EP2341093A1 - Nouveaux composés d'alcool diamino, leur fabrication et leur utilisation dans des résines époxy - Google Patents
Nouveaux composés d'alcool diamino, leur fabrication et leur utilisation dans des résines époxy Download PDFInfo
- Publication number
- EP2341093A1 EP2341093A1 EP10194226A EP10194226A EP2341093A1 EP 2341093 A1 EP2341093 A1 EP 2341093A1 EP 10194226 A EP10194226 A EP 10194226A EP 10194226 A EP10194226 A EP 10194226A EP 2341093 A1 EP2341093 A1 EP 2341093A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alkyl
- independently hydrogen
- resin system
- epoxy
- epoxy resins
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920000647 polyepoxide Polymers 0.000 title claims abstract description 68
- 239000003822 epoxy resin Substances 0.000 title claims abstract description 66
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 title claims description 31
- 238000004519 manufacturing process Methods 0.000 title abstract description 9
- -1 diamino alcohols Chemical class 0.000 claims abstract description 40
- 239000004848 polyfunctional curative Substances 0.000 claims abstract description 26
- 150000001875 compounds Chemical class 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 18
- 230000009477 glass transition Effects 0.000 claims abstract description 14
- 125000000217 alkyl group Chemical group 0.000 claims description 49
- 239000001257 hydrogen Substances 0.000 claims description 46
- 229910052739 hydrogen Inorganic materials 0.000 claims description 46
- 229920005989 resin Polymers 0.000 claims description 42
- 239000011347 resin Substances 0.000 claims description 42
- 150000001299 aldehydes Chemical class 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 23
- 125000003118 aryl group Chemical group 0.000 claims description 22
- 239000003054 catalyst Substances 0.000 claims description 22
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 22
- MLUCVPSAIODCQM-NSCUHMNNSA-N crotonaldehyde Chemical compound C\C=C\C=O MLUCVPSAIODCQM-NSCUHMNNSA-N 0.000 claims description 18
- MLUCVPSAIODCQM-UHFFFAOYSA-N crotonaldehyde Natural products CC=CC=O MLUCVPSAIODCQM-UHFFFAOYSA-N 0.000 claims description 18
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 17
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 17
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 claims description 16
- 239000004593 Epoxy Chemical group 0.000 claims description 15
- KJPRLNWUNMBNBZ-QPJJXVBHSA-N (E)-cinnamaldehyde Chemical compound O=C\C=C\C1=CC=CC=C1 KJPRLNWUNMBNBZ-QPJJXVBHSA-N 0.000 claims description 12
- 150000002118 epoxides Chemical class 0.000 claims description 12
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 12
- FGLBSLMDCBOPQK-UHFFFAOYSA-N 2-nitropropane Chemical compound CC(C)[N+]([O-])=O FGLBSLMDCBOPQK-UHFFFAOYSA-N 0.000 claims description 11
- 229920003986 novolac Polymers 0.000 claims description 10
- 229940117916 cinnamic aldehyde Drugs 0.000 claims description 9
- KJPRLNWUNMBNBZ-UHFFFAOYSA-N cinnamic aldehyde Natural products O=CC=CC1=CC=CC=C1 KJPRLNWUNMBNBZ-UHFFFAOYSA-N 0.000 claims description 9
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 9
- 239000000654 additive Substances 0.000 claims description 7
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 7
- 239000012745 toughening agent Substances 0.000 claims description 6
- 125000002015 acyclic group Chemical group 0.000 claims description 5
- 239000000945 filler Substances 0.000 claims description 3
- 239000003063 flame retardant Substances 0.000 claims description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims description 2
- 125000003827 glycol group Chemical group 0.000 claims 2
- 230000000996 additive effect Effects 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 abstract description 15
- 150000001298 alcohols Chemical class 0.000 abstract description 12
- 230000008569 process Effects 0.000 abstract description 6
- 150000002431 hydrogen Chemical group 0.000 description 31
- 125000004971 nitroalkyl group Chemical group 0.000 description 26
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 20
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- 239000000463 material Substances 0.000 description 17
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 16
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 16
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical class O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 14
- 150000001412 amines Chemical class 0.000 description 14
- 150000001414 amino alcohols Chemical class 0.000 description 13
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 11
- 238000000113 differential scanning calorimetry Methods 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 150000005846 sugar alcohols Polymers 0.000 description 10
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 9
- 238000006842 Henry reaction Methods 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- ZXVONLUNISGICL-UHFFFAOYSA-N 4,6-dinitro-o-cresol Chemical group CC1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1O ZXVONLUNISGICL-UHFFFAOYSA-N 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 150000004985 diamines Chemical class 0.000 description 6
- 238000005984 hydrogenation reaction Methods 0.000 description 6
- 229910052763 palladium Inorganic materials 0.000 description 6
- 125000002924 primary amino group Chemical class [H]N([H])* 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 238000005481 NMR spectroscopy Methods 0.000 description 5
- 229910000564 Raney nickel Inorganic materials 0.000 description 5
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 4
- 238000005160 1H NMR spectroscopy Methods 0.000 description 4
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 4
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical group C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000007868 Raney catalyst Substances 0.000 description 4
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical compound NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 4
- 125000003700 epoxy group Chemical group 0.000 description 4
- 150000002334 glycols Chemical group 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 4
- BSYJHYLAMMJNRC-UHFFFAOYSA-N 2,4,4-trimethylpentan-2-ol Chemical compound CC(C)(C)CC(C)(C)O BSYJHYLAMMJNRC-UHFFFAOYSA-N 0.000 description 3
- 238000006845 Michael addition reaction Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 238000000262 chemical ionisation mass spectrometry Methods 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 239000011353 cycloaliphatic epoxy resin Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 238000004817 gas chromatography Methods 0.000 description 3
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 3
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 3
- MCSAJNNLRCFZED-UHFFFAOYSA-N nitroethane Chemical compound CC[N+]([O-])=O MCSAJNNLRCFZED-UHFFFAOYSA-N 0.000 description 3
- 229920005862 polyol Polymers 0.000 description 3
- 150000003077 polyols Chemical class 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 150000003573 thiols Chemical class 0.000 description 3
- 238000010626 work up procedure Methods 0.000 description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- SPQRKHZJYHUBGE-UHFFFAOYSA-N 2,5,6-trimethyl-2,6-dinitroheptan-3-ol Chemical compound [O-][N+](=O)C(C)(C)C(C)CC(O)C(C)(C)[N+]([O-])=O SPQRKHZJYHUBGE-UHFFFAOYSA-N 0.000 description 2
- INZMYAVCTFFFHZ-UHFFFAOYSA-N 2,6-diamino-2,5,6-trimethylheptan-3-ol Chemical compound CC(N)(C)C(C)CC(O)C(C)(C)N INZMYAVCTFFFHZ-UHFFFAOYSA-N 0.000 description 2
- XRIBIDPMFSLGFS-UHFFFAOYSA-N 2-(dimethylamino)-2-methylpropan-1-ol Chemical compound CN(C)C(C)(C)CO XRIBIDPMFSLGFS-UHFFFAOYSA-N 0.000 description 2
- IOAOAKDONABGPZ-UHFFFAOYSA-N 2-amino-2-ethylpropane-1,3-diol Chemical compound CCC(N)(CO)CO IOAOAKDONABGPZ-UHFFFAOYSA-N 0.000 description 2
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 2
- VEORPZCZECFIRK-UHFFFAOYSA-N 3,3',5,5'-tetrabromobisphenol A Chemical compound C=1C(Br)=C(O)C(Br)=CC=1C(C)(C)C1=CC(Br)=C(O)C(Br)=C1 VEORPZCZECFIRK-UHFFFAOYSA-N 0.000 description 2
- HSJKGGMUJITCBW-UHFFFAOYSA-N 3-hydroxybutanal Chemical compound CC(O)CC=O HSJKGGMUJITCBW-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 125000003158 alcohol group Chemical group 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- PAFZNILMFXTMIY-UHFFFAOYSA-N cyclohexylamine Chemical compound NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 description 2
- 238000006356 dehydrogenation reaction Methods 0.000 description 2
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 2
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 2
- 229920006334 epoxy coating Polymers 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000004811 liquid chromatography Methods 0.000 description 2
- 239000004850 liquid epoxy resins (LERs) Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- INBDPOJZYZJUDA-UHFFFAOYSA-N methanedithiol Chemical compound SCS INBDPOJZYZJUDA-UHFFFAOYSA-N 0.000 description 2
- VMOWKUTXPNPTEN-UHFFFAOYSA-N n,n-dimethylpropan-2-amine Chemical compound CC(C)N(C)C VMOWKUTXPNPTEN-UHFFFAOYSA-N 0.000 description 2
- 229920000962 poly(amidoamine) Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229920006295 polythiol Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 150000003333 secondary alcohols Chemical class 0.000 description 2
- 150000003335 secondary amines Chemical group 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 238000005292 vacuum distillation Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- KYVBNYUBXIEUFW-UHFFFAOYSA-N 1,1,3,3-tetramethylguanidine Chemical compound CN(C)C(=N)N(C)C KYVBNYUBXIEUFW-UHFFFAOYSA-N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- FSXJJHHCBCMUEG-UHFFFAOYSA-N 1,4,6,11-tetraza-5-phosphabicyclo[3.3.3]undecane Chemical compound C1CNP2NCCN1CCN2 FSXJJHHCBCMUEG-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- KKVLCJIOPNYOQN-UHFFFAOYSA-N 2,4-bis[(4-aminophenyl)methyl]aniline Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C(CC=2C=CC(N)=CC=2)=C1 KKVLCJIOPNYOQN-UHFFFAOYSA-N 0.000 description 1
- IPPNVEARNCFXPO-UHFFFAOYSA-N 2,6-diamino-2,6-dimethyl-5-phenylheptan-3-ol Chemical compound CC(C)(N)C(O)CC(C(C)(C)N)C1=CC=CC=C1 IPPNVEARNCFXPO-UHFFFAOYSA-N 0.000 description 1
- JFGMKRDGORRCHV-UHFFFAOYSA-N 2,6-dimethyl-2,6-dinitro-5-phenylheptan-3-ol Chemical compound [O-][N+](=O)C(C)(C)C(O)CC(C(C)(C)[N+]([O-])=O)C1=CC=CC=C1 JFGMKRDGORRCHV-UHFFFAOYSA-N 0.000 description 1
- CUPSDPZXLFCJSY-UHFFFAOYSA-N 2,6-dinitro-5-phenylheptan-3-ol Chemical compound [O-][N+](=O)C(C)C(O)CC(C(C)[N+]([O-])=O)C1=CC=CC=C1 CUPSDPZXLFCJSY-UHFFFAOYSA-N 0.000 description 1
- WAEZUHBGXPZTCO-UHFFFAOYSA-N 2-(2-hydroxyphenyl)-3,4-bis(sulfanyl)phenol Chemical compound OC1=CC=CC=C1C1=C(O)C=CC(S)=C1S WAEZUHBGXPZTCO-UHFFFAOYSA-N 0.000 description 1
- ISGHUYCZFWLBRU-UHFFFAOYSA-N 2-[2-(2-sulfanylacetyl)oxyethoxy]ethyl 2-sulfanylacetate Chemical compound SCC(=O)OCCOCCOC(=O)CS ISGHUYCZFWLBRU-UHFFFAOYSA-N 0.000 description 1
- TZLVUWBGUNVFES-UHFFFAOYSA-N 2-ethyl-5-methylpyrazol-3-amine Chemical compound CCN1N=C(C)C=C1N TZLVUWBGUNVFES-UHFFFAOYSA-N 0.000 description 1
- WFUGQJXVXHBTEM-UHFFFAOYSA-N 2-hydroperoxy-2-(2-hydroperoxybutan-2-ylperoxy)butane Chemical compound CCC(C)(OO)OOC(C)(CC)OO WFUGQJXVXHBTEM-UHFFFAOYSA-N 0.000 description 1
- JZUHIOJYCPIVLQ-UHFFFAOYSA-N 2-methylpentane-1,5-diamine Chemical compound NCC(C)CCCN JZUHIOJYCPIVLQ-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- ZJWOPMGVUJTXCZ-UHFFFAOYSA-N 3,7-diamino-6-methylnonan-4-ol Chemical compound CCC(N)C(C)CC(O)C(N)CC ZJWOPMGVUJTXCZ-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- DZIHTWJGPDVSGE-UHFFFAOYSA-N 4-[(4-aminocyclohexyl)methyl]cyclohexan-1-amine Chemical compound C1CC(N)CCC1CC1CCC(N)CC1 DZIHTWJGPDVSGE-UHFFFAOYSA-N 0.000 description 1
- CXXSQMDHHYTRKY-UHFFFAOYSA-N 4-amino-2,3,5-tris(oxiran-2-ylmethyl)phenol Chemical compound C1=C(O)C(CC2OC2)=C(CC2OC2)C(N)=C1CC1CO1 CXXSQMDHHYTRKY-UHFFFAOYSA-N 0.000 description 1
- UWFMCQSNYFEYAW-UHFFFAOYSA-N 4-oxo-2,3-bis(sulfanyl)-4-(2-sulfanylethoxy)butanoic acid Chemical compound OC(=O)C(S)C(S)C(=O)OCCS UWFMCQSNYFEYAW-UHFFFAOYSA-N 0.000 description 1
- OECTYKWYRCHAKR-UHFFFAOYSA-N 4-vinylcyclohexene dioxide Chemical compound C1OC1C1CC2OC2CC1 OECTYKWYRCHAKR-UHFFFAOYSA-N 0.000 description 1
- GLBHAWAMATUOBB-UHFFFAOYSA-N 6,6-dimethylheptane-1,1-diamine Chemical compound CC(C)(C)CCCCC(N)N GLBHAWAMATUOBB-UHFFFAOYSA-N 0.000 description 1
- XQRYHVHWSUEGDW-UHFFFAOYSA-N 6-methyl-3,7-dinitrononan-4-ol Chemical compound CCC([N+]([O-])=O)C(C)CC(O)C(CC)[N+]([O-])=O XQRYHVHWSUEGDW-UHFFFAOYSA-N 0.000 description 1
- YXALYBMHAYZKAP-UHFFFAOYSA-N 7-oxabicyclo[4.1.0]heptan-4-ylmethyl 7-oxabicyclo[4.1.0]heptane-4-carboxylate Chemical compound C1CC2OC2CC1C(=O)OCC1CC2OC2CC1 YXALYBMHAYZKAP-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 1
- GUIXUSYGRKMZCF-UHFFFAOYSA-N C1OC1COC(C=1)=CC=CC=1OCC1CO1.C1OC1COC(C=1)=CC=CC=1OCC1CO1 Chemical compound C1OC1COC(C=1)=CC=CC=1OCC1CO1.C1OC1COC(C=1)=CC=CC=1OCC1CO1 GUIXUSYGRKMZCF-UHFFFAOYSA-N 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- XZAHJRZBUWYCBM-UHFFFAOYSA-N [1-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1(CN)CCCCC1 XZAHJRZBUWYCBM-UHFFFAOYSA-N 0.000 description 1
- RYIHVCKWWPHXMZ-UHFFFAOYSA-N [2-(hydroxymethyl)-3-(2-sulfanylacetyl)oxy-2-[(2-sulfanylacetyl)oxymethyl]propyl] 2-sulfanylacetate Chemical compound SCC(=O)OCC(CO)(COC(=O)CS)COC(=O)CS RYIHVCKWWPHXMZ-UHFFFAOYSA-N 0.000 description 1
- FXOSBJQSJVLPBQ-UHFFFAOYSA-N [Al+3].[O-]P.[O-]P.[O-]P Chemical compound [Al+3].[O-]P.[O-]P.[O-]P FXOSBJQSJVLPBQ-UHFFFAOYSA-N 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- RREGISFBPQOLTM-UHFFFAOYSA-N alumane;trihydrate Chemical compound O.O.O.[AlH3] RREGISFBPQOLTM-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical group 0.000 description 1
- CBTVGIZVANVGBH-UHFFFAOYSA-N aminomethyl propanol Chemical compound CC(C)(N)CO CBTVGIZVANVGBH-UHFFFAOYSA-N 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 150000004984 aromatic diamines Chemical class 0.000 description 1
- VUEDNLCYHKSELL-UHFFFAOYSA-N arsonium Chemical compound [AsH4+] VUEDNLCYHKSELL-UHFFFAOYSA-N 0.000 description 1
- 238000011914 asymmetric synthesis Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- IDSLNGDJQFVDPQ-UHFFFAOYSA-N bis(7-oxabicyclo[4.1.0]heptan-4-yl) hexanedioate Chemical compound C1CC2OC2CC1OC(=O)CCCCC(=O)OC1CC2OC2CC1 IDSLNGDJQFVDPQ-UHFFFAOYSA-N 0.000 description 1
- DJUWPHRCMMMSCV-UHFFFAOYSA-N bis(7-oxabicyclo[4.1.0]heptan-4-ylmethyl) hexanedioate Chemical compound C1CC2OC2CC1COC(=O)CCCCC(=O)OCC1CC2OC2CC1 DJUWPHRCMMMSCV-UHFFFAOYSA-N 0.000 description 1
- LHQZPSHKKVHDTB-UHFFFAOYSA-N bis(7-oxabicyclo[4.1.0]heptan-4-ylmethyl) oxalate Chemical compound C1CC2OC2CC1COC(=O)C(=O)OCC1CC2OC2CC1 LHQZPSHKKVHDTB-UHFFFAOYSA-N 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- IRLQAJPIHBZROB-UHFFFAOYSA-N buta-2,3-dienenitrile Chemical compound C=C=CC#N IRLQAJPIHBZROB-UHFFFAOYSA-N 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- VSARMWHOISBCGR-UHFFFAOYSA-N cyclohexane-1,1-dithiol Chemical compound SC1(S)CCCCC1 VSARMWHOISBCGR-UHFFFAOYSA-N 0.000 description 1
- SSJXIUAHEKJCMH-UHFFFAOYSA-N cyclohexane-1,2-diamine Chemical compound NC1CCCCC1N SSJXIUAHEKJCMH-UHFFFAOYSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- GGSUCNLOZRCGPQ-UHFFFAOYSA-N diethylaniline Chemical compound CCN(CC)C1=CC=CC=C1 GGSUCNLOZRCGPQ-UHFFFAOYSA-N 0.000 description 1
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 229920006241 epoxy vinyl ester resin Polymers 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- YRSVDSQRGBYVIY-GJZGRUSLSA-N gemopatrilat Chemical compound O=C1N(CC(O)=O)C(C)(C)CCC[C@@H]1NC(=O)[C@@H](S)CC1=CC=CC=C1 YRSVDSQRGBYVIY-GJZGRUSLSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 150000002461 imidazolidines Chemical class 0.000 description 1
- 150000002462 imidazolines Chemical class 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229940018564 m-phenylenediamine Drugs 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- QOHMWDJIBGVPIF-UHFFFAOYSA-N n',n'-diethylpropane-1,3-diamine Chemical compound CCN(CC)CCCN QOHMWDJIBGVPIF-UHFFFAOYSA-N 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- NJNQUTDUIPVROZ-UHFFFAOYSA-N nitrocyclohexane Chemical compound [O-][N+](=O)C1CCCCC1 NJNQUTDUIPVROZ-UHFFFAOYSA-N 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 125000000466 oxiranyl group Chemical group 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- NCNISYUOWMIOPI-UHFFFAOYSA-N propane-1,1-dithiol Chemical compound CCC(S)S NCNISYUOWMIOPI-UHFFFAOYSA-N 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium group Chemical group [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- GJBRNHKUVLOCEB-UHFFFAOYSA-N tert-butyl benzenecarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1 GJBRNHKUVLOCEB-UHFFFAOYSA-N 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Substances SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 1
- 229960001124 trientine Drugs 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/62—Alcohols or phenols
- C08G59/64—Amino alcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
Definitions
- the present invention relates to a new class of compounds, namely diamino-alcohols, a process for producing same, and their use in preparing epoxy resins having high glass transition temperatures (Tg).
- Simple amine compounds are known to provide neutralizing, dispersant and hardening properties when added to coatings, mineral slurries and epoxy formulations. Methods for simple amine compound manufacture are well-documented and known in the art, and when the goal is to prepare primary amines, the preferred routes often involve intermediate nitro alcohol compounds.
- This nitro alcohol is also prepared as an intermediate to making a vasopeptidase inhibitor, as discussed in Efficient Asymmetric Synthesis of the Vasopeptidase Inhibitor BMS-189921 by Janak Singh et al., Org. Lett. (2003), 5, 17, 3155-3158 .
- manufacture of the nitro alcohol compound 2,6-dinitro-5-phenyl-heptan-3-ol has been described in David St. Clair Black et. al. Australian Journal of Chemistry, 1976, 29(11), 2511 .
- nitroalcohol compounds may be readily converted to the amino alcohol compounds by hydrogenation with hydrogen over a suitable catalyst, for example Raney nickel or a platinum- or palladium-based catalyst (Pt or Pd in elemental form or as oxides, with or without supports, e.g., carbon).
- a suitable catalyst for example Raney nickel or a platinum- or palladium-based catalyst (Pt or Pd in elemental form or as oxides, with or without supports, e.g., carbon).
- reducing agents which will reduce nitroalkanes to primary amines include metal/acid combinations, e.g., iron/acetic acid; and aluminum hydrides.
- the preferred reducing agents include hydrogen gas in combination with any of the following catalysts: Raney nickel, platinum or palladium.
- Amines and amino alcohols are known to be hardeners, or curing agents, for epoxy resins.
- Diamines that are straight chain aliphatic are useful as hardeners, but typically do not result in a resin with high Tg.
- aliphatic diamines are Dytek (Tg: 104°C), AEP (Tg: 106 °C) and TMD (Tg: 104°C).
- amino alcohols are used as hardeners or curing agents commercially today, due to their ability to cure at lower temperatures than simple amines, but these amines also do not enable the formation of cured epoxy resins with high glass transition temperatures (Tg).
- amino alcohols include, without limitation, ethanolamine (EA), diethanolamine (DEA), 2-amino-2-methyl-l-propanol (AMP) which is commercially available from ANGUS Chemical of Buffalo Grove, Illinois, USA), and 2-amino-2-ethyl-1,3-propanediol (AEPD) [Asghar checking whether we have Tg data for any of these amino-alcohols], also commercially available from ANGUS Chemical of Buffalo Grove, Illinois, USA, etc.
- EA ethanolamine
- DEA diethanolamine
- AMP 2-amino-2-methyl-l-propanol
- AEPD 2-amino-2-ethyl-1,3-propanediol
- TRIS-AMINO isophoronediamine (IPDA), meta-xylenediamine (MXDA), aminoethylpiperazine (AEP), ethylenediamine, etc.
- IPDA isophoronediamine
- MXDA meta-xylenediamine
- AEP aminoethylpiperazine
- TRIS-AMINO is a non-volatile alkanolamine possessing primary amine functionality commercially available from ANGUS Chemical of Buffalo Grove, Illinois, USA.
- U.S. Patent Nos. 4,330,644 , 3,607,833 and 7,001,938 as well as U.S. Patent Application Publication No. US2007/0065669 , each describes the use of TRIS-AMINO in various epoxy-based compositions.
- the present invention provides a cured resin system comprising: (a) 35 to 90% by weight of at least one epoxy resin; and (b). 0.1% to 35% of a diamino alcohol compound having the formula: wherein R is independently hydrogen, alkyl, or aryl; R 1 is independently hydrogen, or alkyl; alternatively, R and R 1 may be linked together to form a cycloalkyl; R 2 is independently hydrogen, alkyl, or aryl; R 3 is independently hydrogen, alkyl, or aryl; R 4 is independently hydrogen, or alkyl; and alternatively, R 3 and R 4 may be linked together to form a cycloalkyl; wherein all weight percents are based on the total weight of the cured resin system.
- the epoxy resin may be one or more compounds selected from the group consisting of: cycloaliphatic (acyclic) epoxides, cycloaliphatic epoxides modified with glycols, epoxy phenolic novolac resins, multifunctional (polyepoxy) epoxy resins, bisphenol A-based epoxy resins, and bisphenol F-based epoxy resins.
- the epoxy resin comprises a mixture of at least two epoxy resins.
- the diamino alcohol compound may be the product of 2-nitropropane and one aldehyde selected from the group consisting of crotonaldehyde and cinnamaldehyde.
- R, R 1 , R 2 , R 3 and R 4 are each methyl.
- the present invention also provides a method for preparing a curable resin system comprising admixing: (a) 35 to 65% by weight of at least one epoxy resin; and (b) 0.1 to 35% by weight of a diamino alcohol compound having the formula: wherein R is independently hydrogen, alkyl, or aryl; R 1 is independently hydrogen, or alkyl; alternatively, R and R 1 may be linked together to form a cycloalkyl; R 2 is independently hydrogen, alkyl, or aryl; R 3 is independently hydrogen, alkyl, or aryl; R 4 is independently hydrogen, or alkyl; and alternatively, R 3 and R 4 may be linked together to form a cycloalkyl; wherein all weight percents are based on the total weight of the cured resin system.
- the epoxy resin may be one or more compounds selected from the group consisting of: cycloaliphatic (acyclic) epoxides, cycloaliphatic epoxides modified with glycols, epoxy phenolic novolac resins, multifunctional (polyepoxy) epoxy resins, bisphenol A-based epoxy resins, and bisphenol F-based epoxy resins.
- the epoxy resin comprises a mixture of at least two epoxy resins.
- the diamino alcohol compound may be the product of 2-nitropropane and one aldehyde selected from the group consisting of crotonaldehyde and cinnamaldehyde.
- R, R 1 , R 2 , R 3 and R 4 are each methyl.
- a new and useful class of amino compound namely diamino alcohols, has been discovered, along with processes for their manufacture. These compounds are produced by tandem Michael and Henry reaction of nitroalkanes with one or more ⁇ , ⁇ -unsaturated aldehydes and, optionally, post reacted with an aldehyde such as formaldehyde.
- R is independently hydrogen, alkyl, aryl, or -CH 2 OH
- R 1 is independently hydrogen, alkyl, or -CH 2 OH
- R and R 1 may be linked together to form a cycloalkyl
- R 2 is independently hydrogen, methyl, alkyl, phenyl or substituted phenyl
- R 3 is independently hydrogen, alkyl, phenyl or substituted phenyl, or -CH 2 OH
- R 4 is independently hydrogen, alkyl, or -CH 2 OH
- R 3 and R 4 may be linked together to form a cycloalkyl.
- diamino alcohols includes various degrees of polyalcohols ("polyols") as well as simple diamino mono-alcohols.
- polyols polyalcohols
- the simpler diamino mono-alcohols would have the following formula: wherein R is independently hydrogen, alkyl, phenyl or substituted phenyl; R 1 is independently hydrogen or alkyl; alternatively, R and R 1 may be linked together to form a cycloalkyl; R 2 is independently hydrogen, alkyl, or phenyl or substitued phenyl; R 3 is independently hydrogen, alkyl, or aryl; R 4 is independently hydrogen or alkyl; and alternatively, R 3 and R 4 may be linked together to form a cycloalkyl.
- the diamino mono-alcohols of the present invention may be produced by reaction of a nitroalkane and an ⁇ , ⁇ -unsaturated aldehyde which produces an intermediate dinitro alcohol compound.
- This reaction is typically operated at temperatures between 0°C and 100°C under atmospheric pressure, for example, without limitation between 0°C and 50°C.
- Applicants have surprisingly and conveniently found that this reaction proceeds sequentially with Michael addition of nitroalkane to the olefin occurring first, followed by aldol (Henry) reaction in which the second nitroalkane is added to the aldehyde, to produce a single species of dinitro mono-alcohol intermediate.
- the nitroalkane may be a primary or secondary nitroalkane having the formula: wherein R is hydrogen, R 1 is hydrogen, alkyl, phenyl or substituted phenyl; or wherein R is alkyl, phenyl, or substituted phenyl, and R 1 is alkyl, or R and R 1 may be linked together to form a cycloalkyl.
- R is hydrogen
- R 1 is hydrogen, alkyl, phenyl or substituted phenyl
- R 1 is alkyl
- R and R 1 may be linked together to form a cycloalkyl.
- nitromethane, nitroethane, 2-nitropropane, nitrocyclohexane etc. are all suitable nitroalkanes for use as starting materials to prepare the diamino alcohol compounds in accordance with the present invention.
- the primary or secondary nitroalkane may be a C 1 -C 20 nitroalkane, a C 1 -C 10 nitroal
- Suitable ⁇ , ⁇ -unsaturated aldehydes have the following formula: wherein R is hydrogen, methyl (alkyl), phenyl, or substituted phenyl.
- Suitable unsaturated aldehydes include, but are not limited to, acrolein, crotonaldehyde, cinnamaldehyde, derivatives of cinnamaldehyde substituted at the aromatic ring, etc.
- a suitable catalyst including, but not limited to, organic bases such as 1,8-Diazabicyclo[5.4.0]undec-7-ene (“DBU”), 2-dimethylamino-2-methyl-1-propanol (“DMAMP”), trimethylamine (TMA), dimethylisopropylamine (DMIPA), N,N,N',N'-tetramethylguanidine (TMG), Verkade's base, etc.
- organic bases such as 1,8-Diazabicyclo[5.4.0]undec-7-ene (“DBU”), 2-dimethylamino-2-methyl-1-propanol (“DMAMP”), trimethylamine (TMA), dimethylisopropylamine (DMIPA), N,N,N',N'-tetramethylguanidine (TMG), Verkade's base, etc.
- inorganic bases such as potassium carbonate, and sodium hydroxide may also be used as catalysts for the sequential Michael-Henry reaction described above.
- the starting materials are provided at a molar ratio of nitroalkane to aldehyde of typically 2:1.
- the reaction may be performed with or without a solvent, according to the preference of the practitioner.
- Suitable solvents include but are not limited to tetrahydrofuran, 2-methyltetrahydrofuran, dioxane.
- the (1) nitroalkane is a primary nitroalkane and the process for production of the diamino poly-alcohol compound further comprises, after reacting the (1) primary nitroalkane and (2) ⁇ , ⁇ -unstaturated aldehyde, but prior to reducing the resulting nitro alcohol, further reacting the resulting nitro alcohol with (3) an aldehyde, such as formaldehyde, to form a dinitro poly-alcohol compound, which is then further reduced under hydrogenation conditions and in the presence of a catalyst.
- an aldehyde such as formaldehyde
- diamino poly-alcohol (polyol) compounds proceeds as follows: (A) reacting (1) a primary nitroalkane and (2) an ⁇ , ⁇ -unsaturated aldehyde to form a dinitroalcohol; (B) further reacting the dinitroalcohol with (3) an aldehyde, such as formaldehyde, to form a dinitro poly-alcohol (e.g., a dintro-dialcohol or dinitro-trialcohol) product; and (C) then further reducing the dinitro poly-alcohol product to the corresponding diamino poly-alcohol product under hydrogenation conditions, in the presence of a catalyst.
- A reacting (1) a primary nitroalkane and (2) an ⁇ , ⁇ -unsaturated aldehyde to form a dinitroalcohol
- an aldehyde such as formaldehyde
- the reaction is performed under conditions in which the Michael addition of the nitroalkane occurs more rapidly than the Henry reaction (i.e., temperatures between 0°C and 100°C under atmospheric pressure, for example, without limitation, between 0°C and 50°C), allowing for the sequential reactions to produce the dinitro poly-alcohol.
- the (1) nitroalkane and the (2) aldehyde are provided at a molar ratio of 2:1 during the first reaction step which produces the dinitro alcohol.
- the primary nitroalkane may be a primary C 1 -C 20 nitroalkane, for example, without limitation, a primary C 1 -C 10 nitroalkane.
- the ⁇ , ⁇ -unsaturated aldehyde may be selected from the group consisting of: acrolein, crotonaldehyde, cinnamaldehyde, and derivatives of cinnamaldehyde substituted at the aromatic ring.
- the ratio of the formaldehyde to the dinitro alcohol is typically 2:1 for this sequential reaction step.
- this reaction may be performed with or without a solvent, according to the preference of the practitioner, such as, without limitation, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane.
- the intermediate dinitro alcohol compound produced by either of the above-described sequential Michael-Henry reactions has the following formula: wherein R is independently hydrogen, alkyl, aryl, or -CH 2 OH R 1 is independently hydrogen, alkyl, or -CH 2 OH alternatively, R and R 1 may be linked together to form a cycloalkyl; R 2 is independently hydrogen, methyl, alkyl, phenyl or substituted phenyl; R 3 is independently hydrogen, alkyl, phenyl or substituted phenyl, or -CH 2 OH R 4 is independently hydrogen, alkyl, or -CH 2 OH and alternatively, R 3 and R 4 may be linked together to form a cycloalkyl.
- the nitroalkane is 2-nitropropane and the ⁇ , ⁇ -unsaturated aldehyde is either crotonaldehyde or cinnamaldehyde, which would produce a dinitro mono-alcohol compound.
- the dinitro alcohol intermediate is then further reduced under hydrogenation conditions in the presence of a suitable catalyst to produce the desired diamino alcohol comprising two amino groups, each of which is bonded to a tertiary carbon atom.
- suitable dehydrogenation catalysts include, without limitation, Raney nickel, or a platinum- or palladium-based catalyst, (e.g., platinum or palladium in elemental form or as oxides, with or without supports, e.g., carbon).
- Other suitable reducing agents include, without limitation, metal/acid combinations, e.g., iron/acetic acid; and aluminum hydrides.
- An example of a dehydrogenation catalyst system suitable for use in accordance with the present invention is hydrogen gas in combination with any of Raney nickel, platinum or palladium.
- the hydrogenation of dinitro alcohol to produce the diamino alcohol may be performed at pressures between 100 and 1000 pounds per square inch ("psi") and temperatures between 30°C and 100°C.
- a solvent may be used, such as, without limitation, tetrahydrofuran or methanol.
- the diamino alcohols of the present invention are useful hardeners for epoxy resin systems, some of which are capable of yielding cured epoxy resins with glass transition temperatures (Tgs) of greater than 120°C.
- Such curable epoxy resin systems may be formed by admixing at least one epoxy resin, the diamino alcohol described hereinabove, as well as, optionally, a catalyst, other hardeners, toughening agents, flame retardants and other additives known and used by persons of ordinary skill in the relevant art.
- the curable epoxy resin system may then be cured, for example, without limitation and dependent upon the particular type of epoxy resin used and its intended application, by exposure to elevated temperatures, exposure to ultraviolet light, etc.
- the glass transition temperature, or Tg may be measured by any suitable method known and practiced by persons of ordinary skill in the relevant art, including, but not limited to, differential scanning calorimetry (DSC) or dynamic mechanical thermal analysis (DMTA), as per ASTM D5045.
- DSC differential scanning calorimetry
- DMTA dynamic mechanical thermal analysis
- Measurement of glass transition temperature by DSC may be performed, for example, using a Q100 DSC testing apparatus, commercially available from T.A. Instruments of New Castle, Delaware, USA, and set up for 10°C/minute scans. Sample size is typically kept under 15 milligrams. Hermetic pans with holes punched in the lids may be used to contain the samples in the DSC cell. DSC scans are analyzed for final Tg using half extrapolated tangents (Tg analysis).
- Measurement of glass transition temperature by DMTA may be performed, for example, according to ASTM D5045, at an angular frequency of 1 Hertz (Hz) and 0.1 % strain, run on three rectangular samples.
- the temperature range chosen for these examples may be between 30°C and 2800°C.
- the sample size if typically 17 millimeters (mm) long, 13 mm wide and 4 mm thick.
- the samples are inserted between adjustable clamps and the clamps are closed using a torque wrench.
- the samples are then subjected to oscillations in torsion mode. Samples are subjected to a dynamic temperature ramp at 3°C/minute. A slower heating rate may be employed to maintain thermal equilibrium and considering the thermal mass of the sample. Storage and loss modulus as well as tangent delta are recorded.
- a cured resin system in accordance with the present invention comprises: (a) 35 to 90% by weight of at least one epoxy resin; and (b) 0.1 to 35 % by weight of a diamino alcohol compound having the formula: wherein R is independently hydrogen, alkyl, or aryl; R 1 is independently hydrogen, or alkyl; alternatively, R and R 1 may be linked together to form a cycloalkyl; R 2 is independently hydrogen, alkyl, or aryl; R 3 is independently hydrogen, alkyl, or aryl; R 4 is independently hydrogen, or alkyl; and alternatively, R 3 and R 4 may be linked together to form a cycloalkyl; wherein all weight percents are based on the total weight of the cured resin system.
- amounts up to the stoichiometric amount of the diamino alcohol hardener, relative to the epoxy resin, are considered “effective amounts" in accordance with the present invention. More particularly, the stoichiometric amount of the diamino alcohol hardener is calculated by adding together the number of equivalents on the basis of weight per displaceable -NH group in the amino alcohol utilized. Generally, as is also understood by persons of ordinary skill, a lesser amount of a diamino alcohol hardener of higher molecular weight will be required than of a diamino alcohol hardener of lower molecular weight.
- a diamino alcohol hardener derived from crotonaldehyde might be suitable for producing an epoxy resin system in accordance with the present invention
- a diamino alcohol hardener derived from cinnamaldehyde were used instead, then some amount less than 35 % by weight would be appropriate.
- the preferred diamino alcohols for use as hardeners in epoxy resin systems are those in which the amine functionality is attached to a tertiary carbon, such as, for example, compounds of the following formulae:
- the most effective diamino alcohols to provide epoxy resin systems having high Tg's are when R 2 is an alkyl chain or phenyl group and when R, R 1 , R 3 and R 4 are methyl groups.
- the multifunctional diamino alcohols may be used as a hardener system to cure a variety of epoxy resins and ultimately give high Tg materials (Tg greater than 140 °C).
- Tg Tg greater than 140 °C.
- the Tg reported for the cured epoxy resin systems incorporating some of these diamino alcohols, particularly the 2-nitropropane adducts, are higher (by at least 20°C) than epoxys containing conventional amino alcohol hardeners. This is particularly beneficial in high temperature applications.
- these materials cure very efficiently and do not have a high density of hydroxyl group, thus attracting less water and this in return give better overall property of the final system.
- the diamines functionality provides multiple sites for curing an epoxy resin and, thus, allows reaction of multiple epoxy groups using one mole of the diamino alcohol to produce several new secondary alcohols sites in the epoxy system. This is beneficial as it is widely believed that secondary alcohols assist in adhesion promotion to the metal in an epoxy coating formulation. Without intending to be limited by theory, the alcohol functionality is also believed to have a catalytic effect during the curing process. Similarly, control of the stoichiometry of the epoxy resin to the diamine such that the cured resin maintains a high concentration of secondary amine functionality is also anticipated to enhance the adhesion of this resin to surfaces resulting in a strongly adhered, high Tg resin in applications where these two properties are important.
- the diamino alcohol of the present invention has multiple amines rather than multiple hydroxyl groups, as in the amino compounds more typically used for epoxy systems. This may provide for effective curing of the resin and also allows modification of the backbone of the diamine hardener by changing the alkyl chain length. This technique also allows addition of any desired functional group such as phenyl groups, alkyl groups, hydroxyl groups and any degree of amine (primary, secondary or tertiary) that would be beneficial in controlling the Tg.
- the above-described method of synthesis used in the preparation of the diamino alcohols allows for the careful placement of desired functionality on the molecule.
- the synthesis methods allow for creating diamines of high amine functionality in a fairly compact but highly substituted molecule.
- the Tg value of the cured epoxy resin can be changed by changing the nature of nitro paraffin used to construct the molecules.
- the diamino alcohols can be used with any type of epoxy resin, which means, as that term is used herein, compounds containing one or more reactive oxirane groups (-C 2 H 3 O), referred to herein as "epoxy groups” or "epoxy functionality".
- Suitable epoxy resins include those compounds containing at least one vicinal epoxy group.
- the epoxy resin may be saturated or unsaturated, aliphatic, cycloaliphatic, aromatic or heterocyclic and may be substituted.
- the epoxy resin may also be monomeric or polymeric.
- epoxy resins suitable for use in accordance with the present invention include, for example without limitation, cycloaliphatic (acyclic) epoxides, cycloaliphatic epoxides modified with glycols, epoxy phenolic novolac resins, multifunctional (polyepoxy) epoxy resins, bisphenol A-based epoxy resins, and bisphenol F-based epoxy resins, among others, as well as mixtures thereof.
- Cycloaliphatic epoxides include, for instance, diepoxides of cycloaliphatic esters of dicarboxylic acids, such as bis(3,4-epoxycyclohexylmethyl)oxalate, bis(3,4-epoxycyclohexylmethyl)adipate, vinylcyclohexene diepoxide, and dicyclopentadiene diepoxide.
- cycloaliphatic epoxy resins include 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate and other cycloaliphatic epoxy resins under the tradename designations ERL, D.E.R.
- CELLOXIDE 2021, CELLOXIDE 2021 P, EPOLEAD GT301 are cycloaliphatic epoxy resins commercially available from Daicel Chemical Industries, Ltd of Japan.
- Cycloaliphatic epoxides modified with glycols include, for instance, an aliphatic epoxy modified with polypropylene glycol, epoxidized polybutadiene, silicone resin containing epoxy functionality, epoxy vinylester resins, glycidated resins, epoxidized oils, etc.
- ERL-4299 bis(3,4-epoxycyclohexyl) adipate
- CELLOXIDE 2080 series ((3',4'-epoxycyclohexane)methyl 3',4'-epoxycyclohexyl-carboxylate modified ⁇ -caprolactone) is commercially available from Daicel Chemical Industries, Ltd.
- Epoxy phenolic novolac resins suitable for use in the present invention include, without limitation, condensates of phenols with formaldehyde that are obtained under acid conditions, such as phenol novolacs, bisphenol A novolacs and cresol novolacs.
- Multifunctional epoxy resins include, for example, without limitation, resorcinol diglycidyl ether (1,3-bis-(2,3-epoxypropoxy)benzene), triglycidyl p-aminophenol (4-)2,3-epoxypropoxy)-N,N-bis(2,3-epoxypropyl)aniline), polyepoxy compounds based on aromatic amines and epichlorohydrin, such as N,N'-diglycidylaniline, N-diglycidyl-4-aminophenyl, etc., and mixtures of such compounds.
- epoxy resins suitable for use in the present invention include, but are not limited to, 4,4'-dihydroxydiphenyl dimethyl methane (i.e., bisphenol A), bis(4-hydroxyphenol)methane (i.e., bisphenol F), diglycidyl ether of Bisphenol F, and other resins based on bisphenyl A and bisphenyl F.
- D.E.R. 332, D.E.R. 383 and D.E.R. 331 are bisphenol A-based epoxy resins commercially available from The Dow Chemical Company.
- D.E.R. 354 and D.E.R. 354LV are bisphenol F-based epoxy resins also commercially available from The Dow Chemical Company.
- the material can be used with other hardeners and/or catalyst systems depending on the application.
- the material can also be used as a 'modified hardener' or prepolymer by reacting it, initially, with LER (liquid epoxy resin) and then using the reaction product in the final epoxy resin formulation.
- LER liquid epoxy resin
- Suitable amine-and/or amide-curing agents include those compounds that contain a primary amine moiety, and compounds that contain two or more primary or secondary amine or amide moieties linked to a common central organic moiety.
- Suitable amine-containing curing agents include amino alcohols, ethylene diamine, diethylene triamine, polyoxypropylene diamine, triethylene tetramine, dicyandiamide, melamine, cyclohexylamine, benzylamine, diethylaniline, methylenedianiline, m-phenylenediamine, diaminodiphenylsulfone, 2,4 bis(p-aminobenzyl)aniline, piperidine, N,N-diethyl-1,3-propane diamine, and the like, and soluble adducts of amines and polyepoxides and their salts.
- Suitable amide-curing agents include the dicyandiamide and polyamidoamines. Polyamidoamines are typically the reaction product of a polyacid and an amine.
- thiol curing agents may be used with the present invention.
- "thiol” also includes polythiol and polymercaptan curing agents.
- Suitable thiols include, but are not limited to, aliphatic thiols such as methanedithiol, propanedithiol, cyclohexanedithiol, 2-mercaptoethyl-2,3-dimercaptosuccinate, diethylene glycol bis(2-mercaptoacetate), pentaerythritol tris(thioglycolate), aromatic thiols such as di-, tris-, or tetra-mercaptobenzene, dimercaptobiphenol, toluenedithiol, among others.
- Accelerators include those compounds which catalyze the reaction of the epoxy resin with the curing agent. Accelerators are compounds containing amine, phosphine, heterocyclic nitrogen, ammonium, phosphonium, arsonium or sulfonium moieties. Examples include imidazoles, imidazolidines, and imidazolines.
- catalysts include free radical initiators, such as azo compounds, including azoisobutyronitrile, and organic peroxides, such as tertiary-butyl perbenzoate, tertiary-butyl peroctate, methyl ethyl ketone peroxide, acetoacetic peroxide, and benzoyl peroxide, among others.
- free radical initiators such as azo compounds, including azoisobutyronitrile
- organic peroxides such as tertiary-butyl perbenzoate, tertiary-butyl peroctate, methyl ethyl ketone peroxide, acetoacetic peroxide, and benzoyl peroxide, among others.
- the resin system in accordance with the present invention may further comprise flame retardant additives including, without limitation, brominated additives such as tetrabromobisphenol A (TBBA) and derivatives thereof, and non-brominated additives such as compounds derived from DOP (9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide), e.g., DOP-hydroquinone, condensation products of DOP with glycidyl ether, derivatives of novolacs, and inorganic retardants such as aluminum trihydrate and aluminum phosphinite.
- brominated additives such as tetrabromobisphenol A (TBBA) and derivatives thereof
- non-brominated additives such as compounds derived from DOP (9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide), e.g., DOP-hydroquinone, condensation products of DOP with glycidyl ether, derivatives of novolac
- the resin system in accordance with the present invention may further comprise toughening agents for reducing brittleness in the cured resin system.
- Toughening agents include, but are not limited to, rubber compounds, block copolymers (e.g., amphiphillic block copolymers), carboxyl terminated butadiene, polysulfide-based toughening agents, amine-terminated butadiene nitrile and polythioethers.
- toughening agents may be present in epoxy resin systems in amounts between 0.1 and 30 % by weight, based on the total weight of resin system.
- additives and fillers may also be included in the resin system of the present invention.
- additives and fillers may include, for example, boric acid, silica, glass, talc, metal powders, wetting agents, pigments, coloring agents, mold release agents, coupling agents, ion scavengers, UV stabilizers, flexibilizing agents and tackifying agents.
- resins such as polyol resins, polyester resins, phenolic resins, as well as other agents such as for viscosity reduction and stabilization, as are well known in the industry.
- a three neck round bottom flask equipped with a stir bar, thermocouple, dropping funnel capped with nitrogen inlet and condenser was charged with 2-Nitropropane (50 g, 0.56 mols, 5.0 equivalents) and catalytic amount of DBU.
- the deep yellow solution was mixed under nitrogen for about thirty minutes.
- crotonaldehyde (7.9 g, 9.2 mL, 0.112 moles, 1.0 equivalent) drop-wise over a period of twenty minutes.
- the addition of crotonaldehyde in this case was done at room temperature and during addition, exotherm of about 12°C-15°C was observed. After complete addition, the reaction was stirred at room temperature for 6 hours.
- DSC has been extensively used to study the cure kinetics of such epoxy systems by studying the heat flow to the sample as a function of temperature
- Dow D.E.R.TM 331 was used as the matrix resin. It is a general purpose resin widely used in the industry and regarded as a good starting point for the preliminary studies.
- DSC thermograms were obtained for the resin and hardener mixtures. The exothermic behavior can be used as an indication of observing the progress of the reaction. Once the curing reaction is done, the part can be cooled down and another DSC run can be performed to look for the Tg.
- DSC analyses were performed using a TA instruments Model Q100 Differential Scanning Calorimeter. The instrument was connected to a refrigerated cooling system and auto sampler.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Epoxy Resins (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US28463709P | 2009-12-22 | 2009-12-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2341093A1 true EP2341093A1 (fr) | 2011-07-06 |
EP2341093B1 EP2341093B1 (fr) | 2014-06-18 |
Family
ID=43844552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10194226.6A Active EP2341093B1 (fr) | 2009-12-22 | 2010-12-08 | Nouveaux composés d'alcool diamino, leur fabrication et leur utilisation dans des résines époxy |
Country Status (6)
Country | Link |
---|---|
US (1) | US8524857B2 (fr) |
EP (1) | EP2341093B1 (fr) |
CN (1) | CN102181044B (fr) |
BR (1) | BRPI1005890A8 (fr) |
CA (1) | CA2723359C (fr) |
MX (1) | MX2010013996A (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014093117A1 (fr) * | 2012-12-14 | 2014-06-19 | Dow Global Technologies Llc | Résines époxyde modifiées |
WO2014151232A1 (fr) * | 2013-03-15 | 2014-09-25 | E. I. Du Pont De Nemours And Company | Nouveaux polymères dérivés de lysinol produit à partir de ressources renouvelables |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2723493C (fr) * | 2009-12-22 | 2013-08-06 | Dow Global Technologies, Inc. | Nouveaux alcools diamines, leur production et leur utilisation dans des boues minerales a forte teneur en solides |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2475996A (en) | 1946-11-02 | 1949-07-12 | Shell Dev | Dinitro alcohols and process of producing the same from unsaturated aldehydes |
US3607833A (en) | 1969-10-03 | 1971-09-21 | Vanderbilt Co R T | Prepolymer of epoxy resin and tris(hydroxymethyl) aminomethane and curable composition thereof |
US3943104A (en) | 1973-03-09 | 1976-03-09 | Jefferson Chemical Company, Inc. | Method of accelerating epoxy curing |
US4293682A (en) * | 1980-05-12 | 1981-10-06 | Milliken Research Corporation | Nitrogen containing compounds and compositions |
US4330644A (en) | 1981-04-03 | 1982-05-18 | Shell Oil Company | Curable tris(hydroxyalkyl) aminomethane-modified epoxy resin composition |
US4340717A (en) * | 1981-03-12 | 1982-07-20 | Milliken Research Corporation | Nitrogen-containing compounds |
US20040147690A1 (en) * | 2003-01-27 | 2004-07-29 | Resolution Performance Products Llc | Epoxy resin curing compositions and resin compositions including same |
US20070065669A1 (en) | 2003-09-05 | 2007-03-22 | Edmondson Stephen J | Curable alkanolamine-containing epoxy powder coating composition |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5112926A (en) | 1989-01-09 | 1992-05-12 | Industrial Technology Research Institute | Thermal-resistant resin composition for printed circuit boards based on triazine modified epoxy resin blends |
US5436339A (en) * | 1991-03-06 | 1995-07-25 | Abbott Laboratories | Process for the preparation of a substituted diaminoalcohol |
US5478885A (en) | 1994-04-15 | 1995-12-26 | Shell Oil Company | Composition of epoxy resin, epoxidized block polydiene and curing agent |
WO2009089145A1 (fr) | 2008-01-08 | 2009-07-16 | Dow Global Technologies Inc. | Systèmes epoxy à température de transition vitreuse élevée pour application de composite |
US8070045B1 (en) * | 2010-12-02 | 2011-12-06 | Rohm And Haas Electronic Materials Llc | Curable amine flux composition and method of soldering |
US8070044B1 (en) * | 2010-12-02 | 2011-12-06 | Rohm And Haas Electronic Materials Llc | Polyamine flux composition and method of soldering |
-
2010
- 2010-12-03 CA CA2723359A patent/CA2723359C/fr active Active
- 2010-12-08 EP EP10194226.6A patent/EP2341093B1/fr active Active
- 2010-12-15 US US12/928,600 patent/US8524857B2/en active Active
- 2010-12-16 MX MX2010013996A patent/MX2010013996A/es active IP Right Grant
- 2010-12-21 CN CN201010618068.8A patent/CN102181044B/zh active Active
- 2010-12-21 BR BRPI1005890A patent/BRPI1005890A8/pt not_active Application Discontinuation
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2475996A (en) | 1946-11-02 | 1949-07-12 | Shell Dev | Dinitro alcohols and process of producing the same from unsaturated aldehydes |
US3607833A (en) | 1969-10-03 | 1971-09-21 | Vanderbilt Co R T | Prepolymer of epoxy resin and tris(hydroxymethyl) aminomethane and curable composition thereof |
US3943104A (en) | 1973-03-09 | 1976-03-09 | Jefferson Chemical Company, Inc. | Method of accelerating epoxy curing |
US4293682A (en) * | 1980-05-12 | 1981-10-06 | Milliken Research Corporation | Nitrogen containing compounds and compositions |
US4340717A (en) * | 1981-03-12 | 1982-07-20 | Milliken Research Corporation | Nitrogen-containing compounds |
US4330644A (en) | 1981-04-03 | 1982-05-18 | Shell Oil Company | Curable tris(hydroxyalkyl) aminomethane-modified epoxy resin composition |
US20040147690A1 (en) * | 2003-01-27 | 2004-07-29 | Resolution Performance Products Llc | Epoxy resin curing compositions and resin compositions including same |
US7001938B2 (en) | 2003-01-27 | 2006-02-21 | Resolution Performance Products Llc | Epoxy resin curing compositions and resin compositions including same |
US20070065669A1 (en) | 2003-09-05 | 2007-03-22 | Edmondson Stephen J | Curable alkanolamine-containing epoxy powder coating composition |
Non-Patent Citations (2)
Title |
---|
DAVID ST. CLAIR BLACK, AUSTRALIAN JOURNAL OF CHEMISTRY, vol. 29, no. 11, 1976, pages 2511 |
JANAK SINGH ET AL., ORG. LETT., vol. 5, no. 17, 2003, pages 3155 - 3158 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014093117A1 (fr) * | 2012-12-14 | 2014-06-19 | Dow Global Technologies Llc | Résines époxyde modifiées |
WO2014151232A1 (fr) * | 2013-03-15 | 2014-09-25 | E. I. Du Pont De Nemours And Company | Nouveaux polymères dérivés de lysinol produit à partir de ressources renouvelables |
US9228056B2 (en) | 2013-03-15 | 2016-01-05 | E I Du Pont De Nemours And Company | Polymers derived from renewably resourced lysinol |
US9238714B2 (en) | 2013-03-15 | 2016-01-19 | E I Du Pont De Nemours And Company | Polymers derived from renewably resourced lysinol |
Also Published As
Publication number | Publication date |
---|---|
CA2723359C (fr) | 2015-03-17 |
US8524857B2 (en) | 2013-09-03 |
MX2010013996A (es) | 2012-06-08 |
CN102181044B (zh) | 2013-07-10 |
BRPI1005890A2 (pt) | 2013-04-02 |
CN102181044A (zh) | 2011-09-14 |
CA2723359A1 (fr) | 2011-06-22 |
EP2341093B1 (fr) | 2014-06-18 |
BRPI1005890A8 (pt) | 2017-10-10 |
US20110152407A1 (en) | 2011-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210301075A1 (en) | Low-emission epoxy resin composition | |
US8703844B2 (en) | Low-viscosity epoxy resin composition with low blushing | |
ES2637367T3 (es) | Agentes de curado de poliamina bencilada | |
WO2017147138A1 (fr) | Agents durcisseurs de type base de mannich benzylés, compositions et procédés | |
US11046809B2 (en) | Amine for low-emission epoxy resin compositions | |
JPWO2009075252A1 (ja) | エポキシ樹脂硬化剤およびその製造方法ならびにエポキシ樹脂組成物 | |
US20210188762A1 (en) | Process for producing phenalkamines | |
US20160009853A1 (en) | Composition and method of making water borne epoxy hardener for use in two-component epoxy self levelling compounds with long pot life, fast cure and low shrinkage characteristics | |
JP2022145636A (ja) | 水性エポキシ硬化剤 | |
JP3201730B2 (ja) | アミンで硬化されたエポキシ樹脂のための反応性の促進剤 | |
EP2341093B1 (fr) | Nouveaux composés d'alcool diamino, leur fabrication et leur utilisation dans des résines époxy | |
US20240294703A1 (en) | Amine hardener with high content in renewable carbon | |
US5681907A (en) | Fast cure amines for ambient and subambient cure of epoxy resins comprising methylamine adducts | |
JPH1129622A (ja) | エポキシ樹脂硬化剤 | |
WO2022215494A1 (fr) | Agent de durcissement de résine époxy, composition de résine époxy et revêtement | |
JPH0517444A (ja) | 4−t−アミノ−2,2,6,6−テトラアルキルピペリジン類 | |
JPH08217858A (ja) | エポキシ樹脂用硬化剤 | |
JP6565229B2 (ja) | エポキシ樹脂用硬化剤 | |
JP2024527601A (ja) | エポキシ樹脂のための硬化剤 | |
EP2386599A1 (fr) | Compositions de durcissement de l'époxy et procédés | |
JPS6359409B2 (fr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20101208 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17Q | First examination report despatched |
Effective date: 20110617 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140207 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 673331 Country of ref document: AT Kind code of ref document: T Effective date: 20140715 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010016754 Country of ref document: DE Effective date: 20140731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140918 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140618 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140618 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140618 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140919 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20140618 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 673331 Country of ref document: AT Kind code of ref document: T Effective date: 20140618 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140618 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140618 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140618 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140618 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140618 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140618 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140618 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141020 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140618 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140618 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140618 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140618 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141018 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140618 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010016754 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140618 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140618 |
|
26N | No opposition filed |
Effective date: 20150319 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20150514 AND 20150520 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140618 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602010016754 Country of ref document: DE Representative=s name: MURGITROYD & COMPANY, DE Ref country code: DE Ref legal event code: R081 Ref document number: 602010016754 Country of ref document: DE Owner name: ANGUS CHEMICAL COMPANY, BUFFALO GROVE, US Free format text: FORMER OWNERS: ANGUS CHEMICAL COMPANY, BUFFALO GROVE, ILL., US; DOW GLOBAL TECHNOLOGIES LLC, MIDLAND, MICH., US |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140618 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141208 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: ANGUS CHEMICAL COMPANY, US Effective date: 20150813 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141208 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141231 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140618 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140618 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140618 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140618 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140618 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20101208 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140618 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140618 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230929 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231019 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231010 Year of fee payment: 14 |