EP2321496A1 - Verfahren und vorrichtung zur "in-situ"-förderung von bitumen oder schwerstöl - Google Patents

Verfahren und vorrichtung zur "in-situ"-förderung von bitumen oder schwerstöl

Info

Publication number
EP2321496A1
EP2321496A1 EP09780765A EP09780765A EP2321496A1 EP 2321496 A1 EP2321496 A1 EP 2321496A1 EP 09780765 A EP09780765 A EP 09780765A EP 09780765 A EP09780765 A EP 09780765A EP 2321496 A1 EP2321496 A1 EP 2321496A1
Authority
EP
European Patent Office
Prior art keywords
reservoir
inductors
bitumen
generator
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09780765A
Other languages
German (de)
English (en)
French (fr)
Inventor
Dirk Diehl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2321496A1 publication Critical patent/EP2321496A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2401Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity

Definitions

  • the invention relates to a method for "in situ" - promotion of bitumen or heavy oil from oil sands deposits as a reservoir according to the preamble of claim 1.
  • the invention also relates to the associated apparatus for performing the method.
  • the object of the invention is to make the relevant parameters of the necessary electric power generators temporally and / or locally variable in the electric heating of the reservoir and to provide the possibility of these parameters from outside the reservoir for optimizing the delivery volume during the conveyance of the bitumen or heavy oil to change.
  • the widest possible control options for the energization of the inductors are created, in particular, locally detected temperatures can be used as control variables.
  • the temperatures in the reservoir can be distributed locally, for example at the individual inductors, but possibly also outside the reservoir, in the so-called overburden, ie in the mountain region above the reservoir, or in the underburden, ie in the mountain region below the reservoir become.
  • the invention includes various possible combinations of individually energizable inductors and these assignable generators. In particular, the following measures are possible:
  • the invention it is proposed to perform the energization of adjacent inductors temporally sequential and preferably to use spatially widely spaced forward and return conductors. Below, by way of example, the temporally sequential wiring of four inductor pairs is shown.
  • the inductors, which serve as forward and return conductors, can be selected by means of individual switches.
  • the energization of the Induktorschreibe can be done, for example, at equal time proportions. Due to the high heat capacities of the reservoir, large time intervals in the range of hours or days can be selected, provided that the thermal load capacity of the inductors is not exceeded.
  • the time shares of the energization can be chosen differently for the individual inductor pairs and changed during different phases of the exploitation of the reservoir.
  • thermally low-loaded inductors can preferably be energized or reservoir areas low temperature preferably heated.
  • An inductor pair formation can be used to influence the heating power components in the overburden, reservoir and underburden.
  • Wiring in close proximity to one another in space can be carried out by over-wiring on the generator and / or connection side in order to avoid or reduce the unwanted heating of the overburden.
  • the effective resistance which represents the reservoir as secondary winding, is much higher for far-distant forward and return conductors than for closely adjacent conductors, whereby high heat outputs can be introduced into the reservoir with comparatively low currents in the inductor (primary winding).
  • the capacitively compensated inductors are basically tuned to the respective operating frequency to manufacture. If the generators can deliver a small part of the total reactive power to be applied, or their compensation can be effected by capacitive or inductive circuits directly at the generator, uniform inductor designs tuned to a mean operating frequency can be used. Otherwise, using these external compensation circuits, inductors can be operated at slightly different frequencies, which is sufficient to avoid cancellation effects.
  • the invention is based on the insight gained in detailed investigations that significant advantages over the prior art are realized with the measures indicated above. These are in particular:
  • Re 1 The effective resistance of the inductive reservoir heater is significantly increased, for example by a factor of 4. This means that with the same current amplitude in the inductor, the heating power in the reservoir can have a four times higher value relative to a simultaneous energization.
  • FEM finite element method
  • Amplitude at a given frequency f1 Preferably, it is assumed that a frequency of 10 kHz, in principle, frequencies between 1 and 500 kHz are suitable.
  • Re 2 In the example given under point 1, for example, four individual pairs of inductors (1/5), (2/6), (3/7) and (4/8) are each energized to a quarter (25%) of the time, This requires only one generator (inverter), which can supply the required current of the specified current amplitude (1350 A) with four times the active power, but without increasing the reactive power requirement. Thus, the same heating power would be introduced into the reservoir in the time average as with simultaneous energization according to point 1. This means that instead of four generators, each provide 1/4 of the desired heating power as active power and in addition a dependent on the inductor reactive power need only a generator with 4 times the active power needed without the reactive power demand increases.
  • the heating power in Overburden, reservoir and underburden can be influenced by a current to the inductors within limits, which will be discussed below.
  • Ad 9 Alternatively, it is proposed to simultaneously feed adjacent inductors with different frequencies. For example, the wiring of four inductor pairs possible with four generators of different frequency.
  • Each generator feeds a pair of return conductors of the inductors, the individual conductors being spatially as far apart as possible.
  • FIG. 1 shows a section of an oil sand deposit with a repeating unit as a reservoir and an electrical conductor structure running horizontally in the reservoir
  • FIG. 2 shows the diagram of the wiring of four inductor pairs with temporally sequential energization
  • Figure 3 shows the scheme of the wiring of four inductor pairs with simultaneous energization with separate generators, which may have different frequencies, the associated return conductors are spatially far apart and
  • Figure 4 shows the scheme of the wiring of four inductor pairs with separate generators of different frequencies, the associated forward and return conductors are adjacent.
  • Figure 1 shows a perspective view as a linear repeating array
  • Figures 2 to 4 are respectively plan views, i. Horizontal sections in the Induktorbene seen from above, with the overlying mountains ("Overburden") is on both sides opposite.Equal elements in the figures have the same reference numerals . The figures are described below partially together.
  • Heavy oils are significantly improved. This can be achieved by increasing the temperature of the reservoir (reservoir), which causes a decrease in the viscosity of the bitumen or heavy oil.
  • FIG. 1 shows an arrangement for inductive heating.
  • the conductors 10 and 20 are routed vertically or at a predetermined angle into holes through the overburden ("overburden") and are powered by an RF generator 60 which may be housed in an external housing.
  • the conductors 10 and 20 extend at the same depth either side by side or one above the other. It may be useful to offset the ladder. Typical distances between the return and return conductors 10, 20 are 10 to 60 m with an outer diameter of the conductors of 10 to 50 cm (0.1 to 0.5 m).
  • An electrical double line 10, 20 in Figure 1 with the aforementioned typical dimensions has a Lekssindukt foundedsbelag of 1.0 to 2.7 uH / m.
  • the cross-capacitance coating is only 10 to 100 pF / m with the dimensions mentioned, so that the capacitive cross-currents can initially be neglected. At the same time wave effects should be avoided.
  • the shaft speed is given by the capacitance and inductance of the conductor arrangement.
  • FIG. 1 is due to the loop length and the wave propagation speed along the arrangement of the double line 10, 20.
  • the loop length is therefore to be chosen so short that no disturbing wave effects result here.
  • FIG. 2 shows how four inductor pairs can be switched with temporally sequential energization.
  • 60 is again the high frequency power generator. whose outputs are applied to switching units 61, 61 '.
  • the switching units 61, 61 'each have four different contacts, the switching unit 61 being connected to four inductors 1, 2, 3, 4 as a forward conductor and the switching unit 61' to four inductors 5, 6, 7, 8 as a return conductor.
  • a switching clock 62 provides for switching or switching on the generator voltage to the individual lines 1 to 8.
  • the individual inductors 1 to 8 are arranged according to FIG. 1 in the reservoir 100. There are areas 105 on both sides of the reservoir 100 which are not to be heated and phenomenologically represent the "overburden.” Furthermore, a connection 15 is connected to the ends of the inductors which connect the forward and return conductors
  • Connection 15 can be arranged above or below ground.
  • the switching clock 62 can be controlled by a separate control unit 63, which takes into account in particular the temperature T in the reservoir 100.
  • temperature sensors not shown in FIG. 2, can be placed on the individual inductors or inductor lines in order to locally measure temperatures T 1 there and to conduct them to the control unit 63 for evaluation. In particular, it is thus possible to take into account excess temperatures at the inductors.
  • FIG. 3 the arrangement according to FIG. 2 is modified such that four high-frequency power generators 60 ',
  • 60 '', 60 '' 'and 60' '' 'are present which drive in pairs two of the inductors 1 to 8. Again, there is an overground or underground connection 15. With this arrangement, it is possible, in particular, to supply four inductor pairs with different current intensities at different frequencies at the same time.
  • FIG. 3 An arrangement according to FIG. 3 can be modified such that different frequencies are also used.
  • FIG. 4 in which in turn eight inductors 1 to 8 are arranged in the reservoir parallel to one another.
  • two of the inductors 1 to 8 are driven by a separate generator 60 'to 60''''.
  • those generators are selected which generate different predefinable frequencies.
  • generator 60 ' has frequency fi, generator 60''frequency f 2 , generator 60''' frequency f 3, and generator 60 ''''' frequency f 4 .
  • the low frequency electrical power i. 50-60Hz or possibly also as direct current, led down and could be a conversion into the kHz range underground, so that no losses occur in the overburden.
  • the electrical parameters decisive for the heating of the reservoir can be preset variably in terms of time and / or location and can be changed from outside the reservoir to optimize the delivery volume during the conveyance of the bitumen.
  • at least one generator is present, but preferably a plurality of generators, wherein its electrical parameters (I, f lr ⁇ ) are variable.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Induction Heating (AREA)
  • Road Paving Machines (AREA)
  • Working-Up Tar And Pitch (AREA)
EP09780765A 2008-08-29 2009-07-17 Verfahren und vorrichtung zur "in-situ"-förderung von bitumen oder schwerstöl Withdrawn EP2321496A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008044955A DE102008044955A1 (de) 2008-08-29 2008-08-29 Verfahren und Vorrichtung zur "in-situ"-Förderung von Bitumen oder Schwerstöl
PCT/EP2009/059218 WO2010023035A1 (de) 2008-08-29 2009-07-17 Verfahren und vorrichtung zur "in-situ"-förderung von bitumen oder schwerstöl

Publications (1)

Publication Number Publication Date
EP2321496A1 true EP2321496A1 (de) 2011-05-18

Family

ID=41259551

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09780765A Withdrawn EP2321496A1 (de) 2008-08-29 2009-07-17 Verfahren und vorrichtung zur "in-situ"-förderung von bitumen oder schwerstöl

Country Status (11)

Country Link
US (1) US8813835B2 (ru)
EP (1) EP2321496A1 (ru)
CN (1) CN102197191B (ru)
AU (1) AU2009286936B2 (ru)
BR (1) BRPI0917926A2 (ru)
CA (1) CA2735357C (ru)
DE (1) DE102008044955A1 (ru)
MX (1) MX2011002135A (ru)
RU (1) RU2505669C2 (ru)
UA (1) UA105366C2 (ru)
WO (1) WO2010023035A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108798623A (zh) * 2018-06-27 2018-11-13 中国石油化工股份有限公司 一种天然气掺稀气举工艺参数优选方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153697A1 (en) 2007-05-25 2008-12-18 Exxonmobil Upstream Research Company A process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
DE102009019287B4 (de) 2009-04-30 2014-11-20 Siemens Aktiengesellschaft Verfahren zum Aufheizen von Erdböden, zugehörige Anlage und deren Verwendung
US8863839B2 (en) 2009-12-17 2014-10-21 Exxonmobil Upstream Research Company Enhanced convection for in situ pyrolysis of organic-rich rock formations
DE102010020154B4 (de) 2010-03-03 2014-08-21 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur "in-situ"-Förderung von Bitumen oder Schwerstöl
DE102010043720A1 (de) * 2010-11-10 2012-05-10 Siemens Aktiengesellschaft System und Verfahren zum Extrahieren eines Gases aus einem Gas-Hydrat-Vorkommen
WO2013165711A1 (en) 2012-05-04 2013-11-07 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US10087715B2 (en) 2012-12-06 2018-10-02 Siemens Aktiengesellschaft Arrangement and method for introducing heat into a geological formation by means of electromagnetic induction
AU2014340644B2 (en) 2013-10-22 2017-02-02 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
EP2886793A1 (de) 2013-12-18 2015-06-24 Siemens Aktiengesellschaft Verfahren für das Einbringen einer Induktorschleife in eine Gesteinsformation
RU2568084C1 (ru) * 2014-01-09 2015-11-10 Общество с ограниченной ответственностью "Газ-Проект Инжиниринг" ООО "Газ-Проект Инжиниринг" Способ транспортировки и слива высоковязких текучих сред
DE102014223621A1 (de) * 2014-11-19 2016-05-19 Siemens Aktiengesellschaft Lagerstättenheizung
US9739122B2 (en) 2014-11-21 2017-08-22 Exxonmobil Upstream Research Company Mitigating the effects of subsurface shunts during bulk heating of a subsurface formation
WO2017177319A1 (en) * 2016-04-13 2017-10-19 Acceleware Ltd. Apparatus and methods for electromagnetic heating of hydrocarbon formations
CA3105830A1 (en) 2018-07-09 2020-01-16 Acceleware Ltd. Apparatus and methods for connecting sections of a coaxial line
US11773706B2 (en) 2018-11-29 2023-10-03 Acceleware Ltd. Non-equidistant open transmission lines for electromagnetic heating and method of use
CA3130635A1 (en) 2019-03-06 2020-09-10 Acceleware Ltd. Multilateral open transmission lines for electromagnetic heating and method of use
CA3142900A1 (en) 2019-03-25 2020-10-01 Acceleware Ltd. Signal generators for electromagnetic heating and systems and methods of providing thereof
CA3174830A1 (en) 2020-04-24 2021-10-28 Acceleware Ltd. Systems and methods for controlling electromagnetic heating of a hydrocarbon medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4645004A (en) * 1983-04-29 1987-02-24 Iit Research Institute Electro-osmotic production of hydrocarbons utilizing conduction heating of hydrocarbonaceous formations

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2636530A1 (de) * 1976-07-15 1978-05-03 Fisher Erwaermung von halbleitern
US4116273A (en) * 1976-07-29 1978-09-26 Fisher Sidney T Induction heating of coal in situ
DE2634137A1 (de) * 1976-07-29 1978-02-02 Fisher Erwaermung einer kohlenwasserstoff- ablagerung
US4140179A (en) * 1977-01-03 1979-02-20 Raytheon Company In situ radio frequency selective heating process
US4144935A (en) * 1977-08-29 1979-03-20 Iit Research Institute Apparatus and method for in situ heat processing of hydrocarbonaceous formations
US4449585A (en) * 1982-01-29 1984-05-22 Iit Research Institute Apparatus and method for in situ controlled heat processing of hydrocarbonaceous formations
BR9102789A (pt) 1991-07-02 1993-02-09 Petroleo Brasileiro Sa Processo para aumentar a recuperacao de petroleo em reservatorios
DE60116078T2 (de) 2000-04-24 2006-07-13 Shell Internationale Research Maatschappij B.V. Elektrische bohrlochheizvorrichtung und verfahren
WO2001081722A1 (en) * 2000-04-24 2001-11-01 Shell Internationale Research Maatschappij B.V. A method for treating a hydrocarbon-containing formation
RU2215872C2 (ru) 2002-01-17 2003-11-10 Исаев Мидхат Кавсарович Способ воздействия на нефтяной пласт
RU2349745C2 (ru) * 2003-06-24 2009-03-20 Эксонмобил Апстрим Рисерч Компани Способ обработки подземного пласта для конверсии органического вещества в извлекаемые углеводороды (варианты)
US7091460B2 (en) * 2004-03-15 2006-08-15 Dwight Eric Kinzer In situ processing of hydrocarbon-bearing formations with variable frequency automated capacitive radio frequency dielectric heating
US7831134B2 (en) * 2005-04-22 2010-11-09 Shell Oil Company Grouped exposed metal heaters
CA2637984C (en) * 2006-01-19 2015-04-07 Pyrophase, Inc. Radio frequency technology heater for unconventional resources
US7484561B2 (en) * 2006-02-21 2009-02-03 Pyrophase, Inc. Electro thermal in situ energy storage for intermittent energy sources to recover fuel from hydro carbonaceous earth formations
DE102007008292B4 (de) * 2007-02-16 2009-08-13 Siemens Ag Vorrichtung und Verfahren zur In-Situ-Gewinnung einer kohlenwasserstoffhaltigen Substanz unter Herabsetzung deren Viskosität aus einer unterirdischen Lagerstätte
DE102007036832B4 (de) 2007-08-03 2009-08-20 Siemens Ag Vorrichtung zur In-Situ-Gewinnung einer kohlenwasserstoffhaltigen Substanz
DE102007040607B3 (de) * 2007-08-27 2008-10-30 Siemens Ag Verfahren und Vorrichtung zur "in situ"-Förderung von Bitumen oder Schwerstöl
DE102008022176A1 (de) * 2007-08-27 2009-11-12 Siemens Aktiengesellschaft Vorrichtung zur "in situ"-Förderung von Bitumen oder Schwerstöl
DE102007040605B3 (de) 2007-08-27 2008-10-30 Siemens Ag Vorrichtung zur "in situ"-Förderung von Bitumen oder Schwerstöl

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4645004A (en) * 1983-04-29 1987-02-24 Iit Research Institute Electro-osmotic production of hydrocarbons utilizing conduction heating of hydrocarbonaceous formations

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108798623A (zh) * 2018-06-27 2018-11-13 中国石油化工股份有限公司 一种天然气掺稀气举工艺参数优选方法

Also Published As

Publication number Publication date
CA2735357C (en) 2017-06-06
AU2009286936B2 (en) 2015-04-02
RU2011111733A (ru) 2012-10-10
BRPI0917926A2 (pt) 2015-11-17
MX2011002135A (es) 2011-04-05
CN102197191B (zh) 2016-04-13
DE102008044955A1 (de) 2010-03-04
CA2735357A1 (en) 2010-03-04
AU2009286936A1 (en) 2010-03-04
WO2010023035A1 (de) 2010-03-04
UA105366C2 (ru) 2014-05-12
US8813835B2 (en) 2014-08-26
CN102197191A (zh) 2011-09-21
US20110146981A1 (en) 2011-06-23
RU2505669C2 (ru) 2014-01-27

Similar Documents

Publication Publication Date Title
EP2321496A1 (de) Verfahren und vorrichtung zur "in-situ"-förderung von bitumen oder schwerstöl
DE102007040605B3 (de) Vorrichtung zur "in situ"-Förderung von Bitumen oder Schwerstöl
DE102007040606B3 (de) Verfahren und Vorrichtung zur in situ-Förderung von Bitumen oder Schwerstöl
EP2315910B1 (de) Anlage zur in-situ-gewinnung einer kohlenstoffhaltigen substanz
EP2283208A1 (de) Verfahren und vorrichtung zur "in situ"-förderung von bitumen oder schwerstöl
WO2009027305A2 (de) Vorrichtung zur 'in situ'-förderung von bitumen oder schwerstöl
DE102007040607B3 (de) Verfahren und Vorrichtung zur "in situ"-Förderung von Bitumen oder Schwerstöl
EP2324194B1 (de) Verfahren zur förderung von bitumen und/oder schwerstöl aus einer unterirdischen lagerstätte, zugehörige anlage und betriebsverfahren dieser anlage
WO2010052134A2 (de) Verfahren und vorrichtung zur beheizung einer rohrleitung
DE102010020154B4 (de) Verfahren und Vorrichtung zur "in-situ"-Förderung von Bitumen oder Schwerstöl
EP2633153B1 (de) Verfahren zur "in situ"-förderung von bitumen oder schwerstöl aus ölsand-lagerstätten als reservoir
DE102010043529B4 (de) Vorrichtung und Verfahren zur Verwendung der Vorrichtung zur "in situ"-Förderung von Bitumen oder Schwerstöl aus Ölsand-Lagerstätten
DE102009019287A1 (de) Verfahren zum Aufheizen von Erdböden, zugehörige Anlage und deren Verwendung
WO2015090646A1 (de) Verfahren für das einbringen einer induktorschleife in eine gesteinsformation
DE102010041329A1 (de) Vorrichtung zur Erwärmung von Erdreich
EP3204596B1 (de) Lagerstättenheizung
WO2015090649A1 (de) Verfahren für das einbringen einer induktorschleife in eine gesteinsformation
DE102015210689A1 (de) Heizvorrichtung zur induktiven Heizung einer Kohlenwasserstofflagerstätte mit in Reihe geschalteten Leitereinrichtungen, Anordnung sowie Verfahren
DE102015215463A1 (de) Heizvorrichtung zur induktiven Heizung einer Ölsandlagerstätte und/oder einer Ölschieferlagerstätte und/oder einer Bitumenlagerstätte und/oder einer Schweröllagerstätte

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20170707

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180911

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190122