in that the condenser outlet temperature (8) in step b) is between - 150 ° C and - 165 ° C. 7. Procédé selon la revendication précédente caractérisé en ce que la pression dans la colonne (5) à haute pression est comprise entre 22 bars absolus et 50 bars absolus et la pression dans la colonne à basse pression est comprise entre 1 bar absolu et 5 bars absolus.7. Method according to the preceding claim characterized in that the pressure in the column (5) at high pressure is between 22 bar absolute and 50 bar absolute and the pressure in the low pressure column is between 1 bar absolute and 5 bar absolute. 8. Procédé selon l’une quelconque des revendications précédentes caractérisé en ce que la température de mise en oeuvre de l’étape c) est comprise entre - 160°C et - 180°C.8. Method according to any one of the preceding claims characterized in that the operating temperature of step c) is between - 160 ° C and - 180 ° C. 9. Procédé selon l’une quelconque des revendications précédentes caractérisé en que la température de mise en oeuvre de l’étape e) est comprise entre - 180°C et-210°C.9. Method according to any one of the preceding claims characterized in that the operating temperature of step e) is between - 180 ° C and-210 ° C. 10. Procédé selon l’une quelconque des revendications précédentes caractérisé en ce que la phase liquide (16) issue de l’étape d) est introduite dans la colonne (7) à basse pression de ladite unité (6) de rejet.10. Method according to any one of the preceding claims characterized in that the liquid phase (16) from step d) is introduced into the column (7) at low pressure of said unit (6) of rejection. 11. Procédé selon l’une quelconque des revendications précédentes comprenant une étape supplémentaire de production d’un courant (23) enrichi en azote comprenant moins de 2% en volume de méthane à partir d’un courant gazeux (20) issu de la tête (21) de la colonne (7) à basse pression.The method of any of the preceding claims comprising a further step of producing a nitrogen enriched stream (23) comprising less than 2% by volume of methane from a gas stream (20) from the head. (21) of the column (7) at low pressure. 12. Procédé selon l’une quelconque des revendications précédentes caractérisé en ce que courant gazeux source (1) comprend de 20% en volume à 80 % en volume de méthane, de 20% en volume à 80% en volume d’azote et de 0% en volume à 2% en volume d’hélium.12. Process according to any one of the preceding claims, characterized in that the source gas stream (1) comprises from 20% by volume to 80% by volume of methane, from 20% by volume to 80% by volume of nitrogen and 0% by volume to 2% by volume of helium.
FR1556739A 2015-07-16 2015-07-16 HELIUM PRODUCTION FROM NATURAL GAS CURRENT Expired - Fee Related FR3038973B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
FR1556739A FR3038973B1 (en) 2015-07-16 2015-07-16 HELIUM PRODUCTION FROM NATURAL GAS CURRENT
EP16750950.4A EP3322949B1 (en) 2015-07-16 2016-07-12 Production of helium from a stream of natural gas
PL16750950.4T PL3322949T3 (en) 2015-07-16 2016-07-12 Production of helium from a stream of natural gas
RU2018103764A RU2717666C2 (en) 2015-07-16 2016-07-12 Obtaining helium from stream of natural gas
PCT/FR2016/051786 WO2017009573A1 (en) 2015-07-16 2016-07-12 Production of helium from a stream of natural gas
US15/744,987 US20180209725A1 (en) 2015-07-16 2016-07-12 Production of helium from a stream of natural gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1556739A FR3038973B1 (en) 2015-07-16 2015-07-16 HELIUM PRODUCTION FROM NATURAL GAS CURRENT
FR1556739 2015-07-16

Publications (2)

Publication Number Publication Date
FR3038973A1 FR3038973A1 (en) 2017-01-20
FR3038973B1 true FR3038973B1 (en) 2019-09-27

Family

ID=54356501

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1556739A Expired - Fee Related FR3038973B1 (en) 2015-07-16 2015-07-16 HELIUM PRODUCTION FROM NATURAL GAS CURRENT

Country Status (6)

Country Link
US (1) US20180209725A1 (en)
EP (1) EP3322949B1 (en)
FR (1) FR3038973B1 (en)
PL (1) PL3322949T3 (en)
RU (1) RU2717666C2 (en)
WO (1) WO2017009573A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2736682C1 (en) * 2020-06-05 2020-11-19 Андрей Владиславович Курочкин Natural gas preparation unit with helium extraction
CN111981767B (en) * 2020-08-20 2024-03-08 中国石油工程建设有限公司 Natural gas single-tower cryogenic helium extraction device and method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU127270A1 (en) * 1959-05-18 1959-11-30 Л.С. Бабе Method of extracting gels from natural gas
US4701201A (en) * 1986-09-24 1987-10-20 Union Carbide Corporation Process to produce cold helium gas for liquefaction
US4701200A (en) * 1986-09-24 1987-10-20 Union Carbide Corporation Process to produce helium gas
US4948405A (en) * 1989-12-26 1990-08-14 Phillips Petroleum Company Nitrogen rejection unit
GB2298034B (en) * 1995-02-10 1998-06-24 Air Prod & Chem Dual column process to remove nitrogen from natural gas
US5771714A (en) * 1997-08-01 1998-06-30 Praxair Technology, Inc. Cryogenic rectification system for producing higher purity helium
FR2936864B1 (en) * 2008-10-07 2010-11-26 Technip France PROCESS FOR THE PRODUCTION OF LIQUID AND GASEOUS NITROGEN CURRENTS, A HELIUM RICH GASEOUS CURRENT AND A DEAZOTE HYDROCARBON CURRENT, AND ASSOCIATED PLANT.
US20110174017A1 (en) * 2008-10-07 2011-07-21 Donald Victory Helium Recovery From Natural Gas Integrated With NGL Recovery
RU2502545C1 (en) * 2012-08-08 2013-12-27 Открытое акционерное общество "Газпром" Method of natural gas processing and device to this end

Also Published As

Publication number Publication date
EP3322949A1 (en) 2018-05-23
PL3322949T3 (en) 2022-07-25
RU2717666C2 (en) 2020-03-24
RU2018103764A3 (en) 2019-10-29
WO2017009573A1 (en) 2017-01-19
RU2018103764A (en) 2019-07-31
US20180209725A1 (en) 2018-07-26
EP3322949B1 (en) 2022-02-23
FR3038973A1 (en) 2017-01-20

Similar Documents

Publication Publication Date Title
EP2122282B1 (en) Method for separating a mixture of carbon monoxide, methane, hydrogen and nitrogen by cryogenic distillation
JP2005043036A (en) Method and device for removing nitrogen from condensed natural gas
EP0677483B1 (en) Process and apparatus for the separation of a gaseous mixture
FR2780391A1 (en) PROCESS FOR PRODUCING CARBON MONOXIDE
FR3038973B1 (en) HELIUM PRODUCTION FROM NATURAL GAS CURRENT
FR3034509B1 (en) PROCESS FOR TREATING NATURAL GAS TO MINIMIZE LOSS OF ETHANE
WO2013135993A2 (en) Method and device for separating a mixture containing carbon dioxide by means of distillation
FR2814229A1 (en) METHOD AND PLANT FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
JP2011519010A (en) Apparatus and method for separating air by cryogenic distillation
WO2017046462A1 (en) Method and apparatus for producing a mixture of carbon monoxide and hydrogen
EP3252408B1 (en) Method for purifying natural gas and for liquefying carbon dioxide
FR2837564A1 (en) Distillation of air to produce oxygen, nitrogen and pure argon, extracts oxygen of specified purity and subjects argon to catalytic de-oxygenation
FR2971044A1 (en) Method for separating gas containing carbon dioxide to produce carbon dioxide enriched liquid flow in agro-food industry, involves sending part of liquid flow to exchanger, where part of flow is vaporized before being sent to lower part
WO2020212669A1 (en) Method for extracting nitrogen from a natural gas stream or a bio-methane gas stream containing acid gases
FR3052240A1 (en) METHOD FOR LIQUEFACTING CARBON DIOXIDE FROM NATURAL GAS CURRENT
RU2689252C2 (en) Method of producing helium
FR2847568A1 (en) Process and installation for producing a krypton/xenon mixture from air by cryogenic distillation, producing a synthesis gas by partially oxidizing a hydrocarbon and separating the synthesis gas
US12111099B2 (en) Method and unit for processing a gas mixture containing nitrogen and methane
FR3047422A3 (en) PROCESS AND APPARATUS FOR THE PRODUCTION OF HELIUM WITH CO-PRODUCTION OF LIQUID NITROGEN
FR3110223A1 (en) Process for extracting nitrogen from a stream of natural gas or bio-methane
FR3141996A1 (en) Carbon dioxide distillation process and apparatus
FR3090833A1 (en) Apparatus and method for separating a gas rich in CO2 by distillation and / or partial condensation at subambient temperature
FR3113606A3 (en) Nitrogen and methane separation process by cryogenic distillation
FR3097951A1 (en) METHOD AND APPARATUS FOR CRYOGENIC SEPARATION OF SYNTHESIS GAS FOR THE PRODUCTION OF CH4
FR2910603A1 (en) Carbon monoxide, hydrogen, methane and nitrogen mixture separating method, involves separating mixture at cold temperature by overhead condensation of carbon monoxide/methane separating column and boiling of discharge and separating columns

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20170120

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

ST Notification of lapse

Effective date: 20240305