EP2321440A2 - Procédé de préparation d'une pièce en superalliage base nickel et pièce ainsi obtenue - Google Patents

Procédé de préparation d'une pièce en superalliage base nickel et pièce ainsi obtenue

Info

Publication number
EP2321440A2
EP2321440A2 EP09740490A EP09740490A EP2321440A2 EP 2321440 A2 EP2321440 A2 EP 2321440A2 EP 09740490 A EP09740490 A EP 09740490A EP 09740490 A EP09740490 A EP 09740490A EP 2321440 A2 EP2321440 A2 EP 2321440A2
Authority
EP
European Patent Office
Prior art keywords
powder
densification
superalloy
traces
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09740490A
Other languages
German (de)
English (en)
Inventor
Gérard Raisson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aubert and Duval SA
Original Assignee
Aubert and Duval SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aubert and Duval SA filed Critical Aubert and Duval SA
Publication of EP2321440A2 publication Critical patent/EP2321440A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to a process for obtaining forged parts from powders of a nickel superalloy hardened by double precipitation (gamma 'and gamma' or delta), such as the 725 ® brand superalloy.
  • Nickel superalloys are materials commonly used to make components for aeronautical turbines, such as turbine disks. These materials are characterized by their ability to operate under high stress and high fatigue loads at high temperatures, above 650 ° C, which can reach 1090 ° C in the case of some applications of aeronautical turbines. The search for efficient materials capable of withstanding increasingly high operating temperatures is related to the need to improve the thermodynamic efficiency of the turbines.
  • the components for aeronautical turbines made of superalloys based on nickel are most conventionally obtained by means of a obtained, called "ingot channel", where the nickel base superalloy is prepared by melting and remelting, then cast and put into the form of an ingot, before being hot worked by one or more thermomechanical and thermal treatments to obtain the microstructure and the desired final shape.
  • This ingot channel is however not optimal for producing parts having the aforementioned high properties, because of a microstructure which is not sufficiently homogeneous after melting and remelting of the alloy. Indeed, a very homogeneous microstructure of the material before hot work is necessary to be able to work the material with deformation rates and higher deformation rates, while avoiding the formation of taps (that is to say cracks). formed during cooling) during thermomechanical treatment and the appearance of structural defects in the material.
  • powder pathway powder metallurgy
  • This powder route comprises in particular the following steps: preparation of a melt having the target composition for the superalloy;
  • the parts obtained by the powder route are difficult to work by thermomechanical treatment, particularly because of the lack of ductility of the parts obtained after densification of the powder.
  • the lack of ductility of the parts obtained from nickel base superalloy powders is explained by the characteristics of the surfaces of the original particles, which will mark the structure of the material and subsist after compaction of the powder.
  • the surfaces of the parent particles are also known as PPB (Prior Particle Boundaries).
  • the particles of the initial powder have surfaces which promote the formation and grouping of insoluble precipitates, such as oxides, sulphides, nitrides, sulphonitrides, carbides and / or carbonitrides, which will subsist after compaction of the powder. . This phenomenon is known as "decorations" around powder particles.
  • the precipitates present at the PPBs form stable networks, which can not be removed by subsequent treatments.
  • This solution consists in carrying out a pretreatment of the superalloy, before densification, at a temperature below the solvus temperature or close to the solvus temperature, of the gamma phase of the alloy (1 195 ° C. for ASTROLOY ® and 1180 ° C for N18 ®).
  • This method makes it possible to mitigate the harmful effect of PPBs for superalloys cured by gamma phase precipitation, by precipitating the segregated elements inside the powder particles and not at their surface. Thanks to this pretreatment, uncoupled from the densification itself, the grains can grow beyond the size of the initial particles, which improves the forgeability of the alloy.
  • Nickel base superalloys hardened by double precipitation because of their mechanical properties (mechanical resistance, creep and fatigue resistance at high temperatures), would be of great interest for aeronautical applications, especially for turbine components such as disks. or the blades. It would therefore be very important to find a mode of development by the powder route for using these superalloys for these applications, in particular the known superalloy known commercially 725 ® , because of its mechanical properties and its corrosion resistance.
  • the object of the invention is to improve the ductility, and hence the forgeability, of double-precipitation hardened nickel superalloy parts by allowing the grains to grow substantially beyond the original powder particle sizes.
  • the subject of the invention is a process for the preparation of a nickel base superalloy part by powder metallurgy, comprising the following steps: - elaboration of a nickel base superalloy of a composition capable of providing a hardening by double precipitation of a gamma phase and a gamma phase or delta;
  • a heat treatment step is carried out consisting in heating the powder and the container for at least 4 hours, preferably for 12 to 30 hours, at a temperature of pressure resulting in a densification of the powder less than or equal to 15% of the initial volume, preferably less than or equal to 10% of the initial volume, this treatment taking place at a temperature both greater than 1140 ° C and lower at least 10 ° C at the solidus temperature of the superalloy.
  • composition of the superalloy may be, in percentages by weight:
  • Said heat treatment before densification is then preferably performed at a temperature of 10 to 50 ° C below the solidus temperature of the superalloy.
  • the heat treatment before densification is carried out between 1140.degree. C. and 1180.degree.
  • the heat treatment before densification is preferably carried out at a temperature both greater than 1140 ° C and 30 to 50 ° C lower than the solidus temperature of the superalloy.
  • the heat treatment before densification is, in this case, optimally carried out between 1160 and 1180 ° C for 12 hours to 30 hours at a pressure less than 50 bar.
  • Densification can be performed by hot isostatic compaction.
  • the hot shaping may include a forging blow.
  • the invention also relates to a nickel-base superalloy forging, characterized in that it was prepared by the above method.
  • This part can be an aeronautical or land gas turbine component.
  • the invention consists in producing, on a powder of a superalloy capable of being hardened by double precipitation of a gamma phase and a gamma or delta phase, a particular heat treatment of the powder and its container before densification, within a given temperature range.
  • This treatment is intended to dissociate the grain boundaries of SCH networks, which can not therefore, in the following treatments, oppose the growth of the grain boundaries, and finally we obtain more ductile structures, therefore more suitable for hot forming such as forging.
  • FIG. 1 shows a micrograph of an ingot obtained after CIC of a 725 ® alloy powder at 1160 ° C for 3 hours at 1000 bar according to the conventional method
  • FIG. 2 which similarly shows a micrograph of an ingot obtained according to the process of the invention from an ARA 725 ® powder of the same composition as for FIG. 1, also obtained by CIC at 1 160 ° C for 3 hours at 1000 bar, but after the powder has undergone a heat treatment before densification at 1160 ° C for 6 h at atmospheric pressure.
  • the ARA 725 ® alloys having the above compositions, have solidus temperatures of about 1210 ° C ranging from 1200 to 1230 ° C depending on the precise composition.
  • the two samples tested differ essentially in their Fe contents, their contents of hardening elements Al, Ti, Nb and especially their contents in B, which are higher in the sample 2.
  • the inventors carried out a study of phases likely to be present in alloy 725 ® , for the compositions of the invention or close to them. This study was carried out on the one hand using the THERMOCALC software, commonly used by metallurgists, which makes it possible to establish the phase diagrams of metal alloys, and on the other hand by analysis tests. differential thermal and dilatometric optical microscope and scanning electron microscope examinations after different heat treatments.
  • Powder of these alloys having a particle size allowing them to pass through the meshes of a 100 ⁇ m sieve, were first prepared and screened in a conventional manner.
  • micrographic observations were performed under an optical microscope after electrolytic chemical etching.
  • the forgeability tests were conducted on specimens 6.35 mm in diameter and 35 mm in length, which were deformed in tension at 1025 ° C. at low speed.
  • the pulling speed of the machine was minimal at 1.9 mm / s.
  • the strain rate of the sample was 5.4 ⁇ 10 -2 / s, so in conditions quite close to those referred to in typical stampings of the parts to which the alloy is intended.
  • microstructures obtained with standard CIC cycles have a grain size that normally increases substantially with the temperature at which the CIC is performed.
  • FIG. 1 one (FIG. 1) by direct CIC of the powder at 1160 ° C. for 3 hours at 1000 bar; the other ( Figure 2) by CIC performed under these same conditions, but preceded, according to the invention, by a heat treatment of the powder and its container, exposed to 1160 ° C for 6 hours at atmospheric pressure.
  • Table 2 shows the main results of the mechanical tests carried out on the different samples as a function of the treatments undergone.
  • Rm is the tensile strength, elongation at break and Z necking of the specimen.
  • the beneficial influence of the decoupled CIC cycle is also evident in the pattern of damage observed after the samples were broken.
  • the low ductilities of the samples obtained with CIC cycles lead to intergranular fracture facies, corresponding substantially to the grains of the original powder.
  • the decoupled CIC cycle according to the invention provided that it is carried out at 1160 ° C., provides high ductility samples which exhibit a transgranular fracture facies, thanks to the partial decoupling between the powder grains and the particles. grain boundaries. This decoupling partially offsets the damage that normally occurs at the grain boundaries and is a fundamental factor in improving the forgeability of the material.
  • the inventors were able to extrapolate these results, obtained on the 725 ® , to the other nickel-base superalloys that can be hardened by double precipitation of gamma and gamma or delta phases.
  • the known alloys of the IN706, IN718 type, IN725 fall into this category.
  • the heat treatment prior to the densification must bear the powder for at least 4 hours at a temperature greater than 1140 ° C., and also less than 10 ° C. or more at the solidus temperature of the superalloy, preferably between 10 and 50 ° C. below the solidus in order to substantially change the PPB without risk of generating defects caused by a local burn.
  • this may correspond to a temperature of 1,160 to 1,180 ° C, depending on the precise solidus temperature of the alloy, within the compositional limits set by the usual specifications.
  • the duration of the heat treatment before densification can be up to 30 h depending on the dimensions of the workpiece.
  • one of the parameters to be taken into account for the optimization of the treatment time is the size of the part to be produced, the processing time being all the greater as the workpiece is thick so that the treatment can relate homogeneously throughout its thickness.
  • this treatment time is from 15 to 17 hours so that a depth of treatment of the order of 150 mm, corresponding to what is desirable to achieve on the components of aeronautical turbines of conventional dimensions, is certainly achieved. to which the invention applies in a privileged but not exclusive manner.
  • the filling of the container with the powder is carried out under vacuum, this evacuation being maintained during the densification itself.
  • the heat treatment before densification according to the invention is carried out in an inert atmosphere to avoid forming calamine on the container and oxides within the powder. It can be carried out at atmospheric pressure or under low pressure. It must not cause densification of the powder, or only a low densification of the powder of less than or equal to 15%, preferably less than or equal to 10% of the initial volume, densification of the powder, or at least a portion of the powder. very majority of this operation, to be carried out during the stage which is especially dedicated to it. Beyond such densification during heat treatment, it is difficult or impossible to avoid the harmful effects of SCH and decorations at SCH. A densification greater than about 15%, therefore does not achieve the above purpose of the invention. For this purpose, a pressure of at most 50 bar is generally recommended.
  • the densification which follows is carried out at a temperature generally identical or comparable to that of the heat treatment for a period of the order of 4 to 16 hours, again depending in particular on the dimensions of the container-powder assembly.
  • a modeling of the densification and the distribution of the temperature in the room during the landing makes it possible to fix the duration of the latter depending on the desired temperature homogeneity.
  • the densification of the powder in the container is followed by a heat treatment in usual ways to achieve the final characteristics of the alloy.
  • the usual heat treatment after densification is carried out at a temperature which is at least 30 ° C lower than the densification temperature to avoid the occurrence of porosities due to the presence of Argon in the mixture.
  • Hot isostatic compaction is a preferred densification method within the scope of the invention, but other methods can be envisaged such as hot unidirectional compression or extrusion.
  • This hot shaping generally comprises in particular a forging. This is preferably carried out at a supersolvus temperature, typically for 725 ® between about 1010 and 1030 ° C, preferably at 1025 ° C. This forging can be followed by forging in a forging tool (die) to give it the desired final geometry. This operation can be carried out in one to three stages, depending on the dimensions of the final piece targeted.
  • a forging in breath (also called “blowdown"), for example in three steps, is particularly recommended for the preferred applications envisaged, because it allows to calibrate the half-product for stamping and to knead its surface to obtain microstructural features that are as close as possible to those found at the heart of the semi-finished product.
  • forging in blow a forging during which the billet or the ingot to be forged is placed in an annular piece called “soufle” which, during the forging, allows to constrain radially the billet or the ingot to obtain a microstructural homogeneity of the billet or ingot in the radial directions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

Procédé de préparation d'une pièce en superalliage base nickel par : élaboration d'un superalliage base nickel d'une composition apte à procurer un durcissement par double précipitation d'une phase gamma' et d'une phase gamma" ou delta; atomisation d'une masse fondue dudit superalliage pour obtenir une poudre; tamisage de ladite poudre; introduction de la poudre dans un container; fermeture et mise sous vide du container; densification de la poudre et du container pour obtenir un lingot ou une billette; mise en forme à chaud dudit lingot ou de ladite billette; caractérisé en ce que, avant l'étape de densification, on chauffe la poudre et le container pendant au moins 4 h, à une température à la fois supérieure à 1 140°C et inférieure d'au moins 10°C à la température de solidus du superalliage, et à une pression entraînant une densification inférieure ou égale à 15% du volume de poudre. Pièce ainsi produite.

Description

Procédé de préparation d'une pièce en superalliage base nickel et pièce ainsi obtenue.
La présente invention est relative à un procédé d'obtention de pièces forgées à partir de poudres d'un superalliage de nickel durci par double précipitation (gamma' et gamma" ou delta), tel que le superalliage de dénomination commerciale 725®.
Les superalliages de Nickel sont des matériaux couramment utilisés pour réaliser des composants destinés à des turbines aéronautiques, tels que des disques de turbine. Ces matériaux se caractérisent par leur aptitude à fonctionner sous fortes contraintes et sous fortes charges de fatigue à des températures élevées, au-delà de 650 °C, qui peuvent atteindre 1090°C dans le cas de certaines applications de turbines aéronautiques. La recherche de matériaux performants capables de résister à des températures de fonctionnement de plus en plus importantes est liée au besoin d'améliorer le rendement thermodynamique des turbines.
Les composants pour les turbines aéronautiques en superalliages à base de nickel (c'est-à-dire comportant au moins 50% en poids de nickel, le restant étant composé de divers éléments d'alliage) sont le plus classiquement obtenus par une voie d'obtention, dite « voie lingot », où le superalliage base nickel est élaboré par fusion et refusion, puis coulé et mis sous forme de lingot, avant d'être travaillé à chaud par un ou des traitements thermomécaniques et thermiques pour obtenir la microstructure et la forme finale désirées.
Cette voie lingot n'est cependant pas optimale pour réaliser des pièces ayant les propriétés élevées précitées, du fait d'une microstructure qui n'est pas suffisamment homogène après fusion et refusion de l'alliage. En effet, une microstructure très homogène du matériau avant travail à chaud est nécessaire pour pouvoir travailler le matériau avec des taux de déformation et des vitesses de déformations plus importants, tout en évitant la formation de tapures (c'est-à- dire des fissures superficielles formées lors d'un refroidissement) lors du traitement thermomécanique et l'apparition de défauts structurels dans le matériau.
Depuis déjà quelques années la voie d'obtention dite « voie poudre », (métallurgie des poudres) permettant d'obtenir des matériaux de structure beaucoup plus homogène, s'est développée pour la réalisation de composants à hautes performances en superalliages base nickel, notamment pour les applications aux turbines aéronautiques. Cette voie poudre comporte notamment les étapes suivantes : - préparation d'une masse fondue ayant la composition visée pour le superalliage ;
- atomisation de cette masse fondue pour obtenir une poudre ;
- tamisage de cette poudre pour n'en retenir que les particules ayant la granulométrie désirée ; - introduction de la poudre dans un container, que l'on ferme et met sous vide ;
- densification de la poudre et du container pour obtenir un lingot ou une billette de dimensions appropriées ;
- traitements thermomécaniques (forgeage, par exemple) et éventuellement thermiques du lingot ou de la billette pour obtenir une pièce finale de dimensions et de structures appropriées à l'application visée.
Cependant les pièces obtenues par la voie poudre sont difficiles à travailler par traitement thermomécanique, à cause notamment du manque de ductilité des pièces obtenues après densification de la poudre. Le manque de ductilité des pièces obtenues à partir de poudres en superalliages base nickel s'explique par les caractéristiques des surfaces des particules d'origines, qui vont marquer la structure du matériau et subsister après compaction de la poudre. Les surfaces des particules d'origines sont également connues sous le nom de PPB (Prior Particle Boundaries). Les particules de la poudre initiale présentent des surfaces qui favorisent la formation et le regroupement de précipités insolubles, tels que des oxydes, des sulfures, des nitrures, des sulfonitrures, des carbures et/ou des carbonitrures, qui vont subsister après compaction de la poudre. Ce phénomène est connu sous le nom de « décorations » autour des particules de poudres. Pendant l'opération de compaction de la poudre, les précipités présents aux PPB forment des réseaux stables, qu'il n'est pas possible de faire disparaître par des traitements ultérieurs.
Une conséquence de ce phénomène est de favoriser les ruptures interparticulaires lors des sollicitations futures de la pièce, et de rendre difficile le grossissement du grain très sensiblement au-delà des tailles des particules d'origine. Il est classiquement impossible de faire grossir le grain au-delà de trois fois les tailles de particules d'origine. Cela rend la billette obtenue après compaction de la poudre très difficilement forgeable et rend impossible l'obtention de certaines caractéristiques mécaniques finales élevées, telles qu'une bonne tenue au fluage.
Dans le document EP-A-O 438 338 on a proposé une solution permettant d'atténuer les effets néfastes des précipités ou décorations aux PPB pour des superalliages de nickel du type à durcissement structural par précipitation de phase gamma', tels que notamment les alliages connus sous les dénominations commerciales ASTROLOY®, UDIMET 720® ou N18®. Ce document précise les compositions typiques des alliages ASTROLOY® et N18®. La composition typique de I1UDIMET 720® est
- 15,5% < Cr < 16,5% - 14% < Co < 15,5%
- 4,75% < Ti < 5,25%
- 2,25% < Al < 2,75%
- 2,75% < Mo < 3,25%
- 1 % < W ≤ 1 ,5% - 0,025% < Zr < 0,05%
- 0,01 % ≤ C < 0,02%
- 0,01 % ≤ B < 0,02%
- Ni = le reste
Cette solution consiste à réaliser un prétraitement du superalliage, avant sa densification, à une température inférieure à la température de solvus ou proche de la température de solvus, de la phase gamma' de l'alliage (1 195°C pour l'ASTROLOY®, et 1 180°C pour le N18®). Ce procédé permet d'atténuer l'effet néfaste des PPB pour des superalliages durcis par précipitation de phase gamma', en faisant précipiter les éléments ségrégés à l'intérieur des particules de poudres et non à leur surface. Grâce à ce prétraitement, découplé de la densification proprement dite, les grains peuvent grossir au-delà de la taille des particules initiales, ce qui permet d'améliorer la forgeabilité de l'alliage. Cependant, il s'avère que cette solution, bien que procurant des avantages technologiques remarquables pour les alliages base nickel à durcissement structural par simple précipitation de phase gamma', n'est pas applicable aux superalliages base nickel pour lesquels le durcissement structural est obtenu par double précipitation d'une phase gamma' et d'une phase gamma" ou delta.
En effet un prétraitement réalisé sous la température de solvus de la phase gamma' ou au voisinage de cette température de solvus ne permet pas, dans leur cas, de supprimer ou d'atténuer l'effet néfaste des PPB et des décorations aux PPB. Les superalliages base nickel durcis par double précipitation, du fait de leurs propriétés mécaniques (résistance mécanique, tenue au fluage et à la fatigue aux hautes températures), présenteraient un grand intérêt pour les applications aéronautiques, notamment pour les composants des turbines tels que les disques ou les pales. Il serait donc très important de trouver un mode d'élaboration par la voie poudre permettant d'utiliser ces superalliages pour ces applications, en particulier le superalliage connu dénommé commercialement 725®, du fait de ses propriétés mécaniques et de sa résistance à la corrosion.
L'invention a pour but d'améliorer la ductilité et, par conséquent, la forgeabilité de pièces en superalliages de nickel durcis par double précipitation en permettant aux grains de grossir très sensiblement au-delà des tailles de particules de poudre d'origine.
A cet effet, l'invention a pour objet un procédé de préparation d'une pièce en superalliage base nickel par métallurgie des poudres, comportant les étapes suivantes : - élaboration d'un superalliage base nickel d'une composition apte à procurer un durcissement par double précipitation d'une phase gamma' et d'une phase gamma" ou delta ;
- atomisation d'une masse fondue dudit superalliage pour obtenir une poudre ; - tamisage de ladite poudre pour en extraire les particules ayant une granulométrie prédéterminée ;
- introduction de la poudre dans un container, éventuellement sous vide ;
- fermeture et mise sous vide du container ; - densification de la poudre et du container par mise sous pression de l'ensemble pour obtenir un lingot ou une billette ;
- mise en forme à chaud et éventuellement traitement thermique dudit lingot ou de ladite billette ; caractérisé en ce que, avant l'étape de densification de la poudre et du container, on exécute une étape de traitement thermique consistant à chauffer la poudre et le container pendant au moins 4 h, de préférence pendant de 12 à 30 h, à une pression n'entraînant qu'une densification de la poudre inférieure ou égale à 15% du volume initial, de préférence inférieure ou égale à 10% du volume initial, ce traitement ayant lieu à une température à la fois supérieure à 1140°C et inférieure d'au moins 10°C à la température de solidus du superalliage.
La composition du superalliage peut être, en pourcentages pondéraux :
- 19% < Cr < 23% ;
- 7% < Mo < 9,5% ; - 2,75% < Nb < 4% ;
- traces < Fe < 9% ;
- traces < Al < 0,6% ; ; - 0,001 % ≤ B < 0,005% - traces < Mn < 0,35% ;
- traces < Si < 0,2% ;
- traces < C < 0,03% ;
- traces < Mg < 0,05% ;
- traces < P < 0,015% ; - traces < S < 0,01 % ; le reste étant du nickel et des impuretés résultant de l'élaboration.
Ledit traitement thermique avant densification est alors de préférence réalisé à une température inférieure de 10 à 50 °C à la température de solidus du superalliage. Pour ces alliages le traitement thermique avant densification est réalisé entre 1 140 °C et 1 180^C, Pour un alliage du type précédent, le traitement thermique avant densification est de préférence réalisé à une température à la fois supérieure à 1 140°C et inférieure de 30 à 50 °C à la température de solidus du superalliage.
Le traitement thermique avant densification est, dans ce cas, optimalement réalisé entre 1 160 et 1 180°C pendant 12 heures à 30 heures à une pression inférieure à 50 bar.
La densification peut être réalisée par compaction isostatique à chaud.
La mise en forme à chaud peut comporter un forgeage en soufle.
L'invention a également pour objet une pièce forgée en superalliage base nickel, caractérisée en ce qu'elle a été préparée par le procédé précédent.
Cette pièce peut être un composant de turbine à gaz aéronautique ou terrestre.
Comme on l'aura compris, l'invention consiste à réaliser, sur une poudre d'un superalliage susceptible d'être durci par double précipitation d'une phase gamma' et d'une phase gamma" ou delta, un traitement thermique particulier de la poudre et de son container avant leur densification, dans une gamme de température déterminée. Ce traitement a pour but de dissocier les joints de grains des réseaux de PPB. Celles-ci ne peuvent donc plus, dans les traitement suivants, s'opposer à la croissance des joints de grains, et on obtient au final des structures plus ductiles, donc plus aptes à une mise en forme à chaud tel qu'un forgeage.
Une variante particulière de l'invention vise le superalliage dénommé ARA 725® ou 725® dont la composition est celle citée préférentiellement ci-dessus, et propose une gamme de températures de traitement avant densification qui lui est spécialement adaptée. L'invention sera mieux comprise à la lecture de la description qui suit, donnée en référence aux figures annexées suivantes :
- la figure 1 qui montre une micrographie d'un lingot obtenu après CIC d'une poudre d'alliage 725® à 1 160°C pendant 3 h à 1000 bar selon le procédé classique; - la figure 2 qui montre de la même façon une micrographie d'un lingot obtenu selon le procédé de l'invention à partir d'une poudre d'ARA 725® de même composition que pour la figure 1 , également obtenu par CIC à 1 160°C pendant 3 h à 1000 bars, mais après que la poudre a subi un traitement thermique avant densification à 1 160°C pendant 6 h à pression atmosphérique.
Les alliages ARA 725®, ayant les compositions précitées, ont des températures de solidus de 1210°C environ variant de 1200 à 1230°C suivant la composition précise.
Pour illustrer les avantages de l'invention par rapport à des traitements qui s'écarteraient de ses conditions précises, on va exposer les résultats d'une série d'expériences réalisées sur des échantillons de poudre de deux compositions différentes, relevant cependant toutes deux des prescriptions habituelles concernant l'alliage 725® dont la température de solidus est environ de 1210°C + 5°C. Elles sont présentées dans le tableau 1 , exprimées en % pondéraux.
Tableau 1 : Compositions des échantillons testés
Les deux échantillons testés diffèrent essentiellement sur leurs teneurs en Fe, leurs teneurs en éléments durcissants Al, Ti, Nb et surtout leurs teneurs en B, qui sont plus élevées dans l'échantillon 2. Au préalable, les inventeurs ont procédé à une étude des phases susceptibles d'être présentes dans l'alliage 725®, pour les compositions relevant de l'invention ou voisines de celles-ci. Cette étude a été réalisée d'une part à l'aide du logiciel THERMOCALC, d'utilisation courante par les métallurgistes, et qui permet d'établir les diagrammes de phases des alliages métalliques, et d'autre part par des essais d'analyse thermique différentielle et dilatométriques et des examens au microscope optique et au microscope électronique à balayage après différents traitements thermiques.
Les conclusions de cette étude sont que le 725® peut, en fait, être majoritairement durci par les phases intergranulaires gamma" et delta qui accompagne la phase gamma". Les inventeurs ont donc conclu que c'est l'obtention de cette phase gamma" ou delta intergranulaire qu'il conviendrait de privilégier lors des traitements visant à faire précipiter les phases durcissantes gamma' et gamma" avant la densification.
Les expériences menées sur les échantillons 1 et 2 définis plus haut ont consisté à réaliser un lopin de dimensions diamètre 70 mm et hauteur 500 mm par compaction isostatique à chaud (CIC) de la poudre et de son container selon diverses modalités que l'on va préciser.
On a d'abord préparé et tamisé de manière classique des poudres de ces alliages, présentant une granulométrie leur permettant de passer à travers les mailles d'un tamis de 100 μm.
Dans une première série d'expériences, on a réalisé une CIC selon des modalités « standard », à savoir un simple maintien isotherme de 3 h entre 1000 et 1400 bar, à des températures de 1025, 1 120 et 1160 °C.
Dans une deuxième série d'expériences, on a fait précéder la densification par CIC d'un traitement thermique de la poudre et du container pendant 6 h à 1025, 1 120 et 1 16O0C. Puis la CIC a eu lieu à 1000 bar pendant 3 h à la même température que le traitement thermique. Ce cycle a été dénommé « cycle découplé ». On verra que ce cycle découplé est conforme à l'invention lorsque la température du traitement thermique est de 1 160°C. On a ensuite réalisé des observations micrographiques et des essais mécaniques sur les lopins résultant de ces essais pour apprécier d'une part l'effet des traitements subis sur la morphologie des grains et des joints de grains, et d'autre part l'effet de ces mêmes traitements sur la forgeabilité du matériau.
Les observations micrographiques ont été réalisées au microscope optique après attaque chimique électrolytique.
Les essais de forgeabilité ont été conduits sur des éprouvettes de diamètre 6,35 mm et de longueur 35 mm, que l'on a déformées en traction à 1025°C à faible vitesse. La vitesse de traction de la machine était minimale, à 1 ,9 mm/s. La vitesse de déformation de l'échantillon était de 5,4.10"2/s, donc dans des conditions assez proches de celles visées lors de matriçages typiques des pièces auxquelles est destiné l'alliage élaboré.
Les influences des divers traitements sur les propriétés des matériaux peuvent être résumés comme suit.
Les microstructures obtenues avec les cycles de CIC standard présentent une taille de grain qui, de façon normale, augmente sensiblement avec la température à laquelle est effectuée la CIC. Il n'est toutefois pas possible dans les conditions opératoires retenues, d'obtenir une taille de grain ayant un indice ASTM inférieur à 8, du fait de la présence des PPB aux joints de grains, qui limite la croissance des grains (on rappelle que l'indice ASTM indiquant la taille des grains est d'autant plus élevé que la taille des grains est faible).
Les cycles découplés pour lesquels le traitement thermique préalable a été réalisé à 1025 et 1 120°C permettent d'obtenir après CIC à la même température un produit de microstructure voisine de celle obtenue après les cycles de CIC standard réalisée aux mêmes températures. En revanche, une température de
1 160°C permet d'augmenter la taille des grains à 6 ou 7 ASTM, et on observe un découplage partiel entre les surfaces des particules de poudre et les joints de grains. C'est ce que montre la comparaison entre les figures 1 et 2, qui montrent les microstructures de deux lingots réalisés à partir de la poudre de l'échantillon
1 :
- l'un (figure 1 ) par CIC directe de la poudre à 1 160°C pendant 3 h à 1000 bar ; l'autre (figure 2) par CIC réalisées dans ces mêmes conditions, mais précédée, selon l'invention, par un traitement thermique de la poudre et de son container, exposés à 1160°C pendant 6 h à la pression atmosphérique.
On voit clairement que sur le lingot réalisé selon l'invention, la taille des grains est nettement plus homogène que pour la référence, et que les grains de très petite taille ont disparu, signe que les PPB n'ont pas constitué d'obstacles à leur croissance.
Le tableau 2 montre les principaux résultats des essais mécaniques réalisés sur les différents échantillons en fonction des traitements subis. Rm est la résistance à la traction, A l'allongement à la rupture et Z la striction de l'éprouvette.
Tableau 2 : résultats des essais mécaniques sur les différents échantillons
L'influence du type de cycle de CIC sur la forgeabilité peut être commentée ainsi.
On observe une amélioration de la forgeabilité des alliages à l'état brut de CIC standard lorsque la température du cycle de CIC standard augmente.
L'échantillon 1 a une ductilité très médiocre lorsque la CIC a eu lieu à 1025°C (A =
5,4%). Avec une CIC à 1 160°C, la ductilité de cet alliage 1 est plus élevée (A =
13%). Mais entre les CIC à 1025 et 1 120°C les différences ne sont pas significatives, ce qui témoigne de la faible influence de la température de CIC sur la forgeabilité dans cette gamme de températures, due à la similarité des microstructures obtenues.
En ce qui concerne les cycles découplés, l'amélioration de la forgeabilité de l'alliage 1 ne se manifeste très nettement que pour le cycle à 1 160°C. On obtient dans son cas une valeur de A de 28%. Aux températures inférieures, la forgeabilité reste du même ordre que pour les cycles de CIC standard à température équivalente. On pense pouvoir attribuer cette constatation à l'absence de découplage franc entre surfaces des particules de poudre et joints de grains pour ces températures. La comparaison entre les résultats obtenus sur les alliages 1 et 2 permet d'évaluer notamment l'influence du bore sur la forgeabilité. Elle est particulièrement marquée dans le cas où on utilise un cycle CIC standard à 1025 et 1 120°C, si on passe d'une teneur en bore à l'état de traces à une teneur de 30 ppm. Mais pour le cycle découplé à 1 160 °C, l'effet du bore n'est pas significatif.
Surtout, l'influence bénéfique du cycle de CIC découplé se manifeste également sur le mode d'endommagement constaté après la rupture des échantillons. Les faibles ductilités des échantillons obtenus avec des cycles de CIC aboutissent à des faciès de rupture intergranulaire, correspondant sensiblement aux grains de la poudre d'origine. Au contraire, le cycle de CIC découplé selon l'invention, à condition d'être exécuté à 1 160°C, procure des échantillons à ductilité élevée qui présentent un faciès de rupture transgranulaire, grâce au découplage partiel entre les grains de poudre et les joints de grains. Ce découplage permet de délocaliser en partie l'endommagement qui se produit normalement au niveau des joints de grains et est un facteur fondamental de l'amélioration de la forgeabilité du matériau.
De manière générale, les inventeurs ont pu extrapoler ces résultats, obtenus sur le 725®, aux autres superalliages base nickel susceptibles d'être durcis par double précipitation de phases gamma' et gamma" ou delta. Les alliages connus de type IN706, IN718, IN725 entrent dans cette catégorie.
Leurs conclusions sont que pour être efficace sur la forgeabilité du matériau en provoquant un découplage entre les grains de la poudre initiale et les joints de grains du produit après la densification de la poudre et de son container, le traitement thermique préalable à la densification doit porter la poudre pendant au moins 4h à une température supérieure à 1 1400C, et également inférieure de 10°C ou davantage à la température de solidus du superalliage, de préférence entre 10 et 50 °C en dessous du solidus pour faire évoluer sensiblement les PPB sans risque de génération de défauts entrainés par une brûlure locale. Dans le cas du 725®, cela peut correspondre à une température de 1 160 à 1 180°C, en fonction de la température de solidus précise de l'alliage, dans les limites de composition qui lui sont fixées par les spécifications habituelles, cette température étant maintenue pendant 12 h à 30 heures. L'optimum se situe entre 30 et 50 °C en dessous du solidus. C'est dans ces conditions qu'on obtient une modification suffisante des PPB qui diminue significativement leur capacité à empêcher la croissance du grain lors de la densification de la poudre.
La durée du traitement thermique avant densification peut aller jusqu'à 30 h en fonction des dimensions de la pièce à traiter. Bien entendu, l'un des paramètres à prendre en compte pour l'optimisation du temps de traitement est la dimension de la pièce à réaliser, le temps de traitement étant d'autant plus élevé que la pièce est épaisse pour que le traitement puisse la concerner de façon homogène sur toute son épaisseur. Optimalement ce temps de traitement est de 15 à 17 h pour que l'on atteigne assurément une profondeur de traitement de l'ordre de 150 mm, correspondant à ce qu'il est souhaitable de réaliser sur les composants de turbines aéronautiques de dimensions classiques, auxquels l'invention s'applique de façon privilégiée mais non exclusive.
Optimalement, le remplissage du container par la poudre est effectué sous vide, cette mise sous vide étant maintenue pendant la densification elle-même.
De manière préférentielle, le traitement thermique avant densification selon l'invention est réalisé dans une atmosphère inerte pour éviter de former de la calamine sur le container et des oxydes au sein de la poudre. Il peut être réalisé à pression atmosphérique ou sous faible pression. Il ne doit pas entraîner de densification de la poudre, ou alors seulement une faible densification de la poudre inférieure ou égale à 15%, de préférence inférieure ou égale à 10% du volume initial, la densification de la poudre, ou au moins une partie très majoritaire de cette opération, devant être réalisée lors de l'étape qui lui est spécialement dédiée. Au-delà d'une telle densification lors du traitement thermique il est difficile voire impossible d'éviter les effets néfastes des PPB et des décorations aux PPB. Une densification supérieure à environ 15%, ne permet donc pas d'atteindre le but précité de l'invention. A cet effet, une pression d'au plus 50 bar est généralement conseillée.
La densification qui suit est réalisée à une température généralement identique ou comparable à celle du traitement thermique pendant une durée de l'ordre de 4 à 16 h, là encore en fonction notamment des dimensions de l'ensemble container-poudre. Une modélisation de la densification et de la répartition de la température dans la pièce au cours du palier permet de fixer la durée de ce dernier en fonction de l'homogénéité de température souhaitée. La densification de la poudre dans le container est suivie d'un traitement thermique selon des modalités habituelles pour atteindre les caractéristiques finales de l'alliage. Lorsque l'argon a été utilisé comme gaz d'atomisation, le traitement thermique habituel après densification est réalisé à une température qui est inférieure d'au moins 30 °C de la température de densification pour éviter l'apparition de porosités dues à la présence d'Argon dans le mélange.
La compaction isostatique à chaud est une méthode de densification privilégiée dans le cadre de l'invention mais d'autres méthodes peuvent être envisagées telles qu'une compression unidirectionnelle à chaud ou une extrusion.
Après la densification, le lingot ou la billette qui en résulte est, classiquement, écroûté puis mis en forme à chaud. Cette mise en forme à chaud comporte généralement notamment un forgeage. Celui-ci est de préférence réalisé à une température supersolvus, typiquement pour le 725® entre environ 1010 et 1030°C, de préférence à 1025°C. Ce forgeage peut être suivi d'un matriçage dans un outillage de forge (matrice) pour lui donner la géométrie finale souhaitée. Cette opération peut être réalisée en une à trois étapes, selon les dimensions de la pièce finale visée.
Un forgeage en soufle (dit aussi « refoulement en soufle »), par exemple en trois étapes, est particulièrement recommandé pour les applications privilégiées envisagées, car il permet de calibrer le demi-produit pour le matriçage et de malaxer sa surface pour y obtenir des caractéristiques microstructurelles qui se rapprochent autant que possible de celles que l'on trouve à cœur du demi-produit. On rappelle qu'on appelle « forgeage en soufle » un forgeage pendant lequel la billette ou le lingot à forger est placé dans une pièce annulaire appelée « soufle » qui, lors du forgeage, permet de contraindre radialement la billette ou le lingot pour obtenir une homogénéité microstructurelle de la billette ou du lingot dans les directions radiales.

Claims

REVENDICATIONS
1. Procédé de préparation d'une pièce en superalliage base nickel par métallurgie des poudres, comportant les étapes suivantes :
- élaboration d'un superalliage base nickel d'une composition apte à procurer un durcissement par double précipitation d'une phase gamma' et d'une phase gamma" ou delta ;
- atomisation d'une masse fondue dudit superalliage pour obtenir une poudre ;
- tamisage de ladite poudre pour en extraire les particules ayant une granulométrie prédéterminée ;
- introduction de la poudre dans un container, éventuellement sous vide ;
- fermeture et mise sous vide du container ;
- densification de la poudre et du container par mise sous pression de l'ensemble pour obtenir un lingot ou une billette ; - mise en forme à chaud et éventuellement traitement thermique dudit lingot ou de ladite billette ; caractérisé en ce que, avant l'étape de densification de la poudre et du container, on exécute une étape de traitement thermique pendant au moins 4 h, de préférence pendant de 12 à 30 h, à une pression entraînant une densification de la poudre inférieure ou égale à 15% du volume initial, de préférence inférieure ou égale à 10% du volume initial, ce traitement ayant lieu à une température à la fois supérieure à 1 140°C et inférieure d'au moins 10°C à la température de solidus du superalliage.
2. Procédé selon la revendication 1 , caractérisé en ce que la composition du superalliage est, en pourcentages pondéraux :
- 19% < Cr < 23% ;
- 7% < Mo < 9,5% ;
- 2,75% < Nb < 4% ;
- traces < Fe < 9% ; - traces < Al < 0,6% ;
- 1 % < Ti < 1 ,8% ; - 0,001 % ≤ B < 0,005%
- traces < Mn < 0,35% ; - traces < Si < 0,2% ;
- traces < C < 0,03% ;
- traces < Mg < 0,05% ;
- traces < P < 0,015% ; - traces < S < 0,01 % ; le reste étant du nickel et des impuretés résultant de l'élaboration.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que ledit traitement thermique avant densification est réalisé à une température inférieure de 10 à 50 °C à la température de solidus du superalliage.
4. Procédé selon la revendication 3, caractérisé en ce que le traitement thermique avant densification est réalisé à une température à la fois supérieure à 1 140°C et inférieure de 30 à 50 °C à la température de solidus du superalliage.
5. Procédé selon la revendication 4, caractérisé en ce que le traitement thermique avant densification est réalisé entre 1 160 et 1 180 °C pendant 12 heures à 30 heures à une pression inférieure ou égale à 50 bar.
6. Procédé selon la revendication 5, caractérisé en ce que le traitement thermique avant densification est réalisé à pression atmosphérique.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que la densification est réalisée par compaction isostatique à chaud.
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que la mise en forme à chaud comporte un forgeage en soufle.
9. Pièce forgée en superalliage base nickel, caractérisée en ce qu'elle a été préparée par le procédé selon l'une des revendications 1 à 8.
10. Pièce selon la revendication 9, caractérisée en ce qu'il s'agit d'un composant de turbine à gaz aéronautique.
1 1. Pièce selon la revendication 9, caractérisée en ce qu'il s'agit d'un composant de turbine à gaz terrestre.
EP09740490A 2008-08-26 2009-08-24 Procédé de préparation d'une pièce en superalliage base nickel et pièce ainsi obtenue Withdrawn EP2321440A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US9192608P 2008-08-26 2008-08-26
FR0855716A FR2935396B1 (fr) 2008-08-26 2008-08-26 Procede de preparation d'une piece en superalliage base nickel et piece ainsi obtenue.
PCT/FR2009/051624 WO2010023405A2 (fr) 2008-08-26 2009-08-24 Procédé de préparation d'une pièce en superalliage base nickel et pièce ainsi obtenue

Publications (1)

Publication Number Publication Date
EP2321440A2 true EP2321440A2 (fr) 2011-05-18

Family

ID=40095386

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09740490A Withdrawn EP2321440A2 (fr) 2008-08-26 2009-08-24 Procédé de préparation d'une pièce en superalliage base nickel et pièce ainsi obtenue

Country Status (4)

Country Link
US (1) US8889064B2 (fr)
EP (1) EP2321440A2 (fr)
FR (1) FR2935396B1 (fr)
WO (1) WO2010023405A2 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2483835C1 (ru) * 2012-01-19 2013-06-10 Открытое акционерное общество "Всероссийский Институт Легких сплавов" (ОАО ВИЛС) Способ получения деталей газотурбинных двигателей с длительным ресурсом эксплуатации из порошковых никелевых сплавов
CA2902152C (fr) * 2014-04-28 2019-03-05 Liburdi Engineering Limited Materiau de soudure a base de nickel a faible teneur en bore et en carbone
EP2949768B1 (fr) 2014-05-28 2019-07-17 Ansaldo Energia IP UK Limited Précipitation gamma prime renforcée par un superalliage à base de nickel destinée à être utilisée dans un processus de fabrication d'additif à base de poudre
RU2602311C2 (ru) * 2015-02-09 2016-11-20 Андрей Борисович Бондарев Способ получения изделий из порошков жаропрочных никелевых сплавов
US10640858B2 (en) 2016-06-30 2020-05-05 General Electric Company Methods for preparing superalloy articles and related articles
US10184166B2 (en) 2016-06-30 2019-01-22 General Electric Company Methods for preparing superalloy articles and related articles
US10247480B2 (en) 2017-04-28 2019-04-02 General Electric Company High temperature furnace
JP6723210B2 (ja) * 2017-09-14 2020-07-15 日本冶金工業株式会社 ニッケル基合金
CN110315084B (zh) * 2019-06-18 2022-07-12 中航迈特粉冶科技(北京)有限公司 航空发动机涡轮盘用高温合金粉末的制备方法
CN113106362B (zh) * 2021-03-18 2022-07-01 先导薄膜材料(广东)有限公司 一种具有凹面的靶材背板的制造方法
CN117265440B (zh) * 2023-09-25 2024-06-25 浙江大隆特材有限公司 一种镍基高温合金锻件的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3902862A (en) * 1972-09-11 1975-09-02 Crucible Inc Nickel-base superalloy articles and method for producing the same
US4981644A (en) * 1983-07-29 1991-01-01 General Electric Company Nickel-base superalloy systems
US4731117A (en) * 1986-11-04 1988-03-15 Crucible Materials Corporation Nickel-base powder metallurgy alloy
FR2657032A1 (fr) * 1990-01-16 1991-07-19 Tecphm Procede d'obtention d'un produit a partir de poudres prealliees et produit obtenu a partir dudit procede.
US5451244A (en) * 1994-04-06 1995-09-19 Special Metals Corporation High strain rate deformation of nickel-base superalloy compact
US20070020135A1 (en) * 2005-07-22 2007-01-25 General Electric Company Powder metal rotating components for turbine engines and process therefor
US20090142221A1 (en) * 2007-11-30 2009-06-04 Honeywell International, Inc. Engine components and methods of forming engine components

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2010023405A3 (fr) 2014-09-04
US20110150693A1 (en) 2011-06-23
FR2935396A1 (fr) 2010-03-05
WO2010023405A2 (fr) 2010-03-04
US8889064B2 (en) 2014-11-18
FR2935396B1 (fr) 2010-09-24

Similar Documents

Publication Publication Date Title
EP2321440A2 (fr) Procédé de préparation d&#39;une pièce en superalliage base nickel et pièce ainsi obtenue
CA2583140C (fr) Alliage a base de nickel
EP3850118B1 (fr) Superalliages a base de nickel
EP2393951B1 (fr) Procede de fabrication d&#39;une piece en superalliage a base de nickel, et piece ainsi obtenue
CA1340873C (fr) Procede pour reduire la despersion des valeurs des caracteristiques mecaniques d&#39;alliages de tungstene-nickel-fer
WO2014199082A1 (fr) Procédé de fabrication d&#39;une pièce en alliage en titane-aluminium
WO2011020976A1 (fr) Superalliage base nickel et pièces réalisées en ce superalliage
EP3117017B1 (fr) Alliage à base nickel à durcissement structural, pièce en cet alliage et son procédé de fabrication
EP3129516B1 (fr) Traitement thermique d&#39;un alliage à base d&#39;aluminure de titane
US7959748B2 (en) Method of manufacturing Ni-based superalloy component for gas turbine using one-step process of hot isostatic pressing and heat treatment and component manufactured thereby
US20070092394A1 (en) Supersolvus hot isostatic pressing and ring rolling of hollow powder forms
WO2021116607A1 (fr) Superalliage a base de nickel
FR2935395A1 (fr) Procede de preparation d&#39;une piece en superalliage base nickel et piece ainsi preparee
FR2928661A1 (fr) Alliage a base de ni pour rotor de turbine a vapeur et rotor de turbine a vapeur
EP0438338B1 (fr) Procédé d&#39;obtention d&#39;un produit à partir de poudres préalliées et produit obtenu à partir dudit procédé
WO2023161576A1 (fr) Poudre d&#39;alliage, procédé de fabrication d&#39;une pièce à base de cet alliage et pièce ainsi obtenue
FR3132913A1 (fr) Poudre d’alliage, procédé de fabrication d’une pièce à base de cet alliage et pièce ainsi obtenue.
FR2929293A1 (fr) Alliage a base de ni pour rotor de turbine a vapeur et rotor de turbine a vapeur le comprenant
CH526635A (fr) Procédé pour la fabrication d&#39;articles à partir d&#39;alliages réfractaires
FR2729675A1 (fr) Procede perfectionne d&#39;elaboration et de traitement thermique d&#39;un superalliage polycristallin a base de nickel, resistant a chaud

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110217

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
R17D Deferred search report published (corrected)

Effective date: 20140904

17Q First examination report despatched

Effective date: 20170410

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20171021