EP2321589B1 - Pompe à chaleur haute température et son procédé de réglage - Google Patents

Pompe à chaleur haute température et son procédé de réglage Download PDF

Info

Publication number
EP2321589B1
EP2321589B1 EP09736109.1A EP09736109A EP2321589B1 EP 2321589 B1 EP2321589 B1 EP 2321589B1 EP 09736109 A EP09736109 A EP 09736109A EP 2321589 B1 EP2321589 B1 EP 2321589B1
Authority
EP
European Patent Office
Prior art keywords
temperature
hot water
coolant
heat exchanger
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09736109.1A
Other languages
German (de)
English (en)
Other versions
EP2321589A1 (fr
Inventor
Eberhard Wobst
Steffen Oberländer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thermea Energiesysteme GmbH
Original Assignee
Thermea Energiesysteme GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thermea Energiesysteme GmbH filed Critical Thermea Energiesysteme GmbH
Publication of EP2321589A1 publication Critical patent/EP2321589A1/fr
Application granted granted Critical
Publication of EP2321589B1 publication Critical patent/EP2321589B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Definitions

  • the invention relates to a high-temperature heat pump for heating a fluid, preferably water, to a temperature level up to 150 ° C, which is operated with carbon dioxide as a refrigerant in the trans-critical range.
  • the heat pump is particularly suitable for industrial heat generation and heat recovery as well as for energy storage methods where hot water is used as the storage medium.
  • Carbon dioxide is a natural refrigerant and is characterized by a much lower global warming potential than conventional refrigerants, such. Hydrofluorocarbons, off.
  • carbon dioxide is not toxic, e.g. Ammonia and propylene ether, nor can it form explosive mixtures with air, e.g. Propane and butane.
  • the critical point of carbon dioxide is 31.1 ° C and 73.6 bar. Since heat pumps are almost always used to generate higher temperatures, they are inevitably operated in the transcritical range.
  • DE 10 2005 044 029 B3 is a heat pump described, the refrigerant circuit is operated with a desuperheater, an evaporator, a compressor and a throttle body in the supercritical range.
  • the heat pump has a control unit for controlling the throttle body.
  • the throttle body is operated in response to a first pressure on the high-pressure side of the refrigerant circuit when a permissible overheating of the refrigerant in the refrigerant circuit is present. If the refrigerant in the refrigerant circuit is outside the allowable superheat, the throttle body is operated in accordance with a first temperature before the compressor.
  • WO 2004/057245 A1 is a heat pump is described in which caused by overheating of the refrigerant upstream of the suction side of the compressor, an increase in the temperature of the refrigerant at the outlet of the compressor, without the pressure of the refrigerant is additionally increased on the output side of the compressor.
  • the overheating should be achieved for example with a countercurrent heat exchanger.
  • the desired heating of water to 60-90 ° C is achieved.
  • EP 1 396 689 A1 discloses a refrigerant circuit consisting of a compressor, a heat exchanger, a refrigerant collector, an expansion valve and an evaporator. To further cool the refrigerant after exiting the heat exchanger and before entering the refrigerant receiver, this flows through an internal heat exchanger. The energy extracted from the refrigerant is returned to the refrigerant after it has left the evaporator and before it re-enters the compressor. In the case of carbon dioxide heat pumps with smaller outputs in the range from 5 to 50 kW, which are used to supply single and multi-family houses with hot water and for heating, a high-pressure regulation is usually installed.
  • the evaporator is followed by a refrigerant collector, which receives from the evaporator leaking liquid carbon dioxide.
  • a refrigerant collector which receives from the evaporator leaking liquid carbon dioxide.
  • JP 2002 162123 A a run with carbon dioxide as a high-temperature heat pump with an evaporator, at least one internal heat exchanger, a compressor, three series condensers (gas cooler), a refrigerant collector and a refrigerant injection valve shown, in which the input of the refrigerant collector via a controllable expansion valve and the first inner Heat exchanger with the outlet of the series circuit of the gas cooler and the outlet of the refrigerant collector is connected to the expansion valve.
  • Another internal heat exchanger which serves to heat the carbon dioxide before entering the compressor by means of hot water, is connected on the refrigerant side between the outlet of the first internal heat exchanger and the inlet of the compressor. With the heat pump, temperatures up to 150 ° C should be achievable.
  • the invention has for its object to provide a powered with carbon dioxide refrigerant heat pump, which allows simultaneous control of refrigerant superheat in the evaporator, the high pressure in the gas cooler system and the heating of the refrigerant upstream of the compressor by internal heat exchanger, whereby high hot water outlet temperatures can be achieved. With the method high performance numbers should be achievable.
  • the starting point is a high-temperature heat pump for heating a fluid to temperatures of up to 150 ° C, which is operated with carbon dioxide as the refrigerant in the transcritical range. It is intended to use preferably water as the fluid, which is heated to temperatures of 100 to 130 ° C.
  • the heat pump consists of an evaporator, at least two internal heat exchangers, a compressor, one or more series-connected gas coolers, a refrigerant collector and at least one refrigerant injection valve.
  • the inlet of the refrigerant collector is connected via a control valve (and via the first inner heat exchanger) to the (refrigerant side) outlet of the series connection of the gas cooler and the outlet of the refrigerant collector to the refrigerant injection valve.
  • the coefficient of performance of the heat pump reaches its maximum value at a certain level of pressure in the gas cooler. If the pressure increases further, the hot water outlet temperature increases, but the coefficient of performance decreases.
  • the control loop is also used to increase the hot water outlet temperature by raising the pressure. In order to keep the resulting reduction in the coefficient of performance as low as possible, the pressure is increased only so far that the required hot water outlet temperature is reached exactly.
  • a second application-related internal heat exchanger in addition to the first inner heat exchanger, which causes a preheating of the carbon dioxide flowing to the compressor by the flowing back from the gas cooler carbon dioxide to the carbon dioxide before To further heat the inlet to the compressor, a second application-related internal heat exchanger, in which the carbon dioxide is heated by the hot water generated by the heat pump used.
  • the second internal heat exchanger is connected on the refrigerant side between the outlet of the first internal heat exchanger and the inlet of the compressor.
  • the gas cooler each heat the water to different temperature levels and for preheating the carbon dioxide, a high temperature level is required, the water-side inlet of the second internal heat exchanger via at least one control valve (3-way valve) connected to the gas cooler water outlet side, the refrigerant side output over the first inner heat exchanger is connected to the refrigerant collector; This gas cooler produces the water with the lowest temperature level.
  • the refrigerant superheating is controlled via the inflow of the refrigerant into the evaporator and the high pressure in the gas cooler via the volume flow of carbon dioxide from the gas cooler into the refrigerant collector.
  • the pressure and the temperature of the carbon dioxide at the outlet of the evaporator is measured, from which the refrigerant superheat is determined and compared in a control unit with a setpoint. If the target value is undershot, the influx of carbon dioxide into the evaporator is throttled by means of a refrigerant injection valve; if it is exceeded, the inflow is correspondingly increased by opening the refrigerant injection valve.
  • the refrigerant injection valve of the evaporator either a pressure-controlled thermostatic valve or an electronic valve is used, which is controlled by means of temperature sensors for the evaporation temperature and the refrigerant outlet temperature from the evaporator.
  • the high pressure is measured in one of the refrigerant pipes between the compressor outlet and the refrigerant collector with a pressure sensor arranged there.
  • a pressure sensor arranged there.
  • the actual value compared with the setpoint. If no increase in temperature of the hot water is required by an increase in pressure in the gas cooler, the setpoint corresponds to the pressure value at which the heat pump works with maximum coefficient of performance; otherwise it is, according to the necessary increase in temperature, above.
  • the setpoint is undershot, the flow of carbon dioxide from the gas cooler into the refrigerant collector is throttled by means of the control valve arranged between the gas cooler outlet and the refrigerant collector; if it is exceeded, the flow of carbon dioxide is correspondingly increased.
  • a stepwise regulation of the heat pump to the temperature value of the hot water is provided.
  • the temperature of the hot water is measured and compared in a controller with a setpoint. If the setpoint is exceeded, more is passed by means of a 3-way valve with actuator and one by-pass, and less if less carbon dioxide is passed by the first and second internal heat exchangers.
  • the volume flow of hot water through the second inner heat exchanger is additionally increased by means of another 3-way valve with actuator.
  • the pressure in the gas cooler is increased.
  • the hot water volume flow is reduced by the gas cooler last.
  • the hot water volume flow through the gas cooler is adjusted via the speed of the water pump of the water cycle, by means of a throttle valve or via a controllable by a 3-way valve bypass to the water pump, which causes a partial return of the hot water.
  • T-s diagram temperature-entropy diagram
  • the cooling of carbon dioxide in the gas cooler takes place along a curved line.
  • the resulting heating of the water takes place in the T-s diagram along straight line sections that run below the curved line of the carbon dioxide.
  • the area lying between the curved line and the straight line sections represents the power loss occurring in the heat transfer process. Consequently, the more accurately the curved line of the carbon dioxide is followed with a number n of straight line sections, the more effectively the heat transfer becomes.
  • n gas coolers are required for this purpose, which each heat water to n different temperature levels. It is therefore in each case to weigh the expenditure on equipment against the achieved thereby increasing the efficiency.
  • n gas coolers energy can be stored with comparatively high efficiency and removed again by the heated by the gas cooler water with n different temperature levels stored in n separate hot water tanks and to remove the energy of a water-powered with carbon dioxide heat engine with n evaporators is supplied.
  • the n temperature values of the gas cooler and the evaporator must correlate with respect to the refrigerant circuit.
  • the hot water with n temperature levels is used to supply industrial plants specifically with water to the temperature levels required for the individual steps of the production process.
  • the heat pump should be used primarily for the production of hot water with a temperature of 65 ° C. If the demand is met, the heat pump can also support the heating of the building. This is z. B. at a floor heating a flow temperature of 40 ° C is sufficient. In this case, the flow temperature is regulated down in reverse order by means of the control circuits.
  • the carbon dioxide flows to the 3-way valve 18, which is controlled by means of the regulator 16, in which the temperature value of the hot water t HWA2 (or t HWA1 ) is compared with a predetermined desired value, and the actuator 17. If the real temperature value of the water is higher than the set value, the 3-way valve 18 is set so that more carbon dioxide through the bypass 9 on the series connection of the first inner heat exchanger 4 and second inner heat exchanger 5 is passed. If the real temperature value is lower, more carbon dioxide is conducted through the internal heat exchangers 4, 5 to the compressor 1.
  • the pressure of the carbon dioxide is increased from about 45 to about 130 bar.
  • the temperature of the carbon dioxide rises from less than 50 up to 150 ° C.
  • the up to 150 ° C hot carbon dioxide is first passed through the first gas cooler 2 and then through the second gas cooler 3.
  • the gas cooler 2, 3 act as a heat exchanger, so that cooled in the first gas cooler 2, the carbon dioxide and hot water at a temperature t HWA2 up to 145 ° C and hot gas in the gas cooler 3 with a temperature t HWA1 of about 70 ° C is generated ,
  • the carbon dioxide passes through the first inner heat exchanger 4 via the control valve 15 in the refrigerant collector 7.
  • the control valve 15 is the regulator 13, the high pressure in one of the refrigerant lines between the outlet of the compressor 1 and the entry into the Control valve 15 measures and compares this with the setpoint of the high pressure, controlled.
  • the pressure in the gas coolers 2, 3 is increased by falling below the setpoint, that by means of the control valve 15 and the actuator 14, the flow of the effluent from the gas cooler carbon dioxide is throttled. If the setpoint is exceeded, the flow of the effluent carbon dioxide is increased accordingly.
  • the carbon dioxide is directed to the refrigerant injection valve 8 of the evaporator 6, which is controlled by the electronic control unit 12.
  • the control unit 12 measures via temperature sensors, the evaporation temperature and the refrigerant outlet temperature from the evaporator 6 and determines from the refrigerant superheat (overheating of carbon dioxide). This is compared with a setpoint. If the setpoint is undershot, the influx of carbon dioxide to the evaporator 6 is throttled by means of the refrigerant injection valve 8 and increased when it is exceeded by opening the refrigerant injection valve 8.
  • the second gas cooler 3 After leaving the second gas cooler 3, part of the water, which now has the temperature t HWA1 (also called the mean temperature), is diverted by means of the 3-way valve 10. The remaining water is passed to the 3-way valve 24, which divides the water flow into a flow through the first gas cooler 2 and a flow through the second inner heat exchanger 5.
  • the 3-way valve 24 and the actuator 23 By means of the 3-way valve 24 and the actuator 23, the water flow through the second inner heat exchanger 5 is increased if the current temperature value t HWA2 (or t HWA1 ) is below the setpoint and already by means of the 3-way valve 18 the entire carbon dioxide is passed through the series connection of the two inner heat exchanger 4, 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Claims (13)

  1. Pompe à chaleur haute température pour le chauffage d'un fluide à un niveau de température jusqu'à 150 °C, qui fonctionne avec du dioxyde de carbone dans la zone transcritique en tant que réfrigérant, avec un évaporateur (6), au moins un échangeur de chaleur interne (4), un compresseur (1), un ou plusieurs refroidisseurs de gaz (2, 3) montés en série, un accumulateur de produit réfrigérant (7) et une soupape d'injection de produit réfrigérant (8), dans laquelle l'entrée de l'accumulateur de produit réfrigérant (7) est reliée avec la sortie du montage en série des refroidisseurs de gaz (2, 3) par l'intermédiaire d'une soupape de réglage (15) ainsi que par l'intermédiaire du premier échangeur de chaleur interne (4), et la sortie de l'accumulateur de produit réfrigérant (7) est reliée avec la soupape de détente (8), et un autre échangeur de chaleur interne (5) répondant aux besoins qui sert au chauffage du dioxyde de carbone avant l'entrée dans le compresseur (1) au moyen d'eau chaude, qui est branché du côté du produit réfrigérant entre la sortie du premier échangeur de chaleur interne (4) et l'entrée du compresseur (1), caractérisée en ce que l'entrée du côté de l'eau du deuxième échangeur de chaleur interne (5) est reliée avec le refroidisseur de gaz (3) étant situé à la sortie du côté de l'eau par l'intermédiaire d'au moins une soupape de réglage (24), dont la sortie du coté du produit réfrigérant est raccordée au premier échangeur de chaleur interne (4).
  2. Procédé de régulation d'une pompe à chaleur haute température selon la revendication 1, caractérisé en ce que
    - la pression du produit réfrigérant (po) et la température du produit réfrigérant (to) sont mesurées à la sortie de l'évaporateur (6), on en déduit la surchauffe du produit réfrigérant et celle-ci est comparée à une valeur souhaitée dans une unité de régulation (12), où lors d'une valeur inférieure à la valeur souhaitée, le flux d'arrivée du dioxyde de carbone vers l'évaporateur (6) est limité par un étranglement et est augmenté pour un dépassement par l'ouverture de la soupape d'injection de produit réfrigérant (8),
    - la haute pression (pKKA) est mesurée dans l'une des conduites de produit réfrigérant entre la sortie de compresseur et l'entrée dans la soupape de réglage (15), la valeur réelle est comparée avec une valeur souhaitée au moyen du régulateur (13), valeur souhaitée qui, si aucune élévation de la température de l'eau chaude par une augmentation de la pression dans les refroidisseurs de gaz (2, 3) n'est nécessaire, correspond à la valeur de la pression à laquelle la pompe à chaleur haute température travaille avec un rendement maximal, et autrement est supérieure à cette valeur de pression correspondant à l'élévation de température nécessaire, dans lequel, pour une valeur inférieure à la valeur souhaitée le flux de dioxyde de carbone provenant des refroidisseurs de gaz (2, 3) est limité par étranglement dans l'accumulateur de produit réfrigérant (7) au moyen de la soupape de réglage (15) disposée entre l'échangeur de chaleur interne (4) et l'accumulateur de produit réfrigérant (7), et est augmenté pour une valeur supérieure.
  3. Procédé selon la revendication 2, caractérisé en ce qu'une soupape thermostatique réglée par la pression est insérée en tant soupape d'injection de produit réfrigérant (8).
  4. Procédé selon la revendication 2, caractérisé en ce qu'une soupape électronique est employée en tant que soupape d'injection de produit réfrigérant (8), qui est régulée au moyen de capteurs de température pour la température d'évaporation et la température de sortie du produit réfrigérant provenant de l'évaporateur (6).
  5. Procédé selon les revendications 2 à 4, caractérisé en ce que la température de l'eau chaude est mesurée et comparée à une valeur souhaitée dans le régulateur (16), dans lequel, pour un dépassement de la valeur souhaitée, davantage de dioxyde de carbone est apporté dans le premier (4) et le deuxième échangeur de chaleur (5) et pour une valeur inférieure, moins de dioxyde de carbone y est amené.
  6. Procédé selon la revendication 5, caractérisé en ce que, dans le cas où déjà le flux de produit réfrigérant total a traversé le premier (4) et le deuxième échangeur de chaleur interne (5) au moyen d'une soupape à trois voies (18) pour des volumes d'écoulement élevés d'eau chaude, et où la température souhaitée de l'eau chaude n'est pas atteinte, le volume d'écoulement de l'eau chaude à travers le deuxième échangeur de chaleur interne (5) est augmenté au moyen d'une soupape à 3 voies (24) avec un actuateur (23).
  7. Procédé selon la revendication 6, caractérisé en ce que, si le volume d'écoulement de l'eau chaude à travers le deuxième échangeur de chaleur interne (5) est arrivé à sa valeur maximale et si la température souhaitée de l'eau chaude n'est pas atteinte, la pression est augmentée dans les refroidisseurs de gaz (2, 3).
  8. Procédé selon la revendication 7, caractérisé en ce que, si les pressions dans les refroidisseurs de gaz (2, 3) sont arrivées à leurs valeurs maximales et si la température souhaitée de l'eau chaude n'est pas atteinte, le volume d'écoulement d'eau chaude à travers les refroidisseurs de gaz (2, 3) est diminué.
  9. Procédé selon la revendication 8, caractérisé en ce que le volume d'écoulement d'eau chaude à travers les refroidisseurs de gaz (2, 3) est réglé par l'intermédiaire d'un by-pass (22) pour l'eau chaude réglable au moyen du régulateur (19), de l'actuateur (20) et de la soupape à 3 voies (21), qui provoque un reflux partiel de l'eau chaude.
  10. Procédé selon la revendication 8, caractérisé en ce que le volume d'écoulement de l'eau chaude à travers les refroidisseurs de gaz (2, 3) est réglé par l'intermédiaire du nombre de tours d'une pompe à eau (11 ) du circuit d'eau ou au moyen d'une soupape d'étranglement.
  11. Utilisation de la pompe à chaleur selon la revendication 1 pour le stockage d'énergie, où la pompe à chaleur présente n refroidisseurs de gaz qui alimentent respectivement n accumulateurs d'eau chaude séparés avec de l'eau à un niveau de température variable, et pour la récupération de l'énergie, l'eau des n accumulateurs d'eau chaude est respectivement conduite à travers un parmi n évaporateurs montés en série du coté du produit réfrigérant d'un moteur thermique entraîné avec du dioxyde de carbone, où chaque fois, les valeurs de la température de l'eau dans les n refroidisseurs à gaz de la pompe à chaleur et également dans les n évaporateurs du moteur thermique sont ajustées de manière ciblée le long du trajet de l'écoulement dans ces appareils aux différences de température nécessaires pour le transport de la chaleur.
  12. Utilisation de la pompe à chaleur selon la revendication 1 pour le stockage d'énergie, où la pompe à chaleur présente n refroidisseurs de gaz qui, à leur tour, alimentent n utilisateurs de chaleur à différents niveaux de température.
  13. Utilisation de la pompe à chaleur selon la revendication 1 pour le chauffage de fluides pour des processus technologiques, le chauffage de l'eau, le chauffage ou des combinaisons au choix des utilisations avec, chaque fois, des valeurs souhaitées différentes pour les températures de départ d'eau chaude, par le déroulement de l'intervention de boucles individuelles d'après le procédé selon les revendications 3, ainsi que 6 à 11.
EP09736109.1A 2008-09-10 2009-08-28 Pompe à chaleur haute température et son procédé de réglage Active EP2321589B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200810046620 DE102008046620B4 (de) 2008-09-10 2008-09-10 Hochtemperaturwärmepumpe und Verfahren zu deren Regelung
PCT/DE2009/001210 WO2010028622A1 (fr) 2008-09-10 2009-08-28 Pompe à chaleur haute température et son procédé de réglage

Publications (2)

Publication Number Publication Date
EP2321589A1 EP2321589A1 (fr) 2011-05-18
EP2321589B1 true EP2321589B1 (fr) 2015-08-26

Family

ID=41527065

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09736109.1A Active EP2321589B1 (fr) 2008-09-10 2009-08-28 Pompe à chaleur haute température et son procédé de réglage

Country Status (3)

Country Link
EP (1) EP2321589B1 (fr)
DE (1) DE102008046620B4 (fr)
WO (1) WO2010028622A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023036386A1 (fr) 2021-09-13 2023-03-16 Lübbers Anlagen- und Umwelttechnik GmbH Dispositif de séchage destiné à fournir un gaz de traitement pour une installation de séchage
WO2024078669A1 (fr) 2022-10-14 2024-04-18 Lübbers FTS GmbH Dispositif de pompe à chaleur pour la génération économe en énergie d'une chaleur de traitement, dispositif de séchage permettant de sécher un matériau devant être séché, et procédé de fonctionnement d'un dispositif de pompe à chaleur

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102345941B (zh) * 2010-08-03 2014-08-13 昆山台佳机电有限公司 一种中央空调制冷剂侧切换的满液式水源热泵机组
DE102011086476A1 (de) * 2011-09-30 2013-04-04 Siemens Aktiengesellschaft Hochtemperaturwärmepumpe und Verfahren zur Verwendung eines Arbeitsmediums in einer Hochtemperaturwärmepumpe
DE102012015647A1 (de) 2012-08-07 2014-02-13 Frank Mayer Hochtemperaturwärmepumpe
DE102013203243A1 (de) * 2013-02-27 2014-08-28 Siemens Aktiengesellschaft Wärmepumpe und Verfahren zum Betreiben einer Wärmepumpe
DE102013214891A1 (de) * 2013-07-30 2015-02-05 Siemens Aktiengesellschaft Wärmetechnische Verschaltung einer Geothermiequelle mit einem Fernwärmenetz
CN108105833A (zh) * 2018-01-31 2018-06-01 天津商业大学 一种机械辅助过冷co2跨临界热泵供暖系统
DE102019126983A1 (de) * 2019-10-08 2021-04-08 Wolf Gmbh Wärmepumpe mit Temperaturregelung und Verfahren zur Nutzung von Umgebungswärme durch eine Wärmepumpe
CN110966783A (zh) * 2019-12-23 2020-04-07 江苏苏净集团有限公司 一种双级节流多温二氧化碳热泵机组
CN112503765A (zh) * 2020-12-17 2021-03-16 广东高美空调设备有限公司 一种二氧化碳热泵供水机组
NL1044144B1 (nl) 2021-09-07 2023-03-21 Werkenhorst B V Warmtepompinstallatie en werkwijze voor het verwarmen van een medium
DE102022121699A1 (de) 2022-08-26 2024-02-29 Konvekta Aktiengesellschaft Wärmepumpenanlage mit mehrstufiger Wärmeübertragung und Verfahren dazu

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3615475B2 (ja) * 2000-09-28 2005-02-02 三洋電機株式会社 ヒートポンプ給湯機
JP2002162123A (ja) 2000-11-21 2002-06-07 Sekisui Chem Co Ltd ヒートポンプ
JP3801006B2 (ja) * 2001-06-11 2006-07-26 ダイキン工業株式会社 冷媒回路
NO318864B1 (no) * 2002-12-23 2005-05-18 Sinvent As Forbedret varmepumpesystem
JP4058696B2 (ja) * 2004-05-28 2008-03-12 日立アプライアンス株式会社 ヒートポンプ給湯システム
DE102005044029B3 (de) * 2005-09-14 2007-03-22 Stiebel Eltron Gmbh & Co. Kg Wärmepumpe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023036386A1 (fr) 2021-09-13 2023-03-16 Lübbers Anlagen- und Umwelttechnik GmbH Dispositif de séchage destiné à fournir un gaz de traitement pour une installation de séchage
DE102021123631A1 (de) 2021-09-13 2023-03-16 Lübbers Anlagen- und Umwelttechnik GmbH Trocknungsvorrichtung zum Bereitstellen eines Prozessgases für eine Trockneranlage
WO2024078669A1 (fr) 2022-10-14 2024-04-18 Lübbers FTS GmbH Dispositif de pompe à chaleur pour la génération économe en énergie d'une chaleur de traitement, dispositif de séchage permettant de sécher un matériau devant être séché, et procédé de fonctionnement d'un dispositif de pompe à chaleur
DE102022127011A1 (de) 2022-10-14 2024-04-25 Lübbers FTS GmbH Wärmepumpenvorrichtung zum energieeffizienten Erzeugen einer Prozesswärme, Trocknervorrichtung zum Trocknen eines zu trocknenden Gutes und Verfahren zum Betreiben einer Wärmepumpenvorrichtung

Also Published As

Publication number Publication date
EP2321589A1 (fr) 2011-05-18
WO2010028622A4 (fr) 2010-05-14
DE102008046620A1 (de) 2010-03-18
DE102008046620B4 (de) 2011-06-16
WO2010028622A1 (fr) 2010-03-18

Similar Documents

Publication Publication Date Title
EP2321589B1 (fr) Pompe à chaleur haute température et son procédé de réglage
EP1262347B1 (fr) Circuit de chauffage/réfrigération pour un climatiseur de véhicule à moteur, climatiseur et procédé pour sa commande
EP1288761B1 (fr) Procédé de régulation d'un système de bipasse basse pression
DE102012004094B3 (de) Vorrichtung, insbesondere Wärmepumpe, mit einem in einem Kreislauf geführten Kältemittel sowie Verfahren zum Betrieb einer derartigen Vorrichtung
WO2009146856A1 (fr) Installation de climatisation pour le conditionnement de plusieurs fluides
DE102011017433A1 (de) Verfahren zur intelligenten Regelung einer Kompressoranlage mit einer Wärmerückgewinnung
EP3597019B1 (fr) Procédé de refroidissement d'un convertisseur, en particulier d'un convertisseur de fréquence dans un circuit de pompe à chaleur
DE1960975C3 (de) Kühlvorrichtung für Flüssigkeiten
EP1996871B1 (fr) Dispositif permettant d'augmenter la puissance calorifique et l'accumulation d'energie sur une pompe a chaleur
DE102019200846A1 (de) Kälteanlage für ein Fahrzeug mit einem für einen Kälteanlagen-Betrieb und einen Wärmepumpen-Betrieb betreibbaren Kältemittelkreislauf
EP3006682A1 (fr) Dispositif et procédé de fonctionnement d'une station de transmission thermique
DE102012109483A1 (de) System, Verfahren und Computerprogrammprodukt zur Regelung eines Energieversorgungssystem
AT522875B1 (de) Verfahren zur Regelung eines Expansionsventils
WO2006024182A2 (fr) Procede et installation pour reguler un cycle de carnot
DE102010003915A1 (de) Kälteanlage mit Wärmerückgewinnung und Verfahren zum Betreiben der Kälteanlage
DE102016103250A1 (de) Kraftfahrzeugklimakreis
WO2017013163A1 (fr) Système de pompe à chaleur
DE102019126983A1 (de) Wärmepumpe mit Temperaturregelung und Verfahren zur Nutzung von Umgebungswärme durch eine Wärmepumpe
DE10258524A1 (de) Kältemittelkreislauf für eine Kfz-Klimaanlage
DE102007013485A1 (de) Verfahren zur Regelung einer CO2-Kälteanlage mit zweistufiger Verdichtung
DE102014007853B3 (de) Verfahren und Vorrichtung zum Temperieren eines Wärmeaustauschers
DE19829335C2 (de) Kälteanlage
EP3535481B1 (fr) Centrale électrique munie d'un système d'admission d'air de la turbine à gaz
DE102017208231A1 (de) Fahrzeug-Kälteanlage mit einem Kältemittelkreislauf
DE102016012595A1 (de) Kältemittelkreislauf und Verfahren zum Betreiben des Kältemittelkreislaufs sowie innerer Wärmeübertrager zur Verwendung in dem Kältemittelkreislauf

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150402

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 745427

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009011465

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151126

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151127

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151228

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151226

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009011465

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150828

26N No opposition filed

Effective date: 20160530

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090828

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: LU

Ref legal event code: PD

Owner name: ENGIE REFRIGERATION GMBH; DE

Free format text: FORMER OWNER: DUERR THERMEA GMBH

Effective date: 20180919

Ref country code: LU

Ref legal event code: HC

Owner name: DUERR THERMEA GMBH; DE

Free format text: FORMER OWNER: THERMEA. ENERGIESYSTEME GMBH

Effective date: 20180919

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: DUERR THERMEA GMBH, DE

Effective date: 20180926

Ref country code: FR

Ref legal event code: CA

Effective date: 20180926

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009011465

Country of ref document: DE

Representative=s name: BTB IP BUNGARTZ BALTZER PARTNERSCHAFT MBB PATE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009011465

Country of ref document: DE

Representative=s name: BUNGARTZ CHRISTOPHERSEN PARTNERSCHAFT MBB PATE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009011465

Country of ref document: DE

Owner name: ENGIE REFRIGERATION GMBH, DE

Free format text: FORMER OWNER: THERMEA. ENERGIESYSTEME GMBH, 01705 FREITAL, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ENGIE REFRIGERATION GMBH, DE

Free format text: FORMER OWNER: THERMEA. ENERGIESYSTEME GMBH, DE

Ref country code: AT

Ref legal event code: PC

Ref document number: 745427

Country of ref document: AT

Kind code of ref document: T

Owner name: ENGIE REFRIGERATION GMBH, DE

Effective date: 20181207

Ref country code: CH

Ref legal event code: NV

Representative=s name: ALDO ROEMPLER PATENTANWALT, CH

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: ENGIE REFRIGERATION GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CESSION; FORMER OWNER NAME: DUERR THERMEA GMBH

Effective date: 20181114

Ref country code: BE

Ref legal event code: HC

Owner name: DUERR THERMEA GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGEMENT DE NOM DU PROPRIETAIRE; FORMER OWNER NAME: THERMEA. ENERGIESYSTEME GMBH

Effective date: 20181114

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20190307 AND 20190313

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20230821

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230824

Year of fee payment: 15

Ref country code: CH

Payment date: 20230902

Year of fee payment: 15

Ref country code: AT

Payment date: 20230818

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230821

Year of fee payment: 15

Ref country code: DE

Payment date: 20230822

Year of fee payment: 15

Ref country code: BE

Payment date: 20230822

Year of fee payment: 15