EP2320281B1 - Procédé de réalisation de pièces micromécaniques - Google Patents

Procédé de réalisation de pièces micromécaniques Download PDF

Info

Publication number
EP2320281B1
EP2320281B1 EP10189691.8A EP10189691A EP2320281B1 EP 2320281 B1 EP2320281 B1 EP 2320281B1 EP 10189691 A EP10189691 A EP 10189691A EP 2320281 B1 EP2320281 B1 EP 2320281B1
Authority
EP
European Patent Office
Prior art keywords
wafer
comprised
glass
wafers
sccm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10189691.8A
Other languages
German (de)
English (en)
Other versions
EP2320281A2 (fr
EP2320281A3 (fr
Inventor
Marc-Alexandre Dubois
Jacek Baborowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cartier Creation Studio SA
Original Assignee
Cartier Creation Studio SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cartier Creation Studio SA filed Critical Cartier Creation Studio SA
Publication of EP2320281A2 publication Critical patent/EP2320281A2/fr
Publication of EP2320281A3 publication Critical patent/EP2320281A3/fr
Application granted granted Critical
Publication of EP2320281B1 publication Critical patent/EP2320281B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/063Balance construction
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B29/00Frameworks
    • G04B29/02Plates; Bridges; Cocks
    • G04B29/027Materials and manufacturing

Definitions

  • the present invention relates to the field of micromechanics and more particularly that of watchmaking. It relates to a method for producing micromechanical parts, made of glass, in particular ceramic glass.
  • ceramic glass also called glass-ceramic
  • glass-ceramic is a family of glasses obtained by controlled crystallization. Appropriate glasses are subjected to heat treatments causing the nucleation then the growth of crystalline phases of diameter typically between 20 nm and 1 ⁇ m. These materials have a very low or even no porosity. After crystallization, they become opaque or translucent, depending on the size of the crystalline zones.
  • the main vitroceramics consist of SiO 2 , Al 2 O 3 , MgO, LiO 2 or Na 2 O. The mechanical strength of vitroceramics is much higher than that of glasses, because the crystalline zones slow down or stop the propagation of cracks, with breaking stress typically between 150 and 600 MPa.
  • Ceramic glasses Another very interesting property of ceramic glasses is their potential to have a material of isotropic structure with a very low thermal expansion coefficient (that is to say less than 5 ⁇ 10 -6 K -1 ) or even zero.
  • a piece made of ceramic glass may have perfectly stable dimensions, whatever the temperature fluctuations, which is particularly advantageous in the context of spiral springs and balances used in the regulating organs of mechanical mechanical movements.
  • Ceramic glasses particularly attractive for producing precision parts, such as parts of watch mechanisms.
  • ceramic glasses remain fragile and, at thicknesses required for use in the field of watchmaking, typically of the order of 150 .mu.m, current micromachining techniques can not be used, without high risk that the glass breaks.
  • the object of the present invention is to propose a process for working glass pieces, in particular made of ceramic glass, of very small dimensions, in an extremely precise manner, with reduced risks of breakage.
  • the thickness of parts made of glass, especially ceramic glass is of the order of 150 .mu.m, more generally between 100 and 200 .mu.m. .
  • the turns of the latter can also have a width of the same order.
  • These values are not limiting, but substantially define a range of thickness where these parts have a mechanical strength that allows them to be used in a clockwork mechanism, but which does not allow them to be machined by usual techniques .
  • the glass used is supplied in the form of wafers, that is to say sheets in which the pieces will be formed according to the method which will be described below.
  • the glasses used may be commercially available glasses.
  • the ceramic glasses it is possible to use the glass marketed under the name of ZERODUR TM by Schott.
  • the method described below relates to the production of ceramic glass parts. The skilled person will easily adapt to other glasses having a coefficient of thermal expansion substantially zero.
  • a first step of the method according to the invention consists in providing a first wafer 10 of ceramic glass.
  • this wafer is not intended to be used for the production of parts, but is intended to play a support function or mechanical reinforcement.
  • a tie layer 12 preferably of amorphous silicon, is then deposited on the first wafer. It will be noted that other materials allowing to make a momentary weld can be used as a bonding layer, especially germanium, preferably amorphous.
  • a second ceramic glass wafer 14 is then welded, preferably by anodic welding, to the first, via the bonding layer ( figure 1 ).
  • the skilled person perfectly masters the techniques of anodic welding, without the need to detail them further here. It could be possible to use other welding techniques also involving moderate temperatures, not to degrade the properties of the glass forming the wafer, or the surface condition of the wafers.
  • the attachment layer 12 may be alternately deposited on the second wafer 14 before the soldering step.
  • the parts are intended to be made in this second wafer.
  • the two wafers are identical (i.e. they are made of the same type of ceramic glass and have the same thickness and surface dimensions), and the second wafer is entirely superimposed on the first. At least the entire area of the second wafer in which pieces will be formed is disposed on the first wafer.
  • the first and second wafers are made of ceramic glass, which makes it possible to have no negative effect due to differential expansion between the two wafers which could lead, during cooling after the anodic welding, to deformation of the wafers. wafers.
  • a symmetrical system is obtained in which the stresses undergone during the etching step are balanced.
  • a metal mask 16 is made by growth on the free face of the second wafer.
  • this metallic mask is obtained by a technique of LIGA type, implementing a photosensitive resin mold 18. More particularly, a conductive metal layer 20 is deposited on the free face of the second wafer, making it possible subsequently to perform a galvanic growth.
  • a thick photoresist mask, type SU8, is then deposited, having the shape and dimensions of the parts to be produced ( figure 2 ).
  • the mask is made 16 in the spaces left free by the photosensitive resin mold 18 ( figure 3 ). The mold is then dissolved, as is the conductive metal layer 20 made visible by the dissolution of the mold 18 ( figure 4 ).
  • the release can also be carried out by wet isotropic etching using a KOH or TMAH bath.
  • the desired parts, freed from the first support wafer 10, are thus obtained.
  • the design of the parts can advantageously be provided so that they are still held together by the useless parts of the wafer, for example by a connection point that can be easily broken afterwards.
  • the fact of welding the wafer to engrave 14 on another wafer support 10 can strengthen its mechanical strength and thus to be able to make parts in this material, despite the difficulties associated with its fragility.
  • the parts are held in place until the dissolution of the tie layer, since they remain attached to the support wafer by this tie layer.
  • a metal mask 16 obtained by lithographic processes, and the etching technique described above makes it possible to define the edges of the etched parts particularly well. This is important because, because of their fragility, the pieces obtained can not be retouched. The surface state, especially for the edges, of the parts obtained is also well suited to micromechanical and particularly watchmaking applications. Note also that, the etching of the ceramic glass being difficult, this step is very exothermic. In addition, ceramic glass poorly conducts heat and conventional masking methods can not be used, because photoresist masks would not withstand the heat generated during the etching.
  • a silicon bonding layer participates in the evacuation of part of the heat produced. Similarly, the metal mask must be sufficiently resistant to the etching conditions, so as not to be completely consumed during this step, while allowing long periods of etching. Nickel is well adapted to this application. We could also consider using Chrome or even Iron or Copper.
  • a batch of spiral springs each having, for example, coils with cross-sectional dimensions of the order of 100-200 ⁇ m, can be micromachined without risk of breakage.
  • the resulting spirals are advantageously in a material of isotropic structure with a high mechanical strength while having an elasticity which is generally independent of the temperature.
  • such a hairspring can also be combined with a rocker made according to the method of the present invention to obtain a spiral balance system of exceptional isochronism.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Micromachines (AREA)

Description

    Domaine technique
  • La présente invention se rapporte le domaine de la micromécanique et plus particulièrement celui de l'horlogerie. Elle concerne un procédé de réalisation de pièces micromécaniques, réalisées en verre, notamment en verre céramique.
  • Etat de la technique
  • Parmi les verres, on appelle verre céramique (également appelée vitrocéramique) une famille de verres obtenus par cristallisation contrôlée. Des verres appropriés sont soumis à des traitements thermiques provoquant la nucléation puis la croissance de phases cristallines de diamètre typiquement compris entre 20nm et 1µm. Ces matériaux possèdent une porosité très faible, voire nulle. Après cristallisation, ils deviennent opaques ou translucides, suivant la taille des zones cristallines. Les principales vitrocéramiques sont constituées de SiO2, Al2O3, MgO, LiO2 ou Na2O. La résistance mécanique des vitrocéramiques est très supérieure à celle des verres, car les zones cristallines ralentissent ou arrêtent la propagation des fissures, avec une contrainte de rupture typiquement comprise entre 150 et 600MPa. Une autre propriété très intéressante des verres céramiques est leur potentiel à avoir un matériau de structure isotropique avec un coefficient thermique de dilatation très faible (c'est-à-dire inférieur à 5 x 10-6K-1) voire nul. En d'autres termes, une pièce réalisée en verre céramique peut présenter des dimensions parfaitement stables, quelles que soient les fluctuations de température, ce qui est notamment avantageux dans le cadre de ressorts spiraux et balanciers utilisés dans les organes réglants des mouvements mécaniques horlogers.
  • Ces propriétés rendent les verres céramiques particulièrement attractifs pour réaliser des pièces de précision, comme des pièces de mécanismes horlogers. Cependant, malgré leur résistance mécanique supérieure à celle des verres, les verres céramiques restent fragiles et, aux épaisseurs requises pour une utilisation dans le domaine de l'horlogerie, typiquement de l'ordre de 150µm, les techniques courantes de micro-usinage ne peuvent être utilisées, sans risque élevé que le verre ne casse.
  • D'autres verres ont déjà utilises dans l'horlogerie. Par exemple, le document DE102008029429 mentionne la possibilité d'utiliser des verres de type borosilicate ou alumino-borosilicate pour réaliser certaines pièces de mécanismes horlogers, notamment des ancres ou des balanciers. Mais les techniques d'usinage proposées ne permettent pas de mettre en oeuvre ces matériaux pour réaliser des spiraux, dont les dimensions sont plus réduites que celles d'un balancier ou d'une ancre. Le document EP1791039 décrit un procédé de réalisation d'un spiral en verre qui nécessite un substrat en céramique résistant aux attaques acides. Le document DE19651321 décrit un balancier en verre céramique.
  • La présente invention a pour but de proposer un procédé permettant de travailler des pièces de verre, notamment en verre céramique, de très petites dimensions, de manière extrêmement précise, avec des risques de casse réduits.
  • Divulgation de l'invention
  • Plus particulièrement, l'invention porte sur un procédé de réalisation d'au moins une pièce micromécanique en verre, comprenant les étapes suivantes :
    • se doter d'un premier wafer de verre présentant un coefficient de dilatation thermique inférieur à 5 x 10-6K-1,
    • soudure d'un deuxième wafer de verre présentant un coefficient de dilatation thermique inférieur à 5 x 10-6K-1, au premier wafer, par l'intermédiaire d'une couche d'accroche, la pièce étant destinée à être réalisée dans le deuxième wafer,
    • croissance d'un masque métallique sur le deuxième wafer,
    • gravure traversante du deuxième wafer à travers le masque métallique, et
    • libération de la pièce en éliminant la couche d'accroche.
  • D'autres caractéristiques du procédé sont définies dans les revendications de la présente demande.
  • Brève description des dessins
  • D'autres caractéristiques de la présente invention apparaîtront plus clairement à la lecture de la description qui va suivre, faite en référence aux figures 1 à 6 annexées, reprenant de manière schématique différentes étapes du procédé. On notera que les épaisseurs des différentes couches ne sont pas représentatives.
  • Mode(s) de réalisation de l'invention
  • Pour des applications micromécaniques, notamment dans le domaine de l'horlogerie, particulièrement des mouvements d'horlogerie, l'épaisseur des pièces fabriquées en verre, notamment en verre céramique, est de l'ordre de 150µm, plus généralement comprise entre 100 et 200µm. Dans le cadre d'un ressort spiral, les spires de ce dernier peuvent également avoir une largeur du même ordre. Ces valeurs ne sont pas limitatives, mais définissent sensiblement un domaine d'épaisseur où ces pièces présentent une tenue mécanique qui leur permet d'être utilisées dans un mécanisme d'horlogerie, mais qui ne leur permet pas d'être usinées par des techniques habituelles. Le verre utilisé est fourni sous forme de wafers, c'est-à-dire de feuilles dans lesquelles les pièces seront formées selon le procédé qui va être décrit ci-après. Les verres utilisés peuvent être des verres fournis dans le commerce. Pour ce qui concerne les verres céramiques, on peut utiliser le verre commercialisé sous le nom de ZERODUR™ par Schott. A titre d'exemple non limitatif, le procédé décrit ci-dessous se rapporte à la réalisation de pièces en verre céramique. L'homme du métier saura facilement l'adapter à d'autres verres présentant un coefficient de dilatation thermique sensiblement nul.
  • Ainsi, une première étape du procédé selon l'invention, consiste à se doter d'un premier wafer 10 de verre céramique. Comme on le comprendra par la suite, ce wafer n'est pas destiné à être utilisé pour la réalisation des pièces, mais est destiné à jouer une fonction de support ou de renfort mécanique.
  • Une couche d'accroche 12, de préférence de silicium amorphe, est ensuite déposée sur le premier wafer. On relèvera que d'autres matériaux permettant de réaliser une soudure momentanée peuvent être utilisés comme couche d'accroche, notamment du germanium, de préférence amorphe.
  • Un deuxième wafer 14 en verre céramique est ensuite soudé, de préférence par soudure anodique, au premier, par l'intermédiaire de la couche d'accroche (figure 1). L'homme du métier maitrise parfaitement les techniques de soudure anodique, sans qu'il soit besoin de les détailler davantage ici. Il pourrait être envisageable d'utiliser d'autres techniques de soudure mettant également en jeu des températures modérées, permettant de ne pas dégrader les propriétés du verre formant les wafer, ni l'état de surface des wafers. Bien entendu, la couche d'accroche 12 peut être alternativement déposée sur le deuxième wafer 14 avant l'étape de soudure. On notera que les pièces sont destinées à être réalisées dans ce deuxième wafer. De préférence, les deux wafers sont identiques (c'est-à-dire qu'ils sont fabriqués dans le même type de verre céramique et qu'ils ont la même épaisseur et les mêmes dimensions de surface), et le deuxième wafer est entièrement superposé au premier. Au moins toute la zone du deuxième wafer dans laquelle des pièces seront formées est disposée sur le premier wafer.
  • Ainsi, le premier et le deuxième wafers sont réalisés en verre céramique, ce qui permet de ne pas avoir d'effet négatif lié à une dilatation différentielle entre les deux wafers qui pourrait conduire, lors du refroidissement après la soudure anodique, à une déformation des wafers. De préférence, avec deux wafers identiques, parfaitement superposés l'un à l'autre, on obtient un système symétrique, dans lequel les contraintes subies lors de l'étape de gravure sont équilibrées.
  • Ensuite, un masque métallique 16 est réalisé par croissance sur la face libre du deuxième wafer. De préférence, ce masque métallique est obtenu par une technique de type LIGA, mettant en oeuvre un moule de résine photosensible 18. Plus particulièrement, on dépose sur la face libre du deuxième wafer, une couche métallique conductrice 20, permettant d'effectuer ultérieurement une croissance galvanique. On dépose ensuite un masque de photoresist épais, de type SU8, ayant la forme et les dimensions des pièces à réaliser (figure 2). Par croissance galvanique, de Nickel par exemple, on réalise le masque métallique 16 dans les espaces laissés libres par le moule de résine photosensible 18 (figure 3). Le moule est ensuite dissous, ainsi que la couche métallique conductrice 20 rendue apparente par la dissolution du moule 18 (figure 4). Ces étapes sont connues de l'homme du métier et ne sont donc pas décrites davantage. On libère ainsi un masque métallique aux formes des pièces à réaliser.
  • Puis, on réalise une gravure traversante du deuxième wafer 14 à travers le masque métallique 16 (figure 5). Cette gravure peut, selon un mode de réalisation avantageux, être effectuée par une attaque plasma anisotrope en milieu fluoré, réalisée dans un réacteur de type ICP (Inductively Coupled Plasma), dont les paramètres sont les suivants :
    • Température du substrat : compris entre -5 et -20°C, particulièrement -10°C;
    • Débit de C4F8 : compris entre 10 et 20sccm, particulièrement 17sccm;
    • Débit d'Ar : compris entre 20 et 80sccm, particulièrement 50sccm;
    • Pression de travail : comprise entre 2 et 20.10-3mbar, particulièrement 8.10-3mbar;
    • Puissance RF de plasma: compris entre 2000 et 3500W, particulièrement 2800W ;
    • Puissance RF de porte substrat: compris entre 100 et 500W, particulièrement 200W.
  • Afin de libérer les pièces, on procède tout d'abord à l'élimination du masque métallique 16 et de la couche métallique conductrice 20 située sous lui, par gravure chimique (figure 6). Puis, dans une étape non illustrée, la couche d'accroche 12 est dissoute, de préférence par gravure isotrope, typiquement, mettant en oeuvre les paramètres suivants :
    • Température du substrat : compris entre 0 et 50°C, particulièrement 20°C;
    • Débit de SF6: compris entre 100 et 500sccm, particulièrement 300sccm;
    • Puissance RF plasma : compris entre 1000 et 2000W, particulièrement 1500W;
    • Aucune puissance sur le porte substrat.
  • En alternative, la libération peut également être effectuée par attaque chimique isotrope par voie humide, utilisant un bain de KOH ou de TMAH. On obtient ainsi les pièces désirées, libérées du premier wafer support 10. De manière à faciliter leur manipulation, le design des pièces peut être avantageusement prévu de manière à ce qu'elles soient encore tenues entre elles par les parties inutiles du wafer, par exemple par un point de liaison qui peut être facilement cassé par la suite.
  • Ainsi, le fait de souder le wafer à graver 14 sur un autre wafer support 10 permet de renforcer sa tenue mécanique et ainsi, de pouvoir réaliser des pièces dans ce matériau, malgré les difficultés liées à sa fragilité. En outre, les pièces sont maintenues en place jusqu'à la dissolution de la couche d'accroche, puisqu'elles restent attachées au wafer support par cette couche d'accroche.
  • La combinaison d'un masque métallique 16, obtenu par des procédés lithographiques, et de la technique de gravure exposée ci-dessus, permet de particulièrement bien définir les arêtes des pièces gravées. Ceci est important, étant donné que, à cause de leur fragilité, les pièces obtenues ne peuvent être retouchées. L'état de surface, notamment pour les arêtes, des pièces obtenues est également bien adapté aux applications micromécaniques et notamment horlogères. On notera également que, la gravure du verre céramique étant difficile, cette étape est très exothermique. De plus, le verre céramique conduit mal la chaleur et des procédés de masquage conventionnels ne peuvent donc pas être utilisés, car les masques en photoresist ne supporteraient pas la chaleur dégagée lors de la gravure. Avantageusement, une couche d'accroche de silicium participe à l'évacuation d'une partie de la chaleur produite. De même, le masque métallique doit être suffisamment résistant aux conditions de gravure, de manière à ne pas être totalement consommé lors de cette étape, tout en permettant de longues périodes de gravure. Le Nickel est ainsi bien adapté à cette application. On pourrait aussi envisager d'utiliser du Chrome, voire du Fer ou du Cuivre.
  • Ainsi est proposé un procédé permettant de réaliser, de manière précise et contrôlée, des pièces micromécaniques en verre, en limitant grandement le risque de casse. La précision obtenue est parfaitement compatible avec une utilisation dans le domaine de l'horlogerie, notamment pour réaliser des éléments du mouvement, tant du bâti que des pièces mobiles.
  • En utilisant un verre céramique tel que le ZERODUR™ ayant un coefficient thermique de dilatation qui est sensiblement nul (c'est-a-dire inférieur à 5 x 10-6K-1, de préférence inférieur à 3 x 10-6K-1, de préférence inférieur à 2 x 10-6K-1), un lot de ressorts spiraux, chacun ayant par exemple des spires de dimensions en section de l'ordre de 100-200µm, peut être micro-usiné sans risque de casse élevé. Les spiraux résultants sont avantageusement dans un matériau de structure isotropique avec une résistance mécanique importante tout en présentant une élasticité qui est généralement indépendante de la température. De plus, un tel spiral peut aussi être combiné avec un balancier réalisé selon le procédé de la présente invention afin d'obtenir un système balancier spiral d'un isochronisme exceptionnel.

Claims (15)

  1. Procédé de réalisation d'au moins une pièce micromécanique en verre, comprenant les étapes suivantes :
    - se doter d'un premier wafer de verre (10) présentant un coefficient de dilatation thermique inférieur à 5 x 10-6K-1,
    - soudure d'un deuxième wafer de verre (14) présentant un coefficient de dilatation thermique inférieur à 5 x 10-6K-1, au premier wafer, par l'intermédiaire d'une couche d'accroche (12), ladite pièce étant destinée à être réalisée dans ledit deuxième wafer,
    - croissance d'un masque métallique (16) sur le deuxième wafer,
    - gravure traversante du deuxième wafer à travers le masque métallique, et
    - libération de la pièce en éliminant la couche d'accroche.
  2. Procédé selon la revendication 1, caractérisé en ce que ledit premier et ledit deuxième wafer sont choisis dans des verres présentant un coefficient de dilatation thermique inférieur à 3 x 10-6K-1, de préférence inférieur à 2 x 10-6K-1.
  3. Procédé selon l'une des revendications 1 et 2, caractérisé en ce que l'un et/ou l'autre des premier et deuxième wafers sont réalisés en verre céramique.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce qu'il comprend en outre une étape d'élimination du masque métallique (16) avant l'élimination de la couche d'accroche.
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que la croissance du masque métallique (16) est obtenue :
    - par la mise en oeuvre d'un moule de résine photosensible (18) ayant la forme et les dimensions de la pièce à réaliser, puis
    - par la croissance galvanique de métal dans les espaces laissés libres par le moule de résine photosensible,
    - par dissolution du moule de résine photosensible de manière à libérer le masque métallique.
  6. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'étape de gravure est effectuée par attaque plasma anisotrope en milieu fluoré, réalisée dans un réacteur de type ICP (Inductively Coupled Plasma).
  7. Procédé selon la revendication 6, caractérisé en ce que l'attaque plasma anisotrope est effectuée avec les paramètres suivants :
    - Température du substrat : compris entre -5 et -20°C, particulièrement - 10°C;
    - Débit de C4F8: compris entre 10 et 20sccm, particulièrement 17sccm;
    - Débit d'Ar : compris entre 20 et 80sccm, particulièrement 50sccm;
    - Pression de travail : comprise entre 2 et 20.10-3mbar, particulièrement 8.10-3mbar;
    - Puissance RF de plasma: compris entre 2000 et 3500W, particulièrement 2800W ;
    - Puissance RF de porte substrat: compris entre 100 et 500W, particulièrement 200W.
  8. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'étape de libération est effectuée par gravure isotrope.
  9. Procédé selon la revendication 8, caractérisé en ce que ladite gravure isotrope est effectuée avec les paramètres suivants :
    - Température du substrat : compris entre 0 et 50°C, particulièrement 20°C;
    - Débit de SF6 : compris entre 100 et 500sccm, particulièrement 300sccm;
    - Puissance RF plasma : compris entre 1000 et 2000W, particulièrement 1500W;
    - Aucune puissance sur le porte substrat.
  10. Procédé selon l'une des revendications précédentes, caractérisé en ce que la couche d'accroche (12) est réalisée en silicium amorphe.
  11. Procédé selon l'une des revendications précédentes, caractérisé en ce que le premier et le deuxième wafers ont une épaisseur comprise entre 100 et 200µm, typiquement de 150µm.
  12. Procédé selon l'une des revendications précédentes, caractérisé en ce que le premier et le deuxième wafers sont identiques en termes de type de verre, de l'épaisseur et des dimensions de surface, et en ce que le premier et le deuxième wafers sont entièrement superposés l'un à l'autre lors de l'étape de soudure.
  13. Procédé selon l'une des revendications précédentes, caractérisé en ce que la couche d'accroche est déposée sur le premier wafer avant l'étape de soudure.
  14. Procédé selon l'une des revendications précédentes, caractérisé en ce que la soudure des premier et deuxième wafers est réalisée par soudure anodique.
  15. Ressort spiral caractérisé en ce qu'il est réalisé en un verre céramique qui possède une structure isotropique et a un coefficient thermique de dilatation qui est inférieur à 5 x 10-6K-1.
EP10189691.8A 2009-11-10 2010-11-02 Procédé de réalisation de pièces micromécaniques Active EP2320281B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH01729/09A CH702151A1 (fr) 2009-11-10 2009-11-10 Procede de realisation de pieces micromecaniques, notamment en verre ceramique.

Publications (3)

Publication Number Publication Date
EP2320281A2 EP2320281A2 (fr) 2011-05-11
EP2320281A3 EP2320281A3 (fr) 2012-09-26
EP2320281B1 true EP2320281B1 (fr) 2015-07-15

Family

ID=43567816

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10189691.8A Active EP2320281B1 (fr) 2009-11-10 2010-11-02 Procédé de réalisation de pièces micromécaniques

Country Status (2)

Country Link
EP (1) EP2320281B1 (fr)
CH (1) CH702151A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111819501A (zh) * 2018-03-21 2020-10-23 尼瓦洛克斯-法尔股份有限公司 制造硅游丝的方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2590325A1 (fr) * 2011-11-04 2013-05-08 The Swatch Group Research and Development Ltd. Résonateur thermocompensé en céramique
EP2685325B1 (fr) 2012-07-11 2016-04-06 Diamaze Microtechnology S.A. Ressort spiralé, procédé de fabrication, possibilités d'application ainsi qu'un entraînement micro-mécanique
CN102992638B (zh) * 2012-11-30 2015-05-27 北京遥测技术研究所 用于提高石英腐蚀表面光洁度的微掩模去除方法
CN104743499B (zh) * 2013-12-30 2016-12-07 北京北方微电子基地设备工艺研究中心有限责任公司 玻璃衬底的工艺方法
FR3039292B1 (fr) * 2015-07-24 2019-05-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives Ressort spiral et procede de realisation du ressort spiral
EP3495894B1 (fr) * 2017-12-05 2023-01-04 Rolex Sa Procédé de fabrication d'un composant horloger
TWI774925B (zh) * 2018-03-01 2022-08-21 瑞士商Csem瑞士電子及微技術研發公司 製造螺旋彈簧的方法
CN111968910A (zh) * 2020-08-26 2020-11-20 北京北方华创微电子装备有限公司 芯片扇出封装结构中衬底的加工方法
CN115647757B (zh) * 2022-12-26 2023-04-04 西安航天精密机电研究所 一种二浮陀螺导电游丝制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19651321C2 (de) * 1996-12-11 2002-08-14 Lothar Schmidt Unruh
WO1998055876A1 (fr) * 1997-06-06 1998-12-10 Robert Bosch Gmbh Couche protectrice anti-adherence pour composant micromecanique
US6905616B2 (en) * 2003-03-05 2005-06-14 Applied Materials, Inc. Method of releasing devices from a substrate
DE10317889B4 (de) * 2003-04-17 2008-10-30 GFD-Gesellschaft für Diamantprodukte mbH Mikromechanisches Bauteil und Verfahren zu seiner Herstellung
WO2005065433A2 (fr) * 2003-12-31 2005-07-21 Microfabrica Inc. Procedes de fabrication electrochimiques utilisant des matieres et/ou des substrats dielectriques
EP1791039A1 (fr) * 2005-11-25 2007-05-30 The Swatch Group Research and Development Ltd. Spiral en verre athermique pour mouvement d'horlogerie et son procédé de fabrication
CH700032B1 (fr) * 2006-01-19 2010-06-15 Alain Laesser Mouvement d'horlogerie avec organe régulateur à ressort spiral.
CH714952B1 (fr) * 2007-05-08 2019-10-31 Patek Philippe Sa Geneve Composant horloger, son procédé de fabrication et application de ce procédé.
DE102008029429A1 (de) * 2007-10-18 2009-04-23 Konrad Damasko Verfahren zum Herstellen von mechanischen Funktionselementen für Uhrwerke sowie nach diesem Verfahren hergestelltes Funktionselement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111819501A (zh) * 2018-03-21 2020-10-23 尼瓦洛克斯-法尔股份有限公司 制造硅游丝的方法

Also Published As

Publication number Publication date
EP2320281A2 (fr) 2011-05-11
CH702151A1 (fr) 2011-05-13
EP2320281A3 (fr) 2012-09-26

Similar Documents

Publication Publication Date Title
EP2320281B1 (fr) Procédé de réalisation de pièces micromécaniques
EP2485095B1 (fr) Balancier composite
EP2229470B1 (fr) Procédé de fabrication d'une microstructure métallique et microstructure obtenue selon ce procédé
EP2104008A1 (fr) Organe régulateur monobloc et son procédé de fabrication
EP2104006A1 (fr) Double spiral monobloc et son procédé de fabrication
CH701499B1 (fr) Procède de fabrication d'une pièce micromécanique en silicium renforcé.
CH711962A2 (fr) Procédé de fabrication d'un spiral d'une raideur prédéterminée par retrait localisé de matière.
EP2579104A2 (fr) Procédé de réalisation d'une pièce d'horlogerie composite
EP2104007A1 (fr) Spiral monobloc en matériau à base de silicium et son procédé de fabrication
EP3759554A1 (fr) Procede de fabrication d'un spiral
FR2920890A1 (fr) Ressort-moteur pour barillet de mouvement d'horlogerie presentant une duree de marche accrue
EP3781992B1 (fr) Procédé de fabrication d'un ressort horloger à base de silicium
CH702431A2 (fr) Procédé de fabrication d'une pièce micromécanique.
EP3495894B1 (fr) Procédé de fabrication d'un composant horloger
EP2472340B1 (fr) Composant horloger et son procédé de fabrication
CH702576A2 (fr) Pièce de micro-mécanique revêtue.
EP3285124A1 (fr) Résonateur mécanique pour pièce d'horlogerie ainsi que procédé de réalisation d'un tel résonateur
EP3982205A1 (fr) Procede de fabrication d'un ressort horloger de raideur precise
EP3141519B1 (fr) Procédé de fabrication d'une pièce micromécanique horlogère
JP7539768B2 (ja) 強化された時計構成部品
EP3412625A1 (fr) Procede de fabrication d'une piece micromecanique
WO2021224804A1 (fr) Procédé de fabrication d'un composant horloger en silicium
EP4052098A1 (fr) Procede de fabrication d'un composant horloger en silicium
CH712824B1 (fr) Composant pour mouvement de montre mécanique ainsi que procédé de fabrication d'un tel composant.
CH714903A2 (fr) Procédé de fabrication d'un ressort moteur d'horlogerie.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: G04B 29/02 20060101ALI20120821BHEP

Ipc: G04B 17/06 20060101AFI20120821BHEP

17P Request for examination filed

Effective date: 20130326

17Q First examination report despatched

Effective date: 20130508

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150212

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: GLN S.A., CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 737090

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010025874

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 737090

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150715

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150715

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151016

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151015

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151116

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010025874

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: CARTIER INTERNATIONAL AG, CH

Free format text: FORMER OWNER: CARTIER CREATION STUDIO S.A., CH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

26N No opposition filed

Effective date: 20160418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151102

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151102

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602010025874

Country of ref document: DE

Owner name: CARTIER INTERNATIONAL AG, CH

Free format text: FORMER OWNER: CARTIER CREATION STUDIO S.A., GENEVE, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151102

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101102

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191121

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010025874

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231201

Year of fee payment: 14