EP2294167B1 - Améliorations concernant des adoucissants textiles - Google Patents

Améliorations concernant des adoucissants textiles Download PDF

Info

Publication number
EP2294167B1
EP2294167B1 EP09761580.1A EP09761580A EP2294167B1 EP 2294167 B1 EP2294167 B1 EP 2294167B1 EP 09761580 A EP09761580 A EP 09761580A EP 2294167 B1 EP2294167 B1 EP 2294167B1
Authority
EP
European Patent Office
Prior art keywords
perfume
composition
water
fabric softening
softening active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09761580.1A
Other languages
German (de)
English (en)
Other versions
EP2294167A1 (fr
Inventor
Richard Edward Bentley
Ian David Charlton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever PLC
Unilever NV
Original Assignee
Unilever PLC
Unilever NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever PLC, Unilever NV filed Critical Unilever PLC
Priority to EP09761580.1A priority Critical patent/EP2294167B1/fr
Publication of EP2294167A1 publication Critical patent/EP2294167A1/fr
Application granted granted Critical
Publication of EP2294167B1 publication Critical patent/EP2294167B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/001Softening compositions
    • C11D3/0015Softening compositions liquid
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/62Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • C11D3/502Protected perfumes
    • C11D3/505Protected perfumes encapsulated or adsorbed on a carrier, e.g. zeolite or clay

Definitions

  • the present invention concerns a process for the preparation of encapsulated perfume in fabric softener compositions.
  • encapsulated perfume components in fabric conditioners is advantageous in that it enables the improved storage and delivery of perfumes and perfume components.
  • Such technologies provide enhanced fragrance delivery over conventional free perfume oil by overcoming the issue of perfume loss during the drying process by protecting the perfume in the capsule.
  • the encaps themselves are relatively fragile and contain volatile perfume components which are depleted if rupture of the encap casing occurs. Accordingly, in a typical method of manufacture, the encaps are introduced into the active mixture at a late stage of the process in order to preserve them. Typically, water and minor ingredients such as antifoam and preservative are heated whilst the softening active is melted separately. The molten active is then added to the hot water with agitation before being allowed to cool. Only then is the encapsulated perfume added to the mixture, along with any free perfume oil. Such a sequence of steps, with the addition of the encaps taking place after the addition of the molten active to the water phase, helps to preserve the fragile encaps and minimises damage to these relatively delicate components.
  • WO 2007/028495 relates to aqueous conditioning compositions comprising benzalkonium chloride, calcium chloride and fatty acid. These compositions are characterised by excellent long term stability when prepared by a method wherein a slurry of encapsulated perfume is added to the charge water, followed by the addition of ester-comprising water-insoluble quaternary ammonium fabric conditioning agent and free perfume, at a temperature below the phase transition temperature of the compositions.
  • compositions such as fabric conditioner compositions, which allows acceptable dispersion of the encaps in the final composition, where the compositions are free from calcium chloride and benzalkonium chloride.
  • a process for preparing a composition comprising an ester-linked quaternary ammonium fabric softening active, an encapsulated perfume and a non-confined perfume, wherein the process comprises the step of dispersing the encapsulated perfume in water, before the addition of the fabric softening active to the water, and wherein the composition is free from calcium chloride and benzalkonium chloride.
  • composition obtained from the process of the first aspect of the invention.
  • the encapsulated perfume is added to the water phase, before the addition of the molten active.
  • the water phase may also contain minor components such as preservatives and antifoam.
  • the proportion of the encapsulated perfume that is added to the water phase prior to the addition of the molten active should be from about 20 to 100 %, preferably from 50 to 100 %, more preferably from 80 to 100, most preferably 100 %.
  • Non-confined perfume oil is added in the conventional way, after the active and water, phases have been combined and cooled.
  • a preferred process of the invention comprises the steps of:-
  • the molten active is added to the water phase, wherein the water phase contains perfume encapsulates. It is preferable that 100 % of the molten active is added at this stage, although the addition of a minor amount of molten active to the water phase before the encaps are added is also covered by the present invention.
  • minor amount is meant, for example, from 0.0001 to 25 %, for example 20, or 10 %.
  • the softening active for use in the process and compositions of the invention is an ester-linked quaternary ammonium compound.
  • Preferred ester-linked quaternary ammonium compounds for use in the process of the invention have unsaturated chains, i.e. are the so-called "soft" quats.
  • Such compounds are typically derived from fatty acyl or fatty acid feed stock having an Iodine Value of from 20 to 140, preferably from 20 to 60, more preferably from 20 to 50, most preferably from 25 to 45.
  • the unsaturated chains come from the unsaturated fatty feed stock.
  • the iodine value represents the mean iodine value of the parent fatty acyl compounds or fatty acids of all of the quaternary ammonium materials present.
  • the iodine value represents the mean iodine value of the parent fatty acyl compounds or fatty acids of all of the quaternary ammonium materials present.
  • Iodine value is defined as the number of grams of iodine absorbed per 100 g of test material. NMR spectroscopy is a suitable technique for determining the iodine value of the softening agents of the present invention, using the method described in Anal. Chem., 34, 1136 (1962) by Johnson and Shoolery and in EP 593,542 (Unilever, 1993 ).
  • the quaternary ammonium compound is preferably present in the compositions of the invention at a level of from 8 % to 20 %, preferably from 10 % to 15 %, for example from 8 to 16 % by weight of the total composition.
  • the compositions of the invention are preferably concentrated fabric conditioners.
  • Particularly preferred materials are the ester-linked triethanolammonium (TEA) quaternary ammonium compounds comprising a mixture of mono-, di- and tri-ester linked components.
  • TAA triethanolammonium
  • such TEA-based fabric softening compounds comprise a mixture of mono, di- and tri-ester forms of the compound.
  • the di-ester linked component comprises no more than 70 % by weight of the fabric softening compound, preferably no more than 60 %, e.g. no more than 55 %, or even no more than 45 % of the fabric softening compound and at least 10 % of the monoester linked component.
  • a first group of quaternary ammonium compounds (QACs) suitable for use in the present invention is represented by formula (I): [(CH 2 ) n (TR)] m -(R 1 ).N + - [(CH 2 ) n (OH)] 3-m X - (I) wherein each R is independently selected from a C 5-35 alkyl or alkenyl group; R 1 represents a C 1-4 alkyl, C 2-4 alkenyl or a C 1-4 hydroxyalkyl group; T is generally O-CO. (i.e. an ester group bound to R via its carbon atom), but may alternatively be CO.O (i.e.
  • Especially preferred agents are preparations which are rich in the di-esters of triethanolammonium methylsulphate, otherwise referred to as "TEA ester quats".
  • TetranylTM ex Kao TetranylTM ex Kao, AT-1 (di-[tallow ester] of triethanolammonium methylsulphate), and L5/90 (di-[palm ester] of triethanolammonium methylsulphate), both ex Kao, and RewoquatTM WE15 (a di-ester of triethanolammonium methylsulphate having fatty acyl residues deriving from C 10 -C 20 and C 16 -C 18 unsaturated fatty acids), ex Witco Corporation and the Stepantex (ex Stepan) soft range, Stepantex VT90, VA90 and SP90.
  • a second group of quaternary ammonium compounds suitable for use in the invention is represented by formula (II): (R 1 ) 3 N + -(CH 2 ) n -CH. (CH 2 TR 2 )-TR 2 X - (II) wherein each R 1 group is independently selected from C 1-4 alkyl, hydroxyalkyl or C 2-4 alkenyl groups; and wherein each R 2 group is independently selected from C 8-28 alkyl or alkenyl groups; and wherein n, T, and X- are as defined above.
  • Preferred materials of this second group include 1,2 bis [tallowoyloxy]-3-trimethylammonium propane chloride, 1,2 and 1,2- bis [oleoyloxy]-3-trimethylammonium propane chloride. Such materials are described in US 4,137,180 (Lever Brothers). Preferably, these materials also comprise an amount of the corresponding mono-ester.
  • compositions derived from the process of the present invention comprise one or more perfumes.
  • the perfume is present in encapsulated and non-confined forms.
  • the total amount of encapsulated and non-confined perfume present is preferably an amount of from 0.01 to 10 % by weight, more preferably from 0.05 to 5 % by weight, even more preferably from 0.1 to 4.0 %, most preferably from 0.5 to 3.0 % by weight, based on the total weight of the composition.
  • the amount of encaps present is from 0.01 to 0.9 %, preferably from 0.05 to 0.7 %, more preferably from 0.15 to 0.5 % and most preferably from 0.2 to 0.5 % by weight of the total composition.
  • the encapsulated perfume is preferably in the form of a slurry having a viscosity of from greater than water to 1000 cps at 21 s -1 and 25 °C.
  • the perfume loading of the encaps that is to say the amount of the total encap weight that is perfume, is preferably from 20 to 40 wt %, more preferably from 28 to 32 wt %, by total weight of the encaps.
  • the encaps (or "capsules") for use in the process of the present invention comprise a shell.
  • the shell is preferably comprised of materials including aminoplasts, proteins, polyurethanes, polysaccharides, gums, celluloses, and any other encapsulating material which may be used effectively in the present invention, such as polymethylmethacrylate.
  • Preferred encapsulating polymers include those formed from melamine formaldehyde or urea formaldehyde condensates, as well as similar types of aminoplasts.
  • Most preferably the shell comprises melamine formaldehyde.
  • microcapsules made via the simple or complex coacervation of gelatin are also preferred for use with the coating.
  • Microcapsules having shell walls comprised of polyurethane, polyamide, polyolefin, polysaccaharide, protein, silicone, lipid, modified cellulose, gums, polyacrylate, polystyrene, and polyesters or combinations of these materials are also possible.
  • a representative process used for aminoplast encapsulation is disclosed in U.S. Patent No. 3,516,941 though it is recognized that many variations with regard to materials and process steps are possible.
  • a representative process used for gelatin encapsulation is disclosed in U.S. Patent No, 2,800,457 though it is recognized that many variations with regard to materials and process steps are possible. Both of these processes are discussed in the context of fragrance encapsulation for use in consumer products in U.S. Patent Nos. 4,145,184 and USA 5,112,688 respectively.
  • Encapsulation can provide pore vacancies or interstitial openings depending on the encapsulation techniques employed.
  • Fragrance capsules known in the art and suitable for use in the present invention comprise a wall or shell comprising a three-dimensional cross-linked network of an aminoplast resin, more specifically a substituted or un-substituted acrylic acid polymer or co-polymer cross-linked with a urea-formaldehyde pre-condensate or a melamine-formaldehyde pre-condensate.
  • Microcapsule formation using mechanisms similar to the foregoing mechanism, using (i) melamine-formaldehyde or urea-formaldehyde pre-condensates and (ii) polymers containing substituted vinyl monomeric units having proton-donating functional group moieties (e.g. sulfonic acid groups or carboxylic acid anhydride groups) bonded thereto is disclosed in U.S. Patent 4,406,816 (2-acrylamido-2-methyl-propane sulfonic acid groups), UK published Patent Application GB 2,062,570 A (styrene sulfonic acid groups) and UK published Patent Application GB 2,006,709 A (carboxylic acid anhydride groups).
  • Particle size and average diameter of the capsules can vary from about 10 nanometers to about 1000 microns, preferably from about 50 nanometers to about 100 microns, more preferably from about preferably from about 2 to about 40 microns, even more preferably from about 3 to 30 microns. A particularly preferred range is from about 5 to 10 microns, for example 6 to 7 microns.
  • the capsule distribution can be narrow, broad or multimodal. Multimodal distributions may be composed of different types of capsule chemistries.
  • Useful components of the perfume include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavor Ingredients, 1975, CRC Press ; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostr and; or Perfume and Flavor Chemicals by S. Arctander 1969, Montclair, N.J. (USA ).
  • perfume in this context is not only meant a fully formulated product fragrance, but also selected components of that fragrance, particularly those which are prone to loss, such as the so-called 'top notes'.
  • Top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955 ]). Examples of well known top-notes include citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol. Top notes typically comprise 15-25%wt of a perfume composition and in those embodiments of the invention which contain an increased level of top-notes it is envisaged at that least 20%wt would be present within the encapsulate.
  • perfume components which have a low Clog P (i.e. those which will be partitioned into water), preferably with a Clog P of less than 3.0.
  • Clog P i.e. those which will be partitioned into water
  • materials, of relatively low boiling point and relatively low Clog P have been called the "delayed blooming" perfume ingredients and include the following materials:
  • Suitable non-encapsulated perfume ingredients include those hydrophobic perfume components with a ClogP above 3.
  • ClogP means the logarithm to base 10 of the octanol/water partition coefficient (P).
  • the octanol/water partition coefficient of a PRM is the ratio between its equilibrium concentrations in octanol and water. Given that this measure is a ratio of the equilibrium concentration of a PRM in a non-polar solvent (octanol) with its concentration in a polar solvent (water), ClogP is also a measure of the hydrophobicity of a material--the higher the ClogP value, the more hydrophobic the material.
  • ClogP values can be readily calculated from a program called "CLOGP" which is available from Daylight Chemical Information Systems Inc., Irvine Calif., USA. Octanol/water partition coefficients are described in more detail in U.S. Pat. No. 5,578,563 .
  • Perfume components with a ClogP above 3 comprise: Iso E super, citronellol, Ethyl cinnamate, Bangalol, 2,4,6-Trimethylbenzaldehyde, Hexyl cinnamic aldehyde, 2,6-Dimethyl-2-heptanol, Diisobutylcarbinol, Ethyl salicylate, Phenethyl isobutyrate, Ethyl hexyl ketone, Propyl amyl ketone, Dibutyl ketone, Heptyl methyl ketone, 4,5-Dihydrotoluene, Caprylic aldehyde, Citral, Geranial, Isopropyl benzoate, Cyclohexanepropionic acid, Campholene aldehyde, Caprylic acid, Caprylic alcohol, Cuminaldehyde, 1-Ethyl-4-nitrobenzene, Heptyl formate, 4-I
  • perfumes with which the present invention can be applied are the so-called 'aromatherapy' materials. These include many components also used in perfumery, including components of essential oils such as Clary Sage, Eucalyptus, Geranium, Lavender, Mace Extract, Neroli, Nutmeg, Spearmint, Sweet Violet Leaf and Valerian.
  • Co-softeners may be used. When employed, they are typically present at from 0.1 to 20% and particularly at from 0.5 to 10%, based on the total weight of the composition.
  • Preferred co-softeners include fatty esters, and fatty N-oxides.
  • Fatty esters that may be employed include fatty monoesters, such as glycerol monostearate, fatty sugar esters, such as those disclosed WO 01/46361 (Unilever ).
  • compositions of the present invention will preferably comprise a fatty alcohol.
  • the fatty complexing material improves the viscosity profile of the composition by complexing with mono-ester component of the fabric conditioner material thereby providing a composition which has relatively higher levels of di-ester and tri-ester linked components.
  • the di-ester and tri-ester linked components are more stable and do not affect initial viscosity as detrimentally as the mono-ester component.
  • compositions comprising quaternary ammonium materials based on TEA may destabilise the composition through depletion flocculation.
  • depletion flocculation is significantly reduced.
  • the fatty complexing agent at the increased levels as required by the present invention, "neutralises” the mono-ester linked component of the quaternary ammonium material. This in situ di-ester generation from mono-ester and fatty alcohol also improves the softening of the composition.
  • Preferred fatty acids include hardened tallow fatty acid (available under the trade name PristereneTM, ex Uniqema).
  • Preferred fatty alcohols include hardened tallow alcohol (available under the trade names StenolTM and HydrenolTM, ex Cognis and LaurexTM CS, ex Albright and Wilson).
  • the fatty complexing agent is preferably present in an amount greater than 0.3 to 5% by weight based on the total weight of the composition. More preferably, the fatty component is present in an amount of from 0.4 to 4%.
  • the weight ratio of the mono-ester component of the quaternary ammonium fabric softening material to the fatty complexing agent is preferably from 5:1 to 1:5, more preferably 4:1 to 1:4, most preferably 3:1 to 1:3, e.g. 2:1 to 1:2.
  • compositions may further comprise a nonionic surfactant, especially where the level of quaternary ammonium compound is above about 8 % by weight of the total composition. Typically these can be included for the purpose of stabilising the compositions.
  • Suitable nonionic surfactants include addition products of ethylene oxide and/or propylene oxide with fatty alcohols, fatty acids and fatty amines. Any of the alkoxylated materials of the particular type described hereinafter can be used as the nonionic surfactant.
  • Suitable surfactants are substantially water soluble surfactants of the general formula: R-Y-(C 2 H 4 O) z -CH 2 -CH 2 -OH where R is selected from the group consisting of primary, secondary and branched chain alkyl and/or acyl hydrocarbyl groups; primary, secondary and branched chain alkenyl hydrocarbyl groups; and primary, secondary and branched chain alkenyl-substituted phenolic hydrocarbyl groups; the hydrocarbyl groups having a chain length of from 8 to about 25, preferably 10 to 20, e.g. 14 to 18 carbon atoms.
  • Y is Typically: --O--, --C(O)O--, --C(O)N(R)-- or --C(O)N(R)R-- in which R has the meaning given above or can be hydrogen; and Z is at least about 8, preferably at least about 10 or 11.
  • the nonionic surfactant has an HLB of from about 7 to about 20, more preferably from 10 to 18, e.g. 12 to 16.
  • GenapolTM C200 (Clariant) based on coco chain and 20 EC groups is an example of a suitable nonionic surfactant.
  • the nonionic surfactant is present in an amount from 0.01 to 10%, more preferable C.1 to 5 by weight, based on the total weight of the composition.
  • Alternative stabilising agents may be used.
  • Alternative stabilisers include single long chain ethoxylated cationic surfactant with a counter ion which is preferably an alkyl sulphate, such as methyl sulphate and ethyl sulphate, and most preferably is a methylsulphate counter-ion.
  • the single long chain cationic surfactants alternatives are alkoxylated cationic quaternary ammonium surfactants.
  • Those suitable for use in this invention are generally derived from fatty alcohols, fatty acids, fatty methyl esters, alkyl substituted phenols, alkyl substituted benzoic acids, and/or alkyl substituted benzoate esters, and/or fatty acids that are converted to amines which can optionally be further reacted with another long chain alkyl or alkyl-aryl group; this amine compound is then alkoxylated with one or two alkylene oxide chains each having less than or equal to about 50 moles alkylene oxide moieties (e.g. ethylene oxide and/or propylene oxide) per mole of amine.
  • alkylene oxide moieties e.g. ethylene oxide and/or propylene oxide
  • Typical of this class are products obtained from the quaternization of aliphatic saturated or unsaturated, primary, secondary, or branched amines having one hydrocarbon chain from about 12 to about 22 carbon atoms alkoxylated with one or two alkylene oxide chains on the amine atom each having less than or equal to about 50 alkylene oxide moieties.
  • the amine hydrocarbons for use herein have from about 12 to about 22 carbon atoms, and are preferably in a straight chain configuration.
  • Suitable quaternary ammonium surfactants are made with one or two alkylene oxide chains attached to the amine moiety, in average amounts of less than or equal to about 50 moles of alkylene oxide per alkyl chain, more preferably from about 3 to about 20 moles of alkylene oxide, and most preferably from about 5 to about 12 moles of alkylene oxide per hydrophobic, e.g., alkyl group.
  • Suitable stabilizers of this type include Ethoquad® 18/25, C/25, and O/25 from Akzo and Variquat®-66 (soft tallow alkyl bis(polyoxyethyl) ammonium ethyl sulfate with a total of about 16 ethoxy units) from Goldschmidt.
  • Preferred commercial surfactants include Rewoquat V3351, a tallow alkyl amido-amine methyl sulphate quat (ex Goldschmidt), Surfac ARF, a tallow amine ethoxy ammonium methyl sulphate (ex Surfachem).
  • amido-amine single long chain cationic surfactants for use in the present invention may be alkoxylated.
  • These alkoxylated amido-amine single chain cationic surfactants comprise one or more alkylene oxide chains each having less than or equal to about 50 moles alkylene oxide moieties (e.g. ethylene oxide and/or propylene oxide) per mole of amine.
  • the preferred alkoxylated surfactants for use in the present invention comprise at least one ethoxylate group.
  • compositions of the invention may contain one or more other ingredients.
  • ingredients include photobleaches, fluorescent agents, dyes, preservatives (e.g. bactericides), pH buffering agents, preferably inorganic or organic based such as hydrochloric acid, lactic acid and sodium lactate, etc, perfume carriers, hydrotropes, anti-redeposition agents, soil-release agents, polyelectrolytes, anti-shrinking agents, anti-wrinkle agents, anti-oxidants, sunscreens, anti-corrosion agents, drape imparting agents, anti-static agents and ironing aids.
  • cationic polymeric deposition aids include cationic guar polymers such as JaguarTM (ex Rhone Poulenc), cationic cellulose derivatives such as CelquatsTM (ex National Starch), FlocaidTM (ex National Starch), cationic potato starch such as SoftGelTM (ex Aralose), cationic polyacrylamides such as PCG (ex Allied Colloids).
  • a composition for use in the invention may be in solid or liquid form.
  • the composition may be a concentrate to be diluted, rehydrated and/or dissolved in a solvent, including water, before use.
  • the composition may also be a ready-to-use (in-use) composition.
  • the composition is provided as a ready to use liquid comprising an aqueous phase.
  • the aqueous phase may comprise water-soluble species, such as mineral salts or short chain (C 1-4 ) alcohols.
  • the mineral salts may aid the attainment of the required phase volume for the composition, as may water soluble organic salts and cationic deflocculating polymers, as described in EP 41,698 A2 (Unilever ). Such salts may be present at from 0.001 to 1% and preferably at from 0.005 to 0.1% by weight of the total composition. Examples of suitable mineral salts for this purpose include calcium chloride and magnesium chloride.
  • the compositions of the invention may also contain pH modifiers such as hydrochloric acid.
  • the short chain alcohols include primary alcohols, such as ethanol, propanol, and butanol, and secondary alcohols such as isopropanol. The short chain alcohol may be added with the cationic softening agent during the preparation of the composition.
  • the composition being a fabric softener or fabric conditioner composition, is preferably for use in the rinse cycle of a home textile laundering operation, where, it may be added directly in an undiluted state to a washing machine, e.g. through a dispenser drawer or, for a top-loading washing machine, directly into the drum. Alternatively, it can be diluted prior to use.
  • the compositions may also be used in a domestic hand-washing laundry operation.
  • Example 1 Preparation of Composition 1 and Comparative Example A
  • Composition 1 and Comparative Example A both have the same composition but Composition 1 was prepared using the process of the invention, whilst Comparative Example A was prepared using the process of the prior art.
  • Water 85 85 Minors (antifoam, preservative, dye and pH buffer) 1 1 Perfume encaps 3 2
  • Free perfume 2 1 1 softening active 1 11 11 HCl to stable pH to stable pH 1 Softening active is Stepantex UL90 (Stepan) 2 Free perfume oil is Azure (IFF) 3 Encapsulated perfume slurry is Blue Touch (IFF)
  • compositions were studied using light microscopy to assess dispersion of the encaps in the compositions.
  • the comparative example had poor visual properties with significant aggregation of the encaps.
  • the composition according to the invention showed minimal aggregation and had excellent visual appearance. Further, it was noted that the viscosity properties were not affected in Composition 1 and no damage to the encaps was apparent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Fats And Perfumes (AREA)

Claims (11)

  1. Procédé de préparation d'une composition comprenant un principe actif adoucissant pour tissu de type ammonium quaternaire lié à un ester, un parfum encapsulé et un parfum non confiné, le procédé comprenant l'étape consistant à disperser le parfum encapsulé dans de l'eau avant l'addition du principe actif adoucissant pour tissu à l'eau et dans lequel la composition est exempte de chlorure de calcium et de chlorure de benzalkonium.
  2. Procédé selon la revendication 1, dans lequel la proportion de principe actif adoucissant pour tissu qui est ajouté à l'eau après la dispersion du parfum encapsulé est de 100 %.
  3. Procédé selon la revendication 1 ou la revendication 2, dans lequel le taux de parfum encapsulé qui est dispersé dans l'eau avant l'addition du principe actif adoucissant pour tissu est de 20 à 100 %, de préférence de 50 à 100 %, plus préférablement de 80 à 100 %, de manière préférée entre toutes de 100 %, par rapport au poids de la quantité totale de produits encapsulés.
  4. Procédé selon l'une quelconque des revendications précédentes, dans lequel le principe actif adoucissant pour tissu est dérivé d'une matière première d'acyle gras ou d'acide gras ayant un indice d'iode de 20 à 60.
  5. Procédé selon l'une quelconque des revendications précédentes, dans lequel le principe actif adoucissant pour tissu est présent dans la composition à un taux de 8 % à 16 %, par rapport au poids de la composition totale.
  6. Procédé selon l'une quelconque des revendications précédentes, dans lequel le parfum encapsulé et non confiné est présent en une quantité totale de 0,01 à 10 % en poids de la composition totale.
  7. Procédé selon l'une quelconque des revendications précédentes, dans lequel le parfum encapsulé est présent en une quantité de 0,15 à 0,5 % en poids de la composition totale.
  8. Procédé selon l'une quelconque des revendications précédentes, dans lequel le parfum encapsulé est sous la forme d'une suspension ayant une viscosité supérieure à celle de l'eau à 1000 cps à 21 s-1 et 25 °C.
  9. Procédé selon l'une quelconque des revendications précédentes, dans lequel la composition comprend en outre au moins un agent tampon de pH.
  10. Procédé selon l'une quelconque des revendications précédentes, qui comprend les étapes consistant à :
    1) mélanger le parfum encapsulé et les composés mineurs facultatifs tels que des conservateurs et des agents anti-moussants, avec l'eau chauffée pour former une phase aqueuse ;
    2) faire fondre le principe actif adoucissant pour tissu pour former un fondu ;
    3) combiner la phase aqueuse et le fondu sous agitation ;
    4) laisser le mélange résultant refroidir ; et
    5) ajouter n'importe quelle huile de parfum non confiné au mélange refroidi.
  11. Composition obtenue à partir du procédé selon l'une quelconque des revendications précédentes.
EP09761580.1A 2008-06-11 2009-05-20 Améliorations concernant des adoucissants textiles Active EP2294167B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09761580.1A EP2294167B1 (fr) 2008-06-11 2009-05-20 Améliorations concernant des adoucissants textiles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08158038 2008-06-11
PCT/EP2009/056126 WO2009150017A1 (fr) 2008-06-11 2009-05-20 Améliorations en matière d'assouplissants pour étoffes
EP09761580.1A EP2294167B1 (fr) 2008-06-11 2009-05-20 Améliorations concernant des adoucissants textiles

Publications (2)

Publication Number Publication Date
EP2294167A1 EP2294167A1 (fr) 2011-03-16
EP2294167B1 true EP2294167B1 (fr) 2016-06-22

Family

ID=40104855

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09761580.1A Active EP2294167B1 (fr) 2008-06-11 2009-05-20 Améliorations concernant des adoucissants textiles

Country Status (7)

Country Link
EP (1) EP2294167B1 (fr)
CN (1) CN102057028B (fr)
AR (1) AR072079A1 (fr)
BR (1) BRPI0915359B1 (fr)
ES (1) ES2592692T3 (fr)
WO (1) WO2009150017A1 (fr)
ZA (1) ZA201008203B (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011020652A1 (fr) * 2009-08-20 2011-02-24 Unilever Plc Améliorations se rapportant à des assouplissants pour tissus
MX2014001939A (es) * 2011-09-13 2014-03-31 Procter & Gamble Composiciones fluidas mejoradas de telas.
CN103987829B (zh) * 2011-12-16 2017-04-26 荷兰联合利华有限公司 有关织物处理组合物的改进
BR112014013806A2 (pt) * 2011-12-16 2017-06-13 Unilever Nv uso de ativo de troca de fases encapsulado
WO2013189661A1 (fr) * 2012-06-21 2013-12-27 Unilever Plc Améliorations relatives à des conditionneurs de tissus
CN108431193B (zh) * 2015-12-15 2021-05-25 荷兰联合利华有限公司 织物调理组合物
CA3051578A1 (fr) * 2017-03-16 2018-09-20 The Procter & Gamble Company Suspensions de particules de distribution contenant un agent benefique
CN110392731B (zh) 2017-03-16 2022-08-05 宝洁公司 含有有益剂的递送颗粒

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1233283A (zh) * 1996-08-19 1999-10-27 普罗格特-甘布尔公司 漂清时添加的织物柔软组合物和用于传递香料衍生物的方法
GB0518451D0 (en) 2005-09-09 2005-10-19 Unilever Plc Fabric conditioning composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN102057028B (zh) 2012-10-10
BRPI0915359A2 (pt) 2015-11-03
WO2009150017A1 (fr) 2009-12-17
AR072079A1 (es) 2010-08-04
BRPI0915359B1 (pt) 2019-01-29
ES2592692T3 (es) 2016-12-01
CN102057028A (zh) 2011-05-11
ZA201008203B (en) 2012-02-29
EP2294167A1 (fr) 2011-03-16

Similar Documents

Publication Publication Date Title
EP2310480B1 (fr) Améliorations concernant des adoucissants textiles
EP2294167B1 (fr) Améliorations concernant des adoucissants textiles
EP2561057B1 (fr) Améliorations associées aux adoucissants textiles
EP2188358B1 (fr) Améliorations apportées à des produits de conditionnement de tissus
EP2646533B1 (fr) Compositions assouplissantes pour le linge
EP2791304B1 (fr) Traitement des tissus
EP2294168B1 (fr) Améliorations associées aux adoucissants textiles
EP2855648B1 (fr) Améliorations relatives à des conditionneurs pour textile
EP2791307B1 (fr) Améliorations associées aux compositions de traitement de tissu
EP2791306B1 (fr) Traitement de tissu
EP2791311B1 (fr) Traitement de tissus
EP2984161B1 (fr) Améliorations concernant des adoucissants textiles
EP2486118B1 (fr) Assouplissants de tissu
WO2012072369A1 (fr) Conditionneurs de tissu
EP2748295B1 (fr) Agent bénéfique encapsulé
EP2646536B1 (fr) Adjuvants adoucissants pour le linge
EP2791303B1 (fr) Traitement des tissus

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CHARLTON, IAN, DAVID

Inventor name: BENTLEY, RICHARD, EDWARD

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C11D 3/50 20060101ALI20160205BHEP

Ipc: C11D 1/62 20060101AFI20160205BHEP

Ipc: C11D 3/30 20060101ALI20160205BHEP

INTG Intention to grant announced

Effective date: 20160309

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 807684

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009039348

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160922

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 807684

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160923

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2592692

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20161201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161024

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009039348

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

26N No opposition filed

Effective date: 20170323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170520

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090520

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190529

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602009039348

Country of ref document: DE

Owner name: UNILEVER GLOBAL IP LIMITED, WIRRAL, GB

Free format text: FORMER OWNER: UNILEVER N.V., ROTTERDAM, NL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20211004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200521

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220203 AND 20220209

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230428

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240521

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240521

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240529

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240514

Year of fee payment: 16