EP2310657A1 - Verfahren und vorrichtung zur dynamiküberwachung einer breitband-lambdasonde - Google Patents

Verfahren und vorrichtung zur dynamiküberwachung einer breitband-lambdasonde

Info

Publication number
EP2310657A1
EP2310657A1 EP09780117A EP09780117A EP2310657A1 EP 2310657 A1 EP2310657 A1 EP 2310657A1 EP 09780117 A EP09780117 A EP 09780117A EP 09780117 A EP09780117 A EP 09780117A EP 2310657 A1 EP2310657 A1 EP 2310657A1
Authority
EP
European Patent Office
Prior art keywords
signal
lambda
lambda probe
broadband
modeled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09780117A
Other languages
English (en)
French (fr)
Inventor
Andreas Michalske
Sascha-Juan Moran Auth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2310657A1 publication Critical patent/EP2310657A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/228Warning displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2400/00Control systems adapted for specific engine types; Special features of engine control systems not otherwise provided for; Power supply, connectors or cabling for engine control systems
    • F02D2400/08Redundant elements, e.g. two sensors for measuring the same parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen

Definitions

  • the invention relates to a method for monitoring dynamic properties of a broadband lambda probe, wherein a measured lambda signal is determined by means of the broadband lambda probe, which corresponds to an oxygen concentration in the exhaust gas of an internal combustion engine, wherein the engine is associated with an observer, the input variables
  • the modeled lambda signal generates and from the difference of the modeled lambda signal and the measured lambda signal or from the difference between a signal derived from the modeled lambda signal and a signal derived from the measured lambda signal, an estimation error signal as an input variable in the observer Model upstream
  • the invention further relates to a device for monitoring dynamic properties of a broadband lambda probe, wherein by means of the broadband lambda probe, an oxygen concentration in the exhaust gas of an internal combustion engine can be determined, wherein the internal combustion engine is associated with an engine control unit, wherein a circuit or a program sequence is provided, which includes an observer, which generates a modeled lambda signal from input variables and wherein from the difference of the modeled lambda signal and a lambda signal measured by means of the broadband lambda probe or from the difference of one of the modeled
  • Lambda signal derived signal and a signal derived from the measured lambda signal an estimation error signal is formed as an input of an observer in a model upstream controller.
  • diesel-fueled internal combustion engines may be in a lambda-based
  • Control of the oxygen content of the exhaust gas measured with a broadband lambda probe and exhaust gas recirculation, the boost pressure and the start of injection, the exhaust gas quality can be optimized. This control can continue to be used to optimize the consumption of the internal combustion engine. However, due to aging effects, the dynamic properties of the broadband lambda probe may change so that their response time and dead time become sufficiently fast
  • Determining the exhaust gas composition is no longer sufficient, which can lead to increased pollutant emissions.
  • the increase or decrease of the lambda probe signal will be affected by certain changes in the lambda probe
  • a measure of the dynamic properties typically one of the following variables is used: delay time of a step response in the event of a sudden change in the oxygen content of the exhaust gas, gradient of the lambda probe signal or the ratio of the slopes of a measured to a calculated change in the oxygen content of the exhaust gas.
  • the delay time of the step response is referred to as time constant or t63 time.
  • Dead times arise through transport processes such as exemplary gas running times of the exhaust gas from the exhaust valve of the internal combustion engine to the broadband lambda probe. It is to be expected that, according to future regulations for on-board diagnosis, too long dead times of the broadband lambda probe will have to be recognized. It may be sufficient not to determine the dead time as such, but merely to compare a measure of the dead time with predetermined limits.
  • the method should be implemented without intervention in the air or injection system.
  • the object of the invention relating to the method is solved by determining a measure of the dynamic properties of the broadband lambda probe characterized by a dead time and a reaction time from a rating of the estimated error signal or a quantity derived therefrom, and the measure for the dynamic range Properties are compared with predetermined limits to assess how the dynamic properties of the broadband lambda probe sufficient for a given operation of the internal combustion engine.
  • the dynamic properties of the broadband lambda probe in the exhaust duct of a diesel fuel-powered internal combustion engine can be characterized by a reaction of its oxygen signal with a jump in the oxygen concentration in the exhaust gas; this size is called an oxygen jump response.
  • the oxygen jump response can be characterized by a reaction time or t63 time, which is the time from a first reaction of the signal to the achievement of 63% of the final value, and a dead time. Dead time refers to a shift of the signal to larger time values for the same signal form.
  • the method can be implemented as software in a control unit of the engine control, wherein the control unit contains an electronic memory and the program code of the software is stored on a machine-readable memory.
  • the estimated error signal determined from the difference between a modeled lambda signal and a measured lambda signal becomes larger as the dead time increases, since the phase delay leads to an increasing difference.
  • the modeling of the lambda signal can take place in a so-called "Fuel Mass Observer” (FMO), which is a model of the system to be controlled and / or controlled, including, among other things, a dead-time element and a first-order delay element around the From the point of view of control engineering, the FMO is an observer which can be used to set the disturbance variable, and this observer receives the estimated error signal as an input signal via a controller Behavior of the real system by mistake or manipulation of the structure of the internal combustion engine and - A - the exhaust duct, this leads to estimation errors and manipulated variable deflections of the observer FMO. It may be sufficient for carrying out the method to implement only parts of the FMO in a motor control as a program sequence or circuit.
  • FMO Fluel Mass Observer
  • a dead time of the broadband lambda probe leads to a time shift between the modeled lambda signal and the measured lambda signal.
  • the area between the signal curves increases with increasing dead time and with increasing time constant, so that the measure of the dynamic properties of the broadband lambda probe is determined from an integral of the value or square of the estimated error signal formed over a predetermined period of time can.
  • the magnitude or square of the estimate error signal is used so that areas under positive and negative curve sections can not compensate.
  • Exceeding a broadband lambda probe dead time considered critical can be linked to a value of the integral that can be used as a first threshold.
  • inadequate dynamics of the broadband lambda probe are inferred and an error message and / or a substitute reaction are initiated if, in several determinations, the integral exceeds a predetermined first limit value. It can be provided that the error message and / or replacement reaction is only initiated if, in the case of repeated determination, more than exceeding the predetermined limit is exceeded.
  • a further embodiment of the method provides that a counter is provided and that the counter is incremented when the integral exceeds the predetermined first limit, that the counter is decremented or set to the count zero, when the integral falls below a second predetermined limit and that an error message and / or replacement reaction is initiated when the counter reaches a predetermined count.
  • a "cure" of the behavior of the broadband lambda probe can be taken into account in such a way that a repeated switching on and off of a malfunction indicator lamp can be avoided.
  • the first and second limits are equal so that the counter is incremented if the limit is exceeded and decremented if the limit is undershot.
  • integrals of the estimation error signal are slidably formed by integrating over the predetermined period of time and by shifting the beginning of the integration on a time axis.
  • the start time of an integration step may be within the integration time of the previous step so that the periods of successive integrations overlap.
  • the values of the estimation error signal can be supplied to a shift register or a ring memory in the control unit for this purpose and processed in a suitable manner. The integrals thus formed are compared with preset limits as described above.
  • the inverted measured lambda signal or an oxygen signal is used as the signal derived from the measured lambda signal and that the inverted modeled lambda signal or a modeled oxygen signal is used as the signal derived from the modeled lambda signal. Signal is used.
  • an increased response time of the broadband lambda probe also increases the integral of the estimation error signal used for the evaluation.
  • a refinement of the method according to the invention therefore provides that a reaction time of the measured lambda signal of the broadband lambda probe is determined with a method according to the prior art and that a contribution of a prolonged reaction time to the integral formed in the evaluation of the dead time or a measure is taken into account. In this way, the two components rise time and dead time in the dynamics of the broadband lambda probe can be separated and evaluated separately.
  • the signal can be done by way of example by means of a "Malfunction Indicator Lamp” MIL.
  • the control unit preferably contains at least one electrical memory in which the method steps are stored as a control unit program.
  • the control unit program according to the invention provides that all steps of the method according to the invention are carried out when it runs in a control unit.
  • control unit program product with a program code stored on a machine-readable carrier carries out the method according to the invention when the program runs in a control unit.
  • Estimation signal or a quantity derived therefrom is provided and that a comparison of the measure for the dynamic properties of the broadband lambda probe with predetermined limit values is provided for an assessment of how the dynamic properties of the broadband lambda probe are sufficient for a suitable operation of the internal combustion engine is.
  • FIG. 1 is a schematic representation of the technical environment in which the
  • FIG. 2 shows a diagram with the time profile of a modeled and a measured lambda value.
  • FIG. 1 shows a schematic representation of the technical environment in which the method according to the invention can be applied, based on a possible embodiment. The presentation is limited to the components necessary for the explanation of the invention. Shown is an internal combustion engine 1 with an exhaust gas probe in the form of a broadband lambda probe 25.
  • the internal combustion engine 1 consists of an engine block 23 with four cylinders. The engine block 23 fresh air via a supply air duct 21 and fuel via a metering device 22, such as diesel fuel supplied. Downstream of the engine block 23 is an exhaust gas channel 27, in which the broadband lambda probe 25 is arranged, which emits a measured lambda signal 11.
  • an exhaust gas recirculation 26 Via an exhaust gas recirculation 26, a predeterminable proportion of exhaust gas of the supply air in the supply air duct 21 can be admixed. It may also be provided an exhaust gas turbocharger to increase the boost pressure of the supply air.
  • the fuel metering device 22 and the broadband lambda probe 25 are connected to a motor control unit 24. Together with the engine block 23 and the exhaust gas channel 27, they form a control path 20. In an alternative embodiment not shown here, the lambda value can be adjusted via the air path.
  • a valve in the exhaust gas recirculation 26 and / or a throttle valve in the supply air duct 21 can also be used as an actuator for setting the lambda value.
  • the internal combustion engine 1 is associated with an observer 10, which consists of a controller 14 and a model 15.
  • the model 15 is supplied with input variables 17 such as a driver's request and measured variables from the internal combustion engine 1 from which a modeled lambda signal 16 is determined in the model 15.
  • the model outputs outputs 18, a part of which is supplied to the engine control unit 24.
  • the modeled lambda signal 16 is subtracted from the measured lambda signal 11 in a subtraction stage 12, thus forming an estimation error signal 13, which is fed to the controller 14.
  • the observer 10 is a model of the controlled system 20. From the estimation error signal 13, a measure of the dynamic behavior of the broadband lambda probe 25 is determined according to the invention.
  • FIG. 2 shows a diagram 30 in which a time profile of an oxygen content 40 in the exhaust gas of the internal combustion engine 1 is plotted on a lambda axis 31 along a time axis 37. Furthermore, a modeled lambda value 41 and a measured lambda value 42 are entered. The values fall from an initial value 32 to a final value 34.
  • the example of the measured lambda value 42 is a reaction time
  • t63 time constant
  • the 63% value 33 is plotted on the signal axis 31 from the initial value 32 with respect to the final value 34.
  • a dead time 36 is plotted in the diagram 30, which is a shift between the modeled lambda value 41 and the measured lambda value 42 along the time axis 37, wherein the modeled lambda value 41 and the measured lambda value 42 have the same reaction time in this case 35 have.
  • the integral of the magnitude of the difference between the measured lambda value 42 and the modeled lambda value 41 is formed over a predefined period of time and used to determine a measure of the dynamic properties of the lambda Broadband O2 sensor 25 used. This measure can be compared with predetermined limits to evaluate how the dynamic properties of the broadband probe, such as dead time 36, meet the requirements.
  • the method is also applicable if changes in the load, for example by a driver's request, lead to a change in the oxygen content in the exhaust gas.
  • the dead time 36 of the broadband lambda probe 25 now increases, its measured lambda value 42 is shifted in time with respect to the modeled lambda value 41 along time axis 35 after a larger time, and the integral formed increases. Likewise, an increase in the reaction time 35 of the measured lambda value 41 leads to an increase in the integral used for evaluating the dynamics of the broadband lambda probe 25. By comparison with predefinable limit values, the monitoring according to the invention can be realized.
  • the example of the method shown for the diesel engine is also possible with other forms of an internal combustion engine, such as a gasoline engine, mixed forms between gasoline and diesel engine, a combination of different drives so-called “hybrid” or gas engines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Überwachung von dynamischen Eigenschaften einer Breitband-Lambdasonde (25), wobei mittels der Breitband-Lambdasonde (25) ein gemessenes Lambdasignal bestimmt wird, das einer Sauerstoff-Konzentration im Abgas einer Brennkraftmaschine (1) entspricht, wobei der Brennkraftmaschine (1) ein Beobachter zugeordnet ist, der aus Eingangsgrößen ein modelliertes Lambdasignal erzeugt und wobei aus der Differenz des modellierten Lambdasignals und des gemessenen Lambdasignals oder aus der Differenz daraus abgeleiter Signale ein Schätzfehler-Signal als Eingangsgröße eines in dem Beobachter (10) einem Modell (15) vorgeschalteten Reglers (14) gebildet wird. Die Aufgabe der Erfindung wird dadurch gelöst, dass ein Maß für die dynamischen Eigenschaften der Breitband-Lambdasonde (25) aus einer Bewertung des Schätzfehler-Signals oder einer daraus abgeleiteten Größe bestimmt wird und dass diese Maß mit vorgegebenen Grenzwerten verglichen wird, die dynamischen Eigenschaften der Breitband-Lambdasonde (25) um zu bewerten.

Description

Beschreibung
Titel
Verfahren und Vorrichtung zur Dynamiküberwachung einer Breitband- Lambdasonde
Stand der Technik
Die Erfindung betrifft ein Verfahren zur Überwachung von dynamischen Eigenschaften einer Breitband-Lambdasonde, wobei mittels der Breitband-Lambdasonde ein gemessenes Lambdasignal bestimmt wird, das einer Sauerstoff- Konzentration im Abgas einer Brennkraftmaschine entspricht, wobei der Brennkraftmaschine ein Beobachter zugeordnet ist, der aus Eingangsgrößen ein modelliertes Lambdasignal erzeugt und wobei aus der Differenz des modellierten Lambdasignals und des gemessenen Lambdasignals o- der aus der Differenz aus einem aus dem modellierten Lambdasignal abgeleiteten Signal und einem aus dem gemessenen Lambdasignal abgeleiteten Signal ein Schätzfeh- ler-Signal als Eingangsgröße eines in dem Beobachter einem Modell vorgeschalteten
Reglers gebildet wird.
Die Erfindung betrifft weiterhin eine Vorrichtung zur Überwachung von dynamischen Eigenschaften einer Breitband-Lambdasonde, wobei mittels der Breitband-Lambdasonde eine Sauerstoff- Konzentration im Abgas einer Brennkraftmaschine bestimmt werden kann, wobei der Brennkraftmaschine ein Motor- Steuergerät zugeordnet ist, wobei ein Schaltkreis oder ein Programmablauf vorgesehen ist, der einen Beobachter beinhaltet, der aus Eingangsgrößen ein modelliertes Lambdasignal erzeugt und wobei aus der Differenz des modellierten Lambdasignals und eines mittels der Breitband-Lambdasonde gemessenen Lambdasignals oder aus der Differenz aus einem aus dem modellierten
Lambdasignal abgeleiteten Signal und einem aus dem gemessenen Lambdasignal abgeleiteten Signal ein Schätzfehler-Signal als Eingangsgröße eines in dem Beobachter einem Modell vorgeschalteten Reglers gebildet wird.
In mit Dieselkraftstoff betriebenen Brennkraftmaschinen kann in einer lambda-basierten
Regelung der Sauerstoffgehalt des Abgases mit einer Breitband-Lambdasonde gemes- sen und über eine Abgasrückführung, den Ladedruck und den Einspritzbeginn die Abgasqualität optimiert werden. Diese Regelung kann weiterhin zur Optimierung des Verbrauchs der Brennkraftmaschine genutzt werden. Aufgrund von Alterungseffekten können sich die dynamischen Eigenschaften der Breitband-Lambdasonde jedoch dahin- gehend verändern, dass deren Reaktionszeit und Totzeit zu einer ausreichend schnellen
Bestimmung der Abgaszusammensetzung nicht mehr ausreichend ist, was zu einer erhöhten Schadstoffemission führen kann.
Zur Überwachung der dynamischen Eigenschaften von Breitband-Lambdasonden wird der Anstieg oder Abfall des Lambdasonden-Signals bei bestimmten Änderungen des
Motorbetriebszustands ausgewertet. Als Maß für die dynamischen Eigenschaften wird dabei typischerweise eine der folgenden Größen verwendet: Verzögerungszeit einer Sprungantwort bei einer sprunghaften Änderung des Sauerstoffgehalts des Abgases, Gradient des Lambdasondensignals oder das Verhältnis der Steigungen einer gemes- senen zu einer berechneten Änderung im Sauerstoff-Gehalt des Abgases. Die Verzögerungszeit der Sprungantwort wird dabei als Zeitkonstante oder t63-Zeit bezeichnet. Beispielhaft bei einer Verrußung des Sondenschutzrohrs oder einer Verglasung der Diffusionsbarriere verlängern sich diese Kennwerte.
Nach dem Stand der Technik wird eine Verlängerung der Zeit bis zu einer ersten Reaktion der Breitband-Lambdasonde auf einen Sprung in der Gemischzusammensetzung, die so genannte Totzeit, nicht bewertet. Totzeiten entstehen durch Transportvorgänge wie beispielhaft Gaslaufzeiten des Abgases vom Auslassventil der Brennkraftmaschine bis zur Breitband-Lambdasonde. Es ist zu erwarten, dass nach künftigen Vorschriften zur On-Board-Diagnose auch zu große Totzeiten der Breitband-Lambdasonde erkannt werden müssen. Es kann ausreichend sein, nicht die Totzeit als solche zu bestimmen, sondern lediglich ein Maß für die Totzeit mit vorgegebenen Grenzwerten zu vergleichen.
Es ist daher Aufgabe der Erfindung, ein Verfahren bereitzustellen, welches einen zu- verlässigen Vergleich einer Sprungantwort einer Breitband-Lambdasonde bei einer sprunghaften Änderung des Sauerstoffgehalts des Abgases mit vorgegebenen Grenzwerten und somit eine Diagnose der dynamischen Eigenschaften der Breitband- Lambdasonde ermöglicht. Bevorzugt soll das Verfahren ohne Eingriffe in das Luft- oder Einspritzsystem verwirklicht werden. Es ist weiterhin Aufgabe der Erfindung, eine Vor- richtung zur Durchführung des erfindungsgemäßen Verfahrens bereitzustellen. Vorteile der Erfindung
Die das Verfahren betreffende Aufgabe der Erfindung wird dadurch gelöst, dass ein Maß für die durch eine Totzeit und eine Reaktionszeit charakterisierten dynamischen Eigenschaften der Breitband-Lambdasonde aus einer Bewertung des Schätzfehler-Signals oder einer daraus abgeleiteten Größe bestimmt wird und dass das Maß für die dynamischen Eigenschaften mit vorgegebenen Grenzwerten verglichen wird um zu bewerten, inwiefern die dynamischen Eigenschaften der Breitband-Lambdasonde für einen vorge- sehenen Betrieb der Brennkraftmaschine ausreichen. Die dynamischen Eigenschaften der Breitband-Lambdasonde im Abgaskanal einer mit Dieselkraftstoff betriebenen Brennkraftmaschine lassen sich durch eine Reaktion ihres Sauerstoff-Signals bei einem Sprung der Sauerstoffkonzentration im Abgas charakterisieren; diese Größe wird als Sauerstoff-Sprungantwort bezeichnet. Die Sauerstoff-Sprungantwort kann dabei durch eine Reaktionszeit oder t63-Zeit, das ist die Zeit von einer ersten Reaktion des Signals bis zur Erreichung von 63% des Endwerts, und eine Totzeit charakterisiert werden. Als Totzeit wird dabei eine Verschiebung des Signals zu größeren Zeitwerten bei gleicher Signalform bezeichnet. Das Verfahren kann als Software in einem Steuergerät der Motorsteuerung realisiert sein, wobei das Steuergerät einen elektronischen Speicher ent- hält und der Programmcode der Software auf einem maschinenlesbaren Speicher gespeichert ist.
Das aus der Differenz zwischen einem modellierten Lambdasignal und einem gemessenen Lambdasignal bestimmte Schätzfehler-Signal wird mit zunehmender Totzeit größer, da die Phasenverzögerung zu einer zunehmenden Differenz führt. Vorteilhaft an dem erfindungsgemäßen Verfahren ist, dass es als passives Verfahren ausgelegt sein kann und zur Durchführung des Verfahrens keine eigens vorgesehenen Sprünge im Lambda des Abgases vorgesehen werden müssen. Die Modellierung des Lambdasignals kann in einem so genannten „Fuel Mass Observer" (FMO) erfolgen, der ein Modell des zu re- gelnden und/oder zu steuernden Systems darstellt. Hierbei beinhaltet das Modell unter anderem ein Totzeitglied und ein Verzögerungsglied erster Ordnung um das Verhalten des Abgaskanals der Brennkraftmaschine und der Breitband-Lambdasonde zu beschreiben. Der FMO ist aus regelungstechnischer Sicht ein Beobachter, der zur Stör- größenaufschaltung verwendet werden kann. Diesem Beobachter wird als Eingangssig- nal über einen Regler das Schätzfehler-Signal zugeführt. Ändert sich das Verhalten des realen Systems durch Fehler oder Manipulation am Aufbau der Brennkraftmaschine und - A - des Abgaskanals, führt dies zu Schätzfehlern und Stellgrößenausschlägen des Beobachters FMO. Es kann zur Durchführung des Verfahrens ausreichen, nur Teile des FMO in einer Motorsteuerung als Programmablauf oder Schaltkreis zu realisieren.
Eine Totzeit der Breitband-Lambdasonde führt zu einer zeitlichen Verschiebung zwischen dem modellierten Lambdasignal und dem gemessenen Lambdasignal. Die Fläche zwischen den Signal- Kurven nimmt mit steigender Totzeit und mit steigender Zeitkonstante zu, so dass das Maß für die dynamischen Eigenschaften der Breitband- Lambdasonde aus einem über eine vorbestimmte Zeitdauer gebildeten Integral des Be- trags oder des Quadrats des Schätzfehler-Signals bestimmt werden kann. Der Betrag oder das Quadrat des Schätzfehler-Signals wird verwendet, damit sich Flächen unter positiven und negativen Kurvenabschnitten nicht kompensieren können. Eine Überschreitung einer als kritisch anzusehenden Totzeit der Breitband-Lambdasonde kann mit einem Wert des Integrals verknüpft werden, der als ein erster Grenzwert verwendet werden kann.
In einer Ausgestaltung des erfindungsgemäßen Verfahrens wird auf eine nicht ausreichende Dynamik der Breitband-Lambdasonde geschlossen und es wird eine Fehlermel- dungs- und/oder eine Ersatzreaktion eingeleitet, wenn in mehreren Bestimmungen das Integral einen vorgegebenen ersten Grenzwert überschreitet. Es kann vorgesehen sein, dass die Fehlermeldungs- und/oder Ersatzreaktion nur eingeleitet wird, wenn bei mehrmaliger Bestimmung mehr Über- als Unterschreitungen des vorgegebenen Grenzwerts festgestellt werden.
Eine weitere Ausgestaltung des Verfahrens sieht vor, dass ein Zähler vorgesehen ist und dass der Zähler inkrementiert wird, wenn das Integral den vorgegebenen ersten Grenzwert überschreitet, dass der Zähler dekrementiert oder auf den Zählerstand Null gesetzt wird, wenn das Integral einen zweiten vorgegebenen Grenzwert unterschreitet und dass eine Fehlermeldungs- und/oder Ersatzreaktion eingeleitet wird, wenn der Zäh- ler einen vorgegebenen Zählerstand erreicht. Durch Berücksichtigung von kleinen Werten des Integrals kann eine „Heilung" des Verhaltens der Breitband-Lambdasonde so berücksichtigt werden, dass ein wiederholtes Ein- und Ausschalten einer einen Fehlerzustand anzeigenden Signal-Leuchte (Malfunction Indicator Lamp) vermieden werden kann. Es kann vorgesehen sein, dass der erste und der zweite Grenzwert gleich sind, so dass der Zähler inkrementiert wird, wenn der Grenzwert überschritten wird und dekrementiert wird, wenn der Grenzwert unterschritten wird. In einer Ausbildung des Verfahrens werden gleitend Integrale des Schätzfehler-Signals gebildet, indem die Integration über die vorgegebene Zeitdauer erfolgt und indem der Beginn der Integration auf einer Zeitachse verschoben wird. Der Startzeitpunkt eines In- tegrationsschritts kann innerhalb der Integrationsdauer des vorherigen Schritts liegen so dass sich die Zeiträume aufeinander folgender Integrationen überlappen. Nach bekannten Verfahren können die Werte des Schätzfehler-Signals hierzu einem Schieberegister oder einem Ringspeicher im Steuergerät zugeführt werden und in geeigneter Art verarbeitet werden. Die so gebildeten Integrale werden wie vorher beschrieben mit vorgege- benen Grenzwerten verglichen.
Es kann vorgesehen sein, dass als das aus dem gemessenen Lambdasignal abgeleitete Signal das invertierte gemessene Lambdasignal oder ein Sauerstoff-Signal verwendet wird und dass als das aus dem modellierten Lambda-Signal abgeleitete Signal das in- vertierte modellierte Lambda-Signal oder ein modelliertes Sauerstoff-Signal verwendet wird.
Neben einer Totzeit erhöht auch eine erhöhte Reaktionszeit der Breitband- Lambdasonde das zur Bewertung benutzte Integral des Schätzfehler-Signals. Eine Fort- bildung des erfindungsgemäßen Verfahrens sieht daher vor, dass mit einem Verfahren nach dem Stand der Technik eine Reaktionszeit des gemessenen Lambdasignals der Breitband- Lambdasonde bestimmt wird und dass ein Beitrag einer verlängerten Reaktionszeit zu dem gebildeten Integral bei der Bewertung der Totzeit oder eines Maßes dafür berücksichtigt wird. Auf diese Weise lassen sich die zwei Komponenten Anstiegszeit und Totzeit in der Dynamik der Breitband-Lambdasonde voneinander trennen und getrennt bewerten.
Nach einer erfolgten Diagnose einer unzulässig erhöhten Totzeit und/oder Reaktionszeit kann vorgesehen sein, dass eine fehlerhafte Breitband-Lambdasonde dem Betreiber der Brennkraftmaschine signalisiert wird und/oder in einem Fehlerspeicher registriert wird.
Das Signal kann dabei beispielhaft mittels einer „Malfunction Indicator Lamp" MIL erfolgen.
Das Steuergerät enthält vorzugsweise wenigstens einen elektrischen Speicher, in wel- ehern die Verfahrensschritte als Steuergerätprogramm abgelegt sind. Das erfindungsgemäße Steuergerätprogramm sieht vor, dass alle Schritte des erfindungsgemäßen Verfahrens ausgeführt werden, wenn es in einem Steuergerät abläuft.
Das erfindungsgemäße Steuergerät-Programmprodukt mit einem auf einem maschinen- lesbaren Träger gespeicherten Programmcode führt das erfindungsgemäße Verfahren aus, wenn das Programm in einem Steuergerät abläuft.
Die die Vorrichtung betreffende Aufgabe der Erfindung wird gelöst, indem in dem Motor- Steuergerät ein Schaltkreis oder ein Programmablauf zur Bestimmung eines Maßes für die dynamischen Eigenschaften der Breitband-Lambdasonde aus einer Bewertung des
Schätzfehler-Signals oder einer daraus abgeleiteten Größe vorgesehen ist und dass ein Vergleich des Maßes für die dynamischen Eigenschaften der Breitband-Lambdasonde mit vorgegebenen Grenzwerten zu einer Bewertung, inwiefern die dynamischen Eigenschaften der Breitband-Lambdasonde für einen vorgesehenen Betrieb der Brennkraft- maschine ausreichen, vorgesehen ist.
Insgesamt wird durch das erfindungsgemäße Verfahren und die Vorrichtung erreicht, dass neben der nach dem Stand der Technik bestimmbaren Reaktionszeit der Breitband-Lambdasonde auch deren Totzeit bewertet werden kann und bei Überschreitung vorgebbarer Grenzwerte dieses dem Fahrer signalisiert werden kann.
Kurze Beschreibung der Zeichnungen
Die Erfindung wird im Folgenden anhand eines in den Figuren dargestellten Ausführungsbeispiels näher erläutert. Es zeigen:
Figur 1 in einer schematischen Darstellung das technische Umfeld, in dem das
Verfahren angewendet wird und
Figur 2 ein Diagramm mit dem zeitlichen Verlauf eines modellierten und eines gemessenen Lambdawerts.
Ausführungsformen der Erfindung Figur 1 zeigt in einer schematischen Darstellung das technische Umfeld, in dem das erfindungsgemäße Verfahren angewendet werden kann, anhand einer möglichen Ausführungsform. Dabei beschränkt sich die Darstellung auf die für die Erklärung der Erfindung notwendigen Komponenten. Dargestellt ist eine Brennkraftmaschine 1 mit einer Abgas- sonde in Form einer Breitband-Lambdasonde 25. Die Brennkraftmaschine 1 besteht aus einem Motorblock 23 mit vier Zylindern. Dem Motorblock 23 wird über einen Zuluftkanal 21 Frischluft und über eine Kraftstoff- Dosiereinrichtung 22 Kraftstoff, wie beispielhaft Diesel- Kraftstoff, zugeführt. Dem Motorblock 23 nachgeordnet ist ein Abgaskanal 27, in dem die Breitband-Lambdasonde 25 angeordnet ist, die ein gemessenes Lambdasignal 11 abgibt. Über eine Abgasrückführung 26 kann ein vorgebbarer Anteil Abgas der Zuluft im Zuluftkanal 21 beigemischt werden. Es kann auch ein Abgas-Turbolader zur Erhöhung des Ladedrucks der Zuluft vorgesehen sein. Die Kraftstoff- Dosiereinrichtung 22 und die Breitband-Lambdasonde 25 sind mit einem Motor- Steuergerät 24 verbunden. Sie bilden, gemeinsam mit dem Motorblock 23 und dem Abgaskanal 27, eine Regelstre- cke 20. In einer alternativen, hier nicht dargestellten Ausführungsform, kann der Lamb- dawert über den Luftpfad eingestellt werden. Neben der Kraftstoff- Dosiereinrichtung 22 können auch ein Ventil in der Abgasrückführung 26 und/oder eine Drosselklappe im Zuluftkanal 21 als Stellglied zur Einstellung des Lambdawerts verwendet werden.
Der Brennkraftmaschine 1 ist ein Beobachter 10 zugeordnet, der aus einem Regler 14 und einem Modell 15 besteht. Dem Modell 15 werden Eingangsgrößen 17 wie ein Fahrerwunsch und Messgrößen aus der Brennkraftmaschine 1 zugeführt aus denen im Modell 15 ein modelliertes Lambdasignal 16 bestimmt wird. Das Modell gibt Ausgangsgrößen 18 aus, von denen ein Teil dem Motorsteuergerät 24 zugeführt wird. Das modellier- te Lambdasignal 16 wird in einer Subtraktionsstufe 12 von dem gemessenen Lambdasignal 11 subtrahiert und so ein Schätzfehler-Signal 13 gebildet, das dem Regler 14 zugeführt wird. Der Beobachter 10 ist ein Modell der Regelstrecke 20. Aus dem Schätzfehlersignal 13 wird erfindungsgemäß ein Maß für das dynamische Verhalten der Breitband-Lambdasonde 25 bestimmt.
Figur 2 zeigt ein Diagramm 30 in dem ein zeitlicher Verlauf eines Sauerstoffgehalts 40 im Abgas der Brennkraftmaschine 1 auf einer Lambda-Achse 31 entlang einer Zeitachse 37 aufgetragen ist. Weiterhin sind ein modellierter Lambdawert 41 und ein gemessener Lambdawert 42 eingetragen. Die Werte fallen von einem Anfangswert 32 aus bis zu ei- nem Endwert 34. Am Beispiel des gemessenen Lambdawerts 42 ist eine Reaktionszeit
35 dargestellt, die die Zeitdauer zwischen einer ersten Reaktion des gemessenen Lambdawerts 42 und dem Zeitpunkt ist, zu dem 63% des Endwerts erreicht sind; diese Zeitdauer wird auch als t63 oder Zeitkonstante bezeichnet. Der 63%-Wert 33 ist auf der Signalachse 31 ausgehend vom Anfangswert 32 bezüglich des Endwerts 34 abgetragen. Weiterhin ist in dem Diagramm 30 eine Totzeit 36 eingezeichnet, die eine Ver- Schiebung zwischen dem modellierten Lambdawert 41 und dem gemessenen Lambda- wert 42 entlang der Zeitachse 37 ist, wobei der modellierten Lambdawert 41 und dem gemessenen Lambdawert 42 in diesem Fall die gleiche Reaktionszeit 35 aufweisen.
Bei der dargestellten sprunghaften Änderung des Sauerstoffgehalts 40 ergibt sich auf- grund der in dem Beobachter 10 vorhandenen Parameter der zeitlich gegenüber dem
Sauerstoffgehalt 40 verzögerte und in der Reaktionszeit 35 vergrößerte Verlauf der modellierten Lambdawerts 41; dieser zeitliche Verlauf entspricht dem Verlauf bei einer intakten Breitband-Lambdasonde 25. In dem erfindungsgemäßen Verfahren wird das Integral des Betrags der Differenz zwischen dem gemessenen Lambdawert 42 und dem modellierten Lambdawert 41 über einen vorgegebenen Zeitraum gebildet und zur Bestimmung eines Maßes für die dynamischen Eigenschaften der Breitband-Lambdasonde 25 benutzt. Dieses Maß kann mit vorgegebenen Grenzwerten verglichen werden um zu bewerten, inwiefern die dynamischen Eigenschaften der Breitbandsonde, wie beispielhaft die Totzeit 36, den Anforderungen genügen. Das Verfahren ist auch anwendbar, wenn Änderungen der Last, beispielhaft durch einen Fahrerwunsch, zu einer Änderung des Sauerstoffgehalts im Abgas führen.
Steigt nun die Totzeit 36 der Breitband-Lambdasonde 25 so ist deren gemessener Lambdawert 42 gegenüber dem modellierten Lambdawert 41 zeitlich nach größeren Zei- ten entlang der Zeitachse 35 verschoben und das gebildete Integral steigt an. Ebenso führt eine Vergrößerung der Reaktionszeit 35 des gemessenen Lambdawerts 41 zu einer Vergrößerung des zur Bewertung der Dynamik der Breitband-Lambdasonde 25 verwendeten Integrals. Durch Vergleich mit vorgebbaren Grenzwerten kann die erfindungsgemäße Überwachung verwirklicht werden.
Das beispielhaft für den Dieselmotor gezeigte Verfahren ist auch mit anderen Formen einer Brennkraftmaschine, wie beispielsweise einem Ottomotor, Mischformen zwischen Otto- und Dieselmotor, einer Kombination verschiedener Antriebe sogenannte „Hybride" oder Gasmotoren möglich.

Claims

Ansprüche
1. Verfahren zur Überwachung von dynamischen Eigenschaften einer Breitband-
Lambdasonde (25), wobei mittels der Breitband-Lambdasonde (25) ein gemessenes Lambdasignal (11) bestimmt wird, das einer Sauerstoff- Konzentration im Abgas einer Brennkraftmaschine (1) entspricht, wobei der Brennkraftmaschine (1) ein Beobachter
(10) zugeordnet ist, der aus Eingangsgrößen (17) ein modelliertes Lambdasignal (16) erzeugt und wobei aus der Differenz des modellierten Lambdasignals (16) und des gemessenen Lambdasignals (11) oder aus der Differenz aus einem aus dem modellierten Lambdasignal (16) abgeleiteten Signal und einem aus dem gemessenen Lambdasignal (11) abgeleiteten Signal ein Schätzfehler-Signal (13) als Eingangsgröße eines in dem Beobachter (10) einem Modell (15) vorgeschalteten Reglers (14) gebildet wird, dadurch gekennzeichnet, dass ein Maß für die durch eine Totzeit (36) und eine Reaktionszeit (35) charakterisierten dynamischen Eigenschaften der Breitband- Lambdasonde (25) aus einer Bewertung des Schätzfehler-Signals (13) oder einer daraus abgeleiteten Größe bestimmt wird und dass das Maß für die dynamischen Eigenschaften mit vorgegebenen Grenzwerten verglichen wird um zu bewerten, inwiefern die dynamischen Eigenschaften der Breitband-Lambdasonde (25) für einen vorgesehenen Betrieb der Brennkraftmaschine (1) ausreichen.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Maß für die dynamischen Eigenschaften der Breitband-Lambdasonde (25) aus einem über eine vorbestimmte Zeitdauer gebildeten Integral des Betrags oder des Quadrats des Schätzfehler-Signals (13) bestimmt wird.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass eine
Fehlermeldungs- und/oder Ersatzreaktion eingeleitet wird, wenn in mehreren Bestimmungen das Integral einen vorgegebenen ersten Grenzwert überschreitet.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ein Zäh- ler inkrementiert wird, wenn das Integral den vorgegebenen ersten Grenzwert überschreitet, dass der Zähler dekrementiert oder auf den Zählerstand Null gesetzt wird, wenn das Integral einen zweiten vorgegebenen Grenzwert unterschreitet und dass eine Fehlermeldungs- und/oder Ersatzreaktion eingeleitet wird, wenn der Zähler einen vorgegebenen Zählerstand erreicht.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Integration über die vorgegebene Zeitdauer erfolgt und dass der Beginn der Integration auf einer Zeitachse (37) verschoben wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass als das aus dem gemessenen Lambdasignal (11) abgeleitete Signal das invertierte gemessene Lambdasignal oder ein Sauerstoff-Signal verwendet wird und dass als das aus dem modellierten Lambda-Signal (16) abgeleitete Signal das invertierte modellierte Lambda-Signal oder ein modelliertes Sauerstoff-Signal verwendet wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass eine
Reaktionszeit (35) des gemessenen Lambdasignals (11) der Breitband- Lambdasonde (25) bestimmt wird und dass ein Beitrag einer verlängerten Reaktionszeit (35) zu dem gebildeten Integral bei der Bestimmung der Totzeit (36) oder eines Maßes dafür berücksichtigt wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass eine fehlerhafte Breitband- Lambdasonde (25) dem Betreiber der Brennkraftmaschine (1) signalisiert wird und/oder in einem Fehlerspeicher registriert wird.
9. Computerprogramm, das alle Schritte eines Verfahrens nach mindestens einem der
Ansprüche 1 bis 8 ausführt, wenn es auf einem Rechengerät abläuft.
10. Computerprogrammprodukt mit Programmcode, der auf einem maschinenlesbaren Träger gespeichert ist, zur Durchführung des Verfahrens nach mindestens einem der Ansprüche 1 bis 9, wenn das Programm auf einem Computer oder Steuergerät ausgeführt wird.
11. Vorrichtung zur Überwachung von dynamischen Eigenschaften einer Breitband- Lambdasonde (25), wobei mittels der Breitband-Lambdasonde (25) ein gemessenes Lambdasignal (11) bestimmt werden kann, das einer Sauerstoff- Konzentration im
Abgas einer Brennkraftmaschine (1) entspricht, wobei der Brennkraftmaschine (1) ein M oto r- Steuergerät (24) zugeordnet ist, wobei ein Schaltkreis oder ein Programmablauf vorgesehen ist, der einen Beobachter (10) beinhaltet, der aus Eingangsgrößen (17) ein modelliertes Lambdasignal (16) erzeugt und wobei aus der Differenz des modellierten Lambdasignals (16) und eines mittels der Breitband-Lambdasonde (25) gemessenen Lambdasignals (11) oder aus der Differenz aus einem aus dem modellierten Lambdasignal (16) abgeleiteten Signal und einem aus dem gemessenen Lambdasignal (11) abgeleiteten Signal ein Schätzfehler-Signal (13) als Eingangsgröße eines in dem Beobachter (10) einem Modell (15) vorgeschalteten Reglers (14) gebildet wird, dadurch gekennzeichnet, dass in dem Motor- Steuergerät (24) ein Schalt- kreis oder ein Programmablauf zur Bestimmung eines Maßes für die dynamischen
Eigenschaften der Breitband-Lambdasonde (25) aus einer Bewertung des Schätzfehler-Signals (13) oder einer daraus abgeleiteten Größe vorgesehen ist und dass ein Vergleich des Maßes für die dynamischen Eigenschaften der Breitband- Lambdasonde (25) mit vorgegebenen Grenzwerten zu einer Bewertung, inwiefern die dynamischen Eigenschaften der Breitband-Lambdasonde (25) für einen vorgesehenen Betrieb der Brennkraftmaschine (1) ausreichen, vorgesehen ist.
EP09780117A 2008-07-25 2009-07-03 Verfahren und vorrichtung zur dynamiküberwachung einer breitband-lambdasonde Withdrawn EP2310657A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008040737A DE102008040737A1 (de) 2008-07-25 2008-07-25 Verfahren und Vorrichtung zur Dynamiküberwachung einer Breitband-Lambdasonde
PCT/EP2009/058383 WO2010009964A1 (de) 2008-07-25 2009-07-03 Verfahren und vorrichtung zur dynamiküberwachung einer breitband-lambdasonde

Publications (1)

Publication Number Publication Date
EP2310657A1 true EP2310657A1 (de) 2011-04-20

Family

ID=41058574

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09780117A Withdrawn EP2310657A1 (de) 2008-07-25 2009-07-03 Verfahren und vorrichtung zur dynamiküberwachung einer breitband-lambdasonde

Country Status (4)

Country Link
US (1) US20110184700A1 (de)
EP (1) EP2310657A1 (de)
DE (1) DE102008040737A1 (de)
WO (1) WO2010009964A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008043407B4 (de) * 2008-11-03 2020-06-18 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erkennung von Manipulationen an Lambdasonden
US8608374B2 (en) 2010-08-27 2013-12-17 GM Global Technology Operations LLC Outside air temperature sensor diagnostic systems for a vehicle
DE102011088296A1 (de) 2011-12-12 2013-06-13 Robert Bosch Gmbh Verfahren und Vorrichtung zur Dynamiküberwachung von Gas-Sensoren
DE102012201033A1 (de) 2012-01-25 2013-07-25 Robert Bosch Gmbh Verfahren und Steuereinheit zur Bestimmung einer Totzeit eines Abgassensors
DE102012201767A1 (de) 2012-02-07 2013-08-08 Robert Bosch Gmbh Verfahren und Vorrichtung zur Dynamiküberwachung von Gas-Sensoren
DE102012204353A1 (de) 2012-03-20 2013-09-26 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung von Gas-Sensoren
EP2642103B1 (de) * 2012-03-21 2014-11-19 Ford Global Technologies, LLC Vorrichtung und Verfahren zur Abgasrückführung
DE112013003836B4 (de) 2012-08-30 2018-05-30 Scania Cv Ab Verfahren und System zum Feststellen einer Sensorfunktion für einen PM-Sensor
DE102013204049A1 (de) * 2013-03-08 2014-09-11 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bestimmung des Lambda-Wertes mit einer Breitband-Lambda-Sonde einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE102013207202A1 (de) 2013-04-22 2014-10-23 Robert Bosch Gmbh Verfahren zur Dynamikdiagnose von Abgassensoren
DE102013216223A1 (de) * 2013-08-15 2015-02-19 Robert Bosch Gmbh Universell einsetzbare Steuer- und Auswerteeinheit insbesondere zum Betrieb einer Lambdasonde
DE102013017260B3 (de) * 2013-10-17 2014-12-31 Audi Ag Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung
DE102018207703A1 (de) * 2018-05-17 2019-11-21 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Abgasnachbehandlungseinrichtung eines Motorsystems mit einem Verbrennungsmotor
DE102020210878A1 (de) 2020-08-28 2022-03-03 Volkswagen Aktiengesellschaft Verfahren zur Dynamikdiagnose eines Sensors im Frischluft- oder Abgastrakt von Brennkraftmaschinen

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5678521A (en) * 1993-05-06 1997-10-21 Cummins Engine Company, Inc. System and methods for electronic control of an accumulator fuel system
CA2165658C (en) * 1994-04-28 2004-03-02 Ikurou Notsu Exhaust brake controller for gas engine
EP0810363B1 (de) * 1996-05-28 2004-07-28 Matsushita Electric Industrial Co., Ltd. Gerät zur Steuerung des Luft/Kraftstoffverhältnisses, das ein neuronales Netzwerk benutzt
DE19719278B4 (de) * 1997-05-07 2005-03-17 Robert Bosch Gmbh Verfahren zur Diagnose eines Abgasrückführungs (AGR) -Systems einer Brennkraftmaschine
US6053147A (en) * 1998-03-02 2000-04-25 Cummins Engine Company, Inc. Apparatus and method for diagnosing erratic pressure sensor operation in a fuel system of an internal combustion engine
DE19844994C2 (de) * 1998-09-30 2002-01-17 Siemens Ag Verfahren zur Diagnose einer stetigen Lambdasonde
DE10131179A1 (de) * 2001-06-29 2003-01-16 Bosch Gmbh Robert Verfahren zur Bestimmung des Kraftstoff/Luftverhältnisses in einzelnen Zylindern eines mehrzylindrigen Verbrennungsmotors
DE102004044463B4 (de) * 2004-03-05 2020-08-06 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
US7434132B2 (en) * 2005-01-18 2008-10-07 Sap Ag Method and system of configuring a software program
SE529410C2 (sv) * 2005-12-20 2007-08-07 Scania Cv Abp Förfarande och inrättning för övervakning av funktionen hos en sensor eller system
DE102006011722B3 (de) * 2006-03-14 2007-04-12 Siemens Ag Verfahren zur Korrektur des Ausgangssignals einer Lambdasonde
DE502007002425D1 (de) * 2006-04-18 2010-02-04 Iav Gmbh Verfahren zum einstellen des luft-/kraftstoffverhältnisses eines verbrennungsmotors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010009964A1 *

Also Published As

Publication number Publication date
US20110184700A1 (en) 2011-07-28
DE102008040737A1 (de) 2010-01-28
WO2010009964A1 (de) 2010-01-28

Similar Documents

Publication Publication Date Title
EP2310657A1 (de) Verfahren und vorrichtung zur dynamiküberwachung einer breitband-lambdasonde
DE102008001569B4 (de) Verfahren und Vorrichtung zur Adaption eines Dynamikmodells einer Abgassonde
DE102008042549B4 (de) Verfahren und Vorrichtung zur Diagnose einer Abgassonde
DE102018107746B4 (de) Verfahren zum erfassen und mitigieren einer sensordegradierung
DE102007009689B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit Abgasrückführung
EP1327138A1 (de) Verfahren und vorrichtung zur eigendiagnose eines nox-sensors
DE102012211683A1 (de) Verfahren und Vorrichtung zur Korrektur einer Kennlinie einer Zweipunkt-Lambdasonde
DE4207541A1 (de) System zur steuerung einer brennkraftmaschine
EP1215388A2 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102009045376A1 (de) Verfahren und Vorrichtung zur Diagnose der Dynamik eines Abgassensors
DE4333896B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10256241A1 (de) Verfahren und Vorrichtung zur Steuerung einer eine Abgasrückführung aufweisenden Brennkraftmaschine
DE102009054935B4 (de) Verfahren und Vorrichtung zur Diagnose der Dynamik eines Abgassensors
DE102006055563B3 (de) Verfahren und Vorrichtung zur Korrektur von Sollwert-Abweichungen der in einem Verbrennungsmotor eingespritzten Kraftstoffmenge
DE102009032659A1 (de) Kombinierte Rauchbegrenzung
DE102004051747A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
WO2017194570A1 (de) Verfahren zur bestimmung eines wassergehalts im abgas eines antriebsystems
DE102012204332B4 (de) Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102008004218B4 (de) Verfahren zur Bestimmung der dynamischen Rußemission
DE102005046956B3 (de) Verfahren und Vorrichtung zum Erkennen eines Verbrennungsaussetzers
DE102005046955B3 (de) Verfahren und Vorrichtung zum Erkennen eines Verbrennungsaussetzers
DE102012200032A1 (de) Verfahren und Vorrichtung zur Dynamik-Diagnose von Sensoren
DE102008018013B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
EP0427087B1 (de) Nachrüstsatz für Otto-Motoren
DE102022201647B3 (de) Verfahren, Recheneinheit und Computerprogramm zum Betreiben einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110225

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170201