EP2325571B1 - Zuluftvorrichtung - Google Patents

Zuluftvorrichtung Download PDF

Info

Publication number
EP2325571B1
EP2325571B1 EP10189929.2A EP10189929A EP2325571B1 EP 2325571 B1 EP2325571 B1 EP 2325571B1 EP 10189929 A EP10189929 A EP 10189929A EP 2325571 B1 EP2325571 B1 EP 2325571B1
Authority
EP
European Patent Office
Prior art keywords
airflow
supply air
chamber
mixing chamber
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10189929.2A
Other languages
English (en)
French (fr)
Other versions
EP2325571A3 (de
EP2325571A2 (de
Inventor
Risto Paavilainen
Heimo Ulmanen
Mika Ruponen
Kim HAGSTRÖM
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halton Oy
Original Assignee
Halton Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halton Oy filed Critical Halton Oy
Priority to PL10189929T priority Critical patent/PL2325571T3/pl
Publication of EP2325571A2 publication Critical patent/EP2325571A2/de
Publication of EP2325571A3 publication Critical patent/EP2325571A3/de
Application granted granted Critical
Publication of EP2325571B1 publication Critical patent/EP2325571B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/01Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station in which secondary air is induced by injector action of the primary air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0047Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in the ceiling or at the ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0233Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • F24F2011/0002Control or safety arrangements for ventilation for admittance of outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • F24F2013/0616Outlets that have intake openings

Definitions

  • the invention concerns a supply air unit in accordance with the preamble to claim 1.
  • Supply air units or air-conditioning beams usually comprise a supply air chamber, a mixing chamber and a heat exchanger.
  • the flow of fresh air is brought from the supply air chamber into the mixing chamber, wherein the flow of fresh air is mixed with the circulated airflow, whereupon the combined airflow is conducted to the room space.
  • the circulated airflow is conducted into the mixing chamber through a heat exchanger, in which the circulated airflow can be heated or cooled.
  • the room air can be cooled in the summer time and heated in the winter time. In the summer time, the circulated airflow of the room is cooled, and in the winter time it is heated in the supply air unit's heat exchanger.
  • the flow of fresh air induces the circulated airflow to flow from the room through the heat exchanger into the mixing chamber.
  • the FI patent application 20060035 has presented a supply air unit and a method for controlling the airflow rate.
  • the supply air unit comprises a supply air chamber, a heat exchanger, with which the circulated airflow conducted from the room space to be air-conditioned can be either cooled or heated, and a mixing chamber.
  • a flow of fresh air is conducted from the supply air chamber through nozzles or a nozzle gap into the mixing chamber, in which the supply airflow induces the circulated airflow from the room to flow through the heat exchanger into the mixing chamber.
  • the flow of fresh air and the circulated airflow are combined, whereupon the combined airflow is conducted from the mixing chamber's outlet opening into the room space to be air-conditioned.
  • the supply air unit also comprises an additional air opening, which is arranged on the flow path of the fresh airflow, separately from the nozzles or the nozzle gap, and a control device in connection with it for controlling the total rate of fresh airflow to be supplied from the supply air unit into the air-conditioned room space.
  • the additional air opening can be arranged in such a way that the fresh airflow will discharge from it either directly into the air-conditioned room space or into the mixing chamber.
  • the FI Patents 117682 B , 118236 B present supply air units comprising a supply air chamber, a heat exchanger, with which the circulated airflow conducted from the air-conditioned room space can be either cooled or heated, and a mixing chamber.
  • the fresh airflow is conducted from the supply air chamber through nozzles or a nozzle gap into the mixing chamber, in which the supply airflow induces the circulated airflow from the room to flow through the heat exchanger into the mixing chamber.
  • the fresh airflow and the circulated airflow are combined, whereupon the combined airflow is conducted from the mixing chamber's outlet opening into the air-conditioned room space.
  • the FI Patent 113798 B for its part presents a supply air unit, which comprises a supply air chamber and a mixing chamber.
  • a fresh airflow is conducted from the supply air chamber through nozzles or a nozzle gap into the mixing chamber, in which the supply airflow induces the circulated airflow from the room to flow into the mixing chamber.
  • the fresh airflow and the circulated airflow are combined, whereupon the combined airflow is conducted from the mixing chamber's outlet opening into the air-conditioned room space.
  • the publications present various systems for controlling the induction ratio and for controlling either the rate of fresh airflow to be supplied into the mixing chamber or the rate of circulated airflow to be conducted from the air-conditioned room space into the mixing chamber.
  • the US application 2002/0062948 A1 concerns a supply air terminal device including side plates and an air guiding part.
  • a heat exchanger is fitted in the device below a supply air chamber for supply air in between air guiding parts located on both sides of the central axis of the device.
  • the supply air chamber includes nozzle apertures to conduct fresh supply air into a side chamber and to induce a flow of circulated air from the room space through the heat exchanger into the side chamber.
  • the circulated air may be either cooled or heated.
  • the equipment includes a control device for the induction ratio of the supply air flow and the circulated air flow for controlling in which ratio there is fresh air and circulated air in the combined air flow.
  • the supply air unit according to the invention is characterized by the features presented in the characterizing part of claim 1.
  • the supply air unit there is at least one airflow controller, through which an additional airflow is conducted from the supply air chamber into at least one suction chamber, from which the bypass flow of fresh air is guided into at least one mixing chamber.
  • the airflow controller is used to control the additional airflow into the suction chamber, whereby the rate of air to be supplied from the supply air unit into the air-conditioned room space can be controlled within definite limits without having to exchange the nozzles of the supply air unit.
  • a certain minimum airflow rate must be conducted all the time through the nozzles, because this minimum rate is necessary in order to induce the circulated airflow and in this way to achieve a sufficient cooling and heating effect.
  • Using the airflow controller it is possible to increase the supply air unit's total airflow rate 1-6 times compared with the minimum airflow rate.
  • the additional airflow When the additional airflow is conducted into the suction chamber, the rate of circulated airflow to be conducted from the air-conditioned room space into the suction chamber is reduced, but the airflow rate to be conducted from the suction chamber into the mixing chamber remains almost constant. Should the temperature of the additional airflow differ from the temperature of the circulated airflow of the air-conditioned room space, the additional airflow can be used for controlling the cooling or heating effect.
  • the total fresh airflow rate to be supplied from the supply air unit into the air-conditioned room space (the fresh airflow supplied from the supply air unit's nozzles into the mixing chamber + the additional airflow supplied from the supply air chamber into the suction chamber and from this into the mixing chamber) can be increased or reduced without affecting the rate of combined airflow conducted from the mixing chamber into the room space and in this way the flow pattern. Besides, in this manner the additional airflow is distributed evenly through the suction chamber.
  • the solution according to the invention can very well be used, for example, in a situation where a constant pressure is maintained on the supply air side by using a constant pressure controller.
  • An advantageous embodiment of the invention in connection with the airflow controller uses an air-permeable fabric, through which the bypass flow of fresh air is conducted into the suction chamber.
  • the airflow velocity is reduced to a considerably lower level than the velocity of the airflow discharging from the nozzles.
  • the lower velocity of the airflow for its part results in a lower noise level.
  • Due to the lower velocity of the airflow a higher pressure may be used in the supply air chamber.
  • the supply air unit's air distribution characteristics are determined based on the nozzle airflow and a possible induction controller located in the outlet opening of the mixing chamber.
  • the supply air unit also comprises at least one heat exchanger.
  • the additional air to be supplied through the suction chamber and the heat exchanger into the mixing chamber can be after-heated or after-cooled in the heat exchanger. This may be required, for example, in a situation where the supply air unit is located in a negotiation room, where a large supply airflow may cause over- or under-cooling of the negotiation premises.
  • a suitable temperature can be controlled for the airflow combined in the mixing chamber.
  • Figure 1 is a vertical cross-sectional view of a supply air unit, in which the invention can be applied.
  • the supply air unit 100 comprises a supply air chamber 10, which comprises a horizontal roof panel 11, below it and located at a distance from it a parallel ceiling panel 12, a first vertical outer side wall 13a, a second vertical outer side wall 13b, a first vertical inner side wall 14a and a second vertical inner side wall 14b.
  • the top edge of the first vertical outer side wall 13a joins the left side edge of the roof panel 11, and the top edge of the second vertical outer side wall 13b joins the right side edge of the roof panel 11.
  • the top edge of the first vertical inner side wall 14a joins the left side edge of the ceiling panel 12, and the top edge of the second vertical inner side wall 14b joins the right side edge of ceiling panel 12.
  • the bottom edge of the first vertical outer side wall 13a is joined to the bottom edge of the first vertical inner side wall 14a by a first connecting wall 15a, and the bottom edge of the second vertical outer side wall 13b is joined to the bottom edge of the second vertical inner side wall 14b by a second connecting wall 15b.
  • the supply air chamber 10 is thus formed by two separate lower chambers 10b1, 10b2, which are in connection with each other by way of one one-piece upper chamber 10a.
  • the fresh airflow L1 is brought into supply air chamber 10 through a horizontal X-X fitting 16 connected to the first vertical outer side wall 13a of supply air chamber 10.
  • the connection 16 for supply air may be located in the roof panel 11, and not in the supply air chamber's 10 outer side wall 13a.
  • the supply air unit 100 also comprises two vertical heat exchangers 30a, 30b, which are located at a distance from each other and have a rectangular cross-sectional shape and which at their top end are supported against the supply air chamber's 10 ceiling wall 12.
  • a suction chamber 40 with a rectangular cross-sectional shape is formed in the space between the heat exchangers 30a, 30b.
  • the lower part of suction chamber 40 contains a bottom plate 50, which is supported against the bottom end of the heat exchangers 30a, 30b.
  • the middle part 52 of bottom plate 50 has openings, through which the circulated airflow L2 can be conducted from the air-conditioned room space into the suction chamber 40.
  • a first mixing chamber 20a with a rectangular cross-sectional shape is formed in the space between the first heat exchanger 30a and the supply air chamber's 10 first vertical inner side wall 14a.
  • a second mixing chamber 20b with a rectangular cross-sectional shape is formed in the space between the second heat exchanger 30b and the supply air chamber's 10 second vertical inner side wall 14b.
  • a first outlet opening 25a is formed, which is limited by the first connecting wall 15a and by the bottom plate's 50 left side edge 51a.
  • a second outlet opening 25b is formed, which is limited by the second connecting wall 15b and by the bottom plate's 50 right side edge 51b.
  • Both outlet openings 25a, 25b are shaped in such a way that the airflow is guided from mixing chamber 20a, 20b in the air-conditioned room space to the side, essentially in the direction of the room's ceiling surface.
  • the supply air unit 100 also comprises at least one airflow controller 70, through which an additional airflow L3 can be conducted from supply air chamber 10 into suction chamber 40.
  • each mixing chamber 20a, 20b the fresh airflow L1 builds up a vacuum, which will suck or induce the circulated airflow L2 from the air-conditioned room space into suction chamber 40 and from this further through heat exchangers 30a, 30b into mixing chambers 20a, 20b.
  • the additional airflow L3 is also sucked from suction chamber 40 through heat exchangers 30a, 30b into mixing chambers 20a, 20b.
  • the fresh airflow L1, the additional airflow L3 and the circulated airflow L2 form a combined airflow LA.
  • the circulated airflow L2 and the additional airflow L3 can be cooled or heated in heat exchangers 30a, 30b.
  • the combined airflow LA discharges from the outlet opening 25a, 25b located in the lower part of each mixing chamber 20a, 20b into the air-conditioned room space to the side, essentially in the direction of the room's ceiling surface.
  • the supply air unit 100 is symmetrical in relation to the vertical central axis Y-Y.
  • the supply air unit shown in Figure 1 may be formed by an elongated body having an essentially rectangular cross-sectional shape or by a round body.
  • the heat exchangers 30a, 30b are formed by one ring-shaped heat exchanger, which is surrounded by a ring-shaped mixing chamber 20a, 20b, in whose lower part there is a ring-shaped outlet opening 25a, 25b.
  • the supply air chamber's 10 lower part 10b1, 10b2 is also a ring-shaped chamber
  • the upper part 10a is a cylindrical chamber.
  • the outer side wall 13a, 13b of the supply air chamber 10 in a round supply air unit can have a cylindrical or, for example, a rectangular or polygonal shape, whereby the roof panel 11 is also adapted to the shape of the outer side wall 13a, 13b.
  • Figure 2 is a vertical cross-sectional view of another supply air unit, in which the invention can be applied.
  • This embodiment corresponds to the left side of the embodiment shown in Figure 1 , that is, to the part located on the left side of the vertical central axis Y-Y.
  • the suction chamber 40 is limited to the space in between heat exchanger 30 and the right-hand outer side wall 13c.
  • the cross-sectional shape of mixing chamber 20, heat exchanger 30 and suction chamber 40 is essentially rectangular.
  • FIG. 3 is an axonometric view of an elongated supply air unit, in which the invention can be applied.
  • the supply air unit 100 is here formed by an elongated body having an essentially rectangular cross-section.
  • the supply air chamber's ceiling panel 12 there are three airflow controllers 70a, 70b, 70c, through which an additional airflow can be conducted from the supply air chamber into the suction chamber 40 located between the heat exchangers 30a, 30b.
  • the supply air unit can, of course, also have a square shape.
  • FIG. 4 is an axonometric view of a round supply air unit, in which the invention can be applied.
  • the supply air unit 100 is here formed by a body having a round shape.
  • the supply air chamber's ceiling panel 12 there is one airflow controller 70, through which a fresh airflow can be conducted from the supply air chamber into the inner cylindrical suction chamber of the ring-shaped heat exchanger.
  • FIG. 5 is a vertical cross-sectional view of a third supply air unit, in which the invention can be applied.
  • the supply air chamber's 10 cross-section is formed by an upper rectangular section and by a lower triangular section. Under the supply air chamber 10 there is a horizontal bottom plate 50, which has edge parts 51a, 51b folded obliquely upwards.
  • the supply air unit also comprises side walls 14a, 14b, whose top edges join the bottom corners of the supply air chamber's 10 rectangular upper part and which are directed obliquely downwards.
  • the first side wall 14a and the bottom plate's first edge part 51a form in between them a first mixing chamber 20a.
  • the second side wall 14b and the bottom plate's second edge part 51b form in between them a second mixing chamber 20b.
  • an airflow controller 70a, 70b through which an additional airflow L3 is conducted from supply air chamber 10 into suction chamber 40, from which the additional airflow L3 is sucked along with the circulated airflow L2 into mixing chamber 20a, 20b.
  • a first damper 200a is mounted, with which the induction ratio of the first mixing chamber 20a can be controlled.
  • a second damper 200b is mounted for controlling the induction ratio of the second mixing chamber 20b.
  • the fresh airflows L1 discharging from nozzles 60a, 60b are directed into mixing chambers 20a, 20b and they induce the circulated airflow L2 to flow through the openings in the bottom plate's 50 middle part 52 into suction chamber 40 and from this further into mixing chambers 20a, 20b.
  • the dampers 200a, 200b By raising and lowering the dampers 200a, 200b the rate of circulated airflow L2 conducted from suction chamber 40 into mixing chambers 20a, 20b can be controlled, whereby the induction ratio will change.
  • Figure 6 is a vertical cross-sectional view of a fourth supply air unit, in which the invention can be applied.
  • the supply air chamber's 10 cross-section is formed by an upper triangular section and by a lower triangular section.
  • Inner side walls 51a, 51b which are directed obliquely downwards, are attached to the side walls of the supply air chamber's 10 lower triangular section.
  • the supply air unit also comprises outer side walls 14a, 14b, which are formed by upper vertical sections 14a1, 14b1 and by sections 14a2, 14b2 directed obliquely downwards.
  • a first suction chamber 40a is formed in between the vertical section 14a1 of the first outer side wall 14a and the first side wall of the supply air chamber's 10 rectangular upper section.
  • a second suction chamber 40b is formed in between the vertical section 14b1 of the second outer side wall 14b and the second side wall of the supply air chamber's 10 rectangular upper section.
  • the oblique section 14a2 of the first outer side wall 14a and the first inner side wall 51a form in between them a first mixing chamber 20a.
  • the oblique section 14b2 of the second outer side wall 14b and the second inner side wall 51b form in between them a second mixing chamber 20b.
  • an airflow controller 70a, 70b through which an additional airflow L3 is conducted from supply air chamber 10 into suction chambers 40a, 40b, from which the additional airflow L3 is sucked along with the circulated airflow L2 into mixing chambers 20a, 20b.
  • a first damper 200a is mounted for controlling the induction ratio of the first mixing chamber 20a.
  • a second damper 200b is mounted for controlling the induction ratio of the second mixing chamber 20b.
  • the fresh airflows L1 discharging from nozzles 60a, 60b are directed into mixing chambers 20a, 20b and they induce the circulated airflow L2 to flow into suction chambers 40a, 40b and from these further into mixing chambers 20a, 20b.
  • By turning the dampers 200a, 200b it is possible to control the rate of circulated airflow L2 conducted from suction chambers 40a, 40b into mixing chambers 20a, 20b, whereby the induction ratio is changed.
  • Figure 7 shows an airflow controller solution according to the invention.
  • the top margin of the side shows a cross-section of the airflow controller and the bottom margin of the side shows a view of the airflow controller seen from below.
  • the airflow controller is here based on a disc valve comprising a bottom part 71, which is supported against the edges of an opening 12a located in a ceiling panel 12.
  • the bottom part 71 may be formed, for example, by a collar, which fits on the edges of the opening 12a in ceiling panel 12, and by a transverse part, in the middle of which there is a threaded hole 72. Inside the collar there is thus formed an opening, which opens into the opening 12a in the ceiling panel 12 and which is limited by the transverse part only.
  • the disc valve also comprises a control disc 73, which through a threaded pin 74 is supported in the threaded hole 72 located in the middle of bottom part 71.
  • the rate of air discharging from the airflow controller can be controlled by controlling the distance of control disc 73 from bottom part 71 by turning the control disc 73 in the way indicated by arrow S1.
  • an air-permeable fabric 75 is also mounted, which extends to the stretch between disc 73 and ceiling panel 12.
  • the air-permeable fabric 75 may consist, for example, of gauze.
  • the top end of the air-permeable fabric 75 must be supported against the ceiling panel 12 or the bottom part 71 in such a way that the air-permeable fabric 75 can rotate along with the control disc 73 when the disc valve is opened or closed by turning the control disc 73.
  • An additional airflow L3 is conducted from supply air chamber 10 through the opening 12a of the supply air chamber's 10 ceiling panel 12 and through the opening in the disc valve's bottom part 71 and then further through the air-permeable fabric 75 into the lower suction chamber 40 of airflow controller 70.
  • FIG. 8 shows another airflow controller solution according to the invention.
  • the top margin of the side shows a cross-section of the airflow controller, and the bottom margin of the side is a view of the airflow controller seen from below.
  • the airflow controller 80 comprises a bottom part 81, which is supported against the edges of an opening 12a in a ceiling panel 12 and which has a section comprising sector-like openings.
  • the bottom part 81 may be formed, for example, by a collar, which fits against the opening 12a in ceiling panel 12 and by a central section, which comprises sector-like openings and in the middle of which there is a threaded hole 82. Sector-like openings are thus formed inside the collar in its central section and they open into the opening 12a in ceiling panel 12.
  • the airflow controller 80 also comprises a damper 83, which has sector-like openings 83a.
  • the damper 83 is supported through a threaded bolt 84 in a threaded hole 82 located in the middle of bottom part 81.
  • the rate of air discharging from the airflow controller 80 can be controlled by turning damper 83 in the way indicated by arrow S1, whereby the extent of overlapping is controlled between the bottom part's 81 sector-like openings 81a and the damper's 83 sector-like openings 83a.
  • an air-permeable fabric 85 can also be mounted, which preferably is gauze.
  • An additional airflow L3 is conducted from supply air chamber 10 through the opening 12a in the supply air chamber's 10 ceiling panel 12 and through the air-permeable fabric 85 into airflow controller 80, from whose openings 81a, 83a the fresh airflow L1 discharges into the airflow controller's 80 lower suction chamber 40.
  • FIG. 9 shows a third airflow controller solution according to the invention.
  • the top margin of the side shows a cross-section of the airflow controller and the bottom margin of the side is a view of the airflow controller seen from below.
  • the airflow controller 90 comprises a bottom part 91, which is supported against the edges of an opening 12a in ceiling panel 12.
  • the bottom part 91 may be formed, for example, by a collar, which fits against the edges of openings 12a in ceiling panel 12. Inside the collar an opening is thus formed, which opens into the opening 12a in ceiling panel 12.
  • the airflow controller 90 also comprises a bottom cylinder 91b, whose inner end is supported against the bottom part 91 and whose outer end is closed by a first cover plate 91c.
  • the airflow controller 90 also comprises a control cylinder 93, which is located on the outer surface of the bottom cylinder's 91b casing and whose outer end is closed by a second cover plate 93c.
  • the casing of bottom cylinder 91b has first openings 91a and the casing of the outer control cylinder 93 has second openings 93a
  • the control cylinder 93 rotates on the outer surface of the bottom cylinder's 91b casing in the manner indicated by arrow S1, whereby it is possible to control the overlapping between the control cylinder's 93 openings 93a and the bottom cylinder's 91b openings 91a, that is, how much airflow there will be through the airflow controller 90.
  • a threaded bolt 94 extends, which fits into a threaded hole 92 in the bottom cylinder's 91b cover plate 91c, 92.
  • the threaded bolt 94 can be used to lock the control cylinder 93 to the bottom cylinder 91b in a desired position.
  • an air-permeable fabric 95 can also be mounted, which preferably is gauze.
  • An additional airflow L3 is conducted from supply air chamber 10 through the opening 120a in the supply air chamber's 10 ceiling panel 12 into the inner bottom cylinder 91b and then further through the air-permeable fabric 95, the bottom cylinder's 91b openings 91a and the control cylinder's 93 openings 93a into suction chamber 40.
  • Figure 10 shows a fourth airflow controller solution according to the invention.
  • the airflow controller 100 comprises an actuator 110, which controls a closing device 115, which preferably is a valve disc.
  • Actuator 110 is fastened by a fastening band 105 to the supply air unit's ceiling panel 12, that is, to the suction chamber's 40 roof panel.
  • the closing device 105 closes and opens an opening 12a in ceiling panel 12.
  • the actuator 110 may be, for example, a step motor, which is controlled by a control unit 120 located in the air-conditioned room space. From the control unit 120 located in the air-conditioned room space it is possible to carry on a step-less control of the supply air unit's additional airflow L3.
  • Figure 10 does not show any fabric in connection with the airflow controller 100, but it is of course possible to add to the airflow controller 100, for example, the fabric solution 75 presented in the embodiment shown in Figure 7 .
  • the suction chamber 10 has a one-piece top section 10a and an outer section 10b1, 10b2 outside the mixing chambers 20a, 20b. Both in connection with a square and a round supply air unit the supply air chamber 10 may also be formed by a one-piece top section 10a only.
  • the supply air chamber's 10 inner side walls 14a, 14b hereby extend to the roof panel 11 and form the supply air unit's outer side walls.
  • the supply air connection 16 may be located in the supply air chamber's 10 outer side wall 14a, 14b or in the roof panel 11.
  • the suction chamber 10 has a one-piece top section 10a and an outer section 10b outside the mixing chamber 20.
  • the supply air chamber 10 may also be formed by a one-piece top section 10a only.
  • the supply air chamber's 10 inner side wall 14a hereby extends to the roof panel 11 and forms the supply air unit's outer side wall.
  • the supply air connection 16 may be located in the supply air chamber's 10 outer side wall 14a or in the roof panel 11.
  • FIG. 3 there are three airflow controllers 70a, 70b, 70c and in Figure 4 there is one airflow controller 70.
  • the number of airflow controllers is determined by the rate of fresh air required.
  • the fresh airflow L1 is supplied from the supply air chamber 10 through nozzles 60, 60a, 60b into mixing chambers 20, 20a, 20b.
  • the nozzles 60, 60a, 60b can be replaced by a nozzle gap, through which the fresh airflow L1 is conducted from supply air chamber 10 into the mixing chambers 20, 20a, 20b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Duct Arrangements (AREA)
  • Central Air Conditioning (AREA)

Claims (9)

  1. Versorgungslufteinheit (100), die umfasst:
    - eine Versorgungsluftkammer (10),
    - wenigstens eine Mischkammer (20, 20a, 20b),
    - Düsen (60, 60a, 60b) oder einen Düsenspalt, durch den ein Frischluftstrom (L1) von der Versorgungsluftkammer (10) zu der wenigstens einen Mischkammer (20, 20a, 20b) geleitet wird,
    - wenigstens eine Saugkammer (40, 40a, 40b), in die ein zirkulierter Luftstrom (L2) von dem klimatisierten Zimmerraum geleitet wird,
    - wenigstens eine Auslassöffnung (25, 25a, 25b), durch die ein kombinierter Luftstrom (LA), der in der wenigstens einen Mischkammer (20, 20a, 20b) von dem Frischluftstrom (L1) und dem zirkulierten Luftstrom (L2) gebildet ist, in den klimatisierten Zimmerraum geleitet wird,
    - wenigstens einen Luftstromcontroller,
    dadurch gekennzeichnet, dass die Versorgungslufteinheit ferner umfasst:
    - den wenigstens einen Luftstromcontroller (70, 70a, 70b, 70c, 80, 90), lokalisiert in einer Wand zwischen der Versorgungskammer (10) und der wenigstens einen Saugkammer (40, 40a, 40b), wobei durch den Luftstromcontroller (70, 70a, 70b, 70c, 80, 90) veranlasst wird, dass ein zusätzlicher Luftstrom (L3) von der Versorgungsluftkammer (10) zu der wenigstens einen Saugkammer (40, 40a, 40b) geleitet wird, von der der zusätzliche Luftstrom (L3) zusammen mit dem zirkulierten Luftstrom (L2) in die wenigstens eine Mischkammer (20, 20a, 20b) gesaugt wird, wobei in der wenigstens einen Mischkammer (20, 20a, 20b) der Frischluftstrom (L1), der zusätzliche Luftstrom (L3) und der zirkulierte Luftstrom (L2) einen kombinierten Luftstrom (LA) bilden.
  2. Versorgungslufteinheit (100) nach Anspruch 1, dadurch gekennzeichnet, dass die Versorgungslufteinheit (100) ferner umfasst:
    - wenigstens einen Wärmetauscher (30, 30a, 30b), der eine Versorgungsseite und eine entgegengesetzte Auslassseite hat,
    - wobei die wenigstens eine Mischkammer (20, 20a, 20b) in Verbindung mit der Auslassseite des wenigstens einen Wärmetauschers (30, 30a, 30b) gebildet ist, und die wenigstens eine Saugkammer (40, 40a, 40b) in Verbindung mit der Versorgungsseite des wenigstens einen Wärmetauschers (30, 30a, 30b) gebildet ist,
    - wobei der zirkulierte Luftstrom (L2) und der zusätzliche Luftstrom (L3) sich von der wenigstens einen Saugkammer (40, 40a, 40b) durch den wenigstens einen Wärmetauscher (20, 20a, 20b) von seiner Versorgungsseite in die wenigstens eine Mischkammer (20, 20a, 20b) bewegen, die an seiner Auslassseite lokalisiert ist.
  3. Versorgungslufteinheit (100) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Versorgungslufteinheit (100) umfasst:
    - ein horizontales Deckenpaneel (12),
    - zwei längliche parallele Wärmetauscher (30a, 30b), die in einem Abstand voneinander lokalisiert sind, und deren obere Enden an der unteren Oberfläche des Deckenpaneels (12) getragen werden,
    - eine längliche Saugkammer (40), die in einem Raum zwischen den Wärmetauschern (30a, 30b) an ihrer Versorgungsseite gebildet ist,
    - eine längliche Mischkammer (20a, 20b), die außerhalb jedes Wärmetauschers (30a, 30b) lokalisiert ist, das heißt an ihrer Auslassseite,
    - eine Versorgungsluftkammer (10), die längliche untere Abschnitte (10b1, 10b2) umfasst, lokalisiert außerhalb der Mischkammern (20a, 20b), und einen einstückigen oberen Abschnitt (10a), der die unteren Abschnitte (10b1, 10b2) verbindet und der in dem Raum zwischen dem horizontalen Deckenpaneel (12) und dem parallelen Dachpaneel (11) gebildet ist, das in einem Abstand davon lokalisiert ist,
    - Düsen (60), die in der Decke der Mischkammern (20a, 20b) lokalisiert sind, das heißt in dem Deckenpaneel (12), und durch die ein Frischluftstrom (L1) von der Versorgungsluftkammer (10) in die Mischkammern (20a, 20b) geleitet wird,
    - eine Bodenplatte (50), die am unteren Ende der Wärmetauscher (30a, 30b) getragen ist, und die in ihrem mittleren Teil Öffnungen umfasst, durch die der zirkulierte Luftstrom (L2) von dem klimatisierten Zimmerraum in die Saugkammer (40) geleitet wird,
    - eine Auslassöffnung (25a, 25b), die im unteren Teil jeder Mischkammer (20a, 20b) lokalisiert ist, und die begrenzt ist durch die Bodenoberflächen (15a, 15b) der unteren Abschnitte (10b1, 10b2) der Versorgungsluftkammer (10) und durch die äußeren Ränder der Bodenplatte (50),
    - wenigstens einen Luftstromcontroller (70, 80, 90), der in der Decke der Saugkammer (40) lokalisiert ist, das heißt in dem Deckenpaneel (12), und durch den ein zusätzlicher Luftstrom (L3) von der Versorgungsluftkammer (10) in die Saugkammer (40) geleitet wird, von der der zusätzliche Luftstrom (L3) durch die Wärmetauscher (30a, 30b) in die Mischkammern (20a, 20b) gesaugt wird.
  4. Versorgungslufteinheit (100) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Versorgungslufteinheit (100) umfasst:
    - ein horizontales Deckenpaneel (12),
    - einen länglichen Wärmetauscher (30), dessen oberes Ende an der unteren Oberfläche des Deckenpaneels (12) getragen ist,
    - eine längliche Saugkammer (40), die in einem Raum zwischen dem Wärmetauscher (30) und der vertikalen Außenseitenwand (13c) an der Versorgungsseite des Wärmetauschers (30) gebildet ist,
    - eine längliche Mischkammer (20), die an der Auslassseite des Wärmetauschers (30) lokalisiert ist,
    - eine Versorgungsluftkammer (10), die einen länglichen unteren Abschnitt (10b) umfasst, lokalisiert außerhalb der Mischkammer (20), und einen oberen Abschnitt (10a), der in einem Raum zwischen dem horizontalen Deckenpaneel (12) und dem horizontalen Dachpaneel (11) gebildet ist,
    - Düsen (60), die in der Decke der Mischkammer (20) lokalisiert sind, das heißt in dem Deckenpaneel (12), und durch die ein Frischluftstrom (L1) von der Versorgungsluftkammer (10) in die Mischkammer (20) geleitet wird,
    - eine Bodenplatte (50), die getragen ist an dem unteren Ende des Wärmetauschers (30) und dem unteren Rand der vertikalen Außenseitenwand (13c), und die in ihrem mittleren Teil Öffnungen umfasst, durch die ein zirkulierter Luftstrom (L2) von dem klimatisierten Zimmerraum in die Saugkammer (40) geleitet wird,
    - eine Auslassöffnung (25), die in dem unteren Teil der Mischkammer (20) lokalisiert ist, und die begrenzt ist durch die Bodenoberfläche (15) des unteren Abschnitts (10b) der Versorgungsluftkammer (10) und durch den äußeren Rand der Bodenplatte (50),
    - wenigstens einen Luftstromcontroller (70, 80, 90), der in der Decke der Saugkammer (40) lokalisiert ist, das heißt in dem Deckenpaneel (12), und durch den ein zusätzlicher Luftstrom (L3) von der Versorgungsluftkammer (10) in die Saugkammer (40) geleitet wird, von der der zusätzliche Luftstrom (L3) durch den Wärmetauscher (30) in die Mischkammer (20) gesaugt wird.
  5. Versorgungslufteinheit (100) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Versorgungslufteinheit (100) umfasst:
    - ein horizontales rundes Deckenpaneel (12),
    - einen ringförmigen Wärmetauscher (30), dessen oberes Ende an der unteren Oberfläche des Deckenpaneels (12) getragen ist,
    - eine ringförmige Saugkammer (40), die innerhalb des ringförmigen Wärmetauschers (30) gebildet ist, das heißt an der Versorgungsseite des ringförmigen Wärmetauschers (30),
    - eine ringförmige Mischkammer (20), die außerhalb des ringförmigen Wärmetauschers (30) lokalisiert ist, das heißt an der Auslassseite,
    - eine Versorgungsluftkammer (10), die einen unteren Abschnitt (10b) umfasst, lokalisiert außerhalb der ringförmigen Mischkammer (20), und einen einstückigen oberen Abschnitt (10a), mit dem der untere ringförmige Abschnitt (10b) verbunden ist, und der in einem Raum zwischen dem horizontalen Deckenpaneel (12) und dem horizontalen Dachpaneel (11) gebildet ist,
    - Düsen (60), die in der Decke der ringförmigen Mischkammer (20) lokalisiert sind, das heißt in dem Deckenpaneel (12), und durch die ein Frischluftstrom (L1) von der Versorgungsluftkammer (10) in die Mischkammer (20) geleitet wird,
    - eine Bodenplatte (50), die an dem unteren Ende des ringförmigen Wärmetauschers (30) getragen ist und die in ihrem mittleren Teil Öffnungen umfasst, durch die ein zirkulierter Luftstrom (L2) von dem klimatisierten Zimmerraum in die Saugkammer (40) geleitet wird,
    - eine ringförmige Auslassöffnung (25), die in dem unteren Teil der ringförmigen Mischkammer (20) lokalisiert ist, und die begrenzt ist durch die Bodenoberfläche (15) des unteren ringförmigen Abschnitts (10b) der Versorgungsluftkammer (10) und durch den äußeren Rand der Bodenplatte (50),
    - wenigstens einen Luftstromcontroller (70, 80, 90), der in der Decke der Saugkammer (40) lokalisiert ist, das heißt in dem Deckenpaneel (12), und durch den ein zusätzlicher Luftstrom (L3) von der Versorgungsluftkammer (10) in die Saugkammer (40) geleitet wird, von der der zusätzliche Luftstrom (L3) durch den Wärmetauscher (30) in die Mischkammer (20) gesaugt wird.
  6. Versorgungslufteinheit (100) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der wenigstens eine Luftstromcontroller (70) durch ein Scheibenventil gebildet ist, das Folgendes umfasst:
    - einen Bodenteil (71), der an den Rändern eines Lochs (12a) in der Decke (12) der Saugkammer (40) getragen ist,
    - eine Steuerscheibe (73),
    - einen Gewindestift (74), durch den die Steuerscheibe (73) drehbar in einem Gewindeloch (72) getragen ist, das in der Mitte des Bodenteils (71) lokalisiert ist,
    - wobei die Luftmenge, die von dem Luftstromcontroller (70) ausgegeben wird, gesteuert werden kann durch Steuern des Abstands der Steuerscheibe (73) von dem Bodenteil (71) mittels Drehung der Steuerscheibe (73).
  7. Versorgungslufteinheit (100) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der wenigstens eine Luftstromcontroller (80) durch ein Sektorschlitzluftventil gebildet ist, das Folgendes umfasst:
    - einen Bodenteil (81), der an den Rändern einer Öffnung (12a) in der Decke (12) der Saugkammer (40) getragen ist, und der einen Querschnitt hat, der sektorartige Öffnungen (81a) hat,
    - einen Dämpfer (83), der sektorartige Öffnungen (83a) hat,
    - einen Gewindebolzen (84), der sich durch ein Loch in dem Dämpfer (83) erstreckt und in ein Gewindeloch (82) in der Mitte der Bodenplatte (81) passt,
    - wobei die Luftmenge, die von dem Luftstromcontroller (80) ausgegeben wird, gesteuert werden kann durch Steuern des Ausmaßes der Überlappung zwischen dem sektorartigen Öffnungen (81a) des Bodenteils (81) und den sektorartigen Öffnungen (83a) des Dämpfers (83) mittels Drehung des Dämpfers (83).
  8. Versorgungslufteinheit (10) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der wenigstens eine Luftstromcontroller (90) durch einen Zylinder gebildet ist, der sich Sektor für Sektor öffnet und Folgendes umfasst:
    - einen Bodenteil (91), der an den Rändern einer Öffnung (12a) in der Decke (12) der Saugkammer (40) getragen ist,
    - einen Bodenzylinder (91b), dessen inneres Ende an einer Bodenplatte (91) getragen ist, dessen äußeres Ende durch eine erste Abdeckplatte (91c) geschlossen ist, und wobei in dem Gehäuse des Bodenzylinders (91b) erste Öffnungen (91a) vorgesehen sind,
    - einen Steuerzylinder (93), der an der Außenoberfläche des Gehäuses des Bodenzylinders (91b) lokalisiert ist, dessen äußeres Ende durch eine zweite Abdeckplatte (93c) geschlossen ist, und in dessen Gehäuse zweite Öffnungen (93a) vorgesehen sind,
    - einen Gewindebolzen (94), der sich durch ein Loch in der Abdeckplatte (93c) des Steuerzylinders (93) erstreckt und in ein Gewindeloch (92) in der Abdeckplatte (91c) des Bodenzylinders (91b) passt,
    - wobei die Luftmenge, die von dem Luftstromcontroller (90) ausgegeben wird, gesteuert werden kann durch Steuern des Ausmaßes der Überlappung zwischen den Öffnungen (93a) des Steuerzylinders (93) und den Öffnungen (91a) des Bodenzylinders (91b) mittels Drehung des Steuerzylinders (93).
  9. Versorgungslufteinheit (10) nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass der Luftstromcontroller (70, 80, 90) ferner ein luftdurchlässiges Gewebe (75, 85, 95) umfasst, durch den der Umgehungsstrom von Frischluft (L3) geleitet wird.
EP10189929.2A 2009-11-18 2010-11-04 Zuluftvorrichtung Active EP2325571B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL10189929T PL2325571T3 (pl) 2009-11-18 2010-11-04 Jednostka nawiewna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FI20096195A FI122952B (fi) 2009-11-18 2009-11-18 Tuloilmalaite

Publications (3)

Publication Number Publication Date
EP2325571A2 EP2325571A2 (de) 2011-05-25
EP2325571A3 EP2325571A3 (de) 2015-01-07
EP2325571B1 true EP2325571B1 (de) 2020-05-13

Family

ID=41395242

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10189929.2A Active EP2325571B1 (de) 2009-11-18 2010-11-04 Zuluftvorrichtung

Country Status (6)

Country Link
US (2) US20110124279A1 (de)
EP (1) EP2325571B1 (de)
DK (1) DK2325571T3 (de)
FI (1) FI122952B (de)
PL (1) PL2325571T3 (de)
RU (1) RU2543594C2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3161388B1 (de) 2014-06-27 2022-09-28 EcoBoost GmbH Verfahren und anordnung zum belüftung und temperierung von räumen

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2947040B1 (fr) * 2009-06-23 2014-01-03 Cinier Radiateurs Radiateur reversible
EP2517909B1 (de) * 2011-04-29 2014-05-14 H.Opdam Management B.V. Luftvorhang und ein Fahrzeug mit einem solchen Luftvorhang
MX356751B (es) * 2012-03-16 2018-06-12 Oy Halton Group Ltd Viga enfriada con múltiples modos.
SE541076C2 (sv) 2014-02-11 2019-03-26 Lindab Ab Ventilationsdon med ljuddämpning.
CN104456788B (zh) * 2014-11-07 2017-10-27 北京百度网讯科技有限公司 新风处理机和新风处理方法
JP6829053B2 (ja) * 2016-11-09 2021-02-10 コマツ産機株式会社 マシンルーム
US11752838B2 (en) * 2019-04-22 2023-09-12 Air Distribution Technologies Ip, Llc Variable flow adapters for air diffusers of HVAC systems
US11560043B2 (en) * 2019-07-31 2023-01-24 The Boeing Company Passenger cabin air distribution system and method of using
CN112762591B (zh) * 2021-01-05 2022-07-12 格力电器(武汉)有限公司 空调的控制方法和装置、电子设备和存储介质
EP4414618A1 (de) * 2023-02-13 2024-08-14 Halton OY Luftzufuhrvorrichtung mit bypassventil

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3246137A (en) * 1966-04-12 Air diffusing light fixture
US2754747A (en) * 1953-03-20 1956-07-17 Herman G Bertling Air register or louver
US3173616A (en) * 1961-10-16 1965-03-16 Willis L Lipscomb Combined luminaire and air-flow means
US3117723A (en) * 1961-11-20 1964-01-14 Carrier Corp Air distributing units
US3267995A (en) * 1963-07-15 1966-08-23 Stewart Warner Corp Centralized heating and air conditioning system
US3419714A (en) * 1965-12-01 1968-12-31 Sylvania Electric Prod Air handling troffer
US3420439A (en) * 1967-01-05 1969-01-07 Lithonia Lighting Inc Comfort conditioning system
AT315427B (de) * 1971-01-08 1974-05-27 Dl Veb Kom Luft Und Kaeltetech Gerät zum Belüften von Gebäuderäumen
CH587455A5 (de) * 1973-05-30 1977-04-29 Darmstadt Rudolf
GB1489003A (en) * 1974-03-04 1977-10-19 Carrier Corp Air conditioning terminal assembly
US4113176A (en) * 1976-04-21 1978-09-12 Nicholas Caknis Air-conditioning
US4448111A (en) * 1981-01-02 1984-05-15 Doherty Robert Variable venturi, variable volume, air induction input for an air conditioning system
US4562883A (en) * 1981-05-27 1986-01-07 Janeke Charl E Air conditioning method and installation
US4616559A (en) * 1985-05-20 1986-10-14 Pure Air Inc. Variable air diffuser
US4730551A (en) * 1986-11-03 1988-03-15 Peludat Walter W Heat distributor for suspended ceilings
US5180331A (en) * 1990-02-01 1993-01-19 Daw Technologies, Inc. Subfloor damper and spill container
JP3240854B2 (ja) * 1994-09-26 2001-12-25 三菱電機株式会社 空気調和機の吹出口
DE4442918C2 (de) * 1994-12-01 1998-07-02 Krantz Tkt Gmbh Sockelquellauslaß
US5910045A (en) * 1995-09-07 1999-06-08 Daikin Industries, Ltd. Air discharge unit for underfloor air conditioning and underfloor air conditioning system using same
US6250373B1 (en) * 1998-07-20 2001-06-26 Carrier Corporation Ceiling mounted apparatus for heating and cooling
DE29822930U1 (de) * 1998-12-23 1999-02-25 Gebrüder Trox, GmbH, 47506 Neukirchen-Vluyn Deckenluftdurchlaß für klimatechnische Anlagen
JP3268279B2 (ja) * 1999-01-18 2002-03-25 三菱電機株式会社 空気調和機
JP3408983B2 (ja) * 1999-01-25 2003-05-19 三菱電機株式会社 天井埋込型空気調和機
US6213867B1 (en) * 2000-01-12 2001-04-10 Air Handling Engineering Ltd. Venturi type air distribution system
WO2001055649A1 (en) * 2000-01-28 2001-08-02 Toshiba Carrier Corporation Cassette type air conditioner for mounting in the ceiling
FI118236B (fi) 2000-11-24 2007-08-31 Halton Oy Tuloilmalaite
FI113798B (fi) 2000-11-24 2004-06-15 Halton Oy Tuloilmalaite
FI117682B (fi) 2000-11-24 2007-01-15 Halton Oy Tuloilmalaite
FI113693B (fi) * 2000-12-07 2004-05-31 Halton Oy Tuloilmalaite
IL148087A0 (en) * 2001-01-29 2002-12-01 Joseph A Mcgill Adjustable damper for airflow systems
US6736326B2 (en) * 2002-02-01 2004-05-18 Acutherm L.P. Thermally powered VAV diffuser and control assembly
US20040240214A1 (en) * 2003-05-28 2004-12-02 Hubbell Incorporated. Light fixture having air ducts
JP3700718B2 (ja) * 2003-11-27 2005-09-28 ダイキン工業株式会社 空気調和装置
JP3972894B2 (ja) * 2003-11-27 2007-09-05 ダイキン工業株式会社 空気調和装置
SE526486C2 (sv) * 2004-03-26 2005-09-27 Fredrik Andersson Tilluftsanordning innefattande filter
KR100617079B1 (ko) * 2005-02-07 2006-08-30 엘지전자 주식회사 공기청정겸용 환기시스템
TR201819160T4 (tr) * 2005-03-21 2019-01-21 Camfil Usa Inc Bir egzoz filtre modülü ve bunun etkinlik testine yönelik bir yöntem ve aparat.
WO2007058418A2 (en) * 2005-11-21 2007-05-24 Lg Electronics, Inc. Air conditioning system
JP4039453B1 (ja) * 2005-12-12 2008-01-30 ダイキン工業株式会社 空気調和装置
DE102005062523A1 (de) * 2005-12-19 2007-06-21 M+W Zander Holding Ag Filter-Ventilator-Einheit
FI122286B (fi) 2006-01-16 2011-11-15 Halton Oy Tuloilmalaite ja menetelmä ilmavirtausmäärän säädössä
US8206475B2 (en) * 2006-06-23 2012-06-26 Veft Aerospace Technology Inc. Entrainment air flow control and filtration devices
KR100782195B1 (ko) * 2006-08-10 2007-12-04 엘지전자 주식회사 공기 조화기
DE102006051858A1 (de) * 2006-10-31 2008-05-08 Kampmann Gmbh Verfahren zur Klimatisierung eines Raums und Klimatisierungsvorrichtung
DE102008022473B4 (de) * 2008-05-07 2010-02-04 Airbus Deutschland Gmbh Einstellbare Blende zur Verwendung in einer Klimaanlage, insbesondere einer Flugzeugklimaanlage
FI122953B (fi) * 2009-12-18 2012-09-14 Halton Oy Tuloilmalaite

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3161388B1 (de) 2014-06-27 2022-09-28 EcoBoost GmbH Verfahren und anordnung zum belüftung und temperierung von räumen

Also Published As

Publication number Publication date
RU2010147006A (ru) 2012-05-27
US20140374063A1 (en) 2014-12-25
EP2325571A3 (de) 2015-01-07
FI122952B (fi) 2012-09-14
FI20096195A (fi) 2011-05-19
RU2543594C2 (ru) 2015-03-10
DK2325571T3 (da) 2020-08-03
EP2325571A2 (de) 2011-05-25
PL2325571T3 (pl) 2020-11-16
FI20096195A0 (fi) 2009-11-18
US20110124279A1 (en) 2011-05-26

Similar Documents

Publication Publication Date Title
EP2325571B1 (de) Zuluftvorrichtung
CN104697051B (zh) 空调室内机及其控制方法
CN104697055B (zh) 空调室内机及空调室内机的控制方法
CN104697056B (zh) 空调室内机及其控制方法
KR101484712B1 (ko) 차량용 좌,우 독립 공조장치
CN104697061B (zh) 空调室内机及其控制方法
CN108800313A (zh) 空调器及空调器控制方法
US10908658B2 (en) System and method for cooling computing devices within a facility
JPS621180B2 (de)
KR20060050950A (ko) 천정 현수형 공기 조화 장치
CN106871241A (zh) 天井机
US10694642B2 (en) Computing device cooling facility including a mixing chamber
CA2683737A1 (en) Modular ventilation system
EP2333436A2 (de) Zuluftvorrichtung und Belüftungsverfahren
KR200353071Y1 (ko) 항온,항습용 공조기
KR100763735B1 (ko) 천정 현수형 공기 조화 장치
KR200437608Y1 (ko) 덕트 겸용 천장형 에어컨
US20120088445A1 (en) Air distribution unit
FI125084B (fi) Tuloilmalaite ja menetelmä tuloilmalaitteessa
CN107062572A (zh) 挂吊式空调内机
JPH0261446A (ja) 熱交換器付換気装置
FI105852B (fi) Ilmastointimenetelmä ja tuloilmalaite menetelmän toteuttamiseksi
KR20050091197A (ko) 항온,항습용 공조기
JP2704183B2 (ja) 空気調和装置
CN106091138A (zh) 柜式空调室内机、柜式空调及空调控制系统

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101104

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F24F 1/00 20110101AFI20141128BHEP

Ipc: F24F 13/06 20060101ALI20141128BHEP

Ipc: F24F 1/01 20110101ALI20141128BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181002

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191216

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HAGSTROEM, KIM

Inventor name: RUPONEN, MIKA

Inventor name: ULMANEN, HEIMO

Inventor name: PAAVILAINEN, RISTO

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010064319

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1270800

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20200729

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200914

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200814

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200913

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200813

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1270800

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010064319

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20221123

Year of fee payment: 13

Ref country code: NL

Payment date: 20221116

Year of fee payment: 13

Ref country code: GB

Payment date: 20221117

Year of fee payment: 13

Ref country code: FR

Payment date: 20221117

Year of fee payment: 13

Ref country code: FI

Payment date: 20221118

Year of fee payment: 13

Ref country code: DK

Payment date: 20221115

Year of fee payment: 13

Ref country code: DE

Payment date: 20221117

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20221024

Year of fee payment: 13

Ref country code: BE

Payment date: 20221116

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010064319

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20231130

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20231201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20231104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231104

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20231130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231130