EP2324389A1 - Source de rayonnement térahertz et procédé pour générer un rayonnement térahertz - Google Patents

Source de rayonnement térahertz et procédé pour générer un rayonnement térahertz

Info

Publication number
EP2324389A1
EP2324389A1 EP09779681A EP09779681A EP2324389A1 EP 2324389 A1 EP2324389 A1 EP 2324389A1 EP 09779681 A EP09779681 A EP 09779681A EP 09779681 A EP09779681 A EP 09779681A EP 2324389 A1 EP2324389 A1 EP 2324389A1
Authority
EP
European Patent Office
Prior art keywords
terahertz radiation
laser
terahertz
pulse
radiation source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09779681A
Other languages
German (de)
English (en)
Inventor
Michael Thiel
Ulrich Kallmann
Stefan Kundermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2324389A1 publication Critical patent/EP2324389A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3534Three-wave interaction, e.g. sum-difference frequency generation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/005Prospecting or detecting by optical means operating with millimetre waves, e.g. measuring the black losey radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/887Radar or analogous systems specially adapted for specific applications for detection of concealed objects, e.g. contraband or weapons
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/13Function characteristic involving THZ radiation

Definitions

  • the present invention relates to a terahertz radiation source, an imaging and / or spectroscopy system, a method for generating terahertz radiation, a method for the detection and / or examination of living beings, objects and materials with such a system and the use of such a source and a such system.
  • the electromagnetic spectrum can provide information about the complex chemical composition of substances as well as about the dielectric in the area of the terahertz frequency band
  • the detection of explosives without direct contact is of particular interest.
  • the corresponding sample is irradiated by a terahertz radiation source and the reflected, transmitted or scattered radiation is analyzed.
  • An explosive spectral identification system may be based on a terahertz radiation source which generates terahertz radiation tunable within a wide frequency range and a broadband terahertz radiation detector.
  • the spectral resolution is achieved in such a system by tuning the terahertz frequency and simultaneously recording the corresponding received intensity.
  • time-domain spectroscopy which requires particularly broadband terahertz radiation sources, a narrow-band and tunable terahertz radiation source is needed for such a system.
  • optical pulses of different frequency are generated by an optical parametric oscillator and converted into terahertz radiation by differential frequency generation in a nonlinear crystal, the terahertz frequency corresponding to the difference frequency of the pulses.
  • optical parametric oscillators are extremely susceptible to temperature fluctuations and shocks.
  • the terahertz radiation source comprising a pulsed femtosecond fiber laser, a pulse shaper, an optical amplifier, in particular fiber amplifier, and a nonlinear crystal whose laser, pulse shaper, optical amplifier and nonlinear crystal are designed and / or arranged such that a laser pulse generated by the laser first passes through the pulse shaper, then the optical amplifier and then the non-linear crystal, on the one hand has the advantage that all components have a lower susceptibility to interference, especially against temperature fluctuations and shocks.
  • all components in the telecom band can be 1550 nm operated components, which in the long term can be manufactured at low unit cost, allowing for mass-market application.
  • FIG. 1 shows a schematic block diagram of a terahertz radiation source according to the invention
  • FIG. 2 is a graph illustrating the frequency domain of a laser pulse before and after passing through a pulse shaper having Gaussian filter characteristics.
  • FIG. 1 shows that a terahertz radiation source according to the invention has a pulsed one
  • Femtosecond fiber laser 1, a pulse shaper 2, an optical amplifier 3 and a nonlinear crystal 4 comprises. According to the invention, these are formed and / or arranged as shown in FIG. 1 such that a laser pulse I, II, III, IV generated by the laser 1 first passes through the pulse shaper 2, then the optical amplifier 3 and then the nonlinear crystal 4.
  • a fiber laser is understood to be a solid-state laser whose laser-active medium forms a glass fiber, for example erbium, ytterbium and / or neodymium-doped glass fiber.
  • a laser advantageously produces light with a high beam quality and has a robust construction, a high efficiency of the conversion process and a good cooling through the large surface of the fiber.
  • a femtosecond fiber laser is understood to mean a fiber laser which generates laser pulses whose duration is in the femtosecond range.
  • the femtosecond range is understood to be a range of> 50 fs to ⁇ 500 fs.
  • a pulse shaper is understood to mean a device which converts a laser pulse I into a laser pulse II whose spectrum has at least two maxima at different frequencies and / or which transforms a laser pulse I into at least two laser pulses II of different frequencies.
  • a pulse shaper is understood to mean a device which converts a laser pulse I into a laser pulse II whose spectrum has two maxima at different frequencies, or which converts a laser pulse I into two laser pulses II of different frequencies.
  • pulse shapers such devices are also referred to as “pulse shapers.”
  • the pulse shaper may or may not include optical components or assemblies for pulse expansion, pulse compression, or chirp compensation a temporal distortion of the pulses due to the dispersion properties of the optical components (fibers, prisms, etc.) understood.
  • an optical amplifier is understood to mean a device which transmits an incoming optical signal of a wavelength or of a wavelength
  • the optical amplifier can, but does not have to, contain optical components or modules for pulse expansion, pulse compression or chirp compensation.
  • terahertz radiation By means of a terahertz radiation source according to the invention, narrow-band terahertz radiation which can be set within a wide frequency range can advantageously be generated.
  • terahertz radiation is understood as meaning electromagnetic radiation in a range of> 15 ⁇ m to ⁇ 1000 ⁇ m.
  • a narrowband terahertz radiation with a width of> 1 gigahertz to ⁇ 1 terahertz in particular from> 20 gigahertz to ⁇ 200 gigahertz be understood.
  • a frequency range of> 0.3 terahertz to ⁇ 20 terahertz for example> 0.3 terahertz or> 0.5 terahertz or> 1 terahertz to ⁇ 3 terahertz or ⁇ 5 terahertz or ⁇ 10 terahertz, may be considered broad be understood.
  • the optical amplifier 3 is a, for example erbium-doped, fiber amplifier.
  • a fiber amplifier is understood to mean an optically pumped power amplifier for light signals conducted in optical fiber waveguides (optical waveguides).
  • the fiber laser 1 generates laser pulses with a duration of> 50 fs to ⁇ 500 fs, for example of 100 fs.
  • the central wavelength of the fiber laser 1 is in a range of> 1500 nm to ⁇ 1600 nm, for example> 1530 nm to ⁇ 1570.
  • the central wavelength of the laser may be 1550 nm.
  • the fiber laser 1 may be a double cladding fiber laser.
  • the pulse shaper 2 can divide the laser pulse I both symmetrically and asymmetrically into at least two laser pulses II of different frequencies.
  • a symmetrically dividing pulse shaper 2 can be used, for example.
  • an asymmetrically dividing pulse shaper 2 can be used such that this counteracts the asymmetry of the laser pulse I generated by the fiber laser 1 due to its asymmetry.
  • the pulse shaper 2 is a grating-based pulse shaper, a prism-based pulse shaper or a Mach-Zehnder interferometer with integrated Fabry-Perot filters.
  • the Mach-Zehnder interferometer preferably comprises a first beam splitter (also called “beam splitter”), for example a first Y fiber coupler, for splitting the laser pulse I into a first and a second laser pulse, a first Fabry-Perot filter for filtering out a laser beam Frequency from the first laser pulse and a second Fabry-Perot filter for filtering out another frequency from the second laser pulse, and a second beam splitter (“Beamsplitter”), for example a second Y-fiber coupler, for superimposing the first and second laser pulses.
  • a first beam splitter also called "beam splitter”
  • Beamsplitter for example a second Y-fiber coupler
  • a beam splitter is understood to mean a device which divides an incident light beam into two light beams or superimposes two incident light beams on it.
  • a Y-fiber coupler is understood to be a component which divides a light signal located in a glass fiber into two glass fibers or superimposes the signals from two glass fibers in a single glass fiber.
  • the original laser pulse I is split by the first beam splitter into two interferometer branches of the Mach-Zehnder interferometer. These two branches each contain a Fabry-Perot filter, which filters out one frequency from the laser spectrum. The two, for example, Lorentz-shaped, lines are then superimposed again in the second beam splitter and transmitted to the optical amplifier 3.
  • the Fabry-Perot filters may be conventional Fabry-Perot filters, for example based on solid dielectric structures.
  • the frequency difference between the two divided laser pulses can be adjusted, for example, by tilting the Fabry-Perot filters.
  • the Fabry-Perot filters are microelectromechanical Fabry-Perot filters or MEMS resonators (MEMS: microelectromechanical system).
  • MEMS microelectromechanical system
  • the frequency difference between the two divided laser pulses can be adjusted for example by a, in particular electrically controlled, change in the distance between the mirror elements of the Fabry-Perot filter.
  • the microelectromechanical Fabry-Perot filter can be integrated in a glass fiber element.
  • the Mach-Zehnder interferometer comprises a first Y fiber coupler for dividing the laser pulse I into a first and a second laser pulse, a first microelectromechanical Fabry-Perot filter integrated in a fiber optic element to filter out a frequency from the first one Laser pulse and a second microelectromechanical Fabry-Perot filter integrated in a glass fiber element for filtering out another frequency from the second laser pulse, and a second Y fiber coupler for superimposing the first and second laser pulses.
  • non-linear crystal for example, a DAST crystal (DAST: 4'-dimethylamino-N-methyl-4-stilbazolium tosylate), a ZnTe crystal, a CdTe crystal or a GaAs crystal can be used in the present invention.
  • DAST crystal DAST: 4'-dimethylamino-N-methyl-4-stilbazolium tosylate
  • ZnTe crystal ZnTe crystal
  • CdTe crystal or a GaAs crystal can be used in the present invention.
  • Another object of the present invention is a method for generating terahertz radiation with a terahertz radiation source according to the invention, which comprises the method steps:
  • Generation of terahertz radiation IV - by difference frequency generation of the difference frequency f THz between the maxima at different frequencies of the amplified laser pulse III and / or by difference frequency generation of the difference frequency f THz between the different frequencies of the amplified laser pulses III, by the nonlinear crystal. 4 includes.
  • a laser pulse I having a "wide frequency distribution” for example, a laser pulse with a frequency distribution of a width of> 5 THz to ⁇ 10 THz can be understood.
  • the laser pulse I can be converted, for example, with a grating- or prism-based pulse shaper 2 into a laser pulse II whose spectrum has at least two maxima at different frequencies.
  • a Mach-Zehnder interferometer with integrated Fabry-Perot filters As a pulse shaper 2, the laser pulse I can be converted into at least two laser pulses II of different frequencies.
  • the frequency of the terahertz radiation IV can be adjusted by tuning the pulse shaper 2, in particular by tuning the difference frequency f THz .
  • both the transformed laser pulses II and the amplified laser pulses III as shown in Figure 2, a symmetrical pulse shape.
  • the spectral distribution III, in particular pulse shape, measured behind the optical amplifier 3 the necessary to achieve a symmetrical pulse shape III pulse shape II by a, not shown logic means, such as a microprocessor, calculated and set the pulse shaper 2 by an output of the logic means such be that this generates the necessary to achieve a symmetrical pulse shape III, in particular asymmetric, pulse shape II.
  • This method according to the invention is therefore advantageously suitable for generating a narrow-band terahertz radiation which can be set within a wide frequency range.
  • FIG. 1 shows that laser pulses I, for example with a duration in the range of 100 fs, are generated by the femtosecond fiber laser 1 within the scope of this method according to the invention.
  • These laser pulses I are fed into a pulse shaper 2.
  • the pulse shaper 2 in each case forms a laser pulse I into a laser pulse II whose spectrum has at least two maxima at different frequencies, and / or into at least two laser pulses II of different frequency.
  • FIG. 2 shows the transformation of a laser pulse I with a Gauss-based pulse shaper in the frequency domain.
  • FIG. 2 illustrates that from the laser pulse I generated by the fiber laser two spectral lines with the width ⁇ are selected by the pulse shaper 2 whose center frequencies differ from one another by the frequency f THz .
  • FIG. 2 further shows that the two spectral lines are arranged symmetrically about the central, original laser wavelength I within the scope of the preferred embodiment shown. In the context of other embodiments according to the invention, however, it may also be an asymmetric distribution, in particular an asymmetric arrangement.
  • the difference frequency f THz which corresponds to the frequency of the subsequently generated terahertz radiation IV, can be achieved by tuning the pulse shaper 2.
  • Pulse shaper 2 After passing through the pulse shaper 2 are the through Pulse shaper 2 shaped pulse forms II in the optical amplifier 3, in particular fiber amplifier, where amplified that the electric field in the non-linear material of the nonlinear crystal 4 is sufficient to set a non-linear effect by the non-linear crystal 4 in motion.
  • the amplified laser pulses III finally strike the nonlinear crystal 4, by means of which the terahertz radiation IV with the terahertz frequency f THz is generated by means of a nonlinear effect.
  • the non-linear effect can be in particular difference frequency generation.
  • the line width ⁇ of the terahertz radiation IV essentially corresponds to the width ⁇ of the two frequencies II filtered in the pulse shaper.
  • the different frequency f THz and thus the frequency of the terahertz radiation IV can be varied within a very wide range.
  • the minimum frequency of the terahertz radiation source according to the invention is given in approximation by the width ⁇ .
  • the maximum frequency of the terahertz radiation source according to the invention results on the order of magnitude from the width of the original laser pulse I in the frequency domain.
  • the present invention relates to an imaging and / or spectroscopy system, which comprises a terahertz radiation source according to the invention and a terahertz radiation sensor, which serves as a detector.
  • the terahertz radiation source according to the invention and the terahertz radiation sensor with regard to the object to be examined can both be arranged such that the terahertz radiation sensor detects the radiation remaining after passing through the object as well as the terahertz radiation sensor detects the radiation reflected and / or scattered by the object.
  • the terahertz radiation source, the terahertz radiation sensor, and the object may both be arranged along an axis, the object being located between the terahertz radiation source and the terahertz radiation sensor, as well as not being arranged along an axis.
  • the system according to the invention advantageously enables real-time spectroscopy in the terahertz range as well as imaging detection in the terahertz range.
  • One embodiment of the imaging and / or spectroscopy system according to the invention is a multispectral imaging and / or spectroscopy system which, in addition to the terahertz radiation sensor, has further radiation sensors, in particular sensors for radiation of the visible, near-infrared, and / or infrared range , includes.
  • the present invention relates to a method for the detection and / or examination of living beings, in particular humans and animals, objects and materials, with a system according to the invention.
  • this method can be based on frequency domain spectroscopy.
  • the terahertz radiation source according to the invention radiates a narrow terahertz band in the method according to the invention, for example, with a width of> 1 gigahertz to ⁇ 1 terahertz, in particular from> 20 gigahertz to ⁇ 200 gigahertz, which is within a broad frequency range, for example in a range of> 0.3 terahertz to ⁇ 20 terahertz, for example> 0 , 3 terahertz or> 0.5 terahertz, or> 1 terahertz to ⁇ 3 terahertz or ⁇ 5 terahertz or ⁇ 10 terahertz, with the transmitted, reflected and / or scattered radiation through the, in particular broadband, terahe
  • a terahertz radiation sensor is understood to mean, for example, a terahertz radiation sensor whose detection interval is> 0.3 terahertz to ⁇ 20 terahertz, in particular> 0.3 terahertz or> 0.5 terahertz or> 1 terahertz or> 1.5 terahertz to ⁇ 2.5 Terahertz or ⁇ 3 terahertz or ⁇ 5 terahertz or ⁇ 10 terahertz.
  • the measurement result of the terahertz radiation sensor can be output in the context of this method according to the invention by an output device, for example a display, a screen or a printer.
  • Terahertz radiation source a system according to the invention and / or a method according to the invention in surveillance / security technology, transportation, production, packaging, life science and / or medical field.
  • the present invention relates to the use of a terahertz radiation source according to the invention, a system according to the invention and / or a method according to the invention for the detection and / or examination of living beings, in particular humans and animals, objects and materials, in particular explosives, for example at security checks at borders, in transit buildings, such as airports and railway stations, in means of transport, such as trains, buses, aircraft and / or ships, and / or at major events, for burglar-proofing of buildings, premises and means of transportation, for medical purposes and / or non-destructive testing of a workpiece ("non-destructive
  • the terahertz radiation source according to the invention, the system according to the invention and / or the method according to the invention can be used in a multispectral camera for access control of sensitive sensors n Infrastructure
  • Tissue be used.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Lasers (AREA)

Abstract

La présente invention concerne une source de rayonnement térahertz comprenant un laser à fibre femtoseconde pulsé (1), un conformateur d'impulsions (2), un amplificateur optique (3) et un cristal non linéaire (4), le laser (1), le conformateur d'impulsions (2), l'amplificateur optique (3) et le cristal  non linéaire(4) étant conçus et disposés de telle sorte qu'une impulsion laser I, II, III, IV générée par le laser (1) passe d'abord par le conformateur d'impulsions (2), puis par l'amplificateur optique (3) et ensuite par le cristal non linéaire (4). L’invention concerne également un système de génération d'images et/ou de spectroscopie, un procédé pour la génération de rayonnement térahertz, un procédé pour la détection et/ou l'analyse d'êtres vivants, d'objets et de matériaux à l’aide d’un tel système, ainsi que l'utilisation d'une telle source et d'un tel système.
EP09779681A 2008-08-07 2009-06-09 Source de rayonnement térahertz et procédé pour générer un rayonnement térahertz Withdrawn EP2324389A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008041107A DE102008041107A1 (de) 2008-08-07 2008-08-07 Terahertzstrahlungsquelle und Verfahren zur Erzeugung von Terahertzstrahlung
PCT/EP2009/057072 WO2010015443A1 (fr) 2008-08-07 2009-06-09 Source de rayonnement térahertz et procédé pour générer un rayonnement térahertz

Publications (1)

Publication Number Publication Date
EP2324389A1 true EP2324389A1 (fr) 2011-05-25

Family

ID=40996775

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09779681A Withdrawn EP2324389A1 (fr) 2008-08-07 2009-06-09 Source de rayonnement térahertz et procédé pour générer un rayonnement térahertz

Country Status (7)

Country Link
US (1) US20110121209A1 (fr)
EP (1) EP2324389A1 (fr)
JP (1) JP2011530092A (fr)
CN (1) CN102119359A (fr)
DE (1) DE102008041107A1 (fr)
RU (1) RU2011108214A (fr)
WO (1) WO2010015443A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664337B (zh) * 2012-05-09 2013-09-11 南开大学 一种基于镱锗共掺微结构光纤窄线宽双波长激光器的太赫兹波源
JP2014141296A (ja) * 2012-12-27 2014-08-07 Dainippon Printing Co Ltd 収容体、積層体、収容体の真贋判定方法および積層体の真贋判定方法
RU2539678C2 (ru) * 2013-04-16 2015-01-20 Федеральное государственное бюджетное учреждение науки Институт общей физики им. А.М. Прохорова Российской академии наук Способ генерации электромагнитного излучения в терагерцовом диапазоне и устройство для получения электромагнитного излучения в терагерцовом диапазоне
JP6479803B2 (ja) * 2013-12-04 2019-03-06 マイクロテック インストゥルメンツ,インコーポレイテッドMicroTech Instruments,Inc. テラヘルツ画像の高コントラスト準リアルタイム取得のためのシステム及び方法
CN103633545A (zh) * 2013-12-07 2014-03-12 山东海富光子科技股份有限公司 一种外腔增强差频可调谐单频太赫兹源
CN104013387B (zh) * 2014-06-12 2016-01-27 清华大学 一种太赫兹快速断层成像系统及方法
RU2690066C2 (ru) * 2017-05-15 2019-05-30 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия им. Адмирала Флота Советского Союза Н.Г. Кузнецова" Широкополосная антенна
RU2690064C2 (ru) * 2017-05-15 2019-05-30 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия им. Адмирала Флота Советского Союза Н.Г. Кузнецова" Способ генерации электромагнитного излучения в широком диапазоне радиосвязи
RU2687985C2 (ru) * 2017-06-05 2019-05-17 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия имени Адмирала флота Советского Союза Н.Г. Кузнецова" Широкополосное радиопередающее устройство
DE102020106655A1 (de) * 2019-03-14 2020-09-17 Canon Kabushiki Kaisha Beweglicher Körper
CN110223898B (zh) * 2019-06-18 2021-07-30 天津中安信业集团有限公司 一种多用途太赫兹波电子发生器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2697353B2 (ja) * 1991-05-08 1998-01-14 日本電気株式会社 ファブリ・ペロー型可変波長フィルター及びその製造方法
JP4102141B2 (ja) * 2002-09-06 2008-06-18 浜松ホトニクス株式会社 テラヘルツ波発生装置
US6996312B2 (en) * 2003-04-29 2006-02-07 Rosemount, Inc. Tunable fabry-perot filter
JP4017116B2 (ja) * 2003-08-28 2007-12-05 株式会社 東北テクノアーチ テラヘルツ光発生装置
WO2005098530A1 (fr) * 2004-03-31 2005-10-20 Sumitomo Osaka Cement Co., Ltd. GÉNÉRATEUR D'ONDES THz
GB2415309A (en) * 2004-06-18 2005-12-21 Univ Kent Canterbury Electro-magnetic terahertz transmission/reception system
US7054339B1 (en) 2004-07-13 2006-05-30 Np Photonics, Inc Fiber-laser-based Terahertz sources through difference frequency generation (DFG) by nonlinear optical (NLO) crystals
JP2006215222A (ja) * 2005-02-03 2006-08-17 Tohoku Univ テラヘルツ波発生装置及び分光測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010015443A1 *

Also Published As

Publication number Publication date
RU2011108214A (ru) 2012-09-20
WO2010015443A1 (fr) 2010-02-11
US20110121209A1 (en) 2011-05-26
DE102008041107A1 (de) 2010-02-11
CN102119359A (zh) 2011-07-06
JP2011530092A (ja) 2011-12-15

Similar Documents

Publication Publication Date Title
EP2324389A1 (fr) Source de rayonnement térahertz et procédé pour générer un rayonnement térahertz
DE102005028268B4 (de) Verfahren und Vorrichtung zur Erzeugung und Detektion eines Raman-Spektrums
EP2153210B1 (fr) Procédé et dispositif optique pour la production d'un signal optique non linéaire sur un matériau excité par un champ d'excitation, et utilisation du procédé et du dispositif optique
DE2362935A1 (de) Anordnung zur ueberwachung der luftverunreinigung
DE102009042207A1 (de) Wellenlängenabstimmbare Lichtquelle
DE2537237A1 (de) Laserabsorptionsspektrometer und verfahren der laserabsorptionsspektroskopie
DE102010042469A1 (de) Terahertzwellen-Vorrichtung
WO2004094968A1 (fr) Systeme mobile de detection a distance et procede de detection a distance d'amas de methane
EP3611484A1 (fr) Dispositif de fourniture de lumière en spectroscopie raman anti-stokes cohérente
EP3071952B1 (fr) Installation et procédé pour éclairer un échantillon
DE102019124547A1 (de) Detektorvorrichtung und Verfahren zur Fernanalyse von Stoffen sowie mobiles Sensorsystem
WO2019030041A1 (fr) Procédé pour fournir un signal de détection pour des objets à détecter
EP3792606B1 (fr) Procédé et dispositif de spectroscopie non linéaire sur un échantillon
DE102018115420B4 (de) Vorrichtung und Verfahren zum Nachweisen eines Stoffes
DE102007042172A1 (de) Verfahren und optische Anordnung zur breitbandigen Messung geringer optischer Verluste
DE102014111309B3 (de) Zeitaufgelöstes Spektrometer und Verfahren zum zeitaufgelösten Erfassen eines Spektrums einer Probe
WO2018224468A1 (fr) Procédé de fourniture d'un signal de détection pour des objets à détecter
DE60203523T2 (de) Kompakte ultrakurzpulslaserquelle mit breitem kontrollierbarem spektrum
DE102021125657A1 (de) Phasensensitive Terahertzdetektion mit nichtlinearer Frequenzkonversion
DE102010023362B4 (de) Verfahren und Vorrichtung zur präzisen Leistungsbestimmung unterhalb der Quantenrauschgrenze
DE102011083078A1 (de) Vorrichtung und Verfahren zur Implementierung einer variabel einstellbaren Spektral-Blende für ultrahochauflösende Spektroskopie von optischen Signalen
DE102016222528A1 (de) Laseranordnung sowie ein Verfahren zur optischen Verstärkung ultrakurzer Laserimpulse
WO2007073848A2 (fr) Dispositif de mesure oculaire par diffusion de lumière dynamique
WO2009150200A2 (fr) Procédé et dispositif pour la spectroscopie par temps de déclin d'une cavité
EP3338060A1 (fr) Détecteur de courbure optique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110307

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
18D Application deemed to be withdrawn

Effective date: 20140101

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

R18D Application deemed to be withdrawn (corrected)

Effective date: 20140103