EP2336506A1 - Dampfturbine in dreischaliger Bauweise - Google Patents

Dampfturbine in dreischaliger Bauweise Download PDF

Info

Publication number
EP2336506A1
EP2336506A1 EP09015540A EP09015540A EP2336506A1 EP 2336506 A1 EP2336506 A1 EP 2336506A1 EP 09015540 A EP09015540 A EP 09015540A EP 09015540 A EP09015540 A EP 09015540A EP 2336506 A1 EP2336506 A1 EP 2336506A1
Authority
EP
European Patent Office
Prior art keywords
pressure
flow
steam
inner housing
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09015540A
Other languages
English (en)
French (fr)
Inventor
Christian Cukjati
Heinz Dallinger
Thomas Müller
Rainer Dr. Quinkertz
Norbert Thamm
Andreas Ulma
Michael Wechsung
Uwe Zander
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP09015540A priority Critical patent/EP2336506A1/de
Priority to CN201080057260.2A priority patent/CN102803661B/zh
Priority to PCT/EP2010/069576 priority patent/WO2011082984A1/de
Priority to JP2012543673A priority patent/JP5551268B2/ja
Priority to US13/515,354 priority patent/US9222370B2/en
Priority to EP10790445.0A priority patent/EP2513432B1/de
Publication of EP2336506A1 publication Critical patent/EP2336506A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines

Definitions

  • the invention relates to a turbomachine comprising a rotor rotatably mounted about a rotation axis, an inner inner housing arranged around the rotor and an outer inner housing, wherein an outer housing is arranged around the inner inner housing and the outer inner housing, wherein the turbomachine forms a first flood formed for high pressure steam a second flood formed for medium-pressure steam, wherein the second flood is aligned opposite to the first flood.
  • a steam turbine conventionally includes a rotatably mounted rotor and a housing disposed about the rotor. Between the rotor and the inner housing, a flow channel is formed.
  • the housing in a steam turbine must be able to fulfill several functions.
  • the guide vanes are arranged in the flow channel on the housing and, secondly, the inner housing must withstand the pressure and the temperatures of the flow medium for all load and special operating cases.
  • the flow medium is steam.
  • the housing must be designed such that inlets and outlets, which are also referred to as taps, are possible. Another feature that a case must meet is the possibility of a shaft end passing through the case.
  • nickel-base alloys are suitable because they withstand the stresses occurring at high temperatures.
  • the use of such a nickel-based alloy is associated with new challenges.
  • the cost of nickel-base alloys is comparatively high and, in addition, the manufacturability of nickel-base alloys, e.g. limited by limited casting possibilities.
  • the use of nickel-based materials must be minimized.
  • the nickel-based materials are poor heat conductors.
  • the temperature gradients over the wall thickness are so rigid that thermal stresses are comparatively high.
  • the high-pressure part and the medium-pressure part are accommodated in an outer housing.
  • the high-pressure part is supplied with live steam, which usually has the highest steam parameters such as temperature and pressure and directly flows from the steam generator to the high-pressure turbine section.
  • the steam flowing out of the high-pressure part after expansion is in turn passed out of the steam turbine and led to a reheater unit of a boiler, where it is heated again to a higher temperature, which may correspond to the live steam temperature.
  • This reheated steam is then passed back into the turbomachine in the medium-pressure part and then flows through a medium-pressure blading.
  • the high-pressure part and the medium-pressure part in this case have oppositely arranged flow directions.
  • Such embodiments are called reverse flow fluid machines. But there are also known flow machines, which are manufactured in a so-called single-flow design. In this type of construction, the high-pressure part and the medium-pressure part are arranged one after the other and are flowed through in the same flow direction.
  • the inner housing is in this case formed in an inner inner housing and an outer inner housing.
  • the inner inner housing is located in the region of the inflow area and must therefore withstand the high temperatures and the high pressures. Therefore, the inner inner housing is made of a suitable material, such as a nickel-based alloy or a higher quality material such as a steel, which comprises 9 - 10 wt .-% chromium. Between the inner inner housing and the rotor of the flow channel is formed.
  • the inner inner housing therefore has means, such as grooves, for carrying vanes therein.
  • To the inner case is a outer inner housing arranged.
  • the outer inner housing is designed such that it is seen in the flow direction, adjacent to the inner inner housing and constitutes a boundary of the flow channel, wherein in the outer inner housing devices such as grooves, are provided to carry vanes can.
  • the outer inner casing is acted upon by vapor introduction into the cooling steam space with a steam having a lower temperature and a lower pressure, so that the material of the outer inner casing must be less heat-resistant than the material of the inner inner casing.
  • the outer inner housing is formed of a less high-quality material.
  • an outer housing is arranged around the inner inner housing and the outer inner housing.
  • the turbomachine has a first flood, which is acted upon by a high-pressure steam and flows in a first flow direction. Furthermore, the turbomachine has a second flood, which is acted upon by medium-pressure steam and flows in a second flow direction. The second flow direction is opposite to the first flow direction, so that this flow machine is designed in a so-called reverse flow design.
  • the high-pressure inflow region and the medium-pressure inflow region are surrounded or formed by an inner inner housing.
  • the inner inner housing is made of a higher quality material and absorbs only the high pressure and medium pressure inflow including the balance piston and the Leitschaufelnuten up to the stage, which is essential for temperature and strength reasons. As a result, the inner inner housing kept compact to save space and also has a lower weight.
  • the outer inner housing along the first flood and the second flood is formed.
  • a cooling steam space is formed between the inner inner housing and the outer inner housing.
  • the cooling steam in operation between the inner inner casing and the outer inner casing simultaneously constitutes the insulation for the outer inner casing, which encloses the cooling steam space and the inner inner casing and forms the expansion path behind the cooling steam extraction.
  • the outer inner housing is in contact with this cooling steam and can therefore be made or formed of a lower quality material than the inner inner housing.
  • the primary and secondary stresses in the outer inner casing are only affected by the difference between the vapor state of the vapor in the cooling steam space and the medium pressure exhaust steam.
  • Primary stresses are mechanical stresses that result from external loads, e.g. caused by vapor pressures, weight forces and the like.
  • secondary voltages are meant, for example, thermoelectric voltages and represent mechanical stresses that arise as a result of unbalanced temperature fields or impediments to thermal expansion (thermal Verzwteil Heidelberg).
  • the turbomachine is formed, inter alia, in the cooling steam space with a drainage line, which at a standstill or startup drains an accumulating condensation water or in case of failure of a tap, which could be exemplified by steam extraction via nozzles from the refrigerator, ensures a sufficient Restbeströmung.
  • a cooling steam flow line is provided for the flow of cooling steam into the cooling steam space.
  • the cooling steam flow line is advantageously fluidly connected to the second flow. This means that the medium-pressure steam is mainly flowed into the cooling steam space, which has ideal steam parameters, to adequately cool the inner inner casing.
  • cooling steam space is formed with adedampfausströmungstechnisch for flowing cooling steam from the cooling steam space. Due to the continuous operation of the cooling steam from the cooling steam space in the operation, a very good cooling is obtained, whereby the material utilization (in particular primary and secondary stresses) are lower in the turbomachine.
  • the first flood has a high-pressure outflow area and the second flood has a medium-pressure outflow area, wherein the outer inner housing extends from the high-pressure outflow area to the medium-pressure outflow area.
  • the outer inner housing therefore extends over almost the entire blading area of the rotor, with the outer inner housing having means for supporting vanes.
  • not the entire flow area is formed with vanes in the outer inner housing.
  • no vanes are arranged in the outer inner housing.
  • the inner inner casing is sheathed by the outer inner casing.
  • the outer inner housing is in this case formed of an upper part and a lower part. The upper part and the lower part are in turn formed from one piece and extend over the first and second flood.
  • the high-pressure outflow region is with a reheater line connected. This allows the high pressure steam to be passed to a reheater and heated from a low temperature to a high temperature.
  • the inner inner housing is in this case made of a higher quality material than the outer inner housing.
  • the inner inner housing is formed in a first embodiment of a high-chromium material comprising 9 - 10 wt .-% chromium.
  • the inner housing is formed from a nickel-based material.
  • the outer inner casing is formed of a material comprising 1 - 2 wt .-% chromium.
  • the steam turbine 1 shown in FIG. 1 is an embodiment of a turbomachine.
  • the steam turbine 1 comprises an outer housing 2, an inner inner housing 3, an outer inner housing 4 and a rotatably mounted rotor 5.
  • the rotor 5 is rotatably mounted about a rotation axis 6.
  • the outer housing 2 is formed from an upper part and a lower part, wherein the upper part is shown above the axis of rotation 6 and the lower part below the axis of rotation 6 in the plane of the drawing.
  • Both the inner inner housing 3 and the outer inner housing 4 also has an upper part and a lower part, which, as in the outer housing 2, is constructed above and below the outer housing 2 Rotation axis 6 is arranged.
  • the inner inner casing 3, the outer inner casing 4 and the outer casing 2 each have a horizontal parting line.
  • a high-pressure steam flows into a high-pressure inflow region 7. Subsequently, the high-pressure steam flows along a first flow direction 9 through a blading 8, not shown, which comprises guide vanes and rotor blades. The blades are hereby arranged on the rotor 5 and the guide vanes on the inner inner casing 3 and outer inner casing 4. The temperature and the pressure of the high-pressure steam are thereby reduced.
  • the high-pressure steam subsequently flows out of a high-pressure outflow region 10 out of the turbomachine to a reheater unit, not shown in more detail. Furthermore, not shown, is the fluidic connection between the Hochdruckausström Scheme 10 and the reheater unit.
  • the medium-pressure blading 13 has guide vanes and rotor blades, not shown. The blades are hereby arranged on the rotor 5 and the guide vanes on the inner inner casing 3 and outer inner casing 4 .
  • the medium-pressure steam flowing through the medium-pressure blading 13 then flows out of a medium-pressure outflow region 14 out of the outer inner casing 4 and then flows out of the turbomachine 1 via a discharge stub 15.
  • the inner inner casing 3 and the outer inner casing 4 are arranged around the rotor 5.
  • the inner inner housing 3 is formed in the region of the high-pressure inflow region 7 and the medium-pressure inflow region 11. As in the high-pressure inflow 7 and in Medium pressure inflow area 11, the temperatures of the steam are highest, the inner inner housing 3 is made of a higher quality material.
  • the inner inner casing 3 is formed of a nickel-based alloy.
  • the inner inner casing 3 is formed of a higher grade material comprising 9-10 wt.% Chromium.
  • the outer inner housing 4 may be formed of a less high-quality material.
  • the inner outer housing may be formed from a steel having 1-2% by weight chromium.
  • the outer inner housing 4 extends at least from the Hochdruckausström Suite 10 along the axis of rotation 6 to the medium-pressure Ausström Suite 14. That means that the inner inner housing 3 is disposed in the region of the high-pressure inflow region 7 and the medium-pressure inflow region 11 within the outer inner housing 4. Between the inner inner casing 3 and the outer inner casing 4, a cooling steam space 16 is formed. This cooling steam space 16 is formed with a cooling steam flow line for flowing cooling steam.
  • the cooling steam 16 is removed at a suitable location from the medium-pressure blading 13 and can be removed, for example, to a gap 17 between the inner inner casing 3 and the outer inner casing 4. In this case, the cooling steam space 16 must be sealed to the blading 8.
  • the cooling steam could optionally be supplied via the gap 17 from the medium-pressure blading 13 or via a second gap 22 from the blading 8. The respective other side would have to be closed by a suitable first seal 23 or second seal 24.
  • the outer inner casing 4 is formed along the first flow 18 and the second flow 19.
  • the cooling steam flow line is not shown in detail in the figure.
  • the outer inner casing 4 has aharidampfausströmungs effet for the outflow of cooling steam the cooling steam space 16.
  • the inner inner housing 3 accommodates the high-pressure inflow region 7 and the medium-pressure inflow region 11, including a compensating piston 20 and guide vanity grooves not shown, up to the step which is absolutely necessary for temperature and strength reasons.
  • the inner inner housing 3 is characterized relatively small and thus cost-saving and offers a broadening of the potential suppliers because of the low tonnage.
  • the cooling steam flowing out of the cooling steam chamber 16 again leads to a good cooling effect.
  • This outflowing cooling steam can be guided, for example, through the outer inner housing 4 into an exhaust-steam space 21 or e.g. be removed by a tap.
  • the inner inner housing 3 and the outer inner housing 4 are sealed against each other by means of seals.
  • a drainage line not shown, which dissipates an accumulating condensate at a standstill or startup of the steam turbine 1 or ensures sufficient residual flow in case of failure of the tap.
  • the inner inner housing 3, the outer inner housing 4 and the outer housing 2 are pressure-bearing.

Abstract

Die Erfindung betrifft eine Strömungsmaschine umfassend einen Rotor (5) sowie ein inneres Innengehäuse (3) , ein äußeres Innengehäuse (4) und ein Außengehäuse (2), wobei die Strömungsmaschine eine erste Flut (18) und eine zur ersten Flut (18) entgegengesetzt angeordnete zweite Flut (19) für eine Hochdruck-Beschaufelung bzw. Mitteldruck-Beschaufelung aufweist, wobei das innere Innengehäuse (3) aus einem höherwertigen Material als das äußere Innengehäuse (4) gefertigt ist und lediglich die Hochdruck (7)- und Mitteldruck-Einströmungsbereiche (11) inklusive dem Ausgleichskolben (20) aufnimmt.

Description

  • Die Erfindung betrifft eine Strömungsmaschine umfassend einen um eine Rotationsachse drehbar gelagerten Rotor, ein um den Rotor angeordnetes inneres Innengehäuse und ein äußeres Innengehäuse, wobei um das innere Innengehäuse und das äußere Innengehäuse ein Außengehäuse angeordnet ist, wobei die Strömungsmaschine eine für Hochdruckdampf ausgebildete erste Flut und eine für Mitteldruckdampf ausgebildete zweite Flut aufweist, wobei die zweite Flut entgegengesetzt zur ersten Flut ausgerichtet ist.
  • Unter einer Strömungsmaschine wird beispielsweise eine Dampfturbine verstanden. Eine Dampfturbine weist üblicher Weise einen drehbar gelagerten Rotor und ein Gehäuse, das um den Rotor angeordnet ist auf. Zwischen dem Rotor und dem Innengehäuse ist ein Strömungskanal ausgebildet. Das Gehäuse in einer Dampfturbine muss mehrere Funktionen erfüllen können. Zum einen werden die Leitschaufeln im Strömungskanal am Gehäuse angeordnet und zum zweiten muss das Innengehäuse den Druck und den Temperaturen des Strömungsmediums für alle Last- und besondere Betriebsfälle standhalten. Bei einer Dampfturbine ist das Strömungsmedium Dampf. Des Weiteren muss das Gehäuse derart ausgebildet sein, dass Zu- und Abführungen, die auch als Anzapfungen bezeichnet werden, möglich sind. Eine weitere Funktion, die ein Gehäuse erfüllen muss, ist die Möglichkeit, dass ein Wellenende durch das Gehäuse durchgeführt werden kann.
  • Bei den im Betrieb auftretenden hohen Spannungen, Drücken und Temperaturen ist es erforderlich, dass die Werkstoffe geeignet ausgewählt werden sowie die Konstruktion derart gewählt ist, dass die mechanische Integrität und Funktionalität ermöglicht wird. Dafür ist es erforderlich, dass hochwertige Werkstoffe zum Einsatz kommen, insbesondere im Bereich der Einströmung und der ersten Leitschaufelnuten.
  • Für die Anwendungen bei Frischdampftemperaturen von über 650°C, wie z.B. 700°C, sind Nickel-Basis-Legierungen geeignet, da sie den bei hohen Temperaturen auftretenden Belastungen standhalten. Allerdings ist die Verwendung einer solchen Nickel-Basis-Legierung mit neuen Herausforderungen verbunden. So sind die Kosten für Nickel-Basis-Legierungen vergleichsweise hoch und außerdem ist die Fertigbarkeit von Nickel-Basis-Legierungen, z.B. durch beschränkte Gussmöglichkeit begrenzt. Dies führt dazu, dass die Verwendung von Nickel-Basis-Werkstoffen minimiert werden muss. Des Weiteren sind die Nickel-Basis-Werkstoffe schlechte Wärmeleiter. Dadurch sind die Temperaturgradienten über der Wandstärke so starr, dass Thermospannungen vergleichsweise hoch sind. Des Weiteren ist zu berücksichtigen, dass bei der Verwendung von Nickel-Basis-Werkstoffen die Temperaturdifferenz zwischen Ein- und Auslass der Dampfturbine steigt.
  • Es werden derzeit verschiedene Konzepte verfolgt, um eine Dampfturbine bereitzustellen, die für hohe Temperaturen und für hohe Drücke geeignet ist. So ist es bekannt, eine aus mehreren Teilen umfassende Innengehäusestruktur in eine Außengehäusestruktur einzuarbeiten gemäß dem Artikel Y. Tanaka et al. "Advanced Design of Mitsubishi Large Steam Turbines", Mitsubishi Heavy Industries, Power Gen Europe, 2003, Düsseldorf, May 06.-08., 2003.
  • Es ist ebenso bekannt, ein Innengehäuse aus zwei Teilen auszubilden gemäß DE 10 2006 027 237 A1 .
  • In der DE 342 1067 wird ebenfalls eine mehrkomponentige Innengehäusestruktur offenbart sowie in der DE 103 53 451 A1 .
  • In einer besonderen Ausführungsform der Strömungsmaschine sind der Hochdruck-Teil und der Mitteldruck-Teil in einem Außengehäuse untergebracht. Der Hochdruck-Teil wird mit Frischdampf beaufschlagt, der in der Regel die höchsten Dampfparameter wie Temperatur und Druck aufweist und direkt vom Dampferzeuger zur Hochdruck-Teilturbine strömt. Der aus dem Hochdruck-Teil nach Expansion ausströmende Dampf wird wiederum aus der Dampfturbine geleitet und zu einer Zwischenüberhitzereinheit eines Kessels geführt, um dort wieder auf eine höhere Temperatur, die der Frischdampftemperatur entsprechen kann, zu erhitzen. Dieser zwischenüberhitzte Dampf wird anschließend wieder in die Strömungsmaschine in den Mitteldruck-Teil geleitet und strömt anschließend durch eine Mitteldruck-Beschaufelung. Der Hochdruck-Teil und der Mitteldruck-Teil weisen hierbei entgegengesetzt angeordnete Strömungsrichtungen auf. Solche Ausführungsformen werden Reverse-Flow-Strömungsmaschinen genannt. Es sind aber auch Strömungsmaschinen bekannt, die in einer so genannten Single-Flow-Bauart gefertigt werden. In dieser Bauart ist der Hochdruck-Teil und der Mitteldruck-Teil nacheinander angeordnet und wird in derselben Strömungsrichtung durchströmt.
  • Es ist Aufgabe der Erfindung, eine weitere Möglichkeit anzubieten, eine Strömungsmaschine auszubilden.
  • Gelöst wird diese Aufgabe durch die Merkmale des Anspruchs 1. In den Unteransprüchen sind vorteilhafte Weiterbildungen angegeben.
  • Ein wesentlicher Gedanke der Erfindung ist es, eine dreischalige Dampfturbine auszubilden. Das Innengehäuse wird hierbei in ein inneres Innengehäuse und ein äußeres Innengehäuse ausgebildet. Das innere Innengehäuse ist im Bereich des Einströmbereichs angeordnet und muss daher den hohen Temperaturen und den hohen Drücken standhalten. Daher ist das innere Innengehäuse aus einem geeigneten Material, wie z.B. aus einer Nickel-Basislegierung oder aus einem höherwertigen Werkstoff wie z.B. einen Stahl, der 9 - 10 Gew.-% Chrom umfasst. Zwischen dem inneren Innengehäuse und dem Rotor ist der Strömungskanal ausgebildet. Das innere Innengehäuse weist daher Vorrichtungen wie z.B. Nuten, um darin Leitschaufeln zu tragen. Um das Innengehäuse ist ein äußeres Innengehäuse angeordnet. Wesentlich hierbei ist, dass zwischen dem inneren Innengehäuse und dem äußeren Innengehäuse ein Kühldampfraum entsteht, der mit Kühlmedium beaufschlagt wird. Das äußere Innengehäuse ist dabei derart ausgebildet, dass es in Strömungsrichtung gesehen, an das innere Innengehäuse angrenzt und eine Begrenzung des Strömungskanals darstellt, wobei auch in dem äußeren Innengehäuse Vorrichtungen wie z.B. Nuten, vorgesehen sind, um Leitschaufeln tragen zu können.
  • Das äußere Innengehäuse wird durch Dampfeinleitung in den Kühldampfraum mit einem Dampf beaufschlagt, der eine geringere Temperatur und einen geringeren Druck aufweist, so dass das Material des äußeren Innengehäuses weniger warmfest sein muss als das Material des inneren Innengehäuses. Insbesondere genügt es, wenn das äußere Innengehäuse aus einem weniger hochwertigen Werkstoff ausgebildet ist. Um das innere Innengehäuse und dem äußeren Innengehäuse ist ein Außengehäuse angeordnet.
  • Die Strömungsmaschine weist eine erste Flut auf, die mit einem Hochdruckdampf beaufschlagt wird und in einer ersten Strömungsrichtung strömt. Des Weiteren weist die Strömungsmaschine eine zweite Flut auf, die mit Mitteldruckdampf beaufschlagt wird und in einer zweiten Strömungsrichtung strömt. Die zweite Strömungsrichtung ist entgegengesetzt zur ersten Strömungsrichtung, so dass diese Strömungsmaschine in einer so genannten Reverse-Flow-Bauart ausgebildet ist. Der Hochdruck-Einströmbereich und der Mitteldruck-Einströmbereich werden von einem inneren Innengehäuse umgeben bzw. ausgebildet. Das innere Innengehäuse wird aus einem höherwertigen Material gefertigt und nimmt nur die Hochdruck- und Mitteldruck-Einströmung inklusive dem Ausgleichskolben sowie den Leitschaufelnuten bis zu der Stufe auf, die aus Temperatur- und Festigkeitsgründen unbedingt notwendig ist. Dadurch kann das innere Innengehäuse kompakt gehalten platzsparend gefertigt werden und weist darüber hinaus ein geringeres Gewicht auf.
  • In einer vorteilhaften Weiterbildung ist das äußere Innengehäuse entlang der ersten Flut und der zweiten Flut ausgebildet.
  • In einer vorteilhaften Weiterbildung ist zwischen dem inneren Innengehäuse und dem äußeren Innengehäuse ein Kühldampfraum ausgebildet. Der zwischen dem inneren Innengehäuse und dem äußeren Innengehäuse im Betrieb befindliche Kühldampf stellt gleichzeitig die Isolierung zum äußeren Innengehäuse dar, welches den Kühldampfraum und das innere Innengehäuse umschließt und den Expansionspfad hinter der Kühldampfentnahme ausbildet. Das äußere Innengehäuse befindet sich im Kontakt zu diesem Kühldampf und kann daher aus einem minderwertigeren Material als das innere Innengehäuse gefertigt bzw. ausgebildet sein. Darüber hinaus werden die Primär- und Sekundärspannungen im äußeren Innengehäuse lediglich durch die Differenz zwischen dem Dampfzustand des Dampfes im Kühldampfraum und des Mitteldruck-Abdampfes beeinflusst. Primärspannungen sind mechanische Spannungen, die in Folge von äußeren Lasten, z.B. durch Dampfdrücke, Gewichtskräfte und ähnliches entstehen. Unter Sekundärspannungen sind beispielsweise Thermospannungen zu verstehen und stellen mechanische Spannungen dar, die in Folge von nicht ausgeglichenen Temperaturfeldern oder Behinderungen der Wärmedehnungen (thermische Verzwängungen) entstehen.
  • Die Strömungsmaschine wird unter anderem im Kühldampfraum mit einer Entwässerungsleitung ausgebildet, die bei einem Stillstand oder Startvorgang ein anfallendes Kondensationswasser ableitet oder bei einem Ausfall einer Anzapfung, welche durch Dampfentnahme über Stutzen aus dem Kühlraum beispielhaft realisiert sein könnte, eine ausreichende Restbeströmung sicherstellt.
  • In einer vorteilhaften Weiterbildung ist eine Kühldampfströmungsleitung zum Zuströmen von Kühldampf in den Kühldampfraum vorgesehen. Die Kühldampfströmungsleitung ist vorteilhafter Weise strömungstechnisch mit der zweiten Flut verbunden. Das bedeutet, dass der Mitteldruck-Dampf vorwiegend in den Kühldampfraum eingeströmt wird, der ideale Dampfparameter aufweist, um das innere Innengehäuse adäquat zu kühlen.
  • In einer vorteilhaften Weiterbildung ist der Kühldampfraum mit einer Kühldampfausströmungsleitung zum Ausströmen von Kühldampf aus dem Kühldampfraum ausgebildet. Durch das im Betrieb fortwährende Ausströmen des Kühldampfes aus dem Kühldampfraum wird eine sehr gute Kühlung erwirkt, wodurch die Werkstoffauslastungen (insbesondere Primär- und Sekundärspannungen) in der Strömungsmaschine geringer werden.
  • In einer vorteilhaften Weiterbildung weist die erste Flut einen Hochdruck-Ausströmbereich und die zweite Flut einen Mitteldruck-Ausströmbereich auf, wobei das äußere Innengehäuse sich von dem Hochdruck-Ausströmbereich bis zum Mitteldruck-Ausströmbereich erstreckt. Das äußere Innengehäuse erstreckt sich daher nahezu über den gesamten Beschaufelungsbereich des Rotors, wobei das äußere Innengehäuse Vorrichtungen aufweist, um Leitschaufeln zu tragen. Allerdings wird nicht der gesamte Strömungsbereich mit Leitschaufeln im äußeren Innengehäuse ausgebildet. Im Bereich des inneren Innengehäuses, sind im äußeren Innengehäuse keine Leitschaufeln angeordnet. In diesem Bereich wird das innere Innengehäuse durch das äußere Innengehäuse ummantelt. Das äußere Innengehäuse wird hierbei aus einem Oberteil und einem Unterteil ausgebildet. Das Oberteil als auch das Unterteil sind wiederum aus einem Stück ausgebildet und erstrecken sich über die erste und zweite Flut.
  • In einer vorteilhaften Weiterbildung ist der HochdruckAusströmbereich mit einer Zwischenüberhitzerleitung verbunden. Dadurch kann der Hochdruckdampf zu einem Zwischenüberhitzer geleitet werden und von einer niedrigen Temperatur auf eine hohe Temperatur erhitzt werden.
  • Das innere Innengehäuse ist hierbei aus einem höherwertigen Werkstoff ausgebildet als das äußere Innengehäuse. Das innere Innengehäuse ist in einer ersten Ausführungsform aus einem hochchromigen Werkstoff, der 9 - 10 Gew.-% Chrom umfasst ausgebildet. In einer zweiten vorteilhaften Weiterbildung ist das Innengehäuse aus einem Nickel-Basiswerkstoff ausgebildet. Das äußere Innengehäuse ist aus einem Werkstoff, der 1 - 2 Gew.-% Chrom umfasst ausgebildet.
  • Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnung beschrieben. Diese sollen die Ausführungsbeispiele nicht maßstäblich darstellen, vielmehr ist die Zeichnung in schematisierter und/oder leicht verzerrter Form ausgeführt. Im Hinblick auf Ergänzungen der aus der Zeichnung unmittelbar erkennbaren Lehren wird hier auf den einschlägigen Stand der Technik verwiesen.
  • Im Einzelnen zeigt die Zeichnung in:
  • Figur 1
    eine Schnittdarstellung durch eine zweiflutige Dampfturbine.
  • Die in Figur 1 dargestellte Dampfturbine 1 ist eine Ausführungsform einer Strömungsmaschine. Die Dampfturbine 1 umfasst ein Außengehäuse 2, ein inneres Innengehäuse 3, ein äußeres Innengehäuse 4 sowie einen drehbar gelagerten Rotor 5 auf. Der Rotor 5 ist um eine Rotationsachse 6 drehbar gelagert. Das Außengehäuse 2 ist aus einem Oberteil und einem Unterteil ausgebildet, wobei das Oberteil oberhalb der Rotationsachse 6 und das Unterteil unterhalb der Rotationsachse 6 in der Zeichenebene dargestellt ist. Sowohl das innere Innengehäuse 3 und das äußere Innengehäuse 4 weist ebenfalls ein Oberteil und ein Unterteil auf, das wie beim Außengehäuse 2 ausgeführt, oberhalb und unterhalb der Rotationsachse 6 angeordnet ist. Somit weisen das innere Innengehäuse 3, das äußere Innengehäuse 4 und das Außengehäuse 2 jeweils eine horizontale Teilfuge auf.
  • Im Betrieb strömt ein Hochdruckdampf in einen Hochdruck-Einströmbereich 7. Anschließend strömt der Hochdruckdampf entlang einer ersten Strömungsrichtung 9 durch eine nicht näher dargestellte Beschaufelung 8, die Leitschaufeln und Laufschaufeln umfasst. Die Laufschaufeln sind hierbei auf dem Rotor 5 und die Leitschaufeln am inneren Innengehäuse 3 und äußeren Innengehäuse 4 angeordnet. Die Temperatur und der Druck des Hochdruckdampfes werden dadurch verringert. Der Hochdruckdampf strömt anschließend aus einem HochdruckAusströmbereich 10 aus der Strömungsmaschine zu einer nicht näher dargestellten Zwischenüberhitzereinheit. Des Weiteren nicht dargestellt, ist die strömungstechnische Verbindung zwischen dem Hochdruckausströmbereich 10 und der Zwischenüberhitzereinheit.
  • Nachdem der Hochdruckdampf nach der Zwischenüberhitzung wieder auf hohe Temperatur erhitzt wurde, strömt dieser Dampf als Mitteldruckdampf über einen Mitteldruck-Einströmbereich 11 entlang einer zweiten Strömungsrichtung 12 entlang einer Mitteldruck-Beschaufelung 13. Die Mitteldruckbeschaufelung 13 weist nicht näher dargestellte Leit- und Laufschaufeln auf. Die Laufschaufeln sind hierbei auf dem Rotor 5 und die Leitschaufeln am inneren Innengehäuse 3 und äußeren Innengehäuse 4 angeordnet. Der durch die MitteldruckBeschaufelung 13 strömende Mitteldruckdampf strömt anschließend aus einem Mitteldruck-Ausströmbereich 14 aus dem äußeren Innengehäuse 4 aus und strömt anschließend über ein Ausströmstutzen 15 aus der Strömungsmaschine 1 heraus. Das innere Innengehäuse 3 und das äußere Innengehäuse 4 sind um den Rotor 5 angeordnet. Um das innere Innengehäuse 3 und das äußere Innengehäuse 4 ist das Außengehäuse 2 angeordnet. Das innere Innengehäuse 3 ist im Bereich des Hochdruck-Einströmbereiches 7 und dem Mitteldruck-Einströmbereiches 11 ausgebildet. Da im Hochdruck-Einströmbereich 7 und im Mitteldruck-Einströmbereich 11 die Temperaturen des Dampfes am höchsten sind, wird das innere Innengehäuse 3 aus einem höherwertigen Material gefertigt. In einer ersten Ausführungsform wird das innere Innengehäuse 3 aus einer Nickel-Basis-Legierung ausgebildet. In einer zweiten Ausführungsform wird das innere Innengehäuse 3 aus einem höherwertigen Material, das 9 - 10 Gew.-% Chrom umfasst, ausgebildet. Das äußere Innengehäuse 4 kann aus einem weniger hochwertigen Material ausgebildet sein. In einer Ausführungsform kann das innere Außengehäuse aus einem Stahl mit 1 - 2 Gew.-% Chrom ausgebildet sein.
  • Das äußere Innengehäuse 4 erstreckt sich zumindest vom Hochdruckausströmbereich 10 entlang der Rotationsachse 6 bis zum Mitteldruck-Ausströmbereich 14. Das bedeutet, dass das innere Innengehäuse 3 im Bereich des Hochdruck-Einströmbereichs 7 und dem Mitteldruck-Einströmbereich 11 innerhalb des äußeren Innengehäuses 4 angeordnet wird. Zwischen dem inneren Innengehäuse 3 und dem äußeren Innengehäuse 4 ist ein Kühldampfraum 16 ausgebildet. Dieser Kühldampfraum 16 ist mit einer Kühldampfströmungsleitung zum Zuströmen von Kühldampf ausgebildet. Der Kühldampf 16 wird an einer geeigneten Stelle aus der Mitteldruck-Beschaufelung 13 entnommen und kann beispielsweise an einen Spalt 17 zwischen dem inneren Innengehäuse 3 und dem äußeren Innengehäuse 4 entnommen werden. Dabei muss der Kühldampfraum 16 zur Beschaufelung 8 abgedichtet werden. Der Kühldampf könnte wahlweise über den Spalt 17 aus der Mitteldruck-Beschaufelung 13 oder über einen zweiten Spalt 22 aus der Beschaufelung 8 versorgt werden. Die jeweils andere Seite müsste durch eine geeignete erste Abdichtung 23 bzw. zweite Abdichtung 24 verschlossen werden.
  • Das äußere Innengehäuse 4 ist entlang der ersten Flut 18 und der zweiten Flut 19 ausgebildet. Die Kühldampfströmungsleitung ist in der Figur nicht näher dargestellt. Das äußere Innengehäuse 4 weist eine Kühldampfausströmungsleitung zum Ausströmen von Kühldampf aus dem Kühldampfraum 16 auf. Das innere Innengehäuse 3 nimmt mit anderen Worten den Hochdruck-Einströmbereich 7 und den Mitteldruck-Einströmbereich 11 inklusive einem Ausgleichskolben 20 und nicht näher dargestellte Leitschaufelnuten bis zu der Stufe auf, die aus Temperaturund Festigkeitsgründen unbedingt notwendig ist. Das innere Innengehäuse 3 ist dadurch verhältnismäßig klein und somit kostensparend und bietet wegen der geringen Tonnage eine Verbreiterung der potentiellen Lieferanten.
  • Der aus dem Kühldampfraum 16 wieder ausströmende Kühldampf führt zu einer guten Kühlwirkung. Dieser ausströmende Kühldampf kann beispielweise durch das äußere Innengehäuse 4 in einen Abdampfraum 21 geführt oder z.B. durch eine Anzapfung abgeführt werden. Das innere Innengehäuse 3 und das äußere Innengehäuse 4 werden gegeneinander mittels Dichtungen abgedichtet. Im Kühldampfraum 16 ist eine nicht näher dargestellte Entwässerungsleitung, die bei einem Stillstand oder Startvorgang der Dampfturbine 1 ein anfallendes Kondenswasser ableitet oder bei einem Ausfall der Anzapfung eine ausreichende Restdurchströmung sicherstellt.
  • Das innere Innengehäuse 3, das äußere Innengehäuse 4 und das Außengehäuse 2 sind drucktragend ausgebildet.

Claims (12)

  1. Strömungsmaschine
    umfassend einen um eine Rotationsachse (6) drehbar gelagerten Rotor (5), ein um den Rotor (5) angeordnetes inneres Innengehäuse (3) und ein äußeres Innengehäuse (4), wobei um das innere Innengehäuse (3) und das äußere Innengehäuse (4) ein Außengehäuse (2) angeordnet ist, wobei die Strömungsmaschine eine für Hochdruckdampf ausgebildete erste Flut (18) und eine für Mitteldruckdampf ausgebildete zweite Flut (19) aufweist, wobei die zweite Flut (19) entgegengesetzt zur ersten Flut (18) ausgerichtet ist, wobei
    die erste Flut (18) einen Hochdruck-Einströmbereich (7) und die zweite Flut (19) einen Mitteldruck-Einströmbereich (11) aufweist und das innere Innengehäuse (3) um den Hochdruck-Einströmbereich (7) und den Mitteldruck-Einströmbereich (11) angeordnet ist.
  2. Strömungsmaschine nach Anspruch 1,
    wobei das äußere Innengehäuse (4) entlang der ersten Flut (18) und der zweiten Flut (19) ausgebildet ist.
  3. Strömungsmaschine nach Anspruch 1 oder 2,
    wobei zwischen dem inneren Innengehäuse (3) und dem äußeren Innengehäuse (4) ein Kühldampfraum (16) ausgebildet ist.
  4. Strömungsmaschine nach Anspruch 3,
    wobei eine Kühldampfströmungsleitung zum Zuströmen von Kühldampf in den Kühldampfraum (16) vorgesehen ist.
  5. Strömungsmaschine nach Anspruch 4,
    wobei die Kühldampfströmungsleitung strömungstechnisch mit der zweiten Flut (19) verbunden ist.
  6. Strömungsmaschine nach einem der Ansprüche 3 bis 5,
    wobei der Kühldampfraum (16) mit einer Kühldampfausströmungsleitung zum Ausströmen von Kühldampf aus dem Kühldampfraum (16) ausgebildet ist.
  7. Strömungsmaschine nach einem der vorhergehenden Ansprüche,
    wobei die erste Flut (18) einen HochdruckAusströmbereich (10) und die zweite Flut (19) einen Mitteldruck-Ausströmbereich (14) aufweist, wobei das äußere Innengehäuse (4) sich von dem HochdruckAusströmbereich (10) bis zum Mitteldruck-Ausströmbereich (14) erstreckt.
  8. Strömungsmaschine nach einem der vorhergehenden Ansprüche,
    wobei der Hochdruck-Ausströmbereich (10) mit einer Zwischenüberhitzer-Leitung verbindbar ist.
  9. Strömungsmaschine nach einem der vorhergehenden Ansprüche,
    wobei das innere Innengehäuse (3) aus einem höherwertigen Werkstoff ausgebildet ist als das äußere Innengehäuse (4).
  10. Strömungsmaschine nach Anspruch 9,
    wobei das innere Innengehäuse (3) aus einem hochchromigen Werkstoff, der 9 - 10 Gew.-% Chrom umfasst, ausgebildet ist.
  11. Strömungsmaschine nach Anspruch 9,
    wobei das innere Innengehäuse (3) aus einem Nickel-Basis-Werkstoff ausgebildet ist.
  12. Strömungsmaschine nach Anspruch 9, 10 oder 11,
    wobei das äußere Innengehäuse (4) aus einem Werkstoff, der 1 - 2 Gew.-% Chrom umfasst, ausgebildet ist.
EP09015540A 2009-12-15 2009-12-15 Dampfturbine in dreischaliger Bauweise Withdrawn EP2336506A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP09015540A EP2336506A1 (de) 2009-12-15 2009-12-15 Dampfturbine in dreischaliger Bauweise
CN201080057260.2A CN102803661B (zh) 2009-12-15 2010-12-14 三壳结构类型的汽轮机
PCT/EP2010/069576 WO2011082984A1 (de) 2009-12-15 2010-12-14 Dampfturbine in dreischaliger bauweise
JP2012543673A JP5551268B2 (ja) 2009-12-15 2010-12-14 三重構造を有している蒸気タービン
US13/515,354 US9222370B2 (en) 2009-12-15 2010-12-14 Steam turbine in a three-shelled design
EP10790445.0A EP2513432B1 (de) 2009-12-15 2010-12-14 Dampfturbine in dreischaliger Bauweise

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09015540A EP2336506A1 (de) 2009-12-15 2009-12-15 Dampfturbine in dreischaliger Bauweise

Publications (1)

Publication Number Publication Date
EP2336506A1 true EP2336506A1 (de) 2011-06-22

Family

ID=42270231

Family Applications (2)

Application Number Title Priority Date Filing Date
EP09015540A Withdrawn EP2336506A1 (de) 2009-12-15 2009-12-15 Dampfturbine in dreischaliger Bauweise
EP10790445.0A Not-in-force EP2513432B1 (de) 2009-12-15 2010-12-14 Dampfturbine in dreischaliger Bauweise

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP10790445.0A Not-in-force EP2513432B1 (de) 2009-12-15 2010-12-14 Dampfturbine in dreischaliger Bauweise

Country Status (5)

Country Link
US (1) US9222370B2 (de)
EP (2) EP2336506A1 (de)
JP (1) JP5551268B2 (de)
CN (1) CN102803661B (de)
WO (1) WO2011082984A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3421067A1 (de) 1983-06-10 1984-12-13 Hitachi, Ltd., Tokio/Tokyo Hauptdampf-einlasseinheit fuer eine dampfturbine
EP1033478A2 (de) * 1999-03-02 2000-09-06 ABB Alstom Power (Schweiz) AG Gehäuse für eine thermische Turbomaschine
JP2000282808A (ja) * 1999-03-26 2000-10-10 Toshiba Corp 蒸気タービン設備
DE10353451A1 (de) 2003-11-15 2005-06-16 Alstom Technology Ltd Dampfturbine sowie Verfahren zum Herstellen einer solchen Dampfturbine
DE102006027237A1 (de) 2005-06-14 2006-12-28 Alstom Technology Ltd. Dampfturbine
WO2007006754A1 (de) * 2005-07-14 2007-01-18 Siemens Aktiengesellschaft Kombinierte dampfturbine, dampf- oder gas- und dampf-turbinenanlage, verfahren zum betrieb einer kombinierten dampfturbine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5260311A (en) * 1975-11-12 1977-05-18 Toshiba Corp Turbine casing
JPS5932961B2 (ja) 1980-09-29 1984-08-13 日本国有鉄道 電気車の絶縁セクシヨンにおける旅客車用サ−ビス電源の瞬時停電防止方法
JPS60195304A (ja) 1984-03-19 1985-10-03 Hitachi Ltd 蒸気タ−ビンケ−シングの熱応力制御装置
US4840537A (en) * 1988-10-14 1989-06-20 Westinghouse Electric Corp. Axial flow steam turbine
JP3620167B2 (ja) * 1996-07-23 2005-02-16 富士電機システムズ株式会社 再熱式軸流蒸気タービン
EP0860511B1 (de) * 1997-01-27 2003-09-17 Mitsubishi Heavy Industries, Ltd. Hochchromhaltiger, hitzebeständiger Gussstahl und daraus hergestellter Druckbehälter
EP1559872A1 (de) 2004-01-30 2005-08-03 Siemens Aktiengesellschaft Strömungsmaschine
EP1624155A1 (de) 2004-08-02 2006-02-08 Siemens Aktiengesellschaft Dampfturbine und Verfahren zum Betrieb einer Dampfturbine
EP2187004A1 (de) * 2008-11-13 2010-05-19 Siemens Aktiengesellschaft Innengehäuse für eine Strömungsmaschine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3421067A1 (de) 1983-06-10 1984-12-13 Hitachi, Ltd., Tokio/Tokyo Hauptdampf-einlasseinheit fuer eine dampfturbine
EP1033478A2 (de) * 1999-03-02 2000-09-06 ABB Alstom Power (Schweiz) AG Gehäuse für eine thermische Turbomaschine
JP2000282808A (ja) * 1999-03-26 2000-10-10 Toshiba Corp 蒸気タービン設備
DE10353451A1 (de) 2003-11-15 2005-06-16 Alstom Technology Ltd Dampfturbine sowie Verfahren zum Herstellen einer solchen Dampfturbine
DE102006027237A1 (de) 2005-06-14 2006-12-28 Alstom Technology Ltd. Dampfturbine
WO2007006754A1 (de) * 2005-07-14 2007-01-18 Siemens Aktiengesellschaft Kombinierte dampfturbine, dampf- oder gas- und dampf-turbinenanlage, verfahren zum betrieb einer kombinierten dampfturbine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANAKA ET AL.: "Advanced Design of Mitsubishi Large Steam Turbines", 6 May 2003, MITSUBISHI HEAVY INDUSTRIES

Also Published As

Publication number Publication date
JP5551268B2 (ja) 2014-07-16
US9222370B2 (en) 2015-12-29
CN102803661B (zh) 2015-06-17
JP2013513758A (ja) 2013-04-22
EP2513432A1 (de) 2012-10-24
US20120257959A1 (en) 2012-10-11
EP2513432B1 (de) 2013-12-04
WO2011082984A1 (de) 2011-07-14
CN102803661A (zh) 2012-11-28

Similar Documents

Publication Publication Date Title
EP1735525B1 (de) Dampfturbine
DE102010046714B4 (de) Dampfturbine mit Entlastungsnut am Rotor
EP2344730B1 (de) Innengehäuse für eine strömungsmaschine
EP0873466A1 (de) Turbinenwelle einer dampfturbine mit interner kühlung
EP2396517B1 (de) Dreischalige dampfturbine
EP2601382B1 (de) Sperrschaltung bei dampfturbinen zur nassdampfabsperrung
EP2513432B1 (de) Dampfturbine in dreischaliger Bauweise
EP2112334A1 (de) Außengehäuse für eine Strömungsmaschine
EP2396518B1 (de) Dreischalige dampfturbine mit ventil
EP2487337A1 (de) Dampfturbine in dreischaliger Bauweise
EP1788191B1 (de) Dampfturbine sowie Verfahren zur Kühlung einer Dampfturbine
EP2216515A1 (de) Dreischalige Dampfturbine mit Ventil
EP3183426B1 (de) Kontrollierte kühlung von turbinenwellen
WO2009019152A1 (de) Verfahren zur herstellung eines turbinengehäuses sowie turbinengehäuse
EP2295725A1 (de) Ströhmungsmaschine mit Dampfentnahme
EP2119878A1 (de) Dampfturbine mit geteiltem Innengehäuse
EP2510195B1 (de) Innengehäuse für eine Dampfturbine
EP2423454A1 (de) Gehäuse für Strömungsmaschine sowie Verfahren zur Herstellung
WO2018166828A1 (de) Innengehäusestruktur mit kondensationskammer für eine dampfturbine
EP2840229A1 (de) Strömungsführung innerhalb einer Dampfturbinendichtung
WO2011069986A1 (de) Mehrteiliges innengehäuse für eine dampfturbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20111223