EP2332160B1 - Chambre de coupure pour disjoncteur haute tension à soufflage d'arc ameliore - Google Patents

Chambre de coupure pour disjoncteur haute tension à soufflage d'arc ameliore Download PDF

Info

Publication number
EP2332160B1
EP2332160B1 EP09818798.2A EP09818798A EP2332160B1 EP 2332160 B1 EP2332160 B1 EP 2332160B1 EP 09818798 A EP09818798 A EP 09818798A EP 2332160 B1 EP2332160 B1 EP 2332160B1
Authority
EP
European Patent Office
Prior art keywords
valve
arc
blow
piston
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09818798.2A
Other languages
German (de)
English (en)
Other versions
EP2332160A1 (fr
Inventor
Denis Dufournet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP2332160A1 publication Critical patent/EP2332160A1/fr
Application granted granted Critical
Publication of EP2332160B1 publication Critical patent/EP2332160B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/905Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism the compression volume being formed by a movable cylinder and a semi-mobile piston
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/901Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism making use of the energy of the arc or an auxiliary arc
    • H01H2033/902Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism making use of the energy of the arc or an auxiliary arc with the gases from hot space and compression volume following different paths to arc space or nozzle, i.e. the compressed gases do not pass through hot volume
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H2033/906Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism with pressure limitation in the compression volume, e.g. by valves or bleeder openings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H2033/908Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism using valves for regulating communication between, e.g. arc space, hot volume, compression volume, surrounding volume

Definitions

  • the invention relates to breaking chambers for high-voltage circuit breakers.
  • It relates to the improvement of arc blow induced by all currents of value less than or equal to the circuit breaker breaking capacity, including asymmetrical currents.
  • It relates more particularly to the optimization of the exhaust path of gases that contribute to arc extinction.
  • the main application is for high voltage circuit breakers above 52 kV and more particularly rated voltage breakers greater than or equal to 245 kV.
  • a problem to be solved is to have a sufficiently high overpressure to obtain the breaking with intermediate currents at 30%, 60%, 75% and 90% of the breaking capacity of the circuit breaker, without having excessive overpressure with 100% of the power of the circuit breaker. cut.
  • the patent FR 2,694,987 proposes a solution that was intended to limit deletion for long arc durations.
  • the overpressure limitation was made by increasing the blowing volume (V1 + V2 + VC) from a given stroke of the apparatus.
  • the solution proposed according to this document has the main disadvantage of reducing the overpressure for all the cuts made with long arc durations, including those carried out with currents low intensity with which it is not desired to reduce overpressure.
  • the patent EP 1 863 054 proposes a solution with a valve 16, 17 mounted on the blowing piston 10 which limits the overpressure to a given value.
  • this solution has the disadvantage of causing a loss of blowing gas to the outside of the blowing volume without being used for blowing the arc. This solution is not optimized.
  • the patent EP 0 783 173 proposes a solution for limiting overpressure in a volume of thermal expansion and not in the compression volume located at the rear of the valve 26. But the overpressure in the expansion volume has no effect on the displacement of the contacts and therefore the energy that must be provided by the command.
  • the patent DE 19 613 030 discloses a blow-off chamber (with a valve 20 between the thermal expansion volume 10 and the compression volume 9). In this case, there is no overpressure relief valve on the piston 8. In the case of a high current cutoff, the high pressure in the volume 10 causes the valve 20 to close. The overpressure in the volume 9 is limited by a permanent exhaust through the channel 23, 13, 14.
  • the major disadvantage of this solution lies in the fact that when the rod 1 has stopped obstructing the channel 14, the compression volume is drained permanently, including for currents of value between 10 and 30% of the breaking capacity of the circuit-breaker, in a zone 14 located downstream of the main blower channel 12, away from the root of the arc 4. As a result, the blowing performed is inefficient.
  • the patent FR 2,558,299 discloses a blowing exerted in a zone referenced 10A in figure 1 and which comes from a thermal expansion volume 9 where the rise in pressure is solely by heating and without possible mixing with compressed gas.
  • Another disadvantage is that the auto-pneumatic blowing is exerted away from the root of the arc which takes place at the point referenced 8A in figure 1 and there is no help for the increase in pressure in the volume 13 by thermal effect, the volumes 9 and 13 not communicating with each other (volumes not in hydraulic series). This type of solution has not been applied industrially because of its reduced cutting capacity.
  • the patent FR 2 576 142 proposes a solution where there is no overpressure limiter in the volume 27.
  • a motor force is supposed to increase the operating energy by increasing the pressure in the volume 32 by transmission of hot gas from the channel 20.
  • the effort provided is negligible, given the length of channel 20 to 22 in the embodiment of Figures 1 to 3 and the fact that the volume 32 increases with the displacement of the contacts. Also, the solution has not been applied.
  • the patent FR 2 821 482 discloses a blow-off chamber with a valve between the thermal expansion volume 4 and the compression volume 5.
  • the proposed valve is not a limiter 9.
  • the overpressure is very high in the volume 4 (cutting of strong currents)
  • the movable part of the valve 15 opens and the volume 5 is drained through the channel 13 and downstream of the collar. nozzle 3A. Draining is therefore far from the root of the arc taking place at the end of moving arc contact 2, and is therefore not effective for breaking the current.
  • the emptying envisaged in this document can therefore be used only for the evacuation of hot gases in the diverging nozzle downstream of the neck 3A.
  • the patent US 4,486,632 proposes a solution where there is no limitation of overpressure in the compression volume 8.
  • the heating of the gas in the thermal expansion volumes 6, 7 is supposed to give a motor force to help the maneuver by pushing on the workpiece 15, but this effect is limited because the volume 7 increases during the maneuver, which tends to reduce the motor overpressure. The reduction of maneuvering forces is therefore limited.
  • the volumes of thermal expansion 6, 7 and compression 8 do not communicate with each other and are therefore in parallel and not in series, just as in the patent FR 2,558,299 .
  • the object of the invention is then to propose a solution which overcomes the disadvantages of the prior art and which proposes a breaking chamber whose arc blowing is effective for symmetrical or asymmetrical currents, whatever their relative value by relative to the breaking power of the current, and whose operating energy of the mobile part remains limited.
  • the invention relates to a breaking chamber for high-voltage circuit breaker, intended to cut all currents of value less than or equal to the short circuit breaking power of the circuit breaker, including the asymmetrical currents, the chamber comprising two pairs of contacts each comprising an arc contact and adapted to separate from each other during an arc-breaking, an insulating arc-blowing nozzle comprising a neck, the arc-blowing nozzle being integral with a pair of contacts constituting a mobile assembly, the breaking chamber comprising an additional insulating element integral with the arc contact itself secured to the nozzle and arranged between the nozzle portion upstream of the neck and the arc contact so as to delimit two channels, the channel delimited between the nozzle and the additional insulating element continuously opening to a cavity of variable volume, the volume of the cavity being variable under the action of n fixed blow piston, the blow piston being pierced with a through hole adapted to be closed by a valve.
  • the calibration of the valve makes it possible to close the hole when the pressure exerted in the cavity is lower than a predetermined value, the hole being opening in the channel delimited between the insulating element and the arc contact, when the overpressure exerted in the cavity is greater than the predetermined value, the valve setting being made so as to maintain a sufficiently high overpressure in the cavity for the entire range of currents to be cut.
  • a valve is implanted on the blowing piston so that the gas evacuated by the valve is used integrally for arc blowing.
  • a communication is established between a volume located downstream of the valve and a portion of the arc between the moving arc contact and an element of insulating material which thus delimits this portion of arc and channels the gas of this additional blowing.
  • the additional blowing according to the invention and effective because performed near the arc root initiated on the moving arc contact.
  • a breaking chamber according to the invention can thus be of the self-blowing type or of the self-blowing type.
  • a blow-off chamber of the self-inflating type is characterized in that during the opening operation, the circuit-breaker itself produces the compression of the gas necessary for blowing the arc.
  • the relative displacement of the blowing cylinder with respect to the fixed piston creates an overpressure in the cylinder which evacuates inside the nozzle and cools the arc, thereby extinguishing it.
  • Circuit breakers (blow-off chambers) of the self-blow type are characterized by the high use of arc energy for breaking: blow-molding by self-blow is largely replaced by self-pneumatic blow-molding for breaking strong currents .
  • the cutting of the weak currents is always obtained by a self-pneumatic blowing, the energy of the arc not being sufficient to contribute to the blowing.
  • the opening of the valve according to the invention is directly caused when the overpressure in the blast volume due to both the compression and the heating of the gas is greater than a determined value.
  • the cavity of variable volume also constitutes a thermal expansion volume because the product arc comes to bring its energy directly to the cavity and therefore, the blowing piston is directly in physical contact with this thermal overpressure.
  • the calibration of the valve is such that its opening, placing the hole in communication with the channel delimited between the insulating element and the arc contact, is for currents whose value is greater than or equal to 90% of the power of the cut.
  • the calibration of the valve is such that its opening placing the hole in communication with the channel delimited between the insulating element and the arc contact is effected for currents whose value is greater than or equal to 30% of the breaking capacity.
  • the additional blowing via the opening hole of the piston is advantageously obtained with a percentage of fault current (expressed with respect to the breaking capacity in short-circuit) which is advantageously 90% with a symmetrical current, but depending on the application considered a lower percentage can be interesting. It is estimated that it is from such a value of 90% of the arc currents with respect to the breaking capacity, that it is essential for most high-voltage circuit breakers greater than 52 kV, to reduce the maneuvering energy. It is estimated that it is from such a value of 90% of the arc currents with respect to the breaking capacity, that it is essential for most high-voltage circuit breakers greater than 52 kV, to reduce the maneuvering energy.
  • the valve is constituted by a valve mounted in the piston.
  • the blowing piston comprises according to a preferred method of construction two parallel partitions spaced apart from each other, connected together by a tubular portion and between which is mounted the valve whose seat is constituted by a through hole pierced in the partition downstream and whose one end is attached to one end of a compression spring whose other end bears against the upstream partition, the communication with the channel delimited between the insulating element and the arcing contact being carried out by a another hole opening pierced in the tubular portion of the piston and a light formed in a portion integral with the arc contact and in continuity with the additional insulating element.
  • the upstream and downstream partitions each comprise a valve whose opening allows the flow of gases upstream of the upstream partition towards downstream of the downstream partition and thus, the approximation of the pairs of contacts during a closing operation of the circuit breaker.
  • the invention also relates to a high-voltage circuit breaker greater than 52 kV and more particularly greater than 170 kV, up to 420 kV, comprising a breaking chamber as defined above.
  • downstream and upstream respectively designate the left and the right on the Figures 3A , 3B and 4 .
  • the breaking chamber according to the invention 1 comprises a movable arc contact 2 constituted by a metal tube and a fixed metal arc contact rod 3 of complementary shapes.
  • the movable arc contact 2 is integral with a blast nozzle 4 and an additional insulating element forming a cover 6. More precisely, the cover 6 is fastened in downstream continuity with a tubular portion 20 integral with the movable contact 2.
  • the end of the insulating cover 60 has a complementary external profile of the inside 400 of the nozzle 4 and an internal profile complementary to that of the end 21 of the movable contact.
  • the nozzle 4 comprises downstream of its interior 400, a neck 40 and a divergent 41 in downstream continuity of the neck 40.
  • the nozzle 4 comprises in its upstream portion a tubular portion 42 defining with the upstream portion of the cap 6 and the tubular portion 20 with which it is fixed a cylindrical annular cavity 5.
  • the schematic tubular portion 42 is part of the main contact not shown.
  • the arrangement of the insulating cover 6 with respect to the nozzle 4 and to the functional part 21 of the fixed contact and its tubular part 20 to which said insulating cover 6 is fixed defines two channels 70, 71.
  • One of the channels 70 is in direct communication with the cylindrical annular cavity 5.
  • the other channel 71 opens downstream in a zone Z bounded respectively by the end 60 of the insulating cover 6 and the end 21 of the moving contact 2 and upstream in a light 200 made in the part tubular 20 of the movable contact 2.
  • the cylindrical annular cavity 5 has a variable volume under the action of a gas blowing piston 8.
  • This piston 8 is mounted without clearance between the tubular portion 42 of the nozzle 4 and the tubular portion 20 of the movable contact 2. More exactly, on its outer periphery are attached gaskets 800 which are further adapted to assist the sliding of the movable assembly 2, 4, 6 on the piston 8.
  • This piston 8 essentially comprises two partitions 80, 81 parallel to each other and interconnected by means of a tubular connecting partition 82 which is adjacent and parallel to the tubular portion 20 of the fixed contact 2.
  • the downstream partition 81 comprises a through hole 810.
  • the connecting partition 82 also includes a through hole 820.
  • These three partitions 80, 81, 82 are integral with a main tubular portion 83 whose function is to fix at a precise distance the piston 8 with respect to the translational movement stroke produced by the moving assembly consisting of the nozzle 4 , the insulating cover 6 and the fixed contact 2. More specifically, the fixing of the piston 8 and the translational travel of the movable assembly 2, 4, 6 are determined so that over the entire end of the opening maneuver the hole opening 820 practiced in the intermediate connecting wall 82 is opposite the light 200 made in the tubular portion 20 of the fixed contact 2.
  • the end of maneuver corresponds to the passage of the end 30 of the rod of fixed arc contact 3 of a position in which it is in the nozzle neck 40 at a position in which it has left the neck 40 of the nozzle 4 and reaches the downstream part (in the direction of the gas flow) of the nozzle divergent 41, as shown on the Figures 3A and 3B .
  • the through hole 820 is opposite the downstream end portion of the light 200.
  • a plate-spring system which constitutes the movable part 90 of a valve 9. More specifically, a compression spring 900 has an end 9000 fixed on the inner wall of the upstream partition 80 and the other end 9001 attached to a plate 910 of transverse dimensions greater than the width of the through hole 810 formed in the downstream partition 81. Depending on the gas pressure prevailing in the cavity 5 and the setting made on the spring, the plate 910 closes or not the opening hole 810 which constitutes the seat portion of the valve 9.
  • the setting of the spring according to the invention is made such that the opening of the hole 810 and therefore the passage of the gases in the space between the two Piston bulkheads 80, 81 occur when the overpressure level is reached by a current of greater value equal to about 90% of the breaker breaking capacity.
  • a ball-type valve 84a, 84b is mounted in each of the upstream and downstream diaphragms 81 of the piston 8. As explained below, these valves 84a, 8b remain closed during any opening operation of the circuit breaker and serve only 'at closing for allow the passage of insulating gas from the upstream cavity to the blowing cavity 5.
  • the embodiment illustrated in figure 4 corresponds to a blow-off chamber of the self-blowing type according to the invention: the chamber illustrated according to the same way reproduces the same elements illustrated in FIG. figure 3 and detailed above and further includes the following.
  • a wall 51 is fixed between the tubular portion 42 of the nozzle 4 and the tubular portion 20 of the movable contact 2. This fixed wall 51 is downstream of the blowing piston 8.
  • an additional valve 510 of ball type allowing the passage of gas from the cavity of variable volume 5 in the thermal expansion volume 50.
  • a check valve (or otherwise unidirectional) 2001 is mounted in the channel 71 immediately downstream of the light 200.
  • valve 9 can not open ( figure 3A ).
  • the blowing of the gases is carried out as in the prior art shown in FIG. figure 1 , that is to say with a self-pneumatic blowing only through the channel 70 from the cavity 5.
  • valve 9 opens, which causes the escape of a portion of the compressed gases through the hole 820, the light 200 then the channel 71 as shown by the arrows on the figure 3B .
  • the setting of the spring and the relative dimensions of the hole opening 810 with respect to the blowing cavity 5 make it possible to maintain a sufficient excess pressure in said cavity 5.
  • the solution according to the invention has a significant advantage for circuit breakers with an auto-pneumatic chamber, in particular for those of the type with high breaking power e.g. 63 kA. Indeed, the overpressures breaking asymmetric currents in this type of circuit breakers are such that a solution must be found to use a hydraulic cylinder energy / acceptable price.
  • the valve 9 can not open and the additional valve 510 opens under the effect of the compressed gas in the cavity 5 by the piston.
  • the blowing of the gases is carried out as in the prior art shown in FIG. figure 1 , that is to say with a self-pneumatic blowing only through the channel 70 from the cavity 5 via the volume 50. In other words, the thermal heating in the volume 50 is insufficient to cause the closing of additional valve 510 on the fixed wall 51.
  • the piston 8, whose opening hole 810 is closed compresses the gas volume of the cavity 5 which passes into the volume 50. The blowing of the arc is thus achieved by the compressed gas volumes present on either side of the fixed wall via the channel between the nozzle and the insulating cover 6.
  • the thermal heating in the thermal expansion volume 50 causes the closing of the additional valve 510 on the fixed wall 51, while the clape 9 opens when the pressure created by compression in the cavity 5 is sufficient to overcome the force of the spring 900.
  • the inventors have identified a potential risk when breaking strong currents: hot gas can go up in the channel 71 and in the light 200, raise the pressure in the volume 900, close the valve 910. As seen previously, there is an overpressure by thermal expansion of the gases in the fixed volume 50, causing the closing of the valve 510. There is then a risk during the opening maneuver compression of the volume in the cavity 5 without possible evacuation of the gas and therefore very slow movement, which can lead to failure of the cut.
  • the unidirectional valve mounted in the channel 71 prevents the rise of hot gases in the volume 900 and allows normal operation: the emptying takes place from the volume of compression of the cavity 5 in the volume 900 and the blowing the arc is possible through light 200 and channel 71 when the current is in the vicinity of its zero crossing (a time interval beginning a little before the zero crossing and then during the voltage recovery phase).
  • the setting of the spring and the relative dimensions of the hole opening 810 with respect to the blowing cavity 5 make it possible to maintain a sufficient excess pressure in said cavity 5.
  • the solution according to the invention is thus viable because it can be applied to any chamber of self-blowing cut, with the advantage of not producing a deliberate loss of compressed gas.

Landscapes

  • Circuit Breakers (AREA)

Description

    DOMAINE TECHNIQUE
  • L'invention concerne les chambres de coupure pour disjoncteur à haute tension.
  • Elle concerne l'amélioration du soufflage d'arc induit par tous les courants de valeur inférieure ou égale au pouvoir de coupure en court-circuit du disjoncteur, y compris les courants asymétriques.
  • Elle a trait plus particulièrement à l'optimisation du parcours d'échappement des gaz qui contribuent à l'extinction d'arc.
  • L'application principale vise les disjoncteurs à haute tension supérieure à 52 kV et plus particulièrement les disjoncteurs de tension assignée supérieure ou égale à 245 kV.
  • ART ANTÉRIEUR
  • Les figures 1A à 1C représentent en vue de coupe longitudinale une chambre de coupure 1 d'un disjoncteur à haute tension selon l'état de l'art de type à soufflage auto-pneumatique, respectivement :
    • dans la position de fermeture des contacts,
    • dans une position intermédiaire en début de manoeuvre d'ouverture dans laquelle le contact d'arc mobile 2 commence à se séparer de la tige de contact d'arc 3 fixe,
    • dans la position extrême d'ouverture dans laquelle le gaz a été comprimé et chauffé par l'énergie d'arc et le soufflage par la buse 4 a permis de refroidir l'arc au passage par zéro et ainsi d'obtenir la coupure du courant de court-circuit.
  • Lorsqu'un courant de forte intensité, et en particulier un courant dit asymétrique doit être interrompu par ce type de disjoncteur à soufflage auto-pneumatique, la pression dans le cylindre de soufflage 5 est susceptible d'atteindre des valeurs extrêmement élevées car la montée en pression augmente fortement par la conjonction de la compression du gaz (le volume de compression 5 diminue) et du chauffage du gaz par l'arc produit.
  • On a représenté en figure 2 pour un disjoncteur comme représenté en figures 1A à 1C, les différentes courbes de variation de pression ΔP fonction de la durée d'ouverture des contacts T, chaque courbe étant représentative d'un type de courant de court-circuit à couper par le disjoncteur. Plus exactement :
    • la courbe C1 montre l'augmentation de pression ayant lieu à vide dans le disjoncteur, c'est-à-dire sans courant présent, cette courbe c1 représentant la valeur de référence avec une ΔP maximale égale à 1,
    • la courbe C2 montre l'augmentation de pression ayant lieu pour un courant de valeur égale à 30 % du pouvoir de coupure du disjoncteur,
    • la courbe C3 montre l'augmentation de pression ayant lieu pour un courant symétrique de valeur égale à 100 % du pouvoir de coupure du disjoncteur,
    • la courbe C4 montre l'augmentation de pression ayant lieu pour un courant asymétrique de valeur égale à 100 % du pouvoir de coupure du disjoncteur.
  • On voit donc à la lecture de ces courbes que :
    • la pression maximale est atteinte lorsqu'un courant asymétrique de valeur égale à 100 % de la valeur du pouvoir de coupure du disjoncteur est atteinte (sommet de la courbe C4),
    • il y a, dans l'exemple montré, un facteur d'environ 4 entre la pression maximale atteinte par un courant asymétrique de valeur égale à 100 % de la valeur du pouvoir de coupure du disjoncteur est atteinte (sommet de la courbe C4) et la pression maximale à vide (sommet de la courbe C1),
    • le type de courant (symétrique ou asymétrique) a un impact important sur l'augmentation de pression ΔP : en l'espèce la pression maximale du courant asymétrique (sommet de la courbe C4) est environ égale à 4/3 de la pression maximale du courant symétrique (sommet de la courbe C3).
  • Or, si la pression atteinte est excessive et devient supérieure à l'effort moteur délivré par la commande pour ouvrir le disjoncteur, le mouvement de la partie mobile de la chambre de coupure ralentit et peut même s'inverser. La capacité de coupure du disjoncteur est alors diminuée car le soufflage est alors réduit du fait du ralentissement du mouvement de la partie mobile.
  • Un problème à résoudre est d'avoir une surpression suffisamment élevée pour obtenir la coupure avec des courants intermédiaires à 30 %, 60 %, 75 % et 90 % du pouvoir de coupure du disjoncteur, sans avoir une surpression excessive avec 100 % du pouvoir de coupure.
  • Ainsi, pour maintenir la capacité de coupure à une valeur élevée quelle que soit l'intensité du courant, il est nécessaire de limiter la surpression à une valeur acceptable lorsque le disjoncteur coupe un courant égal à 100 % de son pouvoir de coupure, compatible avec l'effort délivré par la commande, et faire en sorte que tout le gaz contenu dans le volume de soufflage soit effectivement utilisé pour le soufflage de l'arc, afin d'avoir une solution optimisée, sans perte de gaz.
  • Différentes solutions d'écoulement du volume de soufflage d'arc ont été envisagées précédemment.
  • Le brevet FR 2 694 987 propose une solution qui avait pour but de limiter la suppression pour les longues durées d'arc. La limitation de surpression était faite en augmentant le volume de soufflage (V1+V2+VC) à partir d'une course donnée de l'appareil. La solution proposée selon ce document a pour inconvénient principal de diminuer la surpression pour toutes les coupures effectuées avec des durées d'arc longues, y compris celles effectuées avec des courants de faible intensité avec lesquels on ne souhaite pas de réduction de surpression.
  • Le brevet EP 1 863 054 propose une solution avec un clapet 16, 17 monté sur le piston de soufflage 10 qui permet de limiter la surpression à une valeur donnée. Lorsque le clapet 16, 17 s'ouvre, cette solution a pour inconvénient de provoquer une perte de gaz de soufflage vers l'extérieur du volume de soufflage sans être utilisé pour le soufflage de l'arc. Cette solution n'est donc pas optimisée.
  • Le brevet EP 0 783 173 propose une solution de limitation de surpression dans un volume d'expansion thermique et non pas dans le volume de compression situé à l'arrière du clapet 26. Mais la surpression dans le volume d'expansion est sans effet sur le déplacement des contacts et donc l'énergie qui doit être fournie par la commande.
  • Le brevet DE 19 613 030 divulgue une chambre de coupure à auto soufflage (avec un clapet 20 entre le volume d'expansion thermique 10 et le volume de compression 9). Il n'y a pas dans ce cas de clapet limiteur de surpression sur le piston 8. Dans le cas d'une coupure de fort courant, la surpression élevée dans le volume 10 entraîne la fermeture du clapet 20. La surpression dans le volume 9 est limitée par un échappement permanent à travers le canal 23, 13, 14. L'inconvénient majeur de cette solution réside dans le fait que lorsque la tige 1 a cessé d'obstruer le canal 14, le volume de compression se vidange en permanence, y compris pour des courants de valeur comprise entre 10 et 30 % du pouvoir de coupure du disjoncteur, dans une zone 14 située en aval du canal de soufflage principal 12, loin de la racine de l'arc 4. En conséquence, le soufflage réalisé est peu efficace.
  • Le brevet FR 2 558 299 divulgue un soufflage exercé dans une zone référencée 10A en figure 1 et qui provient d'un volume d'expansion thermique 9 où la montée en pression se fait uniquement par chauffage et sans mélange possible avec du gaz comprimé. Un autre inconvénient est que le soufflage auto-pneumatique est exercé loin de la racine de l'arc qui a lieu au point référencé 8A en figure 1 et il n'y a pas d'aide à la montée en pression dans le volume 13 par effet thermique, les volumes 9 et 13 ne communiquant pas entre eux (volumes non en série hydraulique). Ce type de solution n'a pas été appliqué industriellement du fait de ses capacités de coupure réduites.
  • Le brevet FR 2 576 142 propose une solution où il n'y a pas de limiteur de surpression dans le volume 27. Un effort moteur est censé augmenter l'énergie de manoeuvre en augmentant la pression dans le volume 32 par transmission de gaz chauds provenant du canal 20. En pratique, l'effort fourni est négligeable, compte tenu de la longueur du canal 20 à 22 dans le mode de réalisation des figures 1 à 3 et du fait que le volume 32 augmente avec le déplacement des contacts. Aussi, la solution n'a pas été appliquée.
  • Le brevet FR 2 821 482 divulgue une chambre de coupure à auto-soufflage avec un clapet entre le volume d'expansion thermique 4 et le volume de compression 5. Le clapet proposé n'est pas un limiteur de surpression sur le piston 9. Lorsque la surpression est très élevée dans le volume 4 (coupure de forts courants), la partie mobile du clapet 15 s'ouvre et le volume 5 se vidange à travers le canal 13 et en aval du col de buse 3A. La vidange se fait donc loin de la racine de l'arc ayant lieu en extrémité de contact d'arc mobile 2, et n'est donc pas efficace pour la coupure du courant. La vidange envisagée dans ce document ne peut donc servir uniquement qu'à l'évacuation des gaz chauds dans le divergent de la buse en aval du col 3A.
  • Le brevet US 4 486 632 propose une solution où il n'y a pas de limitation de surpression dans le volume de compression 8. Le chauffage du gaz dans les volumes d'expansion thermique 6, 7 est censé donner un effort moteur pour aider la manoeuvre en poussant sur la pièce 15, mais cet effet est limité car le volume 7 augmente pendant la manoeuvre, ce qui tend à réduire la surpression motrice. La réduction des efforts de manoeuvre est donc limitée. Par ailleurs, les volumes d'expansion thermique 6, 7 et de compression 8 ne communiquent pas entre eux et sont donc en parallèle et non en série, tout comme dans le brevet FR 2 558 299 .
  • Le but de l'invention est alors de proposer une solution qui pallie les inconvénients de l'art antérieur et qui propose une chambre de coupure dont le soufflage d'arc est efficace pour les courants symétrique ou asymétrique, quelle que soit leur valeur relative par rapport au pouvoir de coupure du courant, et dont l'énergie de manoeuvre de la partie mobile reste limitée.
  • EXPOSÉ DE L'INVENTION
  • A cet effet, l'invention concerne une chambre de coupure pour disjoncteur à haute tension, destinée à couper tous les courants de valeur inférieure ou égale au pouvoir de coupure en court-circuit du disjoncteur, y compris les courants asymétriques, la chambre comprenant deux paires de contacts comprenant chacune un contact d'arc et adaptées pour se séparer l'une de l'autre lors d'une coupure d'arc, une buse de soufflage d'arc isolante comprenant un col, la buse de soufflage d'arc étant solidaire d'une paire de contacts en constituant un ensemble mobile, la chambre de coupure comprenant un élément isolant supplémentaire solidaire du contact d'arc lui-même solidaire de la buse et agencé entre la partie de la buse en amont du col et le contact d'arc de sorte à délimiter deux canaux, le canal délimité entre la buse et l'élément isolant supplémentaire débouchant en permanence vers une cavité de volume variable, le volume de la cavité étant variable sous l'action d'un piston de soufflage fixe, le piston de soufflage étant percé d'un trou débouchant adapté pour être obturé par une valve.
  • Selon l'invention, le tarage de la valve permet d'obturer le trou lorsque la surpression exercée dans la cavité est inférieure à une valeur prédéterminée, le trou étant débouchant dans le canal délimité entre l'élément isolant et le contact d'arc, lorsque la surpression exercée dans la cavité est supérieure à la valeur prédéterminée, le tarage de valve étant réalisé de manière à conserver une surpression suffisamment élevée dans la cavité pour toute la gamme des courants à couper.
  • Ainsi, selon l'invention, on implante une vanne sur le piston de soufflage de telle sorte que le gaz évacué par la vanne sert intégralement au soufflage d'arc.
  • Pour cela, on établit une communication entre un volume situé en aval de la vanne et une portion de l'arc entre le contact d'arc mobile et un élément en matériau isolant qui délimite ainsi cette portion d'arc et canalise le gaz de ce soufflage additionnel. Le soufflage additionnel selon l'invention et efficace car effectué près de la racine d'arc amorcé sur le contact d'arc mobile.
  • En d'autre termes, on réalise un compromis entre l'énergie de manoeuvre à déployer pour toutes les valeurs de courant de court-circuit qu'il soit symétrique ou asymétrique et l'efficacité du soufflage d'arc qui se produit à la coupure : en soufflant l'arc à la racine par une partie du volume d'expansion thermique (lorsque la chambre de coupure est de type à soufflage auto pneumatique) ou par le volume de compression (lorsque la chambre de coupure est de type à auto soufflage) pour des arcs de courant de valeur supérieure à environ le pourcentage donné de la valeur de coupure du disjoncteur.
  • Une chambre de coupure selon l'invention peut être ainsi de type à soufflage auto pneumatique ou de type à auto soufflage.
  • Comme il est bien connu de l'homme de l'art, spécialiste des disjoncteurs haute ou moyenne tension, une chambre de coupure de type à soufflage auto pneumatique se caractérise par la fait que pendant la manoeuvre d'ouverture, le disjoncteur produit lui-même la compression du gaz nécessaire au soufflage de l'arc. Le déplacement relatif du cylindre de soufflage par rapport au piston fixe crée une surpression dans le cylindre qui s'évacue à l'intérieur de la buse et refroidit l'arc, permettant ainsi son extinction.
  • Les disjoncteurs (chambres de coupure) de type à auto soufflage sont caractérisés par l'utilisation importante de l'énergie d'arc pour la coupure: le soufflage par auto soufflage est substitué en grande partie au soufflage auto pneumatique pour la coupure des forts courants. La coupure des courants faibles est toujours obtenue par un soufflage auto pneumatique, l'énergie de l'arc n'étant pas suffisante pour contribuer au soufflage.
  • Ainsi, lorsque la chambre de coupure est de type à soufflage auto pneumatique, l'ouverture de la valve selon l'invention est provoquée directement lorsque la surpression dans le volume de soufflage due à la fois à la compression et à l'échauffement du gaz est supérieure à une valeur déterminée. En effet, dans ce mode de réalisation, la cavité de volume variable (volume de soufflage) constitue aussi un volume d'expansion thermique car l'arc produit vient apporter son énergie directement à la cavité et donc, le piston de soufflage est directement en contact physique avec cette surpression thermique.
  • De préférence, lorsque la chambre de coupure est de type à soufflage auto pneumatique, le tarage de la valve est tel que son ouverture, mettant en communication le trou avec le canal délimité entre l'élément isolant et le contact d'arc, s'effectue pour des courants dont la valeur est supérieure ou égale à 90% du pouvoir de coupure.
  • De préférence, lorsque la chambre de coupure est de type à auto soufflage, le tarage de la valve est tel que son ouverture mettant en communication le trou avec le canal délimité entre l'élément isolant et le contact d'arc s'effectue pour des courants dont la valeur est supérieure ou égale à 30% du pouvoir de coupure.
  • Une chambre de coupure selon l'invention de type à auto soufflage, comprend avantageusement:
    • une paroi fixe agencée entre le canal délimité entre la buse et l'élément isolant supplémentaire et le piston de soufflage, la paroi fixe délimitant ainsi un volume d'expansion thermique, et la cavité de volume variable étant ainsi délimitée entre le piston et la paroi fixe d'expansion thermique ;
    • une valve supplémentaire montée sur la paroi fixe de type à bille et permettant le passage de gaz de la cavité de volume variable dans le volume d'expansion thermique.
  • Pour éviter la remontée des gaz chauds produits dans une zone à proximité du contact d'arc de l'ensemble mobile, pendant la coupure de forts courants, on peut avantageusement prévoir un clapet anti-retour monté dans le canal délimité entre l'élément isolant et le contact d'arc.
  • Lorsque la chambre de coupure est de type à auto-soufflage, l'ouverture de la valve est provoquée indirectement en quelque sorte par suite de l'échauffement du gaz contenu dans le volume d'expansion thermique. En effet, dans ce mode de réalisation, il est prévu un volume fixe d'expansion thermique sur lequel débouche le canal entre la buse et l'élément isolant supplémentaire, ce volume fixe d'expansion thermique étant séparé de la cavité de volume variable par une paroi fixe dans laquelle est montée une valve supplémentaire mais avec un montage opposé à celui de la valve adaptée pour obturer le trou débouchant dans le piston de soufflage. Ainsi, lorsque l'énergie de l'arc est faible, l'échauffement thermique est insuffisant pour provoquer la fermeture de valve supplémentaire sur la paroi fixe. Le piston, dont le trou débouchant est obturé, comprime le volume de gaz de la cavité qui passe dans le volume d'expansion thermique. Le soufflage de l'arc est ainsi réalisé par les volumes de gaz comprimé présents de part et d'autre de la paroi fixe via le canal entre la buse et l'élément isolant supplémentaire. Lorsque l'énergie de l'arc est élevée, l'échauffement thermique dans le volume d'expansion thermique provoque la fermeture de la valve supplémentaire sur la paroi fixe. Le soufflage est alors réalisé en combinaison et en deux zones distinctes:
    • la surpression créée dans le volume d'expansion thermique réalise un soufflage via le canal entre la buse et l'élément isolant supplémentaire,
    • la compression créée dans la cavité par le piston réalise un soufflage additionnel à la racine d'arc sur le contact d'arc fixe via le trou débouchant du piston et le canal entre l'élément isolant supplémentaire et ledit contact d'arc fixe.
  • Comme vu ci-dessus, dans le cas de disjoncteur auto pneumatique, le soufflage additionnel via le trou débouchant du piston est obtenu avantageusement avec un pourcentage de courant de défaut (exprimé par rapport au pouvoir de coupure en court-circuit) qui est avantageusement de 90 % avec un courant symétrique, mais selon l'application considérée un pourcentage inférieur peut s'avérer intéressant. On estime en effet que c'est à partir d'une telle valeur de 90 % des courants d'arc par rapport au pouvoir de coupure, qu'il s'avère essentiel pour la plupart des disjoncteurs à haute tension supérieure à 52 kV, de réduire l'énergie de manoeuvre. On estime en effet que c'est à partir d'une telle valeur de 90 % des courants d'arc par rapport au pouvoir de coupure, qu'il s'avère essentiel pour la plupart des disjoncteurs à haute tension supérieure à 52 kV, de réduire l'énergie de manoeuvre. Il y a, selon l'invention, une préférence pour limiter la surpression légèrement pour des courants légèrement au dessus de 90 % car, selon les essais normalisés par la CEI, il est prévu une condition de coupure très contraignante avec un courant symétrique de valeur égale à 90 % du pouvoir de coupure. La séquence d'essais s'appelle le défaut en ligne L90 dans la norme de disjoncteurs à haute tension CEI 62271-100. Il faut donc éviter de limiter la surpression en dessous de cette valeur de courant.
  • Comme vu ci-dessus également, dans le cas de disjoncteurs à auto soufflage, l'ouverture de la valve et le soufflage additionnel s'effectuent pour des courants supérieurs à 30% du pouvoir de coupure.
  • Bien entendu, l'homme de l'art pourra déterminer le pourcentage par rapport à la valeur du pouvoir de coupure en fonction des essais normalisés par la CEI qui sont applicables au disjoncteur à haute tension considéré.
  • Selon un mode de construction avantageux, la valve est constituée par une soupape montée dans le piston.
  • Le piston de soufflage comprend selon un mode de construction préféré deux cloisons parallèles espacées l'une de l'autre, reliées entre elles par une portion tubulaire et entre lesquelles est montée la soupape dont le siège est constitué par un trou débouchant percé dans la cloison aval et dont une extrémité est fixée à une extrémité d'un ressort de compression dont l'autre extrémité est en appui contre la cloison amont, la communication avec le canal délimité entre l'élément isolant et le contact d'arc étant réalisée par un autre trou débouchant percé dans la portion tubulaire du piston et une lumière réalisée dans une portion solidaire du contact d'arc et en continuité de l'élément isolant supplémentaire.
  • De préférence, les cloisons amont et aval comprennent chacune une valve dont l'ouverture permet l'écoulement des gaz en amont de la cloison amont vers l'aval de la cloison aval et donc, le rapprochement des paires de contacts lors d'une manoeuvre de fermeture du disjoncteur.
  • Il est possible de prévoir des moyens d'entraînement dans la chambre de coupure qui permettent de rendre mobiles les deux paires de contacts sont mobiles, l'invention est ainsi applicable aux chambres dites à double mouvement.
  • L'invention concerne aussi un disjoncteur à haute tension supérieure à 52 kV et plus particulièrement supérieure à 170 kV, jusqu'à 420 kV, comprenant une chambre de coupure telle que définie précédemment.
  • BRÈVE DESCRIPTION DES DESSINS
  • D'autres avantages et caractéristiques ressortiront mieux à la lecture de la description détaillée d'un exemple faite en référence aux figures suivantes dans lesquelles :
    • les figures 1A à 1C montrent schématiquement en vue de coupe longitudinale et partielle une chambre à soufflage auto-pneumatique selon l'état de l'art dans différentes positions des contacts,
    • la figure 2 montre différentes courbes de variation de pression ΔP fonction de la durée d'ouverture des contacts T, chaque courbe étant représentative d'un type de courant de court-circuit à couper par le disjoncteur selon les figures 1A à 1C,
    • les figures 3A et 3B montrent schématiquement en vue de coupe longitudinale et partielle une chambre de coupure à soufflage auto pneumatique d'un disjoncteur selon l'invention dans une position de fin d'ouverture pour une coupure d'arc de valeur respectivement inférieure à environ 90 % et supérieure à environ 90 % du pouvoir de coupure,
    • la figure 4 montre schématiquement en vue de coupe longitudinale et partielle une chambre de coupure à auto soufflage d'un disjoncteur selon l'invention dans une position d'ouverture pour une coupure d'arc de valeur inférieure à 90 % du pouvoir de coupure.
    EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
  • Les figures 1 et 2 ont déjà été commentées ci-dessus.
  • Par souci de clarté, les mêmes pièces et portions de pièces sont désignées par les mêmes références numériques à la fois pour la chambre de coupure selon l'état de l'art et pour celle selon l'invention.
  • Dans l'ensemble des figures, ne sont pas représentées les deux contacts principaux de chaque chambre de coupure dont l'un est solidaire de la buse de soufflage.
  • On précise également que les termes « aval » et « amont » utilisés désignent respectivement la gauche et la droite sur les figures 3A, 3B et 4.
  • La chambre de coupure selon l'invention 1 comprend un contact d'arc mobile 2 constitué par un tube métallique et une tige de contact d'arc fixe 3 également métallique de formes complémentaires.
  • Le contact d'arc mobile 2 est solidaire d'une buse de soufflage 4 et d'un élément isolant supplémentaire formant capot 6. Plus exactement, le capot 6 est fixé en continuité aval d'une partie tubulaire 20 solidaire du contact mobile 2.
  • L'extrémité du capot isolant 60 présente un profil externe complémentaire de l'intérieur 400 de la buse 4 et un profil interne complémentaire de celui de l'extrémité 21 du contact mobile.
  • La buse 4 comprend en aval de son intérieur 400, un col 40 et un divergent 41 en continuité aval du col 40.La buse 4 comprend dans sa partie amont une partie tubulaire 42 délimitant avec la partie amont du capot 6 et la portion tubulaire 20 avec laquelle elle est fixée une cavité annulaire cylindrique 5.
  • La partie tubulaire 42 schématisée fait partie du contact principal non représenté.
  • L'agencement du capot isolant 6 par rapport à la buse 4 et à la partie fonctionnelle 21 du contact fixe et sa partie tubulaire 20 à laquelle est fixée ledit capot isolant 6 délimite deux canaux 70, 71. Un des canaux 70 est en communication directe avec la cavité annulaire cylindrique 5. L'autre canal 71 débouche en aval dans une zone Z délimitée respectivement par l'extrémité 60 du capot isolant 6 et l'extrémité 21 du contact mobile 2 et en amont dans une lumière 200 pratiquée dans la partie tubulaire 20 du contact mobile 2.
  • La cavité annulaire cylindrique 5 présente un volume variable sous l'action d'un piston de soufflage 8 des gaz.
  • Ce piston 8 est monté sans jeu entre la partie tubulaire 42 de la buse 4 et la partie tubulaire 20 du contact mobile 2. Plus exactement, sur sa périphérie externe sont fixés des joints d'étanchéité 800 qui sont adaptés en outre pour aider au coulissement de l'ensemble mobile 2, 4, 6 sur le piston 8.
  • Ce piston 8 comprend essentiellement deux cloisons 80, 81 parallèles entre elles et reliées entre elles au moyen d'une cloison tubulaire 82 de liaison qui est adjacente et parallèle à la partie tubulaire 20 du contact fixe 2. La cloison aval 81 comprend un trou débouchant 810. La cloison de liaison 82 comprend également un trou débouchant 820.
  • Ces trois cloisons 80, 81, 82 sont solidaires d'une partie tubulaire principale 83 qui a pour fonction de fixer à une distance précise le piston 8 par rapport à la course de mouvement en translation réalisée par l'ensemble mobile constitué de la buse 4, du capot isolant 6 et du contact fixe 2. Plus précisément, la fixation du piston 8 et la course de translation de l'ensemble mobile 2, 4, 6 sont déterminées afin que sur toute la fin de manoeuvre d'ouverture le trou débouchant 820 pratiqué dans la cloison intermédiaire de liaison 82 soit en regard de la lumière 200 pratiquée dans la partie tubulaire 20 du contact fixe 2. Dans le mode de réalisation illustré, la fin de manoeuvre correspond au passage de l'extrémité 30 de la tige de contact d'arc fixe 3 d'une position dans laquelle elle est dans le col 40 de buse 4 à une position dans laquelle elle a quitté le col 40 de buse 4 et atteint la partie aval (dans le sens de l'écoulement du gaz) du divergent 41 de buse, tel que représenté sur les figures 3A et 3B. Dans cette dernière position, on peut voir que le trou débouchant 820 est en regard de la portion extrême aval de la lumière 200.
  • A l'intérieur du piston est monté un système de plaque-ressort qui constitue la partie mobile 90 d'un clapet 9. Plus précisément, un ressort de compression 900 a une extrémité 9000 fixée sur la paroi interne de la cloison amont 80 et l'autre extrémité 9001 fixée à une plaque 910 de dimensions transversales supérieures à la largeur du trou débouchant 810 pratiqué dans la cloison aval 81. En fonction de la surpression de gaz régnant dans la cavité 5 et du tarage réalisé sur le ressort, la plaque 910 vient obturer ou non le trou débouchant 810 qui constitue la partie siège du clapet 9. Le tarage du ressort selon l'invention est réalisé de telle sorte que l'ouverture du trou 810 et donc le passage des gaz dans l'espace entre les deux cloisons 80, 81 du piston se produit lorsque le niveau de surpression est atteint par un courant d'une valeur supérieure égale à environ 90 % du pouvoir de coupure de disjoncteur.
  • Une valve de type à billes 84a, 84b est montée dans chacune des cloisons amont 81 et aval 80 du piston 8. Comme expliqué ci-dessous, ces valves 84a, 8b restent fermées lors de toute manoeuvre d'ouverture du disjoncteur et ne servent qu'à la fermeture pour permettre le passage de gaz isolant de la cavité 10 amont vers la cavité de soufflage 5.
  • Le mode de réalisation illustré en figure 4 correspond une chambre de coupure de type à auto soufflage selon l'invention : la chambre illustrée selon reprend à l'identique les mêmes éléments illustrés en figure 3 et détaillés ci-dessus et comprend en plus les éléments suivants.
  • Une paroi 51 est fixée entre la partie tubulaire 42 de la buse 4 et la partie tubulaire 20 du contact mobile 2. Cette paroi fixe 51 est en aval du piston de soufflage 8.
  • Ainsi, la cavité annulaire cylindrique de volume variable 5 sous l'action du piston 8 est délimitée d'une part par ce dernier et d'autre part par la paroi fixe 51.
  • En aval de la paroi fixe 51 est ainsi délimité un volume d'expansion thermique 50.
  • Sur la paroi fixe 51 est montée une valve supplémentaire 510 de type à bille permettant le passage de gaz de la cavité de volume variable 5 dans le volume d'expansion thermique 50.
  • Enfin, un clapet anti-retour (ou autrement dit unidirectionnel) 2001 est monté dans le canal 71 immédiatement en aval de la lumière 200.
  • Le fonctionnement de la chambre de coupure 1 du disjoncteur à haute tension selon le mode de réalisation des figures 3A et 3B va maintenant être expliqué.
  • Lorsque la surpression des gaz est générée par un arc entre contacts 2, 3 d'une valeur sensiblement inférieure à 90 % du pouvoir de coupure du disjoncteur, le clapet 9 ne peut s'ouvrir (figure 3A). Le soufflage des gaz est réalisé comme dans l'art antérieur représenté en figure 1, c'est-à-dire avec un soufflage auto-pneumatique uniquement par le canal 70 depuis la cavité 5.
  • Lorsque la surpression est générée par un arc entre contacts 2, 3 d'une valeur supérieure à 90 % du pouvoir de coupure du disjoncteur, le clapet 9 s'ouvre, ce qui provoque l'échappement d'une partie des gaz comprimés à travers le trou 820, la lumière 200 puis le canal 71 comme montré par les flèches sur la figure 3B.
  • Le soufflage additionnel ainsi réalisé par les gaz parcourant le canal 71 se produit dans la zone Z, c'est-à-dire au plus prés de la racine d'arc.
  • On obtient ainsi d'une part, une limitation de la surpression ayant lieu dans le volume de soufflage constitué par la cavité 5 puisque le clapet 9 se referme lorsque la pression devient inférieure à la valeur du tarage du ressort 900 et d'autre part, un soufflage additionnel efficace au plus près de la racine d'arc Z.
  • Quelle que soit la valeur et le type (symétrique ou asymétrique) du courant à couper, le tarage du ressort et les dimensions relatives du trou débouchant 810 par rapport à la cavité de soufflage 5 permettent de conserver une surpression suffisante dans ladite cavité 5.
  • Lors de la fermeture du disjoncteur, le coulissement de l'ensemble mobile 2, 4, 6 vers sa position de fermeture (de la droite vers la gauche sur les figures 3A et 3B) génère une dépression dans le volume de la cavité 5 qui est compensée par le passage de gaz isolant depuis la cavité 10 en amont du piston 8 à travers les valves 84a, 84b, le clapet 9 restant quant à lui fermé.
  • La solution selon l'invention présente un avantage important pour les disjoncteurs avec chambre auto pneumatique, en particulier pour ceux de type à fort pouvoir de coupure e.g. 63 kA. En effet, les surpressions en coupure de courants asymétriques dans ce type de disjoncteurs sont telles qu'une solution doit être trouvée afin d'utiliser un vérin hydraulique d'énergie/prix acceptable.
  • Le fonctionnement de la chambre de coupure 1 du disjoncteur à haute tension selon le mode de réalisation de la figure 4 va maintenant être expliqué.
  • Lorsque la surpression des gaz est générée par un arc entre contacts 2, 3 d'une valeur sensiblement inférieure à environ 30 % du pouvoir de coupure du disjoncteur, le clapet 9 ne peut s'ouvrir et la valve supplémentaire 510 s'ouvre sous l'effet du gaz comprimé dans la cavité 5 par le piston. Le soufflage des gaz est réalisé comme dans l'art antérieur représenté en figure 1, c'est-à-dire avec un soufflage auto pneumatique uniquement par le canal 70 depuis la cavité 5 via le volume 50. En d'autres termes, l'échauffement thermique dans le volume 50 est insuffisant pour provoquer la fermeture de valve supplémentaire 510 sur la paroi fixe 51. Le piston 8, dont le trou débouchant 810 est obturé, comprime le volume de gaz de la cavité 5 qui passe dans le volume 50. Le soufflage de l'arc est ainsi réalisé par les volumes de gaz comprimé présents de part et d'autre de la paroi fixe via le canal entre la buse et le capot isolant 6.
  • Lorsque la surpression est générée par un arc entre contacts 2, 3 d'une valeur supérieure à 30 % du pouvoir de coupure du disjoncteur, l'échauffement thermique dans le volume d'expansion thermique 50 provoque la fermeture de la valve supplémentaire 510 sur la paroi fixe 51, tandis que le clape 9 s'ouvre lorsque la surpression créée par compression dans la cavité 5 est suffisante pour vaincre l'effort du ressort 900.
  • Le soufflage est alors réalisé en deux zones distinctes :
    • la surpression créée dans le volume d'expansion thermique 50 réalise un soufflage via le canal 70 entre la buse 4 et la capot isolant 6,
    • la compression créée dans la cavité 5 par le piston 8 réalise un soufflage additionnel à la racine d'arc sur le contact d'arc 2 fixe via le trou débouchant 810 du piston dégagé, le trou débouchant 820, la lumière 200 et le canal 71 entre le capot isolant 6 et ledit contact d'arc fixe 2.
  • En outre, les inventeurs ont identifié un risque potentiel lors d'une coupure de forts courants: du gaz chaud peut remonter dans le canal 71 et dans la lumière 200, faire monter la pression dans le volume 900, fermer le clapet 910. Comme vu précédemment, il y a une surpression par expansion thermique des gaz chauds dans le volume fixe 50, provoquant la fermeture de la valve 510. Il y a alors un risque pendant la manoeuvre d'ouverture de compression du volume dans la cavité 5 sans évacuation possible du gaz et donc fort ralentissement du mouvement, ce qui peut conduire jusqu'à un échec de la coupure.
  • Pour éviter cet inconvénient majeur, le clapet unidirectionnel monté dans le canal 71 évite la remontée des gaz chauds dans le volume 900 et permet un fonctionnement normal : la vidange s'effectue du volume de compression de la cavité 5 dans le volume 900 et le soufflage de l'arc est possible à travers la lumière 200 et le canal 71 lorsque le courant est au voisinage de son passage par zéro (intervalle de temps commençant un peu avant le passage par zéro et durant ensuite pendant la phase de rétablissement de tension).
  • Le soufflage additionnel ainsi réalisé par tout le gaz comprimé parcourant le canal 71 se produit à coup sûr dans la zone Z, c'est-à-dire au plus prés de la racine d'arc.
  • Quelle que soit la valeur et le type (symétrique ou asymétrique) du courant à couper, le tarage du ressort et les dimensions relatives du trou débouchant 810 par rapport à la cavité de soufflage 5 permettent de conserver une surpression suffisante dans ladite cavité 5.
  • La manoeuvre de fermeture se déroule de manière identique à celle décrite en référence aux figures 3A et 3B.
  • La solution selon l'invention est ainsi viable car elle peut être appliquée à toute chambre de coupure à auto soufflage, avec l'avantage de ne pas produire de perte volontaire de gaz comprimé.

Claims (10)

  1. Chambre de coupure (1) pour disjoncteur à haute tension, destinée à couper tous les courants de valeur inférieure ou égale au pouvoir de coupure en court-circuit du disjoncteur, y compris les courants asymétriques, la chambre comprenant deux paires de contacts comprenant chacune un contact d'arc (2, 3) et adaptées pour se séparer l'une de l'autre lors d'une coupure d'arc, une buse de soufflage d'arc (4) isolante comprenant un col (40), la buse de soufflage d'arc étant solidaire d'une paire de contacts (2) en constituant un ensemble mobile, la chambre de coupure comprenant un élément isolant supplémentaire (6) solidaire du contact d'arc (2) lui-même solitaire de la buse (4) et agencé entre la partie (400) de la buse en amont du col et le contact d'arc (2) de sorte à délimiter deux canaux (70, 71), le canal (70) délimité entre la buse et l'élément isolant supplémentaire débouchant en permanence vers une cavité (5) de volume variable, caractérisée en ce que le volume de la cavité est variable sous l'action d'un piston de soufflage (8, 80, 81, 82, 83) fixe, le piston de soufflage étant percé d'un trou débouchant (810) adapté pour être obturé par une valve (9), le tarage de la valve (9) permettant d'obturer le trou lorsque la surpression exercée dans la cavité est inférieure à une valeur prédéterminée, le trou étant en communication avec le canal (71) délimité entre l'élément isolant (6) et le contact d'arc (2), lorsque la surpression exercée dans la cavité est supérieure à la valeur prédéterminée, le tarage de valve étant réalisé de manière à conserver une surpression suffisamment élevée dans la cavité pour toute la gamme des courants à couper.
  2. Chambre de coupure selon la revendication 1, de type à soufflage auto pneumatique dans laquelle le tarage de la valve (9) est tel que son ouverture mettant en communication le trou (810) avec le canal (71) délimité entre l'élément isolant (6) et le contact d'arc (2), s'effectue pour des courants dont la valeur est supérieure ou égale à 90% du pouvoir de coupure.
  3. Chambre de coupure selon la revendication 1, de type à auto soufflage dans laquelle le tarage de la valve (9) est tel que son ouverture mettant en communication le trou (810) avec le canal (71) délimité entre l'élément isolant (6) et le contact d'arc (2) s'effectue pour des courants dont la valeur est supérieure ou égale à 30% du pouvoir de coupure.
  4. Chambre de coupure de type à auto soufflage selon la revendication 3, comprenant :
    - une paroi fixe (51) agencée entre le canal (70) délimité entre la buse (4) et l'élément isolant supplémentaire (6) et le piston de soufflage (8), la paroi fixe (51) délimitant ainsi un volume d'expansion thermique, et la cavité de volume variable (5) étant ainsi délimitée entre le piston (8) et la paroi fixe (51) d'expansion thermique ;
    - une valve supplémentaire (510) montée sur la paroi fixe (51) de type à bille et permettant le passage de gaz de la cavité de volume variable (5) dans le volume d'expansion thermique (50).
  5. Chambre de coupure de type à auto soufflage selon la revendication 4, comprenant en outre un clapet anti-retour (2001) monté dans le canal (71) délimité entre l'élément isolant (6) et le contact d'arc (2) pour éviter la remontée, vers le piston de soufflage (8), de gaz chauds produits dans une zone (Z) à proximité du contact d'arc (2) de l'ensemble mobile, pendant la coupure de forts courants.
  6. Chambre de coupure selon l'une des revendications précédentes, dans laquelle la valve est constituée par une soupape (900, 91C) montée dans le piston (8).
  7. Chambre de coupure selon l'une des revendications précédentes" dans laquelle le piston de soufflage comprend deux cloisons (80, 81) parallèles espacées l'une de l'autre, reliées entre elles par une portion tubulaire (82) et entre lesquelles est montée la soupape (910) dont le siège est constitué par un trou débouchant (810) percé dans la cloison aval (81) et dont une extrémité (910) est fixée à une extrémité (9001) d'un ressort de compression (900) dont l'autre extrémité (9000) est en appui contre la cloison amont (80), la communication avec le canal délimité entre l'élément isolant et le contact d'arc étant réalisée par un autre trou débouchant (820) percé dans la portion tubulaire (82) du piston et une lumière (200) réalisée dans une portion solidaire (20) du contact d'arc (2) et en continuité de l'élément isolant supplémentaire (6).
  8. Chambre de coupure selon la revendication 7, dans laquelle les cloisons amont (80) et aval (81) comprennent chacune une valve (84a, 84b) dont l'ouverture permet l'écoulement des gaz en amont de la cloison amont vers l'aval de la cloison aval et donc, le rapprochement des paires de contacts lors d'une manoeuvre de fermeture du disjoncteur.
  9. Chambre de coupure selon l'une quelconque des revendications précédentes, dans laquelle les deux paires de contacts sont mobiles.
  10. Disjoncteur à haute tension supérieure à 52 kV et plus particulièrement supérieure à 170 kV, comprenant une chambre de coupure selon l'une quelconque des revendications précédentes.
EP09818798.2A 2008-10-09 2009-06-17 Chambre de coupure pour disjoncteur haute tension à soufflage d'arc ameliore Active EP2332160B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0856843A FR2937179A1 (fr) 2008-10-09 2008-10-09 Chambre de coupure pour disjoncteur haute tension a soufflage d'arc ameliore
PCT/EP2009/057536 WO2010040574A1 (fr) 2008-10-09 2009-06-17 Chambre de coupure pour disjoncteur haute tension à soufflage d'arc ameliore

Publications (2)

Publication Number Publication Date
EP2332160A1 EP2332160A1 (fr) 2011-06-15
EP2332160B1 true EP2332160B1 (fr) 2015-02-11

Family

ID=40626236

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09818798.2A Active EP2332160B1 (fr) 2008-10-09 2009-06-17 Chambre de coupure pour disjoncteur haute tension à soufflage d'arc ameliore

Country Status (6)

Country Link
US (1) US8816237B2 (fr)
EP (1) EP2332160B1 (fr)
JP (1) JP5529143B2 (fr)
CN (1) CN102177565B (fr)
FR (1) FR2937179A1 (fr)
WO (1) WO2010040574A1 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2764874C (fr) 2009-06-12 2018-12-18 Abb Technology Ag Milieu d'isolation dielectrique
DE202009009305U1 (de) 2009-06-17 2009-11-05 Ormazabal Gmbh Schalteinrichtung für Mittel-, Hoch- oder Höchstspannung mit einem Füllmedium
WO2012080246A1 (fr) 2010-12-14 2012-06-21 Abb Technology Ag Milieu isolant diélectrique
WO2012123032A1 (fr) * 2011-03-17 2012-09-20 Abb Technology Ag Disjoncteur haute tension à isolation dans le gaz
WO2013013112A1 (fr) * 2011-07-20 2013-01-24 Pennsylvania Breaker, Llc Coupe-circuit à gaz comprimé
WO2013087700A1 (fr) 2011-12-13 2013-06-20 Abb Technology Ag Environnement de convertisseur haute tension rendu étanche et isolé au gaz pour plateformes en mer
DE112012005206T5 (de) * 2011-12-13 2014-09-18 Abb Technology Ag Leistungsschalter mit Fluideinspritzung
CN103000445B (zh) * 2012-12-07 2015-10-14 益和电气集团股份有限公司 降低断路器操作功的弹性释压系统
CN105448589B (zh) * 2014-08-21 2017-12-19 厦门华电开关有限公司 旋转压气负荷开关及其喷口组件
JP2016225023A (ja) * 2015-05-27 2016-12-28 株式会社東芝 ガス遮断器
KR102150427B1 (ko) * 2016-02-12 2020-09-02 현대일렉트릭앤에너지시스템(주) 가스절연 차단기
CN106024506A (zh) * 2016-06-24 2016-10-12 广州白云电器设备股份有限公司 一种sf6断路器压气式灭弧室
DE102016214196B4 (de) * 2016-08-02 2019-11-21 Siemens Aktiengesellschaft Unterbrechereinheit für einen Leistungsschalter
US10026571B1 (en) * 2017-03-31 2018-07-17 General Electric Technology Gmbh Switching chamber for a gas-insulated circuit breaker comprising an optimized thermal channel
DE102017207422A1 (de) * 2017-05-03 2018-11-08 Siemens Aktiengesellschaft Trennschalter
EP3404689B1 (fr) * 2017-05-19 2023-08-16 General Electric Technology GmbH Disjoncteur comprenant une chambre de compression améliorée
EP3503153B1 (fr) * 2017-12-22 2021-09-01 ABB Power Grids Switzerland AG Disjoncteur haute ou moyenne tension isolé au gaz
KR102135381B1 (ko) 2018-10-30 2020-07-17 엘에스일렉트릭(주) 가스절연 개폐장치의 고속 접지 스위치
JP7263169B2 (ja) 2019-07-19 2023-04-24 ヤンマーパワーテクノロジー株式会社 コンバイン
DE102019213344A1 (de) * 2019-09-03 2021-03-04 Siemens Energy Global GmbH & Co. KG Unterteilen eines Heizvolumens eines Leistungsschalters
JP2021051903A (ja) * 2019-09-25 2021-04-01 株式会社日立製作所 ガス遮断器
WO2023135639A1 (fr) * 2022-01-11 2023-07-20 株式会社東芝 Disjoncteur à gaz

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH641591A5 (de) * 1979-02-13 1984-02-29 Sprecher & Schuh Ag Druckgasschalter.
EP0067460B2 (fr) 1981-06-12 1990-03-21 BBC Brown Boveri AG Disjoncteur de puissance pour haute tension
FR2558299B1 (fr) 1984-01-13 1987-03-20 Alsthom Atlantique Disjoncteur a haute tension a soufflage d'arc
FR2576142B1 (fr) 1985-01-16 1987-12-24 Alsthom Atlantique Disjoncteur a haute tension, a gaz comprime, a energie de manoeuvre assistee par l'effet thermique de l'arc
FR2596575B1 (fr) 1986-03-26 1988-05-20 Alsthom Disjoncteur a gaz dielectrique sous pression
FR2720188B1 (fr) * 1994-05-19 1996-06-14 Gec Alsthom T & D Sa Disjoncteur à autocompression réduite.
EP0741399B1 (fr) * 1995-05-04 1999-01-20 ANSALDO INDUSTRIA S.p.A. Interrupteur haute tension à gaz diélectrique du type à auto soufflage
DE19547522C1 (de) * 1995-12-08 1997-01-16 Siemens Ag Hochspannungs-Leistungsschalter mit einem Gasspeicherraum
DE19613030A1 (de) 1996-03-19 1997-09-25 Siemens Ag Elektrischer Hochspannungs-Leistungsschalter mit einem Heizraum
DE19902835C2 (de) * 1999-01-20 2001-12-06 Siemens Ag Hochspannungsleistungsschalter mit einer Isolierdüse
FR2821482B1 (fr) 2001-02-27 2003-04-04 Alstom Disjoncteur incluant un canal de vidange de la chambre de compression par piston
CN2509702Y (zh) * 2001-08-17 2002-09-04 上海华明电力设备制造有限公司 自能气吹式六氟化硫断路器灭弧室
FR2837321B1 (fr) * 2002-03-18 2004-08-06 Alstom Disjoncteur haute tension comprenant un clapet de decompression
CN2864959Y (zh) * 2006-01-13 2007-01-31 河南平高电气股份有限公司 高压断路器
EP1863054B1 (fr) 2006-05-29 2010-01-27 ABB Technology AG Interrupteur à piston de soufflage avec un clapet de surpression

Also Published As

Publication number Publication date
FR2937179A1 (fr) 2010-04-16
CN102177565A (zh) 2011-09-07
JP2012505500A (ja) 2012-03-01
US8816237B2 (en) 2014-08-26
EP2332160A1 (fr) 2011-06-15
CN102177565B (zh) 2013-11-27
WO2010040574A1 (fr) 2010-04-15
US20110192821A1 (en) 2011-08-11
JP5529143B2 (ja) 2014-06-25

Similar Documents

Publication Publication Date Title
EP2332160B1 (fr) Chambre de coupure pour disjoncteur haute tension à soufflage d'arc ameliore
EP1943657B1 (fr) Chambre de coupure de courant a double chambre de compression
EP2045827B1 (fr) Chambre de coupure de disjoncteur à double volume de compression
FR2596575A1 (fr) Disjoncteur a gaz dielectrique sous pression
EP0684622B1 (fr) Disjoncteur à autocompression réduite
EP0179834A1 (fr) Dispositif interrupteur a ecran de coupure d'arc.
EP1235243B1 (fr) Disjoncteur incluant un canal de vidange de la chambre de compression par piston
FR2767221A1 (fr) Disjoncteur a auto-soufflage et a compression reduite
EP2402970B1 (fr) Chambre de coupure pour disjoncteur a moyenne ou haute tension a energie de manoeuvre et dimensions reduites
WO2016120188A1 (fr) Disjoncteur equipe d'un capot d'echappement extensible
EP3234976B1 (fr) Disjoncteur comprenant un capot d'echappement de gaz a ouverture obturable
FR2949170A1 (fr) Chambre de coupure pour disjoncteur a moyenne ou haute tension a energie de manœuvre reduite
CA2344272A1 (fr) Interrupteur a auto-soufflage avec une chambre de coupure a deux volumes
FR3030868A1 (fr) Disjoncteur equipe de vannes d'evacuation du gaz sous pression dans les volumes d'echappement
FR2755293A1 (fr) Disjoncteur a piston semi-mobile et a haut pouvoir de coupure de courants capacitifs
FR2763172A1 (fr) Disjoncteur avec un systeme mecanique a tiroir pour chambre de coupure a course de compression reduite
CH693122A5 (fr) Disjoncteur à piston semi-mobile, notamment pour la coupure de courants capacitifs à haute tension.
FR2752478A1 (fr) Disjoncteur a piston semi-mobile et a haut pouvoir de coupure de courants capacitifs
FR2980300A1 (fr) Disjoncteur comportant un conduit de decharge
FR2980033A1 (fr) Chambre de coupure pour disjoncteur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110415

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM GRID SAS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140424

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140905

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 710152

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009029375

Country of ref document: DE

Effective date: 20150326

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150211

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 710152

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150211

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150511

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150611

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150512

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009029375

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

26N No opposition filed

Effective date: 20151112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150617

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150617

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090617

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170627

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20170628

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230523

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230702

Year of fee payment: 15