EP2310480A1 - Perfectionnements se rapportant aux assouplissants pour tissus - Google Patents

Perfectionnements se rapportant aux assouplissants pour tissus

Info

Publication number
EP2310480A1
EP2310480A1 EP09802479A EP09802479A EP2310480A1 EP 2310480 A1 EP2310480 A1 EP 2310480A1 EP 09802479 A EP09802479 A EP 09802479A EP 09802479 A EP09802479 A EP 09802479A EP 2310480 A1 EP2310480 A1 EP 2310480A1
Authority
EP
European Patent Office
Prior art keywords
composition
ester
quaternary ammonium
linked
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09802479A
Other languages
German (de)
English (en)
Other versions
EP2310480B1 (fr
Inventor
Jane Howard
Robert Allan Hunter
Jeremy Robert Westwell
Janice Elaine Wright
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever PLC
Unilever NV
Original Assignee
Unilever PLC
Unilever NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39870539&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2310480(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Unilever PLC, Unilever NV filed Critical Unilever PLC
Priority to PL09802479T priority Critical patent/PL2310480T3/pl
Priority to EP09802479A priority patent/EP2310480B1/fr
Publication of EP2310480A1 publication Critical patent/EP2310480A1/fr
Application granted granted Critical
Publication of EP2310480B1 publication Critical patent/EP2310480B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/001Softening compositions
    • C11D3/0015Softening compositions liquid
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/645Mixtures of compounds all of which are cationic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/835Mixtures of non-ionic with cationic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/046Salts
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • C11D3/502Protected perfumes
    • C11D3/505Protected perfumes encapsulated or adsorbed on a carrier, e.g. zeolite or clay
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/62Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/662Carbohydrates or derivatives

Definitions

  • Fragrance capsules known in the art and suitable for use in the present invention comprise a wall or shell comprising a three-dimensional cross-linked network of an aminoplast resin, more specifically a substituted or un-substituted acrylic acid polymer or co-polymer cross-linked with a urea- formaldehyde pre-condensate or a melamine-formaldehyde pre- condensate; and having surface weak acid groups.
  • Encapsulation can provide pore vacancies or interstitial openings depending on the encapsulation techniques employed.
  • Suitable quaternary ammonium surfactants are made with one or two alkylene oxide chains attached to the amine moiety, in average amounts of less than or equal to about 50 moles of alkylene oxide per alkyl chain, more preferably from about 3 to about 20 moles of alkylene oxide, and most preferably from about 5 to about 12 moles of alkylene oxide per hydrophobic, e.g., alkyl group.
  • Preferred examples are Benzalkonium Chloride (Barquat MB- 50) ; ex LONZA
  • Water soluble quat are selected from mono-long chain quaternary ammonium compound of general formula R(Rl) 3N+X- or alkyl benzyl quaternary ammonium compound of a general formula R2R3 (R4) 2N+X-
  • the water soluble quat of the present invention is either the alkyl benzyl quaternary ammonium chloride or the mono-long chain quaternary ammonium compound and most preferable the alkyl benzyl quaternary ammonium chloride .
  • the level of water soluble cationic ammonium compounds is suitably from 0.005 to 0.2 wt%.
  • R is selected from the group consisting of primary, secondary and branched chain alkyl and/or acyl hydrocarbyl groups; primary, secondary and branched chain alkenyl hydrocarbyl groups; and primary, secondary and branched chain alkenyl-substituted phenolic hydrocarbyl groups; the hydrocarbyl groups having a chain length of from 8 to about 25, preferably 10 to 20, e.g. 14 to 18 carbon atoms.
  • Y is typically:
  • R has the meaning given above or can be hydrogen; and Z is at least about 8, preferably at least about 10 or 11.
  • the nonionic surfactant has an HLB of from about 7 to about 20, more preferably from 10 to 18, e.g. 12 to 16.
  • the nonionic surfactant is present in an amount of from greater than 0.65 to 1.5%, more preferably from 0.7 to 1% by weight, most preferably from 0.7 to 0.9% based on the total weight of the composition.
  • Salts suitable for use in the compositions of the invention generally include any of the alkaline metals or alkaline earth metal salts of the mineral acids. NaCl, CaCl2, MgCl2 and similar salts of alkaline and alkaline earth meals are preferred and CaCl2 is especially preferred. Generally, amounts of electrolyte salt needed are from 0.005 to 0.1 wt%, preferably from 0.01 to 0.07 wt%, by weight of the total composition. Unconfined Perfume
  • compositions of the invention preferably comprise one or more unconfined perfume, by which is meant a non- encapsulated perfume. Any suitable perfume or mixture of perfumes may be used.
  • the perfume must be compatible with the carrier oil as described above and must be able to permeate the shell of the capsule.
  • the present invention may contain a single ingredient, but it is much more likely that the present invention will comprise at least eight or more fragrance chemicals, more likely to contain twelve or more and often twenty or more fragrance chemicals.
  • the present invention also contemplates the use of complex fragrance formulations containing fifty or more fragrance chemicals, seventy five or more or even a hundred or more fragrance chemicals in a fragrance formulation.
  • Suitable unconfined perfumes for use in the present invention include those disclosed in EP1533364A2 (IFF) .
  • Useful components of the perfume include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's
  • perfume in this context is not only meant a fully formulated product fragrance, but also selected components of that fragrance, particularly those which are prone to loss, such as the so-called ⁇ top notes' .
  • Top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2): 80 [1955]). Examples of well known top-notes include citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol . Top notes typically comprise 15-25%wt of a perfume composition and in those embodiments of the invention which contain an increased level of top-notes it is envisaged at that least 20%wt would be present within the encapsulate.
  • perfume or pro-fragrance may be encapsulated, typical perfume components which it is advantageous to encapsulate, include those with a relatively low boiling point, preferably those with a boiling point of less than 300, preferably 100-250 Celsius and pro-fragrances which can produce such components. It is also advantageous to encapsulate perfume components which have a low Clog P (i.e. those which will be partitioned into water) , preferably with a Clog P of less than 3.0. These materials, of relatively low boiling point and relatively low Clog P have been called the "delayed blooming" perfume ingredients and include the following materials :
  • compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components from the list given of delayed blooming perfumes given above and/or the list of perfume components with a ClogP above 3 present in the perfume.
  • perfumes with which the present invention can be applied are the so-called ⁇ aromatherapy' materials. These include many components also used in perfumery, including components of essential oils such as Clary Sage, Eucalyptus, Geranium, Lavender, Mace Extract, Neroli, Nutmeg, Spearmint, Sweet Violet Leaf and Valerian.
  • the conditioning agents may be cationic, non-ionic, or mixtures thereof.
  • the fabric conditioning compositions of the invention may be dilute or concentrated.
  • Dilute products typically contain up to about 8%, preferably from 2 to 8% by weight of softening active, whereas concentrated products may contain from about 8 to about 50%, preferably from 8 to 25% by weight active.
  • Compositions of more than about 25% by weight of active are defined as "super concentrated", depending on the active system, and are also intended to be covered by the present invention.
  • the fabric conditioning agent may, for example, be used in amounts of from 0.5% to 35%, preferably from 2% to 30% more preferably from 5% to 25% and most preferably from 8% to 20% by weight of the composition.
  • the preferred softening active for use in rinse conditioner compositions of the invention is a quaternary ammonium compound (QAC) .
  • QAC quaternary ammonium compound
  • the quaternary ammonium fabric conditioners for use in compositions of the present invention are the so called "ester quats”.
  • Particularly preferred materials are the ester-linked triethanolamine (TEA) quaternary ammonium compounds comprising a mixture of mono-, di- and tri-ester linked components .
  • TAA ester-linked triethanolamine
  • each R is independently selected from a C5-35 alkyl or alkenyl group;
  • R 1 represents a C1-4 alkyl, C2-4 alkenyl or a Ci-4 hydroxyalkyl group;
  • T is generally O-CO. (i.e. an ester group bound to R via its carbon atom) , but may alternatively be CO-O (i.e. an ester group bound to R via its oxygen atom) ;
  • n is a number selected from 1 to 4;
  • m is a number selected from 1, 2, or 3;
  • X ⁇ is an anionic counter-ion, such as a halide or alkyl sulphate, e.g. chloride or methylsulphate .
  • TEA ester quats preparations which are rich in the di-esters of triethanolammonium methylsulphate, otherwise referred to as "TEA ester quats".
  • StepantexTM UL85 Ex Stepan, PrapagenTM TQL, ex Clariant, and TetranylTM AHT-I, ex Kao, (both di- [hardened tallow ester] of triethanolammonium methylsulphate), AT-I (di- [tallow ester] of triethanolammonium methylsulphate), and L5/90 (di- [palm ester] of triethanolammonium methylsulphate)
  • Ex Kao Ex Kao
  • RewoquatTM WE15 a di-ester of triethanolammonium methylsulphate having fatty acyl residues deriving from Cio ⁇ C20 and C16-C18 unsaturated fatty acids
  • a second group of QACs suitable for use in the invention is represented by formula (II) :
  • each R 1 group is independently selected from C1-4 alkyl, hydroxyalkyl or C 2 - 4 alkenyl groups; and wherein each R 2 group is independently selected from Cs- 2 8 alkyl or alkenyl groups; and wherein n, T, and X ⁇ are as defined above.
  • Preferred materials of this second group include 1,2 bis [ tallowoyloxy] -3-trimethylammonium propane chloride, 1,2 bis [hardened tallowoyloxy] -3-trimethylammonium propane chloride, 1, 2-bis [oleoyloxy] -3-trimethylammonium propane chloride, and 1,2 bis [stearoyloxy] -3-trimethylammonium propane chloride.
  • Such materials are described in US 4,137,180 (Lever Brothers).
  • these materials also comprise an amount of the corresponding mono-ester.
  • a third group of QACs suitable for use in the invention is represented by formula (III):
  • each R 1 group is independently selected from C1-4 alkyl, or C2-4 alkenyl groups; and wherein each R 2 group is independently selected from Cs-28 alkyl or alkenyl groups; and n, T, and X ⁇ are as defined above.
  • Preferred materials of this third group include bis (2-tallowoyloxyethyl) dimethyl ammonium chloride and hardened versions thereof.
  • the iodine value of the quaternary ammonium fabric conditioning material is preferably from 0 to 80, more preferably from 0 to 60, and most preferably from 0 to 45.
  • the iodine value may be chosen as appropriate.
  • Essentially saturated material having an iodine value of from 0 to 5, preferably from 0 to 1 may be used in the compositions of the invention. Such materials are known as "hardened" quaternary ammonium compounds.
  • a further preferred range of iodine values is from 20 to 60, preferably 25 to 50, more preferably from 30 to 45.
  • a material of this type is a "soft" triethanolamine quaternary ammonium compound, preferably triethanolamine di-alkylester methylsulphate .
  • Such ester-linked triethanolamine quaternary ammonium compound comprise unsaturated fatty chains.
  • Typical ester quat ratios of these materials are in the range of from 25 to 45% mono ester quat, from 45 to 60% diester quat and from 5 to 20% triester quat, preferably from 30 to 40% mono ester quat, from 50 to 55% diester quat and from 10 to 15% triester quat.
  • Iodine value refers to the measurement of the degree of unsaturation present in a material by a method of nmr spectroscopy as described in Anal. Chem., 3_£, 1136 (1962) Johnson and Shoolery .
  • Iodine value is defined as the number of grams of iodine absorbed per lOOg of the test material. Olefinic materials absorb 1 gram of iodine per atom of olefinic hydrogen. Hence measurement can be converted to the equivalent Iodine Value.
  • the hydrogen nmr spectrum at 360 MHz is obtained for the test material.
  • the integral intensity, I 3 of the band derived from olefinic hydrogen in the alkyl chain and the integral intensity, I m , of the band derived from terminal methyl groups in the alkyl chains are measured.
  • the CPE or RSE has 3 or more, preferably 4 or more ester or ether groups. If the CPE is a disaccharide it is preferred if the disaccharide has 3 or more ester or ether groups. Particularly preferred CPEs are esters with a degree of esterification of 3 to 5, for example, sucrose tri, tetra and penta esters.
  • each ring of the CPE has one ether or ester group, preferably at the Ci position.
  • Suitable examples of such compounds include methyl glucose derivatives.
  • CPEs examples include esters of alkyl (poly) glucosides, in particular alkyl glucoside esters having a degree of polymerisation from 1 to 2.
  • the length of the unsaturated (and saturated if present) chains in the CPE or RSE is C 8 -C 22 , preferably Ci 2 -C 22 . It is possible to include one or more chains of Ci-Cs, however these are less preferred.
  • the liquid or soft solid CPEs or RSEs which are suitable for use in the present invention are characterised as materials having a solid: liquid ratio of between 50:50 and 0:100 at 2O 0 C as determined by T 2 relaxation time NMR, preferably between 43:57 and 0:100, most preferably between 40:60 and 0:100, such as, 20:80 and 0:100.
  • the T 2 NMR relaxation time is commonly used for characterising solid: liquid ratios in soft solid products such as fats and margarines.
  • any component of the signal with a T 2 of less than 100 ⁇ s is considered to be a solid component and any component with T 2 > 100 ⁇ s is considered to be a liquid component.
  • the prefixes e.g. tetra and penta
  • the compounds exist as a mixture of materials ranging from the monoester to the fully esterified ester. It is the average degree of esterification which is used herein to define the CPEs and RSEs.
  • the HLB of the CPE or RSE is typically between 1 and 3.
  • the CPE or RSE is preferably present in the composition in an amount of 0.5-50% by weight, based upon the total weight of the composition, more preferably 1-30% by weight, such as 2-25%, e.g. 2-20%.
  • the CPEs and RSEs for use in the compositions of the invention include sucrose tetraoleate, sucrose pentaerucate, sucrose tetraerucate and sucrose pentaoleate.
  • Optional shading dyes can be used. Preferred dyes are violet or blue. Suitable and preferred classes of dyes are discussed below. Moreover the unsaturated quaternary ammonium compounds are subject to some degree of UV light and/or transition metal ion catalysed radical auto- oxidation, with an attendant risk of yellowing of fabric. The present of a shading dye also reduces the risk of yellowing from this source.
  • Direct dyes are the class of water soluble dyes which have a affinity for fibres and are taken up directly. Direct violet and direct blue dyes are preferred.
  • the dye are bis-azo or tris-azo dyes are used.
  • the direct dye is a direct violet of the following structures:
  • ring D and E may be independently naphthyl or phenyl as shown;
  • Ri is selected from: hydrogen and Cl-C4-alkyl, preferably hydrogen;
  • R2 is selected from: hydrogen, Cl-C4-alkyl, substituted or unsubstituted phenyl and substituted or unsubstituted naphthyl, preferably phenyl;
  • R3 and R4 are independently selected from: hydrogen and Cl-
  • C4-alkyl preferably hydrogen or methyl
  • Preferred dyes are direct violet 7, direct violet 9, direct violet 11, direct violet 26, direct violet 31, direct violet 35, direct violet 40, direct violet 41, direct violet 51, and direct violet 99.
  • Bis-azo copper containing dyes such as direct violet 66 may be used.
  • the benzidene based dyes are less preferred.
  • the direct dye is present at 0.00001 wt% to 0.0010 wt% of the formulation.
  • the direct dye may be covalently linked to the photo-bleach, for example as described in WO2006/024612.
  • Cotton substantive acid dyes give benefits to cotton containing garments.
  • Preferred dyes and mixes of dyes are blue or violet.
  • Preferred acid dyes are:
  • R a , R b , R c and R d are selected from: H, an branched or linear Cl to C7-alkyl chain, benzyl a phenyl, and a naphthyl ; the dye is substituted with at least one SC>3 ⁇ or -COO ⁇ group; the B ring does not carry a negatively charged group or salt thereof; and the A ring may further substituted to form a naphthyl; the dye is optionally substituted by groups selected from: amine, methyl, ethyl, hydroxyl, methoxy, ethoxy, phenoxy,
  • Preferred azine dyes are: acid blue 98, acid violet 50, and acid blue 59, more preferably acid violet 50 and acid blue 98.
  • non-azine acid dyes are acid violet 17, acid black 1 and acid blue 29.
  • the acid dye is present at 0.0005 wt% to 0.01 wt% of the formulation.
  • the composition may comprise one or more hydrophobic dyes selected from benzodifuranes, methine, triphenylmethanes, napthalimides, pyrazole, napthoquinone, anthraquinone and mono-azo or di-azo dye chromophores .
  • Hydrophobic dyes are dyes which do not contain any charged water solubilising group. Hydrophobic dyes may be selected from the groups of disperse and solvent dyes. Blue and violet anthraquinone and mono-azo dye are preferred.
  • Preferred dyes include solvent violet 13, disperse violet 27 disperse violet 26, disperse violet 28, disperse violet 63 and disperse violet 77.
  • the hydrophobic dye is present at 0.0001 wt% to 0.005 wt% of the formulation.
  • Basic dyes are organic dyes which carry a net positive charge. They deposit onto cotton. They are of particular utility for used in composition that contain predominantly cationic surfactants. Dyes may be selected from the basic violet and basic blue dyes listed in the Colour Index International .
  • Preferred examples include triarylmethane basic dyes, methane basic dye, anthraquinone basic dyes, basic blue 16, basic blue 65, basic blue 66, basic blue 67, basic blue 71, basic blue 159, basic violet 19, basic violet 35, basic violet 38, basic violet 48; basic blue 3, basic blue 75, basic blue 95, basic blue 122, basic blue 124, basic blue 141.
  • the fatty complexing agent is preferably present in an amount of greater than 0.1 to 10%, such as from 0.2 to 5% by weight based on the total weight of the composition. More preferably, the fatty component is present in an amount of from 0.3 to 4 weight %.
  • the weight ratio of the mono-ester component of the quaternary ammonium fabric softening material to the fatty complexing agent is preferably from 10:1 to 1:10, more preferably from 20:1 to 1:20.
  • the formaldehyde level in the final product should be below 70 ppm, preferably below 15 ppm and most preferable below 10 ppm.
  • the active ingredient in the compositions is a fabric softening agent. More than one active ingredient may be included.
  • a composition for use in the invention is in liquid form.
  • the composition may be a concentrate to be diluted in a solvent, including water, before use.
  • the composition may also be a ready-to-use (in-use) composition.
  • the composition is provided as a ready to use liquid comprising an aqueous phase.
  • the aqueous phase may comprise water- soluble species, such as mineral salts or short chain (Ci_ 4 ) alcohols .
  • the composition is preferably a fabric softener or fabric conditioner composition, and is preferably for use in the rinse cycle of a home textile laundering operation, where, it may be added directly in an undiluted state to a washing machine, e.g. through a dispenser drawer or, for a top- loading washing machine, directly into the drum. Alternatively, it can be diluted prior to use.
  • the compositions may also be used in a domestic hand-washing laundry operation. It is also possible, though less desirable, for the compositions of the present invention to be used in industrial laundry operations, e.g. as a finishing agent for softening new clothes prior to sale to consumers.
  • compositions of the invention may be made by combining a melt comprising the fabric softening active with an aqueous phase comprising the encapsulated perfume components.
  • the stabilising active may be melted with the fabric softening active, or it may be post dosed into the composition after combination of the melt and water phase. Salt is then added to obtain the desired viscosity.
  • Examples of the invention are represented by a number. Comparative examples are represented by a letter.
  • Example 1 - Preparation of Compositions 1 , 2 and 3 in accordance with the invention, Comparative Examples A , B and C , and a control .
  • Table 2 Difference and percent difference between the viscosities at the end of the first low shear and at the end of the second low shear regions of the liquid fabric softeners 1, 2 and A-D.
  • nonionic surfactant in combination with salt is critical for the stabilization of the encapsulate containing compositions. It will further be seen that the correct level of nonionic surfactant is also essential for successful stabilization to be achieved.
  • Table 3 Compositions of the liquid fabric softeners 4 and E.
  • compositions were measured as described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Fats And Perfumes (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Detergent Compositions (AREA)

Abstract

L'invention porte sur une composition comprenant : i) des composants de parfum encapsulés, ii) un agent actif d'assouplissement des tissus, iii) un agent actif de stabilisation choisi dans le groupe constitué de 0,05 à 0,2 % en poids du poids total de la composition d’un ou de composés d'ammonium quaternaire cationiques hydrosolubles, 0,65 à 1,5 % en poids du poids total de la composition d'un ou d’agents tensio-actifs non ioniques et de mélanges de ceux-ci, et iv) de 0,005 à 0,1 % en poids par rapport au poids total de la composition de sel, les encapsulants comprenant une paroi de capsule comportant des groupes ou des fractions d’acide faible de surface. Cette composition permet la formulation de compositions stables d'assouplissement des tissus.
EP09802479A 2008-07-29 2009-07-15 Améliorations concernant des adoucissants textiles Active EP2310480B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL09802479T PL2310480T3 (pl) 2008-07-29 2009-07-15 Ulepszenia dotyczące kompozycji do kondycjonowania tkanin
EP09802479A EP2310480B1 (fr) 2008-07-29 2009-07-15 Améliorations concernant des adoucissants textiles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08161377 2008-07-29
PCT/EP2009/059049 WO2010012590A1 (fr) 2008-07-29 2009-07-15 Perfectionnements se rapportant aux assouplissants pour tissus
EP09802479A EP2310480B1 (fr) 2008-07-29 2009-07-15 Améliorations concernant des adoucissants textiles

Publications (2)

Publication Number Publication Date
EP2310480A1 true EP2310480A1 (fr) 2011-04-20
EP2310480B1 EP2310480B1 (fr) 2013-01-02

Family

ID=39870539

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09802479A Active EP2310480B1 (fr) 2008-07-29 2009-07-15 Améliorations concernant des adoucissants textiles

Country Status (8)

Country Link
EP (1) EP2310480B1 (fr)
CN (1) CN102112591B (fr)
AR (1) AR072841A1 (fr)
BR (1) BRPI0916561B1 (fr)
ES (1) ES2402487T3 (fr)
PL (1) PL2310480T3 (fr)
WO (1) WO2010012590A1 (fr)
ZA (1) ZA201100170B (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2385099A1 (fr) 2010-05-06 2011-11-09 The Procter & Gamble Company Procédé de fabrication de compositions adoucissantes liquides pour tissus
WO2013040115A1 (fr) * 2011-09-13 2013-03-21 The Procter & Gamble Company Compositions fluides d'amélioration de tissu
ES2568743T3 (es) 2011-12-16 2016-05-04 Unilever N.V. Mejoras relacionadas con composiciones de tratamiento de tejidos
WO2013189661A1 (fr) * 2012-06-21 2013-12-27 Unilever Plc Améliorations relatives à des conditionneurs de tissus
EP2984161B1 (fr) * 2013-04-12 2018-12-12 Unilever PLC, a company registered in England and Wales under company no. 41424 of Améliorations concernant des adoucissants textiles
GB2513361A (en) * 2013-04-24 2014-10-29 Intelligent Fabric Technologies Plc Fabric softener
WO2021018805A1 (fr) * 2019-07-30 2021-02-04 Unilever Global Ip Limited Compositions de pulvérisation pour tissu
EP4150038B1 (fr) * 2020-05-14 2024-06-19 Unilever IP Holdings B.V. Composition de lessive
BR112023021094A2 (pt) * 2021-04-15 2023-12-12 Unilever Ip Holdings B V Composição condicionadora de tecido, método de preparação de uma composição condicionadora de tecido e uso de carbono derivado da captura de carbono
WO2022219111A1 (fr) * 2021-04-15 2022-10-20 Unilever Ip Holdings B.V. Composition à pulvériser pour tissu

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050227907A1 (en) * 2004-04-13 2005-10-13 Kaiping Lee Stable fragrance microcapsule suspension and process for using same
US20060252669A1 (en) * 2005-05-06 2006-11-09 Marija Heibel Fabric care composition comprising polymer encapsulated fabric or skin beneficiating ingredient
EP1893734B1 (fr) * 2005-06-08 2019-03-20 Firmenich Sa Produits de consommation quasi-anhydres comprenant des capsules aminoplastes parfumées
PL2046269T3 (pl) * 2006-08-01 2011-05-31 Procter & Gamble Cząstka dostarczająca zawierająca korzystny środek

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010012590A1 *

Also Published As

Publication number Publication date
CN102112591B (zh) 2013-02-13
AR072841A1 (es) 2010-09-22
EP2310480B1 (fr) 2013-01-02
BRPI0916561A2 (pt) 2015-11-10
WO2010012590A1 (fr) 2010-02-04
CN102112591A (zh) 2011-06-29
PL2310480T3 (pl) 2013-06-28
ZA201100170B (en) 2012-03-28
BRPI0916561B1 (pt) 2018-11-06
ES2402487T3 (es) 2013-05-06

Similar Documents

Publication Publication Date Title
EP2310480B1 (fr) Améliorations concernant des adoucissants textiles
EP2561057B1 (fr) Améliorations associées aux adoucissants textiles
EP2646533B2 (fr) Compositions assouplissantes pour le linge
EP2294167B1 (fr) Améliorations concernant des adoucissants textiles
WO2011020652A1 (fr) Améliorations se rapportant à des assouplissants pour tissus
EP2791307B1 (fr) Améliorations associées aux compositions de traitement de tissu
EP2855648B1 (fr) Améliorations relatives à des conditionneurs pour textile
EP2294168A1 (fr) Améliorations se rapportant à des produits assouplissants pour tissus
EP2791311B1 (fr) Traitement de tissus
EP2614133A1 (fr) Améliorations se rapportant à des assouplissants pour textile
EP2646532A1 (fr) Conditionneurs de tissu
WO2013107583A1 (fr) Procédé et composition de traitement de tissu
EP2486118B1 (fr) Assouplissants de tissu
EP2984161B1 (fr) Améliorations concernant des adoucissants textiles
EP2748295B1 (fr) Agent bénéfique encapsulé
EP2646536B1 (fr) Adjuvants adoucissants pour le linge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 591640

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009012564

Country of ref document: DE

Effective date: 20130228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2402487

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130506

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 591640

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130102

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130402

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130502

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130402

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130502

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20130618

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

26 Opposition filed

Opponent name: HENKEL AG & CO. KGAA

Effective date: 20130930

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602009012564

Country of ref document: DE

Effective date: 20130930

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090715

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130715

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 602009012564

Country of ref document: DE

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140715

27O Opposition rejected

Effective date: 20151029

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190822

Year of fee payment: 11

Ref country code: IT

Payment date: 20190729

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602009012564

Country of ref document: DE

Owner name: UNILEVER GLOBAL IP LIMITED, WIRRAL, GB

Free format text: FORMER OWNER: UNILEVER N.V., ROTTERDAM, NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200715

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20211230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200716

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220127 AND 20220202

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230428

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230713

Year of fee payment: 15

Ref country code: GB

Payment date: 20230720

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 15

Ref country code: DE

Payment date: 20230719

Year of fee payment: 15