EP2317285B1 - Sensor device - Google Patents

Sensor device Download PDF

Info

Publication number
EP2317285B1
EP2317285B1 EP20090013183 EP09013183A EP2317285B1 EP 2317285 B1 EP2317285 B1 EP 2317285B1 EP 20090013183 EP20090013183 EP 20090013183 EP 09013183 A EP09013183 A EP 09013183A EP 2317285 B1 EP2317285 B1 EP 2317285B1
Authority
EP
European Patent Office
Prior art keywords
magnetic field
piston
cylinder
sensor device
field detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20090013183
Other languages
German (de)
French (fr)
Other versions
EP2317285A1 (en
Inventor
Norbert Dr. Miller
Peter Höffges
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scheidt and Bachmann GmbH
Original Assignee
Scheidt and Bachmann GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scheidt and Bachmann GmbH filed Critical Scheidt and Bachmann GmbH
Priority to EP20090013183 priority Critical patent/EP2317285B1/en
Publication of EP2317285A1 publication Critical patent/EP2317285A1/en
Application granted granted Critical
Publication of EP2317285B1 publication Critical patent/EP2317285B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields

Definitions

  • the present invention relates to a sensor device for determining a position of a relative to a first component relatively movable second component, in particular a sensor device for determining a position of a piston relative to a cylinder of a piston-cylinder unit (see, eg EP 1 826 533 A1 ). Moreover, the invention relates to a barrier with a movably mounted on a post tree, which tree by means of a piston-cylinder unit is movable.
  • Generic sensor devices are used in a variety of ways to detect certain preferred positions, such as end positions or the like and optionally trigger a corresponding control.
  • such sensor devices are used for example in conditional access systems, such as those used in parking lots, parking garages or the like. But even protected areas in which access is only permitted to certain, authorized personnel find use of such conditional access systems.
  • the barrier on a tree which is pivotally or rotatably mounted on a post and can be transferred from a releasing in a blocking state and vice versa.
  • the tree is driven for example by means of the piston-cylinder unit.
  • an access authorization system with which an access control can be carried out, a control unit, a device for verifying an authorization and a device that releases the access in case of positively identified authorization.
  • the device may be formed, for example, of a pillar on which the tree is pivotally arranged so that it provides access in a vertical pivot position, while in a horizontal pivot position the access is obstructed.
  • a user who wants access to a paid parking area, drives with his vehicle to a pillar in the entrance area of the park area next to the road. There he removes a parking card, whereupon the controller detects the parking card removal and controls a device arranged in the column with a pivotally mounted tree such that the tree is pivoted to the open position. The access to the park area is now released and the user can enter his vehicle in the parking area.
  • An induction loop arranged in the floor area detects the passage of the barrier area through the vehicle. As soon as the vehicle has passed the induction loop, the tree is moved into the blocking position by means of a control command.
  • the user pays first at a cash machine the required according to its use fee, which is automatically noted on the parking card.
  • a barrier is provided with a pivoting tree on a post.
  • the user drives his vehicle to the barrier and leads there in a designated slot his parking card, whereupon this is checked and controls a central control in positive test result, the barrier in such a way that it is moved to the releasing position.
  • the user can now pass the barrier with his vehicle and leave the park area. After passing through the barrier, which can be monitored by means of an induction loop as in the previous case, the barrier is subsequently moved back into the blocking state.
  • the invention is therefore the object of developing a generic sensor device to the effect that it allows better detection of the position of the relative to the first component relatively movable second component better.
  • the position of the second component relative to the first component along a portion of the travel of the second component relative to the first component is determined, for which purpose the position of the magnet can be determined within the subsection by means of the magnetic field detector is.
  • the sensor device thus makes it possible to determine the position of the relative to the first component relatively movable second component not only in one or two preferred positions, such as the end positions, but it also allows that at least over a part of the travel the respective current Position can be determined. It does not matter whether the travel is a linear travel, a curve or the like. It can also be composed of different types of curves.
  • the sensor device of the invention is not only suitable for detecting linear movements, but also circular movements, elliptical movements or composite movements of different directions.
  • the first and the second component may be, for example, machine elements as they form a barrier in the form of a post and a rotatably mounted on the post tree.
  • the two components can also be formed by a dial and a pointer of a clock or the like.
  • the components may be parts of a piston-cylinder unit, wherein a component through the cylinder and the second Component may be formed by the piston.
  • the assignment can of course be reversed.
  • the two components can be arranged together mobile or stationary.
  • the sensor device of the invention can also be used for detecting the position of a rudder or steering of a vehicle or the like.
  • the position of the second component relative to the first component can be formed by a length specification, an angle specification, combinations thereof or the like.
  • the position can also be specified by specifying coordinates on a reference point.
  • the reference point itself can coincide with the first component. It proves to be particularly advantageous if the sensor device is designed such that it can determine the position of the second component relative to the first component along the entire travel path of the second component relative to the first component.
  • the senor device can be used not only in barriers, but also in revolving doors, other controlled passages with the passage controlling elements or the like.
  • the sensor device can determine the position, it is provided with a measuring device which has a magnetic field detector and a magnet.
  • the measuring device may also comprise a plurality of magnets and / or magnetic field detectors.
  • the sensor device may be designed to determine a plurality of positions of relatively movable second components relative to first components.
  • the magnetic field detector may be formed, for example, by a Hall sensor, an electronic coil or coil arrangement, but also movably mounted magnets or the like.
  • the magnet can be formed, for example, by a permanent magnet, but also by an electromagnet, which electromagnet can have a coil which is, if necessary, subjected to an electric current for the purpose of forming a magnetic field.
  • combinations of permanent and electromagnets can be provided.
  • the magnet is adjustable with respect to the generated magnetic flux density.
  • a device may be provided which generates a magnetic alternating field.
  • the magnet may be multi-pole, so that preferably spaced apart poles of different polarity are formed.
  • the magnet has two or four poles. North and South Pole are available in pairs.
  • the magnetic field detector is preferably arranged on the first component.
  • the magnetic field detector may coincide with the reference point for position determination.
  • the magnet is then arranged on the second component.
  • the magnet is movable relative to the magnetic field detector.
  • a dual embodiment may be provided, in which the magnet on the first component and the magnetic field detector are arranged on the second component.
  • the choice of arrangement is determined by design and functional requirements.
  • the magnet is arranged in a piston-cylinder unit on the piston of this piston-cylinder unit, for example, even forms the piston itself, and the magnetic field detector is connected to the cylinder.
  • the magnetic field detector may also be integrally formed with the cylinder.
  • the magnetic field detector can extend over the subsection of the travel path as a whole and have selective detection properties which make it possible to detect the position of the magnet with respect to the magnetic field detector precisely.
  • the magnet itself extends over the partial section of the travel path and preferably has changing magnetic properties over the length of the travel path. This makes it possible to determine by means of the magnetic field detector based on the locally determined magnetic property, which part of the magnet is located opposite to the magnetic field detector. The position can also be determined from this.
  • the magnetic field detector may have an electrically conductive path arranged at least partially along the travel path.
  • the position can be determined by the fact that a magnetically permeable component along the travel, which has sufficient electrical conductivity, interacts with the magnet in such a way that contact with the electrically conductive path is established.
  • the electrically conductive path may be through an electrical conductor such as a metal wire, in particular a copper wire, a Silver wire, a gold wire, an alloy or the like may be formed.
  • the metal wire may include an electrically conductive alloy.
  • the electrically conductive path may of course also be formed by a coating which is mounted on the first component.
  • the electrically conductive path may be formed by a metal deposit, for example aluminum, magnesium, brass, tin, bronze or the like.
  • the electrically conductive path can also be applied to the first component by printing, for example by a printed copper layer or the like. This makes it possible to produce the electrically conductive path in a simple manner.
  • the electrically conductive path can of course also be formed by the first component itself, for example because the first component is formed from an electrically conductive material. The electrically conductive path can thus be formed integrally with the first component.
  • the magnetic field detector may have a resistance path which is preferably arranged parallel to the electrically conductive path.
  • the resistance path can be achieved that, based on a measured electrical resistance between the magnetically permeable component, which is preferably in contact with the resistance path in the region of the magnet, and a reference potential to which the resistance path is connected, the position of the magnetically permeable component and Thus, the position of the second relative to the first component are determined.
  • the resistance path can be deposited, for example in the form of a carbon layer, on the corresponding component. As a result, the resistance track can be formed in one piece with the first or the second component.
  • the sensor device has both the electrically conductive path and the resistance path.
  • the electrically conductive path and the resistance path are spaced from one another.
  • a contact which can be driven by means of the magnet, an electrical connection between the resistance path and the electrically conductive path can be established, to be precise at the point where the magnet is located.
  • the contact can be arranged on the magnetically permeable component. This makes it possible to determine the current position of the magnet by measuring the resistance between the electrically conductive track and the resistance track, whereby the measuring device supplies a signal by means of the determined resistance value, which determines the position of the device relative to the first component allowed relatively movable second component.
  • the magnetic field detector may have a magnetically permeable component, which preferably has an electrical contact. With the electrical contact, it is possible to contact the electrically conductive path and the resistance path and thus form an adjustable electrical resistance.
  • the magnetically permeable member is in magnetic interaction with the magnet and attracted thereto. Thereby, the electrical contact is made at the point where the magnet is located opposite to the magnetic field detector.
  • the measuring device formed therefrom thus provides a reliable signal, from which the position of the relative to the first component relatively movable second component can be determined.
  • the electrical contact may be formed, for example, by a spring contact or the like.
  • the contact is formed of a gold-plated spring steel or a beryllium alloy.
  • an advantageous development is characterized in that the electrically conductive path and / or the resistance path are magnetically permeable. It can thereby be achieved that an electrical contact is made at the location of the magnet between the electrically conductive path and the resistance path due to the magnetic field due to electrical effects.
  • This embodiment is characterized inter alia by the fact that it manages with few movable components and thus high reliability over the entire operating life can be achieved.
  • the electrically conductive path and / or the resistance path can have a magnetically permeable layer for this purpose.
  • the magnetically permeable layer may be formed by magnetically permeable particles, in particular ferrite particles or the like, introduced into the web.
  • the electrically conductive path and / or the resistance path form an electrical contact in the region of a magnetic field, in particular a direct electrical contact without the intermediary of further components.
  • the electrically conductive path and / or the resistance path can for this purpose have a suitable elasticity, which makes it possible to form the electrical contact between the two tracks directly. This allows a low-component high-reliable Measuring device to be created.
  • the resistance path and / or the electrically conductive path may be formed integrally with the magnetically permeable layer.
  • corresponding magnetizable, in particular ferromagnetic particles are introduced into the material of the respective web.
  • the magnetic field detector has a plurality of magnetic field sensors arranged along the travel path.
  • the magnetic field sensors can be arranged in a row parallel to the travel path. A distance between the travel path and the row may vary, for example sinusoidal, rectangular or the like.
  • Each individual magnetic field sensor can detect the presence of the magnet in a locally limited area. Thereby, the position of the magnet can be identified on the basis of the respective sensor signal of the magnetic field sensor, if the position of the respective magnetic field sensor is previously defined.
  • the localized areas of, in particular, adjacent magnetic field sensors may also overlap.
  • the magnetic field sensors can each be designed like the magnetic field detector described above.
  • the magnetic field sensors may also have Hall probes, coils, coil arrangements or the like.
  • the aforementioned types of magnetic field sensors combined with each other can form the magnetic field detector.
  • Hall sensors can be combined with coil arrangements.
  • the magnetic field sensors are adjacent, preferably arranged immediately adjacent to each other.
  • the magnetic field sensors may be arranged at a distance of about 2 mm, preferably 1 mm or less. You can also be directly adjacent to each other.
  • Immediately adjacent or directly adjacent are two magnetic field sensors when no further magnetic field sensor is arranged on a virtual connecting line between them.
  • the adjacent arrangement of the magnetic field sensors allows a largely continuous determination of the position the relative to the first component relatively movable second component. In particular, a high resolution can be achieved in determining the position. In addition, can be achieved by the combination of different magnetic field sensors that they influence each other as little as possible, whereby the measurement accuracy can be increased.
  • the magnetic field sensors are also arranged transversely to the travel path, at least in one region of the subsection of the travel path.
  • the magnetic field sensors may be arranged in rows that are aligned substantially parallel to each other.
  • the magnetic field sensors can be arranged in matrix form. It may further be provided that the magnetic field sensors are arranged at a minimum distance spaced, for example, a distance of greater than about 0.5 mm, preferably greater than about 1 mm, in particular greater than about 1.5 mm.
  • the region can be a preferred layer of the second component relative to the first component, for example an end position or the like.
  • the magnetic field sensors can be arranged adjacent to one another in a plurality of rows oriented parallel to the travel path.
  • the magnetic field sensors of adjacent rows can also be arranged offset relative to one another, whereby a further improvement of the resolution can be achieved.
  • the magnetic field sensors can at least partially be evaluated together on the evaluation side in order to further increase the resolution and the detection capability.
  • groups of magnetic field sensors can be formed, which are evaluated together. It proves to be particularly advantageous if the evaluation of the magnetic field sensors is such that interfering influences balance out during the evaluation, so that a particularly reliable determination of the position can be achieved.
  • the magnetic field sensors can be arranged in rows in succession.
  • the rows can have the same length or different lengths.
  • the number of magnetic field sensors per unit length of rows is the same. But it can also be different, for example, areas to create different resolution or the like.
  • the magnetic field sensors may form a regular pattern, for example arranged in a matrix.
  • the magnetic field sensors directly adjacent rows may have a predetermined distance from each other. But they can also be directly adjacent to each other. Immediately adjacent means that there is no further row between two directly adjacent rows.
  • magnétique field sensors of adjacent rows are arranged offset from one another. This makes it possible to further increase the resolution for determining the position. In particular, a higher resolution can be achieved than can be achieved with a single series of magnetic field sensors.
  • directly adjacent arranged magnetic field sensors of different rows can be evaluated together.
  • the joint evaluation in particular taking into account properties of the magnetic field sensors, makes it possible to increase the resolution beyond the resolution capability of a single magnetic field sensor.
  • a special evaluation algorithm can be used, which can be formed by a suitable computer program for a computer.
  • the magnetic field detector or the magnet can extend over the length of the entire traverse path of the magnet arranged on the piston or of the magnetic field detector arranged on the piston. This makes it possible to determine the position of the relative to the first component relatively movable second component over the entire possible travel.
  • the measuring device can deliver a corresponding signal, which is evaluated by a control unit.
  • the control unit causes the measuring device to emit a signal. This can be done continuously.
  • the query takes place in each case at predetermined times, for example, time-discretely.
  • the magnetic field detector may further include a magnetic return.
  • the magnetic return preferably extends over the entire magnetic field detector.
  • the magnetic return can also be arranged on a rear side of the magnetic field detector, which is opposite to the magnet.
  • the magnetic return can be formed by a magnetically permeable material, such as a ferrite, an iron and / or nickel sheet, a magnetically permeable alloy or the like.
  • the magnetic field detector consists of magnetic field sensors, the magnetic inference can also be arranged on one or more of the magnetic field sensors.
  • the magnetic inference is preferably arranged on all magnetic field sensors.
  • the magnetic return can be formed integrally with the magnetic field detector or the magnetic field sensors.
  • the magnetic return can be attached to the magnetic field detector by means of known connection technology such as clamping, gluing, screwing or the like. But it can also be formed by an additional layer which is formed integrally with the magnetic field detector, for example by this layer is deposited on the back of the magnetic field detector by means of known methods.
  • the invention further proposes a barrier with a movably mounted on a post tree, which tree is movable by means of a piston-cylinder unit.
  • the piston-cylinder unit has a sensor device of the invention. This makes it possible to reliably and with little effort to determine the current position of the tree relative to the post.
  • the invention makes it possible to combine the piston-cylinder unit as a standard assembly with a variety of barriers or tree and post combinations. Such barriers are of course not only used in parking management, but can also be used, for example, at level crossings, in waiting areas or the like.
  • a control of the piston-cylinder unit can be adapted in a simple manner almost arbitrarily to a variety of barriers or tree and post combinations. This can be achieved, for example, by detecting the end positions predetermined in each case for a selected barrier or tree and post combination by means of the sensor device and evaluated by a controller. Thus, the tree can be moved according to the predetermined positions. Thus, the pivoting of the tree can be controlled accordingly, a comparison circuit may be provided which compares a measurement signal of the measuring device with one or more comparison values and outputs one or more corresponding signals. The comparison values may correspond to preferred positions of the tree, for example its predefined or predefinable end positions.
  • the invention makes it possible to specifically approach also intermediate positions of the tree relative to the post. By a simple calibration process can thus be achieved an adaptation of a standardized piston-cylinder unit to any barrier. But also for the monitoring of the function of the barrier, the invention represents a significant improvement. It allows to determine whether a predetermined position to be approached has been reached by the tree or which position the tree currently occupies. In this way, a diagnostic function can be made possible with which fault states of the barrier, in particular with respect to malpositions of the tree or the like, for example in remote diagnosis, can preferably be detected and identified by means of the control. This improves the remote maintenance options. Maintenance can be scheduled at the barrier without a prior inspection, reducing maintenance costs. At the same time, the safety with respect to the intended operation of the barrier can be improved.
  • the post forms the first component
  • the tree forms the second component.
  • the piston-cylinder unit is preferably hydraulically driven. But it can also be driven pneumatically. The assignment of the post and the tree to the first and the second component can of course be reversed.
  • the magnetic field sensors, the resistance track and / or the electrically conductive track are formed integrally with the cylinder and / or the piston.
  • the resistance track is applied along a piston stroke path on the outside of the cylinder. Spaced for this purpose and provided with a corresponding elasticity, for example, the electrically conductive path can be arranged with a magnetic permeability.
  • the piston may comprise the magnet. At the point where the piston is located with the magnet, the electrically conductive path is attracted due to its magnetic permeability and makes an electrical contact to the resistance path.
  • a barrier By measuring the electrical resistance between the electrically conductive path and a preferably provided at one of the two ends of the resistance path connection of the resistance path can thus be determined based on the measured resistance, the position of the piston in the cylinder. Due to the fact that separate movable components can largely be dispensed with, such a barrier can also be used in the public transport sector as a safety barrier, for example as a railway barrier or the like, because of its high reliability.
  • the cylinder is formed of a substantially magnetically impermeable material. This allows the magnetic field to penetrate the cylinder wall well and actuate the magnetic field detector by the magnetic field detector is applied in accordance with magnetic field.
  • the magnetic field detector is arranged on the piston and the magnet on the cylinder.
  • Magnetically permeable is a material that changes its properties due to an external magnetic field.
  • the ferromagnetism should be mentioned, as it occurs for example in iron, cobalt and nickel and their alloys.
  • materials which have a paramagnetism or a ferrimagnetism must also be mentioned in this regard.
  • a non-magnetic substance is a substance that is generally unaffected by magnetic fields.
  • FIGS. 3 and 4 concretise this in the context of a first embodiment of the invention, whereas Fig. 7 describes a second alternative embodiment.
  • FIG. 1 1 shows a side view of a piston-cylinder unit 22, which has a cylinder 20 as a first component, in which a piston 18 (FIG. Fig. 2 ) Is mounted as a second component with a piston rod 40 longitudinally displaceable.
  • the piston-cylinder unit 22 is acted upon by an unspecified hydraulic medium, by means of which the position of the piston 18 within the cylinder 20 can be adjusted.
  • the cylinder 20 has connections, not shown, for the hydraulic medium, which can be supplied or removed from a region 52 of the cylinder 20. Via a controllable hydraulic medium source, hydraulic fluid is supplied or removed from the cylinder 20 corresponding to the desired position of the piston 18, so that the piston 18 can assume the desired position.
  • the cylinder 20 is closed by means of closure covers 46, 48.
  • the closure cap 46 is hydraulically sealed.
  • the closure lid 48 has a guide 50 for the piston rod 40 and also allows a flow of air.
  • FIG. 2 is the piston-cylinder unit 22 of the FIG. 1 shown in sectional view. It can be seen here that the piston 18 is connected to the piston rod 40. The piston 18 is further guided by means of a seal not shown in the cylinder 20, so that the hydraulic medium, which is located in the right area 52 of the illustrated piston-cylinder unit 22, can not escape. By supplying or discharging hydraulic medium from the region 52 of the cylinder 20, the position of the piston 18 can thus be adjusted.
  • the piston-cylinder unit 22 a sensor device 10 according to the invention, which comprises a measuring device 24.
  • the measuring device detects the position of the piston 18 in the cylinder 20 and provides a position identifying signal.
  • the measuring device 24 has in the present case a magnetic field detector 54 and a magnet 32, which is formed in this embodiment by a permanent magnet.
  • the magnetic field detector 54 extends here over the travel of the piston 18 in the context of a piston stroke in the cylinder 20.
  • the permanent magnet 32 is fixed to an unspecified surface of the piston 18, which faces the region 52.
  • the measuring device 24 is designed in such a way that, by evaluating the magnetic field detector 54, it delivers a signal which is a function of the position of the magnetic field generated by the permanent magnet 32.
  • the measuring device 24 query signals and / or operating states of the magnetic field detector 54 and process information technology. From this, the measuring device 24 determines the signal identifying the position of the piston 18 in the cylinder 20.
  • the signal can also be directly a signal of the magnetic field detector 54, that is to say that the measuring device 24 the signal of the magnetic field detector 54 is not processed but outputs directly as the position identifying signal.
  • the position of the permanent magnet 32 within the cylinder 20 and consequently also the position of the piston 18 within the cylinder 20 can be determined by means of the signal supplied by the magnetic field detector 54.
  • the signal is transmitted from the measuring device 24 or sensor device 10 to a controller not shown, which evaluates the signal accordingly and determines therefrom a specific position information of relative to the cylinder 20 relatively movable piston 18.
  • FIG. 3 shows the piston-cylinder unit of Figures 1 and 2 in a sectional view with a magnetic field detector 54, which is formed from a plurality of arranged along the travel path 26 Hall probes 28.
  • FIG. 4 shows an enlarged view of the area IV in FIG. 3 , It can be clearly seen that the magnetic field detector 54 consists of directly adjacent Hall probes 28. These extend over the path 26 of the piston 18 in the cylinder 20. As out FIG. 4 is also apparent, the permanent magnet is connected with its north pole to the piston. The south pole, however, faces the area 52. As a result, a magnetic field is formed, as indicated by reference numeral 42 in FIG FIG. 4 is shown. The magnetic field 42 of the permanent magnet 32 penetrates the preferably magnetically nonconductive wall of the cylinder 20 and the magnetic field detector 54 arranged along the travel path 26.
  • the magnetic field 42 thus penetrates a portion of the Hall probes 28 located adjacent to the permanent magnet 32.
  • the corresponding Hall probes 28 deliver a signal corresponding to the magnetic field which is evaluated by means of the control (not shown). From this, the controller obtains position information and supplies as output signal a corresponding position signal as the signal of the sensor device 10.
  • the cylinder 20 is formed of a non-electrically conductive material. If the permanent magnet 32 is sufficiently strong, the position of the piston 18 in the cylinder 20 can nevertheless be determined by appropriate arrangement and sensitivity of the magnetic field detector 54. For a tracking of rapid changes of the piston 18 in the cylinder 20, it is recommended, however, the to choose electrical conductivity of the cylinder 20 as low as possible in order to avoid as possible shielding effect due to eddy current effects. For this purpose, the cylinder 20 may also be layered with insulation between the individual layers in order to avoid eddy current formation.
  • FIG. 5 shows a schematic side view of a barrier 16, which has a relative to a post 12 pivotally mounted tree 14.
  • the barrier 16 is in the locked state.
  • a pivot point 56 on the post 12 of the tree 14 is pivotally mounted.
  • a connecting flange of the piston rod 40 is articulated to a pin 62 of the tree 14.
  • the closure lid 46 has a connecting flange 60, which is articulated on a pin 64 of the post 12.
  • sensor device 10 of the invention can now the respective position of the piston 18 in the cylinder 20 and because of the unambiguous assignment of the piston position of the piston 18 in the cylinder 20 to the pivotal position of the tree 14 relative to the post 12 of the barrier 16 so that the pivotal position of the tree 14 relative to the post 12 can be determined.
  • the invention thus makes it possible to detect the pivoting position of the tree 14 in any desired angular positions and to provide a corresponding signal by means of the sensor device 10. Thereby, a reliable detection of the pivotal position of the tree 14 can be achieved. Also malposition can be detected when the sensor device is provided for a continuous or at least discrete-time repeated operation.
  • the sensor device 10 is arranged instead of the piston-cylinder unit 22 directly to the barrier 16, for example by the permanent magnet 32 on the tree 14 and the magnetic field detector 54 are arranged on the post 12.
  • the sensor device 10 may have a comparison circuit, not shown, which has a signal supplied by the measuring device 24 with a comparison value compares.
  • the comparison value may correspond to a preferred position of the second component, in this case the piston 18, relative to the first component, in this case the cylinder 20, which in this embodiment corresponds to a preferred position of the tree 14 with respect to the post 12.
  • a signal can be generated when the second component occupies the preferred position relative to the first component.
  • the signal can be transmitted, for example, by means of remote communication to a central office.
  • the comparison circuit the function of a limit switch can be realized with the sensor device of the invention.
  • FIG. 7 shows an alternative embodiment of a magnetic field detector 54.
  • the basic arrangement and function of the magnetic field detector 54 corresponds to the embodiment of the previous embodiment, which is why reference is made in this regard.
  • the magnetic field detector 54 in this embodiment consists of an electrically conductive track 34 made of copper, which is applied along the travel path 26 on the outer cylinder wall of the cylinder 20.
  • the copper layer is gilded on its outer surface. Spaced for this purpose and directly opposite a resistor track 36 is arranged from a resistance material. In the present case is provided as a resistance material Konstantan.
  • the resistance path is band-shaped and held on not shown spacers to a predetermined distance from the electrically conductive path 34.
  • the resistance track 36 On its side opposite the electrically conductive track 34, the resistance track 36 has a magnetically permeable layer 44. This consists of a ferrite complex. This magnetically permeable layer 44 is subjected to an attraction due to the magnetic field of the permanent magnet 32. As a result, the resistance path 36 in the region of the permanent magnet 32 comes into contact with the electrically conductive path 34 and thereby forms an electrical contact 38. At one of the two ends of the electrical resistance path 36 and the electrically conductive path 34, a resistance measuring device is connected, which the respective electrical Resistance determined. The unspecified controller determines from the resistance value, the current position of the piston 18 and transmits a corresponding signal to a central office.
  • FIG. 8 shows an alternative embodiment of a magnetic field detector, as in the embodiment of the FIGS. 3 and 4 is described.
  • the magnetic field detector is designated in this embodiment by the reference numeral 66.
  • the magnetic field detector 66 has a circuit board or printed circuit 68 on which, as in the magnetic field detector 54, Hall probes 28 are arranged directly adjacent, that is to say, directly adjoining one another in a line in series.
  • the line is aligned parallel to a direction 78 which is parallel to the path 26.
  • the directional arrow 78 indicates the reciprocation of the piston 18 in the cylinder 20.
  • the magnetic field detector 66 is designed in such a way that the printed circuit board 68 extends over the entire length of the possible stroke of the piston 18 in the cylinder 20.
  • the mechanical structure of the piston-cylinder unit 22 is incidentally to the previous versions of the FIGS. 1 to 4 directed.
  • the circuit board 68 on groups of Hall probes 70, 72, 74 and 76, which are each arranged in a row.
  • the Hall probes of each group are arranged adjacent to one another in rows on a line which is aligned parallel to the directional arrow 78.
  • the length of the rows of Hall probes 70, 72, 74 and 76 is limited to the respective end region 80, 82 and does not extend the full length of the possible travel path 26 of the piston 18 in the cylinder 20.
  • the Hall probes are in this Embodiment arranged not only in the direction 78 adjacent to each other, but in certain preferential areas, here the end portions 80, 82 of the piston position of the piston 18 in the cylinder 20, also transversely thereto.
  • the groups of Hall probes 70, 72, 74 and 76 are further arranged so as to be respectively adjacent to a group of Hall probes.
  • the individual Hall probes 70, 72, 74, and 76 are spaced approximately 1 mm apart from directly adjacent Hall probes 70, 72, 74, and 76.
  • the series of Hall probes 28 is arranged so that a substantially continuous line formed with Hall probes 28, 72 arranged in a row thereon.
  • FIG. 8 It can be seen that the individual Hall probes of adjacent groups are slightly offset with respect to one another in the direction of the directional arrow 78.
  • This embodiment makes it possible to achieve an increased resolution in the end regions 80, 82 of the piston stroke. This is among other reasons, for reasons of control technology advantageous because the achievement of the respective end position recognized prematurely can be reduced and the speed of the piston 18 in the cylinder 20 can be reduced, so that the piston 18 does not abuts on end-side terminations of the cylinder 20.
  • a finely adjusted end position can be achieved, which can be programmable depending on the application and needs. This makes it possible to use the piston-cylinder unit 22 for a variety of barriers and to adjust the end positions very fine for the respective barrier. As a result, the versatility of the piston-cylinder unit can be further improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

Die vorliegende Erfindung betrifft eine Sensoreinrichtung zur Bestimmung einer Position eines gegenüber einem ersten Bauteil relativ bewegbaren zweiten Bauteils, insbesondere eine Sensoreinrichtung für die Ermittlung einer Position eines Kolbens gegenüber einem Zylinder einer Kolben-Zylinder-Einheit (siehe z.B. EP 1 826 533 A1 ). Darüber hinaus betrifft die Erfindung eine Schranke mit einem an einem Pfosten bewegbar gelagerten Baum, welcher Baum mittels einer Kolben-Zylinder-Einheit bewegbar ist.The present invention relates to a sensor device for determining a position of a relative to a first component relatively movable second component, in particular a sensor device for determining a position of a piston relative to a cylinder of a piston-cylinder unit (see, eg EP 1 826 533 A1 ). Moreover, the invention relates to a barrier with a movably mounted on a post tree, which tree by means of a piston-cylinder unit is movable.

Gattungsgemäße Sensoreinrichtungen werden in vielfältiger Weise eingesetzt, um bestimmte Vorzugspositionen, beispielsweise Endstellungen oder dergleichen zu erfassen und gegebenenfalls eine entsprechende Steuerung auszulösen. Insbesondere werden derartige Sensoreinrichtungen zum Beispiel bei Zugangsberechtigungssystemen eingesetzt, wie sie auf Parkplätzen, Parkhäusern oder dergleichen zum Einsatz kommen. Aber auch geschützte Bereiche, in denen der Zutritt nur bestimmtem, autorisiertem Personal gestattet ist, finden derartige Zugangsberechtigungssysteme Verwendung. Oft bestehen sie aus einer Schranke, die einen Durchgang, eine Durchfahrt oder dergleichen hinsichtlich des Passierens freigeben oder sperren kann. Hierzu weist die Schranke einen Baum auf, der schwenk- oder drehbar an einem Pfosten gelagert ist und von einem freigebenden in einen sperrenden Zustand sowie umgekehrt überführt werden kann. Hierzu wird der Baum beispielsweise mittels der Kolben-Zylinder-Einheit angetrieben.Generic sensor devices are used in a variety of ways to detect certain preferred positions, such as end positions or the like and optionally trigger a corresponding control. In particular, such sensor devices are used for example in conditional access systems, such as those used in parking lots, parking garages or the like. But even protected areas in which access is only permitted to certain, authorized personnel find use of such conditional access systems. Often they consist of a barrier that can clear or block passage, passage or the like in terms of passing. For this purpose, the barrier on a tree which is pivotally or rotatably mounted on a post and can be transferred from a releasing in a blocking state and vice versa. For this purpose, the tree is driven for example by means of the piston-cylinder unit.

In der Regel weist ein Zugangsberechtigungssystem, mit welchem eine Zugangskontrolle durchführbar ist, eine Steuereinheit, eine Einrichtung zur Überprüfung einer Berechtigung sowie eine Vorrichtung auf, die den Zugang bei positiv festgestellter Berechtigung freigibt. Bei einem Parkhaus kann die Vorrichtung beispielsweise aus einer Säule gebildet sein, an der der Baum schwenkbar derart angeordnet ist, dass dieser in einer senkrechten Schwenkstellung die Zufahrt gewährt, während in einer waagerechten Schwenkstellung die Zufahrt behindert ist.In general, an access authorization system with which an access control can be carried out, a control unit, a device for verifying an authorization and a device that releases the access in case of positively identified authorization. In a parking garage, the device may be formed, for example, of a pillar on which the tree is pivotally arranged so that it provides access in a vertical pivot position, while in a horizontal pivot position the access is obstructed.

Bei derartigen Systemen ist es vorgesehen, dass ein Nutzer, der Zugang zu einem kostenpflichtigen Parkgelände wünscht, mit seinem Fahrzeug an eine Säule im Eingangsbereich des Parkgeländes neben der Fahrbahn fährt. Dort entnimmt er einen Parkausweis, woraufhin die Steuerung die Parkausweisentnahme detektiert und eine in der Säule angeordnete Vorrichtung mit einem schwenkbar gelagerten Baum derart ansteuert, dass der Baum in die geöffnete Position verschwenkt wird. Die Zufahrt zum Parkgelände ist nunmehr freigegeben und der Nutzer kann mit seinem Fahrzeug in den Parkbereich einfahren. Eine im Bodenbereich angeordnete Induktionsschleife detektiert das Passieren des Schrankenbereiches durch das Fahrzeug. Sobald das Fahrzeug die Induktionsschleife passiert hat, wird mittels eines Steuerbefehls der Baum in die blockierende Position verfahren.In such systems, it is provided that a user who wants access to a paid parking area, drives with his vehicle to a pillar in the entrance area of the park area next to the road. There he removes a parking card, whereupon the controller detects the parking card removal and controls a device arranged in the column with a pivotally mounted tree such that the tree is pivoted to the open position. The access to the park area is now released and the user can enter his vehicle in the parking area. An induction loop arranged in the floor area detects the passage of the barrier area through the vehicle. As soon as the vehicle has passed the induction loop, the tree is moved into the blocking position by means of a control command.

Beim Verlassen des Parkhauses zahlt der Nutzer zunächst an einem Kassenautomaten die entsprechend seiner Nutzung erforderliche Gebühr, was automatisch auf dem Parkausweis vermerkt wird.When leaving the parking garage, the user pays first at a cash machine the required according to its use fee, which is automatically noted on the parking card.

Am Ausgang des Parkhauses ist wiederum eine Schranke mit einem schwenkbaren Baum an einem Pfosten vorgesehen. Der Nutzer fährt mit seinem Fahrzeug an die Schranke und führt dort in einem dafür vorgesehenen Schlitz seinen Parkausweis ein, woraufhin dieser geprüft wird und eine zentrale Steuerung bei positivem Prüfergebnis die Schranke in der Weise ansteuert, dass sie in die freigebende Stellung verfahren wird. Der Nutzer kann nun mit seinem Fahrzeug die Schranke passieren und das Parkgelände verlassen. Nach Passieren der Schranke, welches wie im vorhergehenden Fall mittels einer Induktionsschleife überwacht werden kann, wird die Schranke anschließend wieder in den sperrenden Zustand verfahren.At the exit of the car park, in turn, a barrier is provided with a pivoting tree on a post. The user drives his vehicle to the barrier and leads there in a designated slot his parking card, whereupon this is checked and controls a central control in positive test result, the barrier in such a way that it is moved to the releasing position. The user can now pass the barrier with his vehicle and leave the park area. After passing through the barrier, which can be monitored by means of an induction loop as in the previous case, the barrier is subsequently moved back into the blocking state.

Bei dem Betrieb derartiger Schranken hat sich der Antrieb des Baums mittels einer hydraulisch angetriebenen Kolben-Zylinder-Anordnung bewährt. Als nachteilig erweist es sich jedoch, dass der aktuelle Zustand der Schranke, insbesondere die aktuelle Schwenkposition des Baums oft nicht ermittelt werden kann. Zwar ist es bekannt, Endschalter vorzusehen, mit denen das Erreichen der jeweiligen Endposition des Baums werden kann, jedoch ist es von Nachteil, wenn der Baum nicht die genau vorgegebene Position aufgrund von Materialverschleißes oder dergleichen einnimmt und der Endschalter dementsprechend ein fehlerhaftes Signal liefert. Dies führt zu unnötigem Wartungsaufwand, da die Endschalter entsprechend nachgestellt werden müssen. Andererseits wäre es von Vorteil, wenn die Schwenkposition des Baums über den gesamten Bereich des Verschwenkens aktuell erfasst werden könnte.In the operation of such barriers, the drive of the tree has proven by means of a hydraulically driven piston-cylinder arrangement. However, it proves to be disadvantageous that the current state of the barrier, in particular the current pivoting position of the tree, can often not be determined. Although it is known Provide limit switch, with which the achievement of the respective end position of the tree can be, but it is disadvantageous if the tree does not assume the exact predetermined position due to material wear or the like and the limit switch accordingly provides a faulty signal. This leads to unnecessary maintenance, since the limit switches must be readjusted accordingly. On the other hand, it would be advantageous if the pivotal position of the tree could be currently detected over the entire range of pivoting.

Der Erfindung liegt deshalb die Aufgabe zugrunde, eine gattungsgemäße Sensoreinrichtung dahingehend weiterzubilden, dass sie eine verbesserte Erfassung der Position des gegenüber dem ersten Bauteil relativ bewegbaren zweiten Bauteils besser ermöglicht.The invention is therefore the object of developing a generic sensor device to the effect that it allows better detection of the position of the relative to the first component relatively movable second component better.

Als Lösung wird mit der Erfindung vorgeschlagen, dass mittels der Messeinrichtung die Position des zweiten Bauteils gegenüber dem ersten Bauteil entlang eines Teilabschnitts des Verfahrwegs des zweiten Bauteils gegenüber dem ersten Bauteil ermittelt wird, zu welchem Zweck die Position des Magneten innerhalb des Teilabschnitts mittels des Magnetfelddetektors ermittelbar ist.As a solution , it is proposed with the invention that by means of the measuring device, the position of the second component relative to the first component along a portion of the travel of the second component relative to the first component is determined, for which purpose the position of the magnet can be determined within the subsection by means of the magnetic field detector is.

Die erfindungsgemäße Sensoreinrichtung ermöglicht es somit, die Position des gegenüber dem ersten Bauteil relativ bewegbaren zweiten Bauteils nicht nur in einer oder zwei Vorzugsstellungen, beispielsweise den Endstellungen, zu ermitteln, sondern sie erlaubt es darüber hinaus, dass zumindest über einen Teil des Verfahrwegs die jeweils aktuelle Position ermittelt werden kann. Dabei kommt es nicht darauf an, ob der Verfahrweg ein linearer Verfahrweg, eine Kurve oder dergleichen ist. Er kann auch aus unterschiedlichen Kurvenarten zusammengesetzt sein. Somit eignet sich die Sensoreinrichtung der Erfindung nicht nur zur Erfassung von linearen Bewegungen, sondern auch von Kreisbewegungen, elliptischen Bewegungen oder zusammengesetzten Bewegungsabläufen unterschiedlichster Richtungen.The sensor device according to the invention thus makes it possible to determine the position of the relative to the first component relatively movable second component not only in one or two preferred positions, such as the end positions, but it also allows that at least over a part of the travel the respective current Position can be determined. It does not matter whether the travel is a linear travel, a curve or the like. It can also be composed of different types of curves. Thus, the sensor device of the invention is not only suitable for detecting linear movements, but also circular movements, elliptical movements or composite movements of different directions.

Das erste und das zweite Bauteil können beispielsweise Maschinenelemente sein, wie sie in Form eines Pfostens und eines an dem Pfosten drehbar gelagerten Baums eine Schranke bilden. Die beiden Bauteile können aber auch durch ein Ziffernblatt und einen Zeiger einer Uhr oder dergleichen gebildet sein. Insbesondere können die Bauteile Teile einer Kolben-Zylinder-Einheit sein, wobei ein Bauteil durch den Zylinder und das zweite Bauteil durch den Kolben gebildet sein kann. Die Zuordnung kann natürlich auch umgekehrt sein. Selbstverständlich können natürlich die beiden Bauteile gemeinsam mobil oder ortsfest angeordnet sein. So kann beispielsweise die Sensoreinrichtung der Erfindung auch für eine Erfassung der Stellung eines Ruders oder einer Lenkung eines Fahrzeugs oder dergleichen zum Einsatz kommen. Die Position des zweiten Bauteils gegenüber dem ersten Bauteil kann durch eine Längenangabe, eine Winkelangabe, Kombinationen hiervon oder dergleichen gebildet sein. Natürlich kann die Position auch durch Angabe von Koordinaten auf einen Bezugspunkt angegeben sein. Der Bezugspunkt selber kann mit dem ersten Bauteil zusammenfallen. Besonders vorteilhaft erweist es sich, wenn die Sensoreinrichtung derart ausgebildet ist, dass sie die Position des zweiten Bauteils gegenüber dem ersten Bauteil entlang des gesamten Verfahrwegs des zweiten Bauteils gegenüber dem ersten Bauteil ermitteln kann.The first and the second component may be, for example, machine elements as they form a barrier in the form of a post and a rotatably mounted on the post tree. But the two components can also be formed by a dial and a pointer of a clock or the like. In particular, the components may be parts of a piston-cylinder unit, wherein a component through the cylinder and the second Component may be formed by the piston. The assignment can of course be reversed. Of course, of course, the two components can be arranged together mobile or stationary. For example, the sensor device of the invention can also be used for detecting the position of a rudder or steering of a vehicle or the like. The position of the second component relative to the first component can be formed by a length specification, an angle specification, combinations thereof or the like. Of course, the position can also be specified by specifying coordinates on a reference point. The reference point itself can coincide with the first component. It proves to be particularly advantageous if the sensor device is designed such that it can determine the position of the second component relative to the first component along the entire travel path of the second component relative to the first component.

Darüber hinaus lässt sich die Sensoreinrichtung nicht nur bei Schranken, sondern auch bei Drehtüren, anderen gesteuerten Passagen mit die Passage steuernden Elementen oder dergleichen einsetzen.In addition, the sensor device can be used not only in barriers, but also in revolving doors, other controlled passages with the passage controlling elements or the like.

Damit die Sensoreinrichtung die Position bestimmen kann, ist sie mit einer Messeinrichtung versehen, die einen Magnetfelddetektor sowie einen Magneten aufweist. Die Messeinrichtung kann auch mehrere Magneten und/oder Magnetfelddetektoren umfassen. Darüber hinaus kann die Sensoreinrichtung zur Bestimmung mehrerer Positionen von gegenüber ersten Bauteilen relativ bewegbaren zweiten Bauteilen ausgebildet sein, Der Magnetfelddetektor kann beispielsweise durch einen Hall-Sensor, durch eine elektronische Spule oder Spulenanordnung, aber auch bewegbar gelagerte Magnete oder dergleichen gebildet sein. Der Magnet kann beispielsweise durch einen Permanentmagneten, aber auch durch einen Elektromagneten gebildet sein, welcher Elektromagnet einen Spule aufweisen kann, die bedarfsweise mit einem elektrischen Strom zwecks Ausbildung eines Magnetfeldes beaufschlagt wird. Natürlich können auch Kombinationen von Permanent- und Elektromagneten vorgesehen sein. Vorzugsweise ist der Magnet hinsichtlich der erzeugten magnetischen Flussdichte einstellbar. Als Magnet kann jedoch auch eine Einrichtung vorgesehen sein, die ein magnetisches Wechselfeld erzeugt. Darüber hinaus kann der Magnet mehrpolig ausgebildet sein, so dass vorzugsweise räumlich beabstandet Pole unterschiedlicher Polarität ausgebildet sind. Vorzugsweise hat der Magnet zwei oder vier Pole. Nord- und Südpol sind jeweils paarweise vorhanden.So that the sensor device can determine the position, it is provided with a measuring device which has a magnetic field detector and a magnet. The measuring device may also comprise a plurality of magnets and / or magnetic field detectors. In addition, the sensor device may be designed to determine a plurality of positions of relatively movable second components relative to first components. The magnetic field detector may be formed, for example, by a Hall sensor, an electronic coil or coil arrangement, but also movably mounted magnets or the like. The magnet can be formed, for example, by a permanent magnet, but also by an electromagnet, which electromagnet can have a coil which is, if necessary, subjected to an electric current for the purpose of forming a magnetic field. Of course, combinations of permanent and electromagnets can be provided. Preferably, the magnet is adjustable with respect to the generated magnetic flux density. As a magnet, however, a device may be provided which generates a magnetic alternating field. In addition, the magnet may be multi-pole, so that preferably spaced apart poles of different polarity are formed. Preferably, the magnet has two or four poles. North and South Pole are available in pairs.

Bei der Erfindung ist der Magnetfelddetektor vorzugsweise am ersten Bauteil angeordnet. In dieser Ausgestaltung kann der Magnetfelddetektor mit dem Bezugspunkt zur Positionsbestimmung zusammenfallen. Der Magnet ist dagegen dann am zweiten Bauteil angeordnet. Dadurch ist der Magnet gegenüber dem Magnetfelddetektor beweglich. Natürlich kann auch eine duale Ausgestaltung vorgesehen sein, bei der der Magnet am ersten Bauteil und der Magnetfelddetektor am zweiten Bauteil angeordnet sind. Grundsätzlich ist die Wahl der Anordnung durch konstruktive und funktionale Anforderungen bestimmt. So kann vorgesehen sein, dass der Magnet bei einer Kolben-Zylinder-Einheit am Kolben dieser Kolben-Zylinder-Einheit angeordnet ist, beispielsweise sogar den Kolben selbst bildet, und der Magnetfelddetektor mit dem Zylinder verbunden ist. Natürlich kann der Magnetfelddetektor auch mit dem Zylinder einstückig ausgebildet sein.In the invention, the magnetic field detector is preferably arranged on the first component. In this embodiment, the magnetic field detector may coincide with the reference point for position determination. In contrast, the magnet is then arranged on the second component. As a result, the magnet is movable relative to the magnetic field detector. Of course, a dual embodiment may be provided, in which the magnet on the first component and the magnetic field detector are arranged on the second component. Basically, the choice of arrangement is determined by design and functional requirements. Thus it can be provided that the magnet is arranged in a piston-cylinder unit on the piston of this piston-cylinder unit, for example, even forms the piston itself, and the magnetic field detector is connected to the cylinder. Of course, the magnetic field detector may also be integrally formed with the cylinder.

Damit die Position des Magneten innerhalb des Teilabschnitts mittels des Magnetfelddetektors ermittelbar ist, kann der Magnetfelddetektor sich über den Teilabschnitt des Verfahrwegs insgesamt erstrecken und selektive Detektionseigenschaften aufweisen, die es ermöglichen, die Position des Magneten gegenüber dem Magnetfelddetektor genau zu erfassen. Natürlich kann auch vorgesehen sein, dass der Magnet selbst sich über den Teilabschnitt des Verfahrwegs erstreckt und vorzugsweise über die Länge des Verfahrwegs sich ändernde magnetische Eigenschaften aufweist. Dadurch ist es dann möglich, mittels des Magnetfelddetektors anhand der lokal ermittelten magnetischen Eigenschaft festzustellen, welcher Teil des Magneten sich gegenüber dem Magnetfelddetektor befindet. Auch hieraus kann die Position ermittelt werden.In order for the position of the magnet within the subsection to be detectable by means of the magnetic field detector, the magnetic field detector can extend over the subsection of the travel path as a whole and have selective detection properties which make it possible to detect the position of the magnet with respect to the magnetic field detector precisely. Of course, it can also be provided that the magnet itself extends over the partial section of the travel path and preferably has changing magnetic properties over the length of the travel path. This makes it possible to determine by means of the magnetic field detector based on the locally determined magnetic property, which part of the magnet is located opposite to the magnetic field detector. The position can also be determined from this.

Der Magnetfelddetektor kann eine zumindest teilweise entlang des Verfahrwegs angeordnete elektrisch leitfähige Bahn aufweisen. So kann beispielsweise die Position dadurch ermittelt werden, dass ein entlang des Verfahrwegs magnetisch permeables Bauteil, welches eine hinreichende elektrische Leitfähigkeit aufweist, mit dem Magneten derart in Wechselwirkung tritt, dass ein Kontakt zur elektrisch leitfähigen Bahn hergestellt wird. Dadurch kann durch die Position des Bauteils erfasst werden, an welcher Stelle sich der Magnet befindet, da letzter das Bauteil aufgrund der magnetischen Eigenschaften anzieht. So lässt sich eine einfache Positionsbestimmung des zweiten Bauteils gegenüber dem ersten Bauteil erreichen. Die elektrisch leitfähige Bahn kann durch einen elektrischen Leiter wie beispielsweise einen Metalldraht, insbesondere einen Kupferdraht, einen Silberdraht, einen Golddraht, eine Legierung oder dergleichen gebildet sein. Der Metalldraht kann eine elektrisch leitfähige Legierung beinhalten. Darüber hinaus kann die elektrisch leitfähige Bahn natürlich auch durch eine Beschichtung gebildet sein, die auf dem ersten Bauteil angebracht ist. Beispielsweise kann die elektrisch leitfähige Bahn durch einen Metallniederschlag, beispielsweise Aluminium, Magnesium, Messing, Zinn, Bronze oder dergleichen gebildet sein. Die elektrisch leitfähige Bahn kann auch in Drucktechnik auf das erste Bauteil aufgebracht sein, beispielsweise durch eine aufgedruckte Kupferschicht oder dergleichen. Dies ermöglicht es, die elektrisch leitfähige Bahn auf einfache Weise herzustellen. Darüber hinaus kann die elektrisch leitfähige Bahn natürlich auch durch das erste Bauteil selbst gebildet sein, beispielsweise weil das erste Bauteil aus einem elektrisch leitfähigen Werkstoff gebildet ist. Die elektrisch leitfähige Bahn kann somit einstückig mit dem ersten Bauteil ausgebildet sein.The magnetic field detector may have an electrically conductive path arranged at least partially along the travel path. Thus, for example, the position can be determined by the fact that a magnetically permeable component along the travel, which has sufficient electrical conductivity, interacts with the magnet in such a way that contact with the electrically conductive path is established. As a result, it can be detected by the position of the component, at which point the magnet is located, since the latter attracts the component due to the magnetic properties. This makes it possible to achieve a simple position determination of the second component with respect to the first component. The electrically conductive path may be through an electrical conductor such as a metal wire, in particular a copper wire, a Silver wire, a gold wire, an alloy or the like may be formed. The metal wire may include an electrically conductive alloy. In addition, the electrically conductive path may of course also be formed by a coating which is mounted on the first component. For example, the electrically conductive path may be formed by a metal deposit, for example aluminum, magnesium, brass, tin, bronze or the like. The electrically conductive path can also be applied to the first component by printing, for example by a printed copper layer or the like. This makes it possible to produce the electrically conductive path in a simple manner. In addition, the electrically conductive path can of course also be formed by the first component itself, for example because the first component is formed from an electrically conductive material. The electrically conductive path can thus be formed integrally with the first component.

Darüber hinaus kann der Magnetfelddetektor eine vorzugsweise parallel zur elektrisch leitfähigen Bahn angeordnete Widerstandsbahn aufweisen. Durch die Widerstandsbahn kann erreicht werden, dass anhand eines gemessenen elektrischen Widerstands zwischen dem magnetisch permeablen Bauteils, welches vorzugsweise mit der Widerstandsbahn im Bereich des Magneten in Kontakt steht, sowie einem Bezugspotential, an dem die Widerstandsbahn angeschlossen ist, die Position des magnetisch permeablen Bauteils und somit auch die Position des zweiten gegenüber dem ersten Bauteil ermittelte werden. Dies ermöglicht eine einfache robuste Ausgestaltung. Weiterhin lässt sich die Widerstandsbahn beispielsweise in Form einer Kohleschicht, auf dem entsprechenden Bauelement abscheiden. Dadurch kann die Widerstandsbahn einstückig mit dem ersten beziehungsweise dem zweiten Bauteil ausgebildet sein.In addition, the magnetic field detector may have a resistance path which is preferably arranged parallel to the electrically conductive path. By the resistance path can be achieved that, based on a measured electrical resistance between the magnetically permeable component, which is preferably in contact with the resistance path in the region of the magnet, and a reference potential to which the resistance path is connected, the position of the magnetically permeable component and Thus, the position of the second relative to the first component are determined. This allows a simple robust design. Furthermore, the resistance path can be deposited, for example in the form of a carbon layer, on the corresponding component. As a result, the resistance track can be formed in one piece with the first or the second component.

Besonders vorteilhaft weist die Sensoreinrichtung sowohl die elektrisch leitfähige Bahn als auch die Widerstandsbahn auf. Vorzugsweise sind die elektrisch leitfähige Bahn und die Widerstandsbahn beabstandet zueinander angeordnet. Durch einen mittels des Magneten antreibbaren Kontakts kann eine elektrische Verbindung zwischen der Widerstandsbahn und der elektrisch leitfähigen Bahn hergestellt werden, und zwar an der Stelle, an der sich der Magnet befindet. Der Kontakt kann an dem magnetisch permeablen Bauteil angeordnet sein. Dies erlaubt es, durch Widerstandsmessung zwischen der elektrisch leitfähigen Bahn und der Widerstandsbahn die aktuelle Position des Magneten zu ermitteln, wodurch die Messeinrichtung mittels des ermittelten Widerstandswerts ein Signal liefert, welches die Bestimmung der Position des gegenüber dem ersten Bauteil relativ bewegbaren zweiten Bauteils erlaubt.Particularly advantageously, the sensor device has both the electrically conductive path and the resistance path. Preferably, the electrically conductive path and the resistance path are spaced from one another. By means of a contact which can be driven by means of the magnet, an electrical connection between the resistance path and the electrically conductive path can be established, to be precise at the point where the magnet is located. The contact can be arranged on the magnetically permeable component. This makes it possible to determine the current position of the magnet by measuring the resistance between the electrically conductive track and the resistance track, whereby the measuring device supplies a signal by means of the determined resistance value, which determines the position of the device relative to the first component allowed relatively movable second component.

Der Magnetfelddetektor kann ein magnetisch permeables Bauteil aufweisen, welches vorzugsweise einen elektrischen Kontakt aufweist. Mit dem elektrischen Kontakt ist es möglich, die elektrisch leitfähige Bahn und die Widerstandsbahn zu kontaktieren und auf diese Weise einen einstellbaren elektrischen Widerstand zu bilden. Das magnetisch permeable Bauteil steht in magnetischer Wechselwirkung mit dem Magneten und wird durch diesen angezogen. Dadurch wird der elektrische Kontakt an der Stelle hergestellt, an der sich der Magnet gegenüber dem Magnetfelddetektor befindet. Die hieraus gebildete Messeinrichtung liefert somit ein zuverlässiges Signal, aus welchem die Position des gegenüber dem ersten Bauteil relativ bewegbaren zweiten Bauteils ermittelt werden kann. Der elektrische Kontakt kann beispielsweise durch einen Federkontakt oder dergleichen gebildet sein. Beispielsweise ist der Kontakt aus einem vergoldeten Federstahl oder einer Berylliumlegierung gebildet.The magnetic field detector may have a magnetically permeable component, which preferably has an electrical contact. With the electrical contact, it is possible to contact the electrically conductive path and the resistance path and thus form an adjustable electrical resistance. The magnetically permeable member is in magnetic interaction with the magnet and attracted thereto. Thereby, the electrical contact is made at the point where the magnet is located opposite to the magnetic field detector. The measuring device formed therefrom thus provides a reliable signal, from which the position of the relative to the first component relatively movable second component can be determined. The electrical contact may be formed, for example, by a spring contact or the like. For example, the contact is formed of a gold-plated spring steel or a beryllium alloy.

Eine vorteilhafte Weiterbildung zeichnet sich dadurch aus, dass die elektrisch leitfähige Bahn und/oder die Widerstandsbahn magnetisch permeabel sind. Dadurch kann erreicht werden, dass an der Stelle des Magneten zwischen der elektrisch leitfähigen Bahn und der Widerstandsbahn aufgrund des Magnetfeldes durch elektrische Einwirkungen ein elektrischer Kontakt hergestellt wird. Diese Ausgestaltung zeichnet sich unter anderem dadurch aus, dass sie mit wenig bewegbaren Bauteilen auskommt und somit eine hohe Zuverlässigkeit über die gesamte Betriebsdauer erreicht werden kann.An advantageous development is characterized in that the electrically conductive path and / or the resistance path are magnetically permeable. It can thereby be achieved that an electrical contact is made at the location of the magnet between the electrically conductive path and the resistance path due to the magnetic field due to electrical effects. This embodiment is characterized inter alia by the fact that it manages with few movable components and thus high reliability over the entire operating life can be achieved.

Die elektrisch leitfähige Bahn und/oder die Widerstandsbahn können hierfür eine magnetisch permeable Schicht aufweisen. Die magnetisch permeable Schicht kann durch in die Bahn eingebrachte magnetisch permeable Partikel, insbesondere Ferritpartikel oder dergleichen gebildet sein. Als Werkstoffe kommen neben den Metallen Eisen, Nickel, Kobalt sowie deren Legierungen auch heuslersche Legierungen in Betracht. Darüber hinaus besteht die Möglichkeit, die jeweilige Bahn in einem Sol-Gel-Prozess auszubilden. Besonders vorteilhaft bilden die elektrisch leitfähige Bahn und/oder die Widerstandsbahn im Bereich eines magnetischen Feldes einen elektrischen Kontakt aus, insbesondere einen direkten elektrischen Kontakt ohne Vermittlung weiterer Bauteile. Die elektrisch leitfähige Bahn und/oder die Widerstandsbahn können hierfür eine geeignete Elastizität aufweisen, die es erlaubt, den elektrischen Kontakt zwischen den beiden Bahnen direkt ausbilden zu können. Hierdurch kann eine bauteilearme hochzuverlässige Messeinrichtung geschaffen werden.The electrically conductive path and / or the resistance path can have a magnetically permeable layer for this purpose. The magnetically permeable layer may be formed by magnetically permeable particles, in particular ferrite particles or the like, introduced into the web. As materials in addition to the metals iron, nickel, cobalt and their alloys and Heusler's alloys into consideration. In addition, it is possible to train the respective web in a sol-gel process. Particularly advantageously, the electrically conductive path and / or the resistance path form an electrical contact in the region of a magnetic field, in particular a direct electrical contact without the intermediary of further components. The electrically conductive path and / or the resistance path can for this purpose have a suitable elasticity, which makes it possible to form the electrical contact between the two tracks directly. This allows a low-component high-reliable Measuring device to be created.

Insbesondere können die Widerstandsbahn und/oder die elektrisch leitfähige Bahn einstückig mit der magnetisch permeablen Schicht ausgebildet sein. Hierzu kann beispielsweise vorgesehen sein, dass entsprechend magnetisierbare, insbesondere ferromagnetische Partikel in den Werkstoff der jeweiligen Bahn eingebracht sind.In particular, the resistance path and / or the electrically conductive path may be formed integrally with the magnetically permeable layer. For this purpose, it can be provided, for example, that corresponding magnetizable, in particular ferromagnetic particles are introduced into the material of the respective web.

Natürlich kann für die Funktion lediglich eine der beiden Bahnen die magnetische Permeabilität aufweisen. Besonders vorteilhaft erweist es sich jedoch, wenn beide Bahnen magnetisch permeabel ausgebildet sind. Dadurch kann bereits mit geringen magnetisch permeablen Eigenschaften eine zuverlässige Funktion der Erfindung erreicht werden.Of course, only one of the two tracks can have the magnetic permeability for the function. However, it proves particularly advantageous if both webs are formed magnetically permeable. As a result, a reliable function of the invention can already be achieved with low magnetically permeable properties.

In einer Weiterbildung kann vorgesehen sein, dass der Magnetfelddetektor eine Mehrzahl von entlang des Verfahrwegs angeordneten Magnetfeldsensoren aufweist. Die Magnetfeldsensoren können in einer Reihe parallel zum Verfahrweg angeordnet sein. Ein Abstand zwischen dem Verfahrweg und der Reihe kann variieren, beispielsweise sinusförmig, rechteckförmig oder dergleichen. Jeder einzelne Magnetfeldsensor kann in einem lokal begrenzten Bereich die Anwesenheit des Magneten detektieren. Dadurch kann die Position des Magneten anhand des jeweiligen Sensorsignals des Magnetfeldsensors identifiziert werden, wenn die Position des jeweiligen Magnetfeldsensors zuvor definiert ist. Die lokal begrenzten Bereiche insbesondere benachbarter Magnetfeldsensoren können sich auch überlappen. Die Magnetfeldsensoren können natürlich jeweils wie der zuvor beschriebene Magnetfelddetektor ausgebildet sein. Darüber hinaus können die Magnetfeldsensoren auch Hallsonden, Spulen, Spulenanordnungen oder dergleichen aufweisen. Natürlich können auch die vorgenannten Arten der Magnetfeldsensoren miteinander kombiniert den Magnetfelddetektor bilden. So können beispielsweise Hall-Sensoren mit Spulenanordnungen kombiniert sein.In a further development it can be provided that the magnetic field detector has a plurality of magnetic field sensors arranged along the travel path. The magnetic field sensors can be arranged in a row parallel to the travel path. A distance between the travel path and the row may vary, for example sinusoidal, rectangular or the like. Each individual magnetic field sensor can detect the presence of the magnet in a locally limited area. Thereby, the position of the magnet can be identified on the basis of the respective sensor signal of the magnetic field sensor, if the position of the respective magnetic field sensor is previously defined. The localized areas of, in particular, adjacent magnetic field sensors may also overlap. Of course, the magnetic field sensors can each be designed like the magnetic field detector described above. In addition, the magnetic field sensors may also have Hall probes, coils, coil arrangements or the like. Of course, the aforementioned types of magnetic field sensors combined with each other can form the magnetic field detector. For example, Hall sensors can be combined with coil arrangements.

Vorzugsweise sind die Magnetfeldsensoren benachbart, vorzugsweise unmittelbar benachbart zueinander angeordnet. Die Magnetfeldsensoren können in einem Abstand von etwa 2 mm, vorzugsweise 1 mm, oder weniger angeordnet sein. Sie können auch direkt aneinander angrenzen. Unmittelbar benachbart oder auch direkt benachbart sind zwei Magnetfeldsensoren, wenn auf einer virtuellen Verbindungsgerade zwischen ihnen kein weiterer Magnetfeldsensor angeordnet ist. Die benachbarte Anordnung der Magnetfeldsensoren ermöglicht eine weitgehend kontinuierliche Bestimmung der Position des gegenüber dem ersten Bauteil relativ bewegbaren zweiten Bauteils. Insbesondere kann eine hohe Auflösung bei der Bestimmung der Position erreicht werden. Darüber hinaus kann durch die Kombination unterschiedlicher Magnetfeldsensoren erreicht werden, dass diese sich möglichst wenig gegenseitig beeinflussen, wodurch die Messgenauigkeit erhöht werden kann.Preferably, the magnetic field sensors are adjacent, preferably arranged immediately adjacent to each other. The magnetic field sensors may be arranged at a distance of about 2 mm, preferably 1 mm or less. You can also be directly adjacent to each other. Immediately adjacent or directly adjacent are two magnetic field sensors when no further magnetic field sensor is arranged on a virtual connecting line between them. The adjacent arrangement of the magnetic field sensors allows a largely continuous determination of the position the relative to the first component relatively movable second component. In particular, a high resolution can be achieved in determining the position. In addition, can be achieved by the combination of different magnetic field sensors that they influence each other as little as possible, whereby the measurement accuracy can be increased.

Eine Ausgestaltung sieht vor, dass wenigstens in einem Bereich des Teilabschnitts des Verfahrwegs die Magnetfeldsensoren auch quer zum Verfahrweg angeordnet sind. Hierdurch kann eine verbesserte Auflösung der Position des zweiten gegenüber dem ersten Bauteil innerhalb des Bereichs erreicht werden. Die Magnetfeldsensoren können in Reihen angeordnet sein, die im wesentlichen parallel zueinander ausgerichtet sind. Beispielsweise können die Magnetfeldsensoren in Matrixform angeordnet sein. Es kann ferner vorgesehen sein, dass die Magnetfeldsensoren mit einem Mindestabstand beabstandet angeordnet sind, zum Beispiel ein Abstand von größer etwa 0,5 mm, vorzugsweise von größer etwa 1 mm insbesondere von größer etwa 1,5 mm. Der Bereich kann beispielsweise eine Vorzugslage des zweiten Bauelements gegenüber dem ersten Bauelement sein, beispielsweise eine Endposition oder dergleichen. Darüber hinaus können natürlich auch zwei oder mehrere Bereiche derart ausgestaltet sein, um eine verbesserte Auflösung in diesen Bereichen erreichen zu können. Die Magnetfeldsensoren können in mehreren parallel zum Verfahrweg ausgerichteten Reihen benachbart zueinander angeordnet sein. Darüber hinaus können die Magnetfeldsensoren benachbarter Reihen auch gegenüber einander versetzt angeordnet sein, wodurch sich eine weitere Verbesserung der Auflösung erreichen lässt. Zwecks weiterer Verbesserung der Auflösung können die Magnetfeldsensoren auswertungsseitig zumindest teilweise gemeinsam ausgewertet werden, um die Auflösung und die Detektionsfähigkeit weiter zu erhöhen. So können beispielsweise Gruppen von Magnetfeldsensoren gebildet werden, die jeweils gemeinsam ausgewertet werden. Besonders vorteilhaft erweist es sich, wenn die Auswertung der Magnetfeldsensoren derart ist, dass sich störende Einflüsse während der Auswertung ausgleichen, so dass eine besonders zuverlässige Bestimmung der Position erreicht werden kann.An embodiment provides that the magnetic field sensors are also arranged transversely to the travel path, at least in one region of the subsection of the travel path. As a result, an improved resolution of the position of the second relative to the first component within the range can be achieved. The magnetic field sensors may be arranged in rows that are aligned substantially parallel to each other. For example, the magnetic field sensors can be arranged in matrix form. It may further be provided that the magnetic field sensors are arranged at a minimum distance spaced, for example, a distance of greater than about 0.5 mm, preferably greater than about 1 mm, in particular greater than about 1.5 mm. By way of example, the region can be a preferred layer of the second component relative to the first component, for example an end position or the like. In addition, of course, two or more areas may be configured so as to achieve improved resolution in these areas. The magnetic field sensors can be arranged adjacent to one another in a plurality of rows oriented parallel to the travel path. In addition, the magnetic field sensors of adjacent rows can also be arranged offset relative to one another, whereby a further improvement of the resolution can be achieved. For the purpose of further improving the resolution, the magnetic field sensors can at least partially be evaluated together on the evaluation side in order to further increase the resolution and the detection capability. For example, groups of magnetic field sensors can be formed, which are evaluated together. It proves to be particularly advantageous if the evaluation of the magnetic field sensors is such that interfering influences balance out during the evaluation, so that a particularly reliable determination of the position can be achieved.

Die Magnetfeldsensoren können in Reihen aufeinanderfolgend angeordnet sein. Die Reihen können die gleiche Länge oder auch unterschiedliche Längen aufweisen. Vorzugsweise ist die Anzahl von Magnetfeldsensoren pro Längeneinheit der Reihen gleich. Sie kann aber auch unterschiedlich sein, um zum Beispiel Bereiche unterschiedlicher Auflösung zu schaffen oder dergleichen. Die Magnetfeldsensoren können ein regelmäßiges Muster bildend, beispielsweise matrixartig angeordnet sein. Die Magnetfeldsensoren direkt benachbarter Reihen können einen vorgegebenen Abstand zueinander haben. Die können aber auch direkt aneinander angrenzen. Direkt benachbart bedeutet, dass zwischen zwei direkt benachbarten Reihen keine weitere Reihe angeordnet ist.The magnetic field sensors can be arranged in rows in succession. The rows can have the same length or different lengths. Preferably, the number of magnetic field sensors per unit length of rows is the same. But it can also be different, for example, areas to create different resolution or the like. The magnetic field sensors may form a regular pattern, for example arranged in a matrix. The magnetic field sensors directly adjacent rows may have a predetermined distance from each other. But they can also be directly adjacent to each other. Immediately adjacent means that there is no further row between two directly adjacent rows.

Eine vorteilhafte Weiterbildung sieht vor, dass die Magnetfeldsensoren benachbarter Reihen versetzt zueinander angeordnet sind, Dies ermöglicht es, die Auflösung für die Positionsbestimmung weiter zu erhöhen. Insbesondere kann eine höhere Auflösung erreicht werden, als sie mit einer einzigen Reihe von Magnetfeldsensoren erreicht werden kann. Dazu können direkt benachbart angeordnete Magnetfeldsensoren unterschiedlicher Reihen gemeinsam ausgewertet werden. Die gemeinsame Auswertung unter insbesondere Berücksichtigung von Eigenschaften der Magnetfeldsensoren erlaubt es, die Auflösung über das Auflösungsvermögen eines einzelnen Magnetfeldsensors hinaus zu erhöhen. Hierfür kann ein besonderer Auswertealgorithmus zum Einsatz kommen, der durch ein geeignetes Rechnerprogramm für einen Rechner gebildet sein kann.An advantageous development provides that the magnetic field sensors of adjacent rows are arranged offset from one another. This makes it possible to further increase the resolution for determining the position. In particular, a higher resolution can be achieved than can be achieved with a single series of magnetic field sensors. For this purpose, directly adjacent arranged magnetic field sensors of different rows can be evaluated together. The joint evaluation, in particular taking into account properties of the magnetic field sensors, makes it possible to increase the resolution beyond the resolution capability of a single magnetic field sensor. For this purpose, a special evaluation algorithm can be used, which can be formed by a suitable computer program for a computer.

Ferner kann sich der Magnetfelddetektor beziehungsweise der Magnet über die Länge des gesamten Verfahrwegs des am Kolben angeordneten Magneten beziehungsweise des am Kolben angeordneten Magnetfelddetektors erstrecken. Dadurch ist es möglich, die Position des gegenüber dem ersten Bauteil relativ bewegbaren zweiten Bauteils über den gesamten möglichen Verfahrweg zu bestimmen. So kann beispielsweise bei einer Kolben-Zylinder-Einheit vorgesehen sein, dass die Position des Kolbens gegenüber dem Zylinder in jeder möglichen Kolbenstellung zu jeder beliebigen Zeit ermittelt werden kann. Hierfür kann die Messeinrichtung ein entsprechendes Signal liefern, welches von einer Steuereinheit ausgewertet wird. Es kann darüber hinaus vorgesehen sein, dass die Steuereinheit die Messeinrichtung zur Abgabe eines Signals veranlasst. Dies kann kontinuierlich erfolgen. Es kann aber auch vorgesehen sein, dass die Abfrage jeweils zu vorgegebenen Zeitpunkten, beispielsweise zeitdiskret erfolgt.Furthermore, the magnetic field detector or the magnet can extend over the length of the entire traverse path of the magnet arranged on the piston or of the magnetic field detector arranged on the piston. This makes it possible to determine the position of the relative to the first component relatively movable second component over the entire possible travel. For example, it may be provided in a piston-cylinder unit that the position of the piston relative to the cylinder in any possible piston position can be determined at any time. For this purpose, the measuring device can deliver a corresponding signal, which is evaluated by a control unit. In addition, it can be provided that the control unit causes the measuring device to emit a signal. This can be done continuously. However, it can also be provided that the query takes place in each case at predetermined times, for example, time-discretely.

Der Magnetfelddetektor kann ferner einen magnetischen Rückschluss aufweisen. Der magnetische Rückschluss erstreckt sich vorzugsweise über den gesamten Magnetfelddetektor. Der magnetische Rückschluss kann ferner an einer Rückseite des Magnetfelddetektors angeordnet sein, die dem Magneten gegenüberliegt. Der magnetische Rückschluss kann durch einen magnetisch permeablen Werkstoff gebildet sein, beispielsweise einem Ferrit, einem Eisen- und/oder Nickelblech, einer magnetisch permeablen Legierung oder dergleichen. Besteht der Magnetfelddetektor aus Magnetfeldsensoren, kann der magnetische Rückschluss auch an einem oder mehreren der Magnetfeldsensoren angeordnet sein. Vorzugsweise ist der magnetische Rückschluss an allen Magnetfeldsensoren angeordnet. Der magnetische Rückschluss kann einstückig mit dem Magnetfelddetektor beziehungsweise den Magnetfeldsensoren ausgebildet sein. Er kann ferner bei einem durch Magnetfeldsensoren segmentierten Magnetfelddetektor durch eine Vielzahl von magnetischen Rückschlusselementen an den einzelnen Magnetfeldsensoren gebildet sein. Vorzugsweise stehen die einzelnen magnetischen Rückschlusselemente miteinander in magnetischer Wechselwirkung, so dass sie im Wesentlichen eine Wirkung haben, wie ein einteiliger magnetischer Rückschluss. Der magnetische Rückschluss kann mittels bekannter Verbindungstechnik wie Klemmen, Kleben, Schrauben oder dergleichen am Magnetfelddetektor befestigt sein. Er kann aber auch durch eine zusätzliche Schicht gebildet sein, die einstückig mit dem Magnetfelddetektor ausgebildet ist, beispielsweise indem diese Schicht auf der Rückseite des Magnetfelddetektors mittels bekannter Verfahren abgeschieden wird.The magnetic field detector may further include a magnetic return. The magnetic return preferably extends over the entire magnetic field detector. The magnetic return can also be arranged on a rear side of the magnetic field detector, which is opposite to the magnet. Of the magnetic return can be formed by a magnetically permeable material, such as a ferrite, an iron and / or nickel sheet, a magnetically permeable alloy or the like. If the magnetic field detector consists of magnetic field sensors, the magnetic inference can also be arranged on one or more of the magnetic field sensors. The magnetic inference is preferably arranged on all magnetic field sensors. The magnetic return can be formed integrally with the magnetic field detector or the magnetic field sensors. It may also be formed by a plurality of magnetic return elements on the individual magnetic field sensors in the case of a magnetic field sensor segmented by magnetic field sensors. Preferably, the individual magnetic return elements magnetically interact with each other so that they have an effect substantially, such as a one-piece magnetic return. The magnetic return can be attached to the magnetic field detector by means of known connection technology such as clamping, gluing, screwing or the like. But it can also be formed by an additional layer which is formed integrally with the magnetic field detector, for example by this layer is deposited on the back of the magnetic field detector by means of known methods.

Mit der Erfindung wird ferner eine Schranke mit einem an einem Pfosten bewegbar gelagerten Baum vorgeschlagen, welcher Baum mittels einer Kolben-Zylinder-Einheit bewegbar ist. Erfindungsgemäß weist die Kolben-Zylinder-Einheit eine Sensoreinrichtung der Erfindung auf. Hierdurch ist es möglich, zuverlässig und mit geringem Aufwand die aktuelle Stellung des Baums gegenüber dem Pfosten zu bestimmen. Die Erfindung ermöglicht es, die Kolben-Zylinder-Einheit als eine Standardbaugruppe mit unterschiedlichsten Schranken beziehungsweise Baum und Pfostenkombinationen zu kombinieren. Derartige Schranken finden natürlich nicht nur bei der Parkraumbewirtschaftung Verwendung, sondern können zum Beispiel auch bei Bahnübergängen, in Wartebereichen oder dergleichen zum Einsatz kommen.The invention further proposes a barrier with a movably mounted on a post tree, which tree is movable by means of a piston-cylinder unit. According to the invention, the piston-cylinder unit has a sensor device of the invention. This makes it possible to reliably and with little effort to determine the current position of the tree relative to the post. The invention makes it possible to combine the piston-cylinder unit as a standard assembly with a variety of barriers or tree and post combinations. Such barriers are of course not only used in parking management, but can also be used, for example, at level crossings, in waiting areas or the like.

Dadurch dass die Kolben-Zylinder-Einheit mit der erfindungsgemäßen Sensoreinrichtung verbunden ist, kann eine Steuerung der Kolben-Zylinder-Einheit auf einfache Weise quasi beliebig an unterschiedlichste Schranken beziehungsweise Baum und Pfostenkombinationen angepasst werden. Dies kann zum Beispiel dadurch erreicht werden, dass die jeweils für eine ausgewählte Schranke beziehungsweise Baum und Pfostenkombination vorgegebenen Endstellungen mittels der Sensoreinrichtung erfasst und von einer Steuerung ausgewertet werden. So kann der Baum entsprechend der vorgegebenen Stellungen verfahren werden. Damit das Verschwenken des Baums entsprechend gesteuert werden kann, kann eine Vergleichsschaltung vorgesehen sein, die ein Messsignal der Messeinrichtung mit einem oder mehreren Vergleichswerten vergleicht und ein oder mehrere dementsprechende Signale abgibt. Die Vergleichswerte können Vorzugstellungen des Baumes, beispielsweise seinen vorgegebenen beziehungsweise vorgebbaren Endstellungen entsprechen. Die Erfindung ermöglicht es darüber hinaus, auch Zwischenstellungen des Baumes gegenüber dem Pfosten gezielt anzufahren. Durch einen einfachen Kalibrierungsvorgang kann somit eine Anpassung einer standardisierten Kolben-Zylinder-Einheit an eine beliebige Schranke erreicht werden. Aber auch für die Überwachung der Funktion der Schranke stellt die Erfindung eine wesentliche Verbesserung dar. Sie erlaubt es festzustellen, ob eine vorgegebene anzufahrende Stellung durch den Baum erreicht worden ist oder auch welche Stellung der Baum aktuell einnimmt. Hierdurch kann eine Diagnosefunktion ermöglicht werden, mit der Störungszustände der Schranke, insbesondere bezüglich Fehlstellungen des Baumes oder dergleichen zum Beispiel in Ferndiagnose vorzugsweise unter Vermittlung der Steuerung erkannt und identifiziert werden können. Dies verbessert die Fernwartungsmöglichkeiten. Wartungsmaßnahmen können ohne eine vorhergehende Inspektion vor Ort an der Schranke geplant werden, wodurch Wartungskosten reduziert werden können. Zugleich kann auch die Sicherheit bezüglich des bestimmungsgemäßen Betriebs der Schranke verbessert werden.The fact that the piston-cylinder unit is connected to the sensor device according to the invention, a control of the piston-cylinder unit can be adapted in a simple manner almost arbitrarily to a variety of barriers or tree and post combinations. This can be achieved, for example, by detecting the end positions predetermined in each case for a selected barrier or tree and post combination by means of the sensor device and evaluated by a controller. Thus, the tree can be moved according to the predetermined positions. Thus, the pivoting of the tree can be controlled accordingly, a comparison circuit may be provided which compares a measurement signal of the measuring device with one or more comparison values and outputs one or more corresponding signals. The comparison values may correspond to preferred positions of the tree, for example its predefined or predefinable end positions. In addition, the invention makes it possible to specifically approach also intermediate positions of the tree relative to the post. By a simple calibration process can thus be achieved an adaptation of a standardized piston-cylinder unit to any barrier. But also for the monitoring of the function of the barrier, the invention represents a significant improvement. It allows to determine whether a predetermined position to be approached has been reached by the tree or which position the tree currently occupies. In this way, a diagnostic function can be made possible with which fault states of the barrier, in particular with respect to malpositions of the tree or the like, for example in remote diagnosis, can preferably be detected and identified by means of the control. This improves the remote maintenance options. Maintenance can be scheduled at the barrier without a prior inspection, reducing maintenance costs. At the same time, the safety with respect to the intended operation of the barrier can be improved.

Grundsätzlich gilt dies natürlich nicht nur für die Anwendung bei einer Schranke sondern auch bei Kolben-Zylinder-Einheiten im Allgemeinen sowie Vorrichtungen mit vergleichbaren Antrieben, wie elektrische Antriebe, pneumatische Antriebe oder dergleichen.Basically, this of course not only applies to the application in a barrier but also in piston-cylinder units in general and devices with comparable drives, such as electric drives, pneumatic drives or the like.

Der Pfosten bildet zum Beispiel das erste Bauteil, wohingegen der Baum das zweite Bauteil bildet. Die Kolben-Zylinder-Einheit ist vorzugsweise hydraulisch angetrieben. Sie kann aber auch pneumatisch angetrieben sein. Die Zuordnung des Pfostens und des Baums zu dem ersten und dem zweiten Bauteil kann natürlich umgekehrt sein.For example, the post forms the first component, whereas the tree forms the second component. The piston-cylinder unit is preferably hydraulically driven. But it can also be driven pneumatically. The assignment of the post and the tree to the first and the second component can of course be reversed.

Ferner kann vorgesehen sein, dass die Magnetfeldsensoren, die Widerstandsbahn und/oder die elektrisch leitfähige Bahn einstückig mit dem Zylinder und/oder dem Kolben ausgebildet sind. Hierdurch können separate Bauteile eingespart werden. Darüber hinaus lässt sich ein sehr kompakter Aufbau erreichen, wodurch die Zuverlässigkeit und die Lebensdauer erhöht werden können. So kann beispielsweise vorgesehen sein, dass die Widerstandsbahn entlang eines Kolbenhubwegs an der Außenseite des Zylinders aufgebracht ist. Beabstandet hierzu und mit einer entsprechenden Elastizität versehen kann beispielsweise die elektrisch leitfähige Bahn mit einer magnetischen Permeabilität angeordnet sein. Der Kolben kann den Magneten umfassen. An der Stelle, wo sich der Kolben mit dem Magneten befindet, wird die elektrisch leitfähige Bahn aufgrund ihrer magnetischen Permeabilität angezogen und stellt einen elektrischen Kontakt zur Widerstandsbahn her. Durch Messung des elektrischen Widerstands zwischen der elektrisch leitfähigen Bahn und einem vorzugsweise an einem der beiden Enden der Widerstandsbahn vorgesehenen Anschluss der Widerstandsbahn kann somit aufgrund des gemessenen Widerstands die Position des Kolbens im Zylinder ermittelt werden. Dadurch, dass separate bewegliche Bauteile weitgehend entfallen können, lässt sich eine derart ausgebildete Schranke aufgrund ihrer hohen Zuverlässigkeit auch im öffentlichen Verkehrsbereich als Sicherheitsschranke, beispielsweise als Bahnschranke oder dergleichen einsetzen.Furthermore, it can be provided that the magnetic field sensors, the resistance track and / or the electrically conductive track are formed integrally with the cylinder and / or the piston. As a result, separate components can be saved. Furthermore a very compact design can be achieved, which can increase the reliability and the service life. For example, it may be provided that the resistance track is applied along a piston stroke path on the outside of the cylinder. Spaced for this purpose and provided with a corresponding elasticity, for example, the electrically conductive path can be arranged with a magnetic permeability. The piston may comprise the magnet. At the point where the piston is located with the magnet, the electrically conductive path is attracted due to its magnetic permeability and makes an electrical contact to the resistance path. By measuring the electrical resistance between the electrically conductive path and a preferably provided at one of the two ends of the resistance path connection of the resistance path can thus be determined based on the measured resistance, the position of the piston in the cylinder. Due to the fact that separate movable components can largely be dispensed with, such a barrier can also be used in the public transport sector as a safety barrier, for example as a railway barrier or the like, because of its high reliability.

Vorzugsweise ist der Zylinder aus einem im Wesentlichen magnetisch unpermeablen Werkstoff gebildet. Dadurch kann das Magnetfeld die Zylinderwand gut durchdringen und den Magnetfelddetektor betätigen, indem der Magnetfelddetektor entsprechend mit Magnetfeld beaufschlagt wird. Natürlich lässt sich auch eine duale Ausgestaltung dadurch erreichen, dass der Magnetfelddetektor am Kolben und der Magnet am Zylinder angeordnet ist.Preferably, the cylinder is formed of a substantially magnetically impermeable material. This allows the magnetic field to penetrate the cylinder wall well and actuate the magnetic field detector by the magnetic field detector is applied in accordance with magnetic field. Of course, a dual design can be achieved in that the magnetic field detector is arranged on the piston and the magnet on the cylinder.

Magnetisch permeabel ist ein Werkstoff, der seine Eigenschaften aufgrund eines äußeren magnetischen Feldes verändert. Insbesondere ist diesbezüglich der Ferromagnetismus zu nennen, wie er beispielsweise in Eisen, Kobalt und Nickel sowie deren Legierungen auftritt. Darüber hinaus sind diesbezüglich auch Werkstoffe zu nennen, die einen Paramagnetismus oder einen Ferrimagnetismus aufweisen. Ein unmagnetischer Stoff ist ein Stoff, der im Allgemeinen durch magnetische Felder unbeeinflussbar ist.Magnetically permeable is a material that changes its properties due to an external magnetic field. In particular, in this regard, the ferromagnetism should be mentioned, as it occurs for example in iron, cobalt and nickel and their alloys. In addition, materials which have a paramagnetism or a ferrimagnetism must also be mentioned in this regard. A non-magnetic substance is a substance that is generally unaffected by magnetic fields.

Weitere Vorteile und Merkmale sind der folgenden Beschreibung von Ausführungsbeispielen zu entnehmen. Im Wesentlichen gleichbleibende Bauteile sind mit den gleichen Bezugszeichen bezeichnet. Ferner wird bezüglich gleicher Merkmale und Funktionen auf die Beschreibung zum Ausführungsbeispiel gemäß Figur 1 verwiesen. Die Zeichnungen sind Schemazeichnungen und dienen lediglich der Erläuterung der folgenden Ausführungsbeispiele.Further advantages and features can be found in the following description of exemplary embodiments. Substantially identical components are designated by the same reference numerals. Furthermore, with regard to the same features and functions, reference is made to the description of the exemplary embodiment FIG. 1 directed. The Drawings are schematic drawings and are merely illustrative of the following embodiments.

Es zeigen:

Fig. 1
eine Kolben-Zylinder-Einheit mit einer Sensoreinrichung der Erfindung in einer schematischen Seitenansicht,
Fig. 2
die Kolben-Zylinder-Einheit gemäß Fig. 1 in einer Schnittansicht,
Fig. 3
eine Ausgestaltung der Kolben-Zylinder-Einheit gemäß Figur 1 mit einer Messeinrichtung der Erfindung, die Hallsonden aufweist,
Fig. 4
eine vergrößerte Darstellung des Bereichs IV aus Figur 3,
Fig. 5
eine Schranke mit einer Kolben-Zylinder-Einheit gemäß Figur 3 in einem sperrenden Zustand,
Fig. 6
die Schranke gemäß Figur 5 in einem öffnenden Zustand,
Fig. 7
eine Sensoreinrichtung gemäß der Erfindung mit einem Magnet-Widerstandssensor und
Fig. 8
eine alternative Ausgestaltung eines Magnetfelddetektors, wie er anhand der Fign. 3 und 4 beschrieben ist.
Show it:
Fig. 1
a piston-cylinder unit with a sensor device of the invention in a schematic side view,
Fig. 2
the piston-cylinder unit according to Fig. 1 in a sectional view,
Fig. 3
an embodiment of the piston-cylinder unit according to FIG. 1 with a measuring device of the invention, which has Hall probes,
Fig. 4
an enlarged view of the area IV FIG. 3 .
Fig. 5
a barrier with a piston-cylinder unit according to FIG. 3 in a locked state,
Fig. 6
the barrier according to FIG. 5 in an opening state,
Fig. 7
a sensor device according to the invention with a magnetic resistance sensor and
Fig. 8
an alternative embodiment of a magnetic field detector, as it is based on the FIGS. 3 and 4 is described.

Die Figuren 1 und 2 in Verbindung mit den Figuren 5 und 6 stellen diesbezüglich eine Übersichtsdarstellung dar. Die Figuren 3 und 4 konkretisieren dies im Rahmen einer ersten Ausgestaltung der Erfindung, wohingegen Fig. 7 eine zweite alternative Ausgestaltung beschreibt.The Figures 1 and 2 in conjunction with the FIGS. 5 and 6 represent in this regard an overview representation dar. The FIGS. 3 and 4 concretise this in the context of a first embodiment of the invention, whereas Fig. 7 describes a second alternative embodiment.

Figur 1 zeigt in einer Seitenansicht eine Kolben-Zylinder-Einheit 22, die einen Zylinder 20 als erstes Bauteil aufweist, in der ein Kolben 18 (Fig. 2) als zweites Bauteil mit einer Kolbenstange 40 längsverschieblich gelagert ist. Die Kolben-Zylinder-Einheit 22 ist mit einem nicht näher genannten Hydraulikmedium beaufschlagt, mittels welchem die Position des Kolbens 18 innerhalb des Zylinders 20 eingestellt werden kann. Hierzu verfügt der Zylinder 20 über nicht dargestellte Anschlüsse für das Hydraulikmedium, das einem Bereich 52 des Zylinders 20 zugeführt beziehungsweise entnommen werden kann. Über eine steuerbare Hydraulikmediumquelle wird dem Zylinder 20 entsprechend der gewünschten Stellung des Kolbens 18 Hydraulikmedium zugeführt beziehungsweise entnommen, so dass der Kolben 18 die gewünschte Position einnehmen kann. An seinen Enden ist der Zylinder 20 mittels Verschlussdeckeln 46, 48 verschlossen. Der Verschlussdeckel 46 ist dabei hydraulisch dicht. Der Verschlussdeckel 48 weist eine Führung 50 für die Kolbenstange 40 auf und erlaubt zudem eine Durchströmung von Luft. FIG. 1 1 shows a side view of a piston-cylinder unit 22, which has a cylinder 20 as a first component, in which a piston 18 (FIG. Fig. 2 ) Is mounted as a second component with a piston rod 40 longitudinally displaceable. The piston-cylinder unit 22 is acted upon by an unspecified hydraulic medium, by means of which the position of the piston 18 within the cylinder 20 can be adjusted. For this purpose, the cylinder 20 has connections, not shown, for the hydraulic medium, which can be supplied or removed from a region 52 of the cylinder 20. Via a controllable hydraulic medium source, hydraulic fluid is supplied or removed from the cylinder 20 corresponding to the desired position of the piston 18, so that the piston 18 can assume the desired position. At its ends, the cylinder 20 is closed by means of closure covers 46, 48. The closure cap 46 is hydraulically sealed. The closure lid 48 has a guide 50 for the piston rod 40 and also allows a flow of air.

In Figur 2 ist die Kolben-Zylinder-Einheit 22 der Figur 1 in Schnittansicht dargestellt. Zu erkennen ist hier, dass der Kolben 18 mit der Kolbenstange 40 verbunden ist. Der Kolben 18 ist ferner mittels einer nicht näher dargestellten Dichtung im Zylinder 20 geführt, so dass das Hydraulikmedium, welches sich im rechten Bereich 52 der dargestellten Kolben-Zylinder-Einheit 22 befindet, nicht austreten kann. Durch Zuführung beziehungsweise Abführung von Hydraulikmedium aus dem Bereich 52 des Zylinders 20 kann somit die Stellung des Kolbens 18 eingestellt werden.In FIG. 2 is the piston-cylinder unit 22 of the FIG. 1 shown in sectional view. It can be seen here that the piston 18 is connected to the piston rod 40. The piston 18 is further guided by means of a seal not shown in the cylinder 20, so that the hydraulic medium, which is located in the right area 52 of the illustrated piston-cylinder unit 22, can not escape. By supplying or discharging hydraulic medium from the region 52 of the cylinder 20, the position of the piston 18 can thus be adjusted.

Wie aus den Figuren 1 und 2 ersichtlich ist, weist die Kolben-Zylinder-Einheit 22 eine Sensoreinrichtung 10 gemäß der Erfindung auf, die eine Messeinrichtung 24 umfasst. Die Messeinrichtung erfasst die Position des Kolbens 18 im Zylinder 20 und liefert ein der Position identifizierendes Signal. Die Messeinrichtung 24 weist vorliegend einen Magnetfelddetektor 54 sowie einen Magneten 32 auf, der in diesem Ausführungsbeispiel durch einen Permanentmagneten gebildet ist. Der Magnetfelddetektor 54 erstreckt sich vorliegend über den Verfahrweg des Kolbens 18 im Rahmen eines Kolbenhubs im Zylinder 20. Der Permanentmagnet 32 ist an einer nicht bezeichneten Oberfläche des Kolbens 18 befestigt, die dem Bereich 52 zugewandt ist.Like from the Figures 1 and 2 can be seen, the piston-cylinder unit 22, a sensor device 10 according to the invention, which comprises a measuring device 24. The measuring device detects the position of the piston 18 in the cylinder 20 and provides a position identifying signal. The measuring device 24 has in the present case a magnetic field detector 54 and a magnet 32, which is formed in this embodiment by a permanent magnet. The magnetic field detector 54 extends here over the travel of the piston 18 in the context of a piston stroke in the cylinder 20. The permanent magnet 32 is fixed to an unspecified surface of the piston 18, which faces the region 52.

Die Messeinrichtung 24 ist vorliegend derart ausgebildet, dass sie unter Auswertung des Magnetfelddetektors 54 ein Signal liefert, welches in Abhängigkeit der Position des durch den Permanentmagneten 32 erzeugten Magnetfelds ist. Hierfür kann die Messeinrichtung 24 Signale und/oder Betriebszustände des Magnetfelddetektors 54 abfragen und informationstechnisch verarbeiten. Hieraus ermittelt die Messeinrichtung 24 das die Position des Kolbens 18 im Zylinder 20 identifizierende Signal. Das Signal kann aber auch direkt ein Signal des Magnetfelddetektors 54 sein, das heißt, dass die Messeinrichtung 24 das Signal des Magnetfelddetektors 54 nicht verarbeitet sondern direkt als das die Position identifizierende Signal ausgibt. Dadurch kann mittels des vom Magnetfelddetektor 54 gelieferten Signals die Position des Permanentmagneten 32 innerhalb des Zylinders 20 und demzufolge auch die Position des Kolbens 18 innerhalb des Zylinders 20 ermittelt werden. Das Signal wird von der Messeinrichtung 24 beziehungsweise Sensoreinrichtung 10 an eine nicht näher dargestellte Steuerung übermittelt, die das Signal entsprechend auswertet und daraus eine konkrete Positionsinformation des gegenüber dem Zylinder 20 relativ bewegbaren Kolben 18 bestimmt.In the present case, the measuring device 24 is designed in such a way that, by evaluating the magnetic field detector 54, it delivers a signal which is a function of the position of the magnetic field generated by the permanent magnet 32. For this purpose, the measuring device 24 query signals and / or operating states of the magnetic field detector 54 and process information technology. From this, the measuring device 24 determines the signal identifying the position of the piston 18 in the cylinder 20. The signal can also be directly a signal of the magnetic field detector 54, that is to say that the measuring device 24 the signal of the magnetic field detector 54 is not processed but outputs directly as the position identifying signal. As a result, the position of the permanent magnet 32 within the cylinder 20 and consequently also the position of the piston 18 within the cylinder 20 can be determined by means of the signal supplied by the magnetic field detector 54. The signal is transmitted from the measuring device 24 or sensor device 10 to a controller not shown, which evaluates the signal accordingly and determines therefrom a specific position information of relative to the cylinder 20 relatively movable piston 18.

Figur 3 zeigt die Kolben-Zylinder-Einheit der Figuren 1 und 2 in Schnittansicht mit einem Magnetfelddetektor 54, der aus einer Vielzahl von entlang des Verfahrwegs 26 angeordneten Hall-Sonden 28 gebildet ist. Figur 4 zeigt eine vergrößerte Darstellung des Bereichs IV in Figur 3. Deutlich zu erkennen ist, dass der Magnetfelddetektor 54 aus direkt benachbart zueinander angeordneten Hall-Sonden 28 besteht. Diese erstrecken sich über den Verfahrweg 26 des Kolbens 18 im Zylinder 20. Wie aus Figur 4 ferner ersichtlich ist, ist der Permanentmagnet mit seinem Nordpol mit dem Kolben verbunden. Der Südpol ist dagegen dem Bereich 52 zugewandt. Hierdurch bildet sich ein Magnetfeld aus, wie es anhand von Bezugszeichen 42 in der Figur 4 dargestellt ist. Das Magnetfeld 42 des Permanentmagneten 32 durchdringt die vorzugsweise magnetisch nicht leitfähige Wand des Zylinders 20 und den entlang des Verfahrwegs 26 angeordneten Magnetfelddetektor 54. FIG. 3 shows the piston-cylinder unit of Figures 1 and 2 in a sectional view with a magnetic field detector 54, which is formed from a plurality of arranged along the travel path 26 Hall probes 28. FIG. 4 shows an enlarged view of the area IV in FIG. 3 , It can be clearly seen that the magnetic field detector 54 consists of directly adjacent Hall probes 28. These extend over the path 26 of the piston 18 in the cylinder 20. As out FIG. 4 is also apparent, the permanent magnet is connected with its north pole to the piston. The south pole, however, faces the area 52. As a result, a magnetic field is formed, as indicated by reference numeral 42 in FIG FIG. 4 is shown. The magnetic field 42 of the permanent magnet 32 penetrates the preferably magnetically nonconductive wall of the cylinder 20 and the magnetic field detector 54 arranged along the travel path 26.

Das Magnetfeld 42 durchdringt somit einen Teil der Hall-Sonden 28, die sich benachbart im Bereich des Permanentmagneten 32 befinden. Die entsprechenden Hall-Sonden 28 liefern ein dem sie durchdringenden Magnetfeld entsprechendes Signal, welches mittels der nicht dargestellten Steuerung ausgewertet wird. Hieraus gewinnt die Steuerung eine Positionsinformation und liefert als Ausgangssignal ein entsprechendes Positionssignal als Signal der Sensoreinrichtung 10.The magnetic field 42 thus penetrates a portion of the Hall probes 28 located adjacent to the permanent magnet 32. The corresponding Hall probes 28 deliver a signal corresponding to the magnetic field which is evaluated by means of the control (not shown). From this, the controller obtains position information and supplies as output signal a corresponding position signal as the signal of the sensor device 10.

Für langsame Bewegungen des Kolbens 18 gegenüber dem Zylinder 20 sowie für stationäre Zustände ist es nicht erforderlich, dass der Zylinder 20 aus einem nichtelektrisch leitfähigen Werkstoff gebildet ist. Bei hinreichend starkem Permanentmagneten 32 kann durch entsprechende Anordnung und Empfindlichkeit des Magnetfelddetektors 54 trotzdem die Position des Kolbens 18 im Zylinder 20 ermittelt werden. Für eine Verfolgung von schnellen Änderungen des Kolbens 18 im Zylinder 20 empfiehlt es sich jedoch, die elektrische Leitfähigkeit des Zylinders 20 möglichst gering zu wählen, um eine Schirmwirkung aufgrund von Wirbelstromeffekten möglichst zu vermeiden. Der Zylinder 20 kann hierfür auch geschichtet mit Isolationen zwischen den einzelnen Schichten ausgebildet sein, um die Wirbelstromausbildung zu vermeiden.For slow movements of the piston 18 relative to the cylinder 20 as well as for stationary states, it is not necessary that the cylinder 20 is formed of a non-electrically conductive material. If the permanent magnet 32 is sufficiently strong, the position of the piston 18 in the cylinder 20 can nevertheless be determined by appropriate arrangement and sensitivity of the magnetic field detector 54. For a tracking of rapid changes of the piston 18 in the cylinder 20, it is recommended, however, the to choose electrical conductivity of the cylinder 20 as low as possible in order to avoid as possible shielding effect due to eddy current effects. For this purpose, the cylinder 20 may also be layered with insulation between the individual layers in order to avoid eddy current formation.

Figur 5 zeigt in einer schematischen Seitenansicht eine Schranke 16, die einen gegenüber einem Pfosten 12 schwenkbar gelagerten Baum 14 aufweist. In der Darstellung gemäß Figur 5 befindet sich die Schranke 16 im sperrenden Zustand. In einem Drehpunkt 56 am Pfosten 12 ist der Baum 14 schwenkbar gelagert. Ferner ist an einem Zapfen 62 des Baums 14 ein Verbindungsflansch der Kolbenstange 40 angelenkt. Ebenso weist der Verschlussdeckel 46 einen Verbindungsflansch 60 auf, der an einem Zapfen 64 des Pfostens 12 angelenkt ist. Durch diese Konstruktion ist es möglich, mittels des Kolbenhubs des Kolbens 18 im Zylinder 20 den Baum 14 der Schranke 16 zwischen den Endstellungen, und zwar dem sperrenden Zustand und dem öffnenden Zustand, zu verschwenken. FIG. 5 shows a schematic side view of a barrier 16, which has a relative to a post 12 pivotally mounted tree 14. In the illustration according to FIG. 5 the barrier 16 is in the locked state. In a pivot point 56 on the post 12 of the tree 14 is pivotally mounted. Further, a connecting flange of the piston rod 40 is articulated to a pin 62 of the tree 14. Likewise, the closure lid 46 has a connecting flange 60, which is articulated on a pin 64 of the post 12. By this construction, it is possible to pivot by means of the piston stroke of the piston 18 in the cylinder 20, the boom 14 of the barrier 16 between the end positions, namely the locking state and the opening state.

Mittels der an der Kolben-Zylinder-Einheit 22 vorgesehenen Sensoreinrichtung 10 der Erfindung kann nun die jeweilige Position des Kolbens 18 im Zylinder 20 und wegen der eindeutigen Zuordnung der Kolbenstellung des Kolbens 18 im Zylinder 20 zur Schwenkstellung des Baumes 14 gegenüber dem Pfosten 12 der Schranke 16 damit auch die Schwenkposition des Baums 14 gegenüber dem Pfosten 12 ermittelt werden. Die Erfindung erlaubt es somit, die Schwenkposition des Baumes 14 in beliebigen Winkelstellungen zu erfassen und mittels der Sensoreinrichtung 10 ein entsprechendes Signal zu liefern. Dadurch kann eine zuverlässige Erfassung der Schwenkposition des Baums 14 erreicht werden. Auch Fehlstellung können erfasst werden, wenn die Sensoreinrichtung für einen kontinuierlichen oder wenigstens zeitdiskret wiederholten Betrieb vorgesehen ist.By means provided on the piston-cylinder unit 22 sensor device 10 of the invention can now the respective position of the piston 18 in the cylinder 20 and because of the unambiguous assignment of the piston position of the piston 18 in the cylinder 20 to the pivotal position of the tree 14 relative to the post 12 of the barrier 16 so that the pivotal position of the tree 14 relative to the post 12 can be determined. The invention thus makes it possible to detect the pivoting position of the tree 14 in any desired angular positions and to provide a corresponding signal by means of the sensor device 10. Thereby, a reliable detection of the pivotal position of the tree 14 can be achieved. Also malposition can be detected when the sensor device is provided for a continuous or at least discrete-time repeated operation.

Grundsätzlich kann natürlich auch vorgesehen sein, dass die Sensoreinrichtung 10 anstelle der Kolben-Zylinder-Einheit 22 direkt an der Schranke 16 angeordnet ist, beispielsweise indem der Permanentmagnet 32 am Baum 14 und der Magnetfelddetektor 54 am Pfosten 12 angeordnet sind.In principle, it can of course also be provided that the sensor device 10 is arranged instead of the piston-cylinder unit 22 directly to the barrier 16, for example by the permanent magnet 32 on the tree 14 and the magnetic field detector 54 are arranged on the post 12.

Darüber hinaus kann die Sensoreinrichtung 10 eine nicht dargestellte Vergleichsschaltung aufweisen, die ein von der Messeinrichtung 24 geliefertes Signal mit einem Vergleichswert vergleicht. Der Vergleichswert kann einer Vorzugsstellung des zweiten Bauelements, hier der Kolben 18, gegenüber dem ersten Bauelement, hier der Zylinder 20, entsprechen, was in diesem Ausführungsbeispiel einer Vorzugsstellung des Baums 14 gegenüber dem Pfosten 12 entspricht. Mittels der Vergleichsschaltung kann ein Signal erzeugt werden, wenn das zweite Bauteil die Vorzugsstellung gegenüber dem ersten Bauteil einnimmt. Das Signal kann beispielsweise mittels Fernkommunikationsmitteln an eine Zentrale übermittelt werden. Durch die Vergleichsschaltung kann auch die Funktion eines Endschalters mit der Sensoreinrichtung der Erfindung realisiert werden.In addition, the sensor device 10 may have a comparison circuit, not shown, which has a signal supplied by the measuring device 24 with a comparison value compares. The comparison value may correspond to a preferred position of the second component, in this case the piston 18, relative to the first component, in this case the cylinder 20, which in this embodiment corresponds to a preferred position of the tree 14 with respect to the post 12. By means of the comparison circuit, a signal can be generated when the second component occupies the preferred position relative to the first component. The signal can be transmitted, for example, by means of remote communication to a central office. By the comparison circuit, the function of a limit switch can be realized with the sensor device of the invention.

Figur 7 zeigt eine alternative Ausgestaltung eines Magnetfelddetektors 54. Die grundsätzliche Anordnung und Funktion des Magnetfelddetektors 54 entspricht der Ausgestaltung des vorhergehenden Ausführungsbeispiels, weshalb diesbezüglich auf dieses verwiesen wird. Im Unterschied zum vorhergehenden Ausführungsbeispiel besteht der Magnetfelddetektor 54 in dieser Ausgestaltung aus einer elektrisch leitfähigen Bahn 34 aus Kupfer, die entlang des Verfahrwegs 26 an der äußeren Zylinderwand des Zylinders 20 aufgebracht ist. Die Kupferschicht ist an ihrer äußeren Oberfläche vergoldet. Beabstandet hierzu und direkt gegenüberliegend ist eine Widerstandsbahn 36 aus einem Widerstandsmaterial angeordnet. Vorliegend ist als Widerstandsmaterial Konstantan vorgesehen. Die Widerstandsbahn ist bandförmig ausgebildet und über nicht näher dargestellte Abstandshalter auf einen vorgegebenen Abstand zur elektrisch leitfähigen Bahn 34 gehalten. An seiner der elektrisch leitfähigen Bahn 34 gegenüberliegenden Seite weist die Widerstandsbahn 36 eine magnetisch permeable Schicht 44 auf. Diese besteht aus einem Ferrrit-Komplex. Diese magnetisch permeable Schicht 44 wird aufgrund des Magnetfeldes des Permanentmagneten 32 einer Anziehungskraft ausgesetzt. Dadurch tritt die Widerstandsbahn 36 im Bereich des Permanentmagneten 32 in Kontakt mit der elektrisch leitfähigen Bahn 34 und bildet hierdurch einen elektrischen Kontakt 38. An einem der beiden Enden der elektrischen Widerstandsbahn 36 und der elektrisch leitfähigen Bahn 34 ist ein Widerstandsmessgerät angeschlossen, welches den jeweiligen elektrischen Widerstand ermittelt. Die nicht näher bezeichnete Steuerung ermittelt aus dem Widerstandswert die aktuelle Position des Kolbens 18 und übermittelt ein entsprechendes Signal an eine Zentrale. FIG. 7 shows an alternative embodiment of a magnetic field detector 54. The basic arrangement and function of the magnetic field detector 54 corresponds to the embodiment of the previous embodiment, which is why reference is made in this regard. In contrast to the previous embodiment, the magnetic field detector 54 in this embodiment consists of an electrically conductive track 34 made of copper, which is applied along the travel path 26 on the outer cylinder wall of the cylinder 20. The copper layer is gilded on its outer surface. Spaced for this purpose and directly opposite a resistor track 36 is arranged from a resistance material. In the present case is provided as a resistance material Konstantan. The resistance path is band-shaped and held on not shown spacers to a predetermined distance from the electrically conductive path 34. On its side opposite the electrically conductive track 34, the resistance track 36 has a magnetically permeable layer 44. This consists of a ferrite complex. This magnetically permeable layer 44 is subjected to an attraction due to the magnetic field of the permanent magnet 32. As a result, the resistance path 36 in the region of the permanent magnet 32 comes into contact with the electrically conductive path 34 and thereby forms an electrical contact 38. At one of the two ends of the electrical resistance path 36 and the electrically conductive path 34, a resistance measuring device is connected, which the respective electrical Resistance determined. The unspecified controller determines from the resistance value, the current position of the piston 18 and transmits a corresponding signal to a central office.

Figur 8 zeigt eine alternative Ausgestaltung für einen Magnetfelddetektor, wie er im Ausführungsbeispiel zu den Figuren 3 und 4 beschrieben ist. Der Magnetfelddetektor ist in dieser Ausgestaltung mit dem Bezugszeichen 66 bezeichnet. Der Magnetfelddetektor 66 weist eine Leiterplatte beziehungsweise gedruckte Schaltung 68 auf, auf der wie bei dem Magnetfelddetektor 54 Hall-Sonden 28 direkt benachbart, das heißt, unmittelbar aneinandergrenzend zueinander in einer Linie in Reihe angeordnet sind. Die Linie ist parallel zu einer Richtung 78 ausgerichtet, die zum Verfahrweg 26 parallel ausgerichtet ist. Der Richtungspfeil 78 zeigt die Hin- und Herbewegung des Kolbens 18 im Zylinder 20 an. FIG. 8 shows an alternative embodiment of a magnetic field detector, as in the embodiment of the FIGS. 3 and 4 is described. The magnetic field detector is designated in this embodiment by the reference numeral 66. The magnetic field detector 66 has a circuit board or printed circuit 68 on which, as in the magnetic field detector 54, Hall probes 28 are arranged directly adjacent, that is to say, directly adjoining one another in a line in series. The line is aligned parallel to a direction 78 which is parallel to the path 26. The directional arrow 78 indicates the reciprocation of the piston 18 in the cylinder 20.

Der Magnetfelddetektor 66 ist derart ausgebildet, dass die Leiterplatte 68 sich über die gesamte Länge des möglichen Hubs des Kolbens 18 im Zylinder 20 erstreckt. Bezüglich des mechanischen Aufbaus der Kolben-Zylinder-Einheit 22 wird im Übrigen auf die vorhergehenden Ausführungen zu den Figuren 1 bis 4 verwiesen.The magnetic field detector 66 is designed in such a way that the printed circuit board 68 extends over the entire length of the possible stroke of the piston 18 in the cylinder 20. With regard to the mechanical structure of the piston-cylinder unit 22 is incidentally to the previous versions of the FIGS. 1 to 4 directed.

In den Endbereichen 80, 82 des möglichen Hubs des Kolbens 18 im Zylinder 20 der Kolben-Zylinder-Einheit 22 weist die Leiterplatte 68 Gruppen von Hall-Sonden 70, 72, 74 sowie 76 auf, die jeweils in einer Reihe angeordnet sind. Die Hall-Sonden jeder Gruppe sind benachbart zueinander in Reihen auf einer Linie angeordnet, die parallel zum Richtungspfeil 78 ausgerichtet ist. Die Länge der Reihen von Hall-Sonden 70, 72, 74 sowie 76 ist auf den jeweiligen Endbereich 80, 82 begrenzt und erstreckt sich nicht über die gesamte Länge des möglichen Verfahrwegs 26 des Kolbens 18 im Zylinder 20. Die Hall-Sonden sind in dieser Ausgestaltung nicht nur in Richtung 78 benachbart zueinander angeordnet, sondern in bestimmten Vorzugsbereichen, hier den Endbereichen 80, 82 der Kolbenstellung des Kolbens 18 im Zylinder 20, auch quer dazu. Die Gruppen von Hall-Sonden 70, 72, 74 und 76 sind ferner derart angeordnet, dass sie jeweils benachbart zu einer Gruppe von Hall-Sonden angeordnet sind. In den Gruppen von Hall-Sonden 70, 72, 74 und 76 sind die einzelnen Hall-Sonden 70, 72, 74 und 76 zu direkt benachbarten Hall-Sonden 70, 72, 74 und 76 etwa 1 mm beabstandet angeordnet. Zwischen den Gruppen von Hall-Sonden 70, 72, 74 und 76 in den Endbereichen 80, 82, und hier in Fortsetzung der Gruppe von Hall-Sonden 72, ist die Reihe von Hall-Sonden 28 angeordnet, so dass eine im Wesentlichen durchgehende Linie mit daran in einer Reihe angeordneten Hall-Sonden 28, 72 gebildet ist.In the end regions 80, 82 of the possible stroke of the piston 18 in the cylinder 20 of the piston-cylinder unit 22, the circuit board 68 on groups of Hall probes 70, 72, 74 and 76, which are each arranged in a row. The Hall probes of each group are arranged adjacent to one another in rows on a line which is aligned parallel to the directional arrow 78. The length of the rows of Hall probes 70, 72, 74 and 76 is limited to the respective end region 80, 82 and does not extend the full length of the possible travel path 26 of the piston 18 in the cylinder 20. The Hall probes are in this Embodiment arranged not only in the direction 78 adjacent to each other, but in certain preferential areas, here the end portions 80, 82 of the piston position of the piston 18 in the cylinder 20, also transversely thereto. The groups of Hall probes 70, 72, 74 and 76 are further arranged so as to be respectively adjacent to a group of Hall probes. In the groups of Hall probes 70, 72, 74, and 76, the individual Hall probes 70, 72, 74, and 76 are spaced approximately 1 mm apart from directly adjacent Hall probes 70, 72, 74, and 76. Between the groups of Hall probes 70, 72, 74 and 76 in the end regions 80, 82, and here in continuation of the group of Hall probes 72, the series of Hall probes 28 is arranged so that a substantially continuous line formed with Hall probes 28, 72 arranged in a row thereon.

Ferner ist aus Figur 8 ersichtlich, dass die einzelnen Hall-Sonden benachbarter Gruppen gegenüber einander leicht versetzt in Richtung des Richtungspfeils 78 sind. Diese Ausgestaltung erlaubt es, in den Endbereichen 80, 82 des Kolbenhubs eine erhöhte Auflösung zu erreichen. Dies ist unter anderem deshalb aus steuerungstechnischen Gründen von Vorteil, weil das Erreichen der jeweiligen Endstellung vorzeitig erkannt werden kann und die Geschwindigkeit des Kolbens 18 im Zylinder 20 reduziert werden kann, damit der Kolben 18 nicht an stirnseitigen Abschlüssen des Zylinders 20 anschlägt. Darüber hinaus kann eine feinjustierte Endstellung erreicht werden, die je nach Anwendung und Bedarf programmierbar sein kann. Dies ermöglicht es, die Kolben-Zylinder-Einheit 22 für unterschiedlichste Schranken einzusetzen und die Endstellungen sehr fein für die jeweilige Schranke zu justieren. Hierdurch lässt sich die Vielseitigkeit der Kolben-Zylinder-Einheit weiter verbessern.Furthermore, it is off FIG. 8 It can be seen that the individual Hall probes of adjacent groups are slightly offset with respect to one another in the direction of the directional arrow 78. This embodiment makes it possible to achieve an increased resolution in the end regions 80, 82 of the piston stroke. This is among other reasons, for reasons of control technology advantageous because the achievement of the respective end position recognized prematurely can be reduced and the speed of the piston 18 in the cylinder 20 can be reduced, so that the piston 18 does not abuts on end-side terminations of the cylinder 20. In addition, a finely adjusted end position can be achieved, which can be programmable depending on the application and needs. This makes it possible to use the piston-cylinder unit 22 for a variety of barriers and to adjust the end positions very fine for the respective barrier. As a result, the versatility of the piston-cylinder unit can be further improved.

Bezüglich der weiteren Funktionen und Merkmale wird zu dem vorhergehenden Ausführungsbeispiel verwiesen.With regard to the further functions and features, reference is made to the preceding exemplary embodiment.

Die zuvor genannten Ausführungsbeispiele dienen lediglich der Erläuterung der Erfindung und sind für diese nicht beschränkend.The aforementioned embodiments are merely illustrative of the invention and are not limitative of it.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
Sensoreinrichtungsensor device
1212
Pfostenpost
1414
Baumtree
1616
SchrankeCabinets
1818
Kolbenpiston
2020
Zylindercylinder
2222
Kolben-Zylinder-EinheitPiston-cylinder unit
2424
Messeinrichtungmeasuring device
2626
Verfahrwegtraverse
2828
Hall-SondenHall probes
3030
Magnet-WiderstandssensorMagnetic resistance sensor
3232
Permanentmagnetpermanent magnet
3434
elektrisch leitfähige Bahnelectrically conductive track
3636
Widerstandsbahnresistance path
3838
elektrischer Kontaktelectric contact
4040
Kolbenstangepiston rod
4242
Magnetfeldmagnetic field
4444
Magnetisch permeable SchichtMagnetically permeable layer
4646
Verschlussdeckelcap
4848
Verschlussdeckelcap
5050
Führungguide
5252
BereichArea
5454
Magnetfelddetektormagnetic field detector
5656
Drehpunktpivot point
5858
Verbindungsflanschconnecting flange
6060
Verbindungsflanschconnecting flange
6262
Zapfenspigot
6464
Zapfenspigot
6666
Magnetfelddetektormagnetic field detector
6868
Leiterplattecircuit board
7070
Hall-SondenHall probes
7272
Hall-SondenHall probes
7474
Hall-SondenHall probes
7676
Hall-SondenHall probes
7878
Richtungspfeilarrow
8080
BereichArea
8282
BereichArea

Claims (12)

  1. A sensor device (10) for detecting a position of a piston (18) with respect to a cylinder (20) of a piston-cylinder unit, comprising a measuring device (24) which comprises a magnetic field detector (54) as well as a magnet (32), wherein the magnetic field detector (54) is arranged on the cylinder (20) and the magnet (32) is placed on the piston (18), wherein the magnetic field detector (54) comprises a plurality of magnetic field sensors (28, 70, 72, 74, 76) that are placed adjacent to each other along the travel path (26),
    characterized in that
    the magnetic field sensors (70, 72, 74, 76) are also placed transversely with respect to the travel path (26) in at least one area of a section of the travel path (26).
  2. A sensor device according to claim 1, characterized in that the magnetic field detector (54) comprises an electrically conductive track (34) which is at least partially placed along the travel path (26).
  3. A sensor device according to claim 1 or 2, characterized in that the magnetic field detector (54) comprises a resistance track (36) which is preferably parallel to the electrically conductive track (34).
  4. A sensor device according to claim 3, characterized in that the electrically conductive track (34) and the resistance track (36) are spaced from each other.
  5. A sensor device according to one of the claims 1 through 4, characterized in that the magnetic field detector (54) comprises a magnetically permeable component which preferably comprises an electric contact.
  6. A sensor device according to one of the claims 2 through 5, characterized in that the electrically conductive track (34) and/or the resistance track (36) are magnetically permeable.
  7. A sensor device according to one of the claims 1 through 6, characterized in that the magnetic field sensors (28, 70, 72, 74, 76) are disposed successively in rows.
  8. A sensor device according to claim 7, characterized in that the magnetic field sensors (70, 72, 74, 76) of adjacent rows are offset with respect to each other.
  9. A sensor device according to one of the claims 1 through 8, characterized in that the magnetic field detector (54, 66) comprises a closing of the magnetic circuit.
  10. A barrier (16) having an arm (14) which is arranged on a post (12) in a displaceable manner, which arm (14) can be displaced by means of a piston-cylinder unit (22), characterized in that the piston-cylinder unit (22) comprises a sensor device (10) according to one of the preceding claims.
  11. A barrier according to claim 10, characterized in that the magnetic field sensors (28), the resistance track (36) and/or the electrically conductive track (34) are integrally formed with the piston (18) and/or the cylinder (20).
  12. A barrier according to claim 10 or 11, characterized in that the cylinder (20) is made of an essentially magnetically impermeable material.
EP20090013183 2009-10-20 2009-10-20 Sensor device Not-in-force EP2317285B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20090013183 EP2317285B1 (en) 2009-10-20 2009-10-20 Sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20090013183 EP2317285B1 (en) 2009-10-20 2009-10-20 Sensor device

Publications (2)

Publication Number Publication Date
EP2317285A1 EP2317285A1 (en) 2011-05-04
EP2317285B1 true EP2317285B1 (en) 2014-12-10

Family

ID=42712651

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20090013183 Not-in-force EP2317285B1 (en) 2009-10-20 2009-10-20 Sensor device

Country Status (1)

Country Link
EP (1) EP2317285B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006008157A1 (en) * 2006-02-22 2007-09-06 Sick Ag Magnetic sensor
US20090151463A1 (en) * 2007-12-12 2009-06-18 Recio Mario A Non-contact pressure switch assembly

Also Published As

Publication number Publication date
EP2317285A1 (en) 2011-05-04

Similar Documents

Publication Publication Date Title
DE102010050765B9 (en) Position measuring system for detecting an excellent position of a linearly movable guide element
EP2564164B1 (en) Magnetic length measuring system, length measuring method and method for producing a magnetic length measuring system
EP2072961B1 (en) Sensor
DE102009034744A1 (en) Absolute magnetic position sensor
EP1150416B1 (en) Electrodynamic direct drive of a linear motor
EP3108210B1 (en) Sensor arrangement and method for determining a position and/or a change in the position of a measurement object
WO2008000360A1 (en) Passage gate
EP3707475B1 (en) Switch having a magnet arrangement
EP2149784A1 (en) Magnetic path sensor system
EP1074818A2 (en) Position sensor
WO2012119713A1 (en) Apparatus for detecting a magnetically conductive object and position measuring system for measuring the position of a guide rod and associated position measuring method
DE19612422C2 (en) Potentiometer device with a linearly displaceable control element and signal-generating means
EP2317285B1 (en) Sensor device
DE102019116541B4 (en) Tumbler and a method for operating a tumbler
WO2003062741A2 (en) Path sensor with an magnetoelectric transformer element
WO2010130506A2 (en) Positioning system for a traveling transfer system
EP0966653A1 (en) Device for detecting the position of a moveable magnet to produce a magnetic field
EP2028451B1 (en) Inductive sensor assembly with a step-shaped coil core
DE19711781C2 (en) Device for detecting the position of a movably arranged magnet for generating a magnetic field through a wall made of ferromagnetic material, in particular an actuator with a movable actuator
DE102012204321A1 (en) Electromagnetic actuator suitable for armature position detection
EP2483664A1 (en) Flow chamber having a gmr sensor and a cell guiding device
DE102007000597A1 (en) Method and device for contactless measurement of a relative displacement of components to each other
DE102009008756A1 (en) Valve unit for vehicle hydraulic system, has capacitive sensor for detecting position of valve piston and arranged such that valve piston is partly moved in detection area of capacitive sensor
EP2281180B1 (en) Measurement element for a length measuring system
EP3561525B1 (en) Magnetic shielding of a sensor with internal interfering field

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110319

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIC1 Information provided on ipc code assigned before grant

Ipc: G01D 5/14 20060101AFI20140616BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140814

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009010320

Country of ref document: DE

Effective date: 20150115

Ref country code: AT

Ref legal event code: REF

Ref document number: 700881

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150115

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141210

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150310

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150410

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150410

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009010320

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

26N No opposition filed

Effective date: 20150911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20151021

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20151022

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151218

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151020

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151020

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151020

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009010320

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091020

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 700881

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161020

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210