WO2013107583A1 - Procédé et composition de traitement de tissu - Google Patents

Procédé et composition de traitement de tissu Download PDF

Info

Publication number
WO2013107583A1
WO2013107583A1 PCT/EP2012/075918 EP2012075918W WO2013107583A1 WO 2013107583 A1 WO2013107583 A1 WO 2013107583A1 EP 2012075918 W EP2012075918 W EP 2012075918W WO 2013107583 A1 WO2013107583 A1 WO 2013107583A1
Authority
WO
WIPO (PCT)
Prior art keywords
fabric
composition
switchable material
hydrophobic
dyes
Prior art date
Application number
PCT/EP2012/075918
Other languages
English (en)
Inventor
Christopher Boardman
Kenneth Stuart Lee
Original Assignee
Unilever Plc
Unilever N.V.
Hindustan Unilever Limited
Conopco, Inc., D/B/A Unilever
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever Plc, Unilever N.V., Hindustan Unilever Limited, Conopco, Inc., D/B/A Unilever filed Critical Unilever Plc
Publication of WO2013107583A1 publication Critical patent/WO2013107583A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/001Softening compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/1213Oxides or hydroxides, e.g. Al2O3, TiO2, CaO or Ca(OH)2
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/44Oxides or hydroxides of elements of Groups 2 or 12 of the Periodic Table; Zincates; Cadmates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic Table; Titanates; Zirconates; Stannates; Plumbates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/144Alcohols; Metal alcoholates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/144Alcohols; Metal alcoholates
    • D06M13/148Polyalcohols, e.g. glycerol or glucose
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/46Compounds containing quaternary nitrogen atoms
    • D06M13/463Compounds containing quaternary nitrogen atoms derived from monoamines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/40Specific cleaning or washing processes
    • C11D2111/46Specific cleaning or washing processes applying energy, e.g. irradiation

Definitions

  • This invention relates to a method of treating a dyed fabric with a rinse conditioner composition comprising a switchable material and thereafter subjecting the fabric to an activation step, to cause differential hydrophobicity, thus encouraging transport of water through the fabric, without causing a detrimental effect to the colour of the dyed fabric.
  • the invention relates to compositions for use in such a method.
  • the uncomfortable feel of clothes associated with perspiration can take one of two forms depending on the level of sweat production. Under conditions of high sweat production, clothes can become saturated with sweat. Damp areas of clothing then contact the skin causing discomfort through local cooling and cling.
  • the textile literature identifies a high humidity level in the space between the skin and the first layer of clothing as one of the key drivers of discomfort under ambient, low exercise conditions.
  • discomfort can arise from the build up of liquid water on the inside surface of apparel textiles.
  • a known approach to this problem is to increase the rate of liquid water transport through textile by increasing the rate of wicking or wetting. This is achieved by decreasing the contact angle of water on the fibre surface.
  • This approach has the disadvantage of also increasing the total amount of water held in the textile. This leads to increased thermal conductivity and increased cling when these areas touch the skin. Both of these effects increase the discomfort experienced in wear.
  • Zinc Oxide Zinc Oxide
  • TiO2 Titanium Oxide
  • US2005/0186871 A1 discloses a gas permeable apparatus comprising a structure including a plurality of surfaces, at least another of the surfaces comprising electrets, at least one light source for exposing the at least one of the surfaces comprising the photocatalyst to light photons sufficient to activate the photocatalyst, the structure allowing for filtering particulates, wicking liquids, disinfecting, and deodarizing the surfaces.
  • a fabric softening composition comprising a fabric softening compound and a switchable material capable of changing its hydrophobic-hydrophilic properties in response to an activation step, wherein the switchable material is present in an amount of from 0.1 to 50 wt %, based on the total weight of the composition and has a particle size of from 1 to 50 nm.
  • a method of treating a dyed fabric having a colour comprising rinsing the dyed fabric in a composition as described in the first aspect of the invention to deposit fabric conditioner and switchable material thereon, drying the fabric and before, after or simultaneously with the drying, subjecting a portion of the fabric to an activation step to cause the switchable material deposited in said portion to undergo a change in its hydrophobic-hydrophilic properties, wherein said method does not have a detrimental effect on the colour of the dyed fabric.
  • the method preferably incorporates a switchable material selected from ZnO and T1O2 with an activation step that comprises exposure to UV light. One side or portion of the fabric may be subjected to said activation step.
  • the composition works to increase comfort to the wearer by reducing the level of water held in the region of the textile next to the skin, at the same time as facilitating the movement of water through the textile.
  • the switchable material By depositing the switchable material onto the textile from the laundry treatment, areas which are close to the skin can be made hydrophobic, whereas areas of textile away from the skin may be rendered hydrophilic by an activation step. It is preferred the activation step uses local environmental conditions.
  • the switchable material is photosensitive and the outside of the garment is exposed to light, particularly UV light, and is rendered hydrophilic, whilst the inside of the garment close to the skin and therefore shielded from the sunlight remains hydrophobic.
  • any material which can be deposited on a fabric from a rinse conditioner which can "switch" properties from hydrophobic to hydrophilic or visa versa upon exposure to certain conditions may be employed in the invention.
  • the activation step causing the switch in properties may be based upon
  • photosensitivity pH change, temperature change, heat flow, change in ionic strength, enzymatic activity etc.
  • the most convenient activation step is based upon photosensitivity, particularly UV light, since it is readily possible to expose the outside of a garment to sunlight, during wear and or drying, whilst shielding the inside of the garment.
  • Preferred switchable materials are ZnO and T1O2 which can be drawn from a range of morphologies, shapes and aspect ratios.
  • Other suitable switchable materials include those which undergo:
  • the switchable materials are generally deposited to apply from 0.2 to 1 %, preferably 0.2 to 0.5 % by weight of the fabric after drying.
  • the switchable materials are generally present in an amount of from 0.1 to 50 wt %, preferably 0.1 to 10 wt%, more preferably 0.1 to 5 wt % and most preferably from 0.1 to 4.5 wt % by total weight of the fabric softening composition.
  • the switchable material has a mean particle size of from 1 to 50 nm, preferably from 1 to 25 nm and most preferably from 1 to 10nm.
  • the particle size may be measured using any suitable technique, which will be apparent to the skilled person, for example, BET gas absorption or dynamic light scattering techniques.
  • a preferred material is T1O2 PCX-S7 (ex. Cristal Global), which has a particle size 6-10 nm.
  • the conditioning agents may be cationic or non-ionic.
  • Fabric conditioning compositions in accordance with the invention may be dilute or concentrated.
  • Dilute products typically contain up to about 8 %, generally about 2 to 8 % by weight of softening active, whereas concentrated products may contain up to about 50 wt %, preferably from about 8 to about 50 %, more preferably from 8 to 25 % by weight active.
  • Compositions of more than about 25 % by weight of active are defined as "super concentrated", depending on the active system, and are also intended to be covered by the present invention.
  • the fabric conditioning agent may, for example, be used in amounts of from 0.5 % to 35 %, preferably from 2 % to 30 % more preferably from 5 % to 25 % and most preferably from 8 % to 20 % by weight of the composition.
  • the preferred softening active for use in rinse conditioner compositions of the invention is a quaternary ammonium compound (QAC).
  • QAC quaternary ammonium compound
  • the preferred quaternary ammonium fabric conditioner for use in compositions of the present invention are the so called "ester quats”.
  • Particularly preferred materials are the ester-linked triethanolamine (TEA) quaternary ammonium compounds comprising a mixture of mono-, di- and tri- ester linked components.
  • TAA ester-linked triethanolamine
  • TEA-based fabric softening compounds comprise a mixture of mono, di- and tri-ester forms of the compound where the di-ester linked component comprises no more than 70 % by weight of the fabric softening compound, preferably no more than 60 wt % of the fabric softening compound and at least 10 % of the monoester linked component.
  • a preferred hardened type of active has a typical mono:di:tri ester distribution in the range of from 12 to 25 mono: from 55 to 65 di: from 15 to 27 tri.
  • a soft TEA quat may have a typical mono:di:tri ester distribution of from 25 to 45 %, preferably from 30 to 40 % mono: from 45 to 60 %, preferably from 50 to 55 % di: and from 5 to 25 %, preferably from 10 to 15 % tri; for example 40:60:10.
  • a first group of quaternary ammonium compounds (QACs) suitable for use in the present invention is represented by formula (I):
  • Especially preferred agents are preparations which are rich in the di-esters of triethanolammonium methylsulphate, otherwise referred to as "TEA ester quats".
  • StepantexTM UL85 Ex Stepan
  • PrapagenTM TQL Ex Clariant
  • TetranylTM AHT-1 ex Kao, (both di-[hardened tallow ester] of triethanolamnnoniunn methylsulphate), AT-1 (di-[tallow ester] of
  • soft quaternary ammonium actives such as Stepantex VK90, Stepantex VT90, SP88 (ex-Stepan), Prapagen TQ (ex-Clariant), Dehyquart AU-57 (ex- Cognis), Rewoquat WE18 (ex-Degussa) and Tetranyl L190 P, Tetranyl L190 SP and Tetranyl L190 S (all ex-Kao) are suitable.
  • a second group of QACs suitable for use in the invention is represented by formula (II): (R 1 ) 3 N + -(CH 2 ) n -CH-TR 2 X " (II)
  • each R 1 group is independently selected from Ci -4 alkyl, hydroxyalkyl or C2 -4 alkenyl groups; and wherein each R 2 group is independently selected from Cs- 28 alkyl or alkenyl groups; and wherein n, T, and X " are as defined above.
  • Preferred materials of this second group include 1 ,2 £>/s[tallowoyloxy]-3- trimethylammonium propane chloride, 1 ,2 £>/s[hardened tallowoyloxy]-3- trimethylammonium propane chloride, 1 ,2-i /s[oleoyloxy]-3-trimethylammonium propane chloride, and 1 ,2 i /s[stearoyloxy]-3-trimethylammonium propane chloride.
  • Such materials are described in US 4,137,180 (Lever Brothers).
  • these materials also comprise an amount of the corresponding mono- ester.
  • a third group of QACs suitable for use in the invention is represented by formula (III):
  • each R 1 group is independently selected from Ci -4 alkyl, or C2 -4 alkenyl groups; and wherein each R 2 group is independently selected from Cs-28 alkyl or alkenyl groups; and n, T, and X " are as defined above.
  • Preferred materials of this third group include bis(2-tallowoyloxyethyl)dimethyl ammonium chloride, partially hardened and hardened versions thereof.
  • the iodine value of the quaternary ammonium fabric conditioning material is preferably from 0 to 80, more preferably from 0 to 60, and most preferably from 0 to 45.
  • the iodine value may be chosen as appropriate.
  • Essentially saturated material having an iodine value of from 0 to 5, preferably from 0 to 1 may be used in the compositions of the invention. Such materials are known as "hardened" quaternary ammonium compounds.
  • a further preferred range of iodine values is from 20 to 60, preferably 25 to 50, more preferably from 30 to 45.
  • a material of this type is a "soft" triethanolamine quaternary ammonium compound, preferably triethanolamine di-alkylester methylsulphate. Such ester-linked triethanolamine quaternary ammonium compound comprise unsaturated fatty chains.
  • Iodine value as used in the context of the present invention refers to the measurement of the degree of unsaturation present in a material by a method of nmr spectroscopy as described in Anal. Chem., 34, 1 136 (1962) Johnson and Shoolery. lodine value is defined as the number of grams of iodine absorbed per 10Og of the test material.
  • Olefinic materials absorb 1 gram of iodine per atom of olefinic hydrogen. Hence measurement can be converted to the equivalent Iodine Value.
  • the hydrogen nmr spectrum at 360 MHz is obtained for the test material.
  • the integral intensity, l s , of the band derived from olefinic hydrogen in the alkyl chain and the integral intensity, l m , of the band derived from terminal methyl groups in the alkyl chains are measured.
  • MMW is the mean molecular weight of the test material.
  • a further type of softening compound is a non-ester quaternary ammonium material represented by formula (IV):-
  • each R 1 group is independently selected from Ci -4 alkyl, hydroxyalkyl or C2 -4 alkenyl groups; R 2 group is independently selected from Cs-28 alkyl or alkenyl groups, and X " is as defined above.
  • Oily sugar derivatives are independently selected from Ci -4 alkyl, hydroxyalkyl or C2 -4 alkenyl groups; R 2 group is independently selected from Cs-28 alkyl or alkenyl groups, and X " is as defined above.
  • compositions of the invention may contain a non-cationic softening material, which is preferably an oily sugar derivative.
  • An oily sugar derivative is a liquid or soft solid derivative of a cyclic polyol (CPE) or of a reduced saccharide (RSE), said derivative resulting from 35 to 100 % of the hydroxyl groups in said polyol or in said saccharide being esterified or etherified.
  • the derivative has two or more ester or ether groups independently attached to a C8-C22 alkyl or alkenyl chain.
  • the CPE or RSE does not have any substantial crystalline character at 20°C. Instead it is preferably in a liquid or soft solid state as herein defined at 20°C.
  • liquid or soft solid (as hereinafter defined) CPEs or RSEs suitable for use in the present invention result from 35 to 100% of the hydroxyl groups of the starting cyclic polyol or reduced saccharide being esterified or etherified with groups such that the CPEs or RSEs are in the required liquid or soft solid state.
  • These groups typically contain unsaturation, branching or mixed chain lengths.
  • the CPEs or RSEs have 3 or more ester or ether groups or mixtures thereof, for example 3 to 8, especially 3 to 5. It is preferred if two or more of the ester or ether groups of the CPE or RSE are independently of one another attached to a Cs to C22 alkyi or alkenyl chain.
  • the Cs to C22 alkyi or alkenyl groups may be branched or linear carbon chains.
  • Preferably 35 to 85 % of the hydroxyl groups, most preferably 40-80 %, even more preferably 45-75 %, such as 45-70 % are esterified or etherified.
  • the CPE or RSE contains at least 35 % tri or higher esters, eg at least 40 %.
  • the CPE or RSE has at least one of the chains independently attached to the ester or ether groups having at least one unsaturated bond. This provides a cost effective way of making the CPE or RSE a liquid or a soft solid. It is preferred if predominantly unsaturated fatty chains, derived from, for example, rape oil, cotton seed oil, soybean oil, oleic, tallow, palmitoleic, linoleic, erucic or other sources of unsaturated vegetable fatty acids, are attached to the ester/ether groups.
  • ester or ether chains of the CPE or RSE.
  • the ester or ether chains of the CPE or RSE are preferably predominantly unsaturated.
  • Preferred CPEs or RSEs include sucrose tetratallowate, sucrose tetrarapeate, sucrose tetraoleate, sucrose tetraesters of soybean oil or cotton seed oil, cellobiose tetraoleate, sucrose trioleate, sucrose triapeate, sucrose pentaoleate, sucrose pentarapeate, sucrose hexaoleate, sucrose hexarapeate, sucrose triesters, pentaesters and hexaesters of soybean oil or cotton seed oil, glucose tiroleate, glucose tetraoleate, xylose trioleate, or sucrose tetra-,tri-, penta- or hexa- esters with any mixture of predominantly unsaturated fatty acid chains.
  • the most preferred CPEs or RSEs are those with monounsaturated fatty acid chains,
  • CPEs or RSEs based on polyunsaturated fatty acid chains e.g. sucrose tetralinoleate
  • sucrose tetralinoleate may be used provided most of the polyunsaturation has been removed by partial hydrogenation.
  • liquid CPEs or RSEs are any of the above but where the polyunsaturation has been removed through partial hydrogenation.
  • Preferably 40 % or more of the fatty acid chains contain an unsaturated bond, more preferably 50 % or more, most preferably 60% or more. In most cases 65 % to 100 %, e.g. 65 % to 95 % contain an unsaturated bond.
  • CPEs are preferred for use with the present invention.
  • Inositol is a preferred example of a cyclic polyol. Inositol derivatives are especially preferred.
  • cyclic polyol encompasses all forms of saccharides. Indeed saccharides are especially preferred for use with this invention. Examples of preferred saccharides for the CPEs or RSEs to be derived from are monosaccharides and disaccharides.
  • Examples of monosaccharides include xylose, arabinose, galactose, fructose, sorbose and glucose. Glucose is especially preferred. Examples of
  • disaccharides include maltose, lactose, cellobiose and sucrose. Sucrose is especially preferred.
  • An example of a reduced saccharide is sorbitan.
  • the liquid or soft solid CPEs can be prepared by methods well known to those skilled in the art. These include acylation of the cyclic polyol or reduced
  • the CPE or RSE has 3 or more, preferably 4 or more ester or ether groups. If the CPE is a disaccharide it is preferred if the disaccharide has 3 or more ester or ether groups. Particularly preferred CPEs are esters with a degree of esterification of 3 to 5, for example, sucrose tri, tetra and penta esters.
  • each ring of the CPE has one ether or ester group, preferably at the Ci position.
  • Suitable examples of such compounds include methyl glucose derivatives.
  • CPEs examples include esters of alkyl(poly)glucosides, in particular alkyl glucoside esters having a degree of polymerisation of 2.
  • the length of the unsaturated (and saturated if present) chains in the CPE or RSE is C8-C22, preferably Ci2-C22- It is possible to include one or more chains of C Cs, however these are less preferred.
  • the liquid or soft solid CPEs or RSEs which are suitable for use in the present invention are characterised as materials having a solid:liquid ratio of between 50:50 and 0:100 at 20°C as determined by T 2 relaxation time NMR, preferably between 43:57 and 0:100, most preferably between 40:60 and 0:100, such as, 20:80 and 0:100.
  • the T 2 NMR relaxation time is commonly used for characterising sol id: liquid ratios in soft solid products such as fats and margarines.
  • any component of the signal with a T 2 of less than 100 ⁇ is considered to be a solid component and any component with T 2 > 100 ⁇ is considered to be a liquid component.
  • the prefixes e.g. tetra and penta
  • the compounds exist as a mixture of materials ranging from the monoester to the fully esterified ester. It is the average degree of esterification which is used herein to define the CPEs and RSEs.
  • the HLB of the CPE or RSE is typically between 1 and 3.
  • the CPE or RSE is preferably present in the composition in an amount of 0.5-50% by weight, based upon the total weight of the composition, more preferably 1 -30% by weight, such as 2-25%, e.g. 2-20%.
  • the CPEs and RSEs for use in the compositions of the invention include sucrose tetraoleate, sucrose pentaerucate, sucrose tetraerucate and sucrose pentaoleate.
  • Co-softeners and fatty complexing agents include sucrose tetraoleate, sucrose pentaerucate, sucrose tetraerucate and sucrose pentaoleate.
  • Co-softeners may be used. When employed, they are typically present at from 0.1 to 20% and particularly at from 0.5 to 10%, based on the total weight of the composition.
  • Preferred co-softeners include fatty esters, and fatty N-oxides.
  • Fatty esters that may be employed include fatty monoesters, such as glycerol monostearate, fatty sugar esters, such as those disclosed WO 01/46361
  • compositions for use in the present invention may comprise a fatty acid
  • Suitable fatty complexing agents include fatty alcohols and fatty acids. Of these, fatty alcohols are most preferred.
  • Fatty complexing material may be used to improve the viscosity profile of the composition.
  • Preferred fatty acids include hardened tallow fatty acid (available under the tradename PristereneTM, ex Uniqema).
  • Preferred fatty alcohols include hardened tallow alcohol (available under the tradenames StenolTM and HydrenolTM, ex Cognis and La u rexTM CS, ex Albright and Wilson).
  • the fatty complexing agent is preferably present in an amount greater than 0.3 to 5% by weight based on the total weight of the composition. More preferably, the fatty component is present in an amount of from 0.4 to 4%.
  • the weight ratio of the mono-ester component of the quaternary ammonium fabric softening material to the fatty complexing agent is preferably from 5:1 to 1 :5, more preferably 4:1 to 1 :4, most preferably 3:1 to 1 :3, e.g. 2:1 to 1 :2.
  • compositions may further comprise a nonionic surfactant. Typically these can be included for the purpose of stabilising the compositions. These are particularly suitable for compositions comprising hardened quaternary ammonium
  • Suitable nonionic surfactants include addition products of ethylene oxide and/or propylene oxide with fatty alcohols, fatty acids and fatty amines. Any of the alkoxylated materials of the particular type described hereinafter can be used as the nonionic surfactant.
  • Suitable surfactants are substantially water soluble surfactants of the general formula:
  • Y is typically: -O- , -C(O)O- , -C(O)N(R)- or -C(O)N(R)R- in which R has the meaning given above or can be hydrogen; and Z is at least about 8, preferably at least about 10 or 1 1 .
  • the nonionic surfactant has an HLB of from about 7 to about 20, more preferably from 10 to 18, e.g. 12 to 16.
  • GenapolTM C200 (Clariant) based on coco chain and 20 EO groups is an example of a suitable nonionic surfactant. If present, the nonionic surfactant is present in an amount from 0.01 to 10%, more preferably 0.1 to 5 by weight, based on the total weight of the composition.
  • Optional shading dyes can be used. Preferred dyes are violet or blue. Suitable and preferred classes of dyes are discussed below. Moreover the unsaturated quaternary ammonium compounds are subject to some degree of UV light and/or transition metal ion catalysed radical auto-oxidation, with an attendant risk of yellowing of fabric. The presence of a shading dye also reduces the risk of yellowing from this source.
  • the level of shading dye present in the compositions of the present invention depend, therefore, on the type of shading dye.
  • Preferred overall ranges, suitable for the present invention are from 0.00001 to 0.1 wt %, more preferably 0.0001 to 0.01 wt %, most preferably 0.0005 to 0.005 wt % by weight of the total composition.
  • Direct dyes are the class of water soluble dyes which have an affinity for fibres and are taken up directly. Direct violet and direct blue dyes are preferred. Preferably the dye are bis-azo or tris-azo dyes are used.
  • the direct dye is a direct violet of the following structures:
  • ring D and E may be independently naphthyl or phenyl as shown;
  • Ri is selected from: hydrogen and C1 -C4-alkyl, preferably hydrogen;
  • R2 is selected from: hydrogen, C1 -C4-alkyl, substituted or unsubstituted phenyl and substituted or unsubstituted naphthyl, preferably phenyl;
  • R3 and R 4 are independently selected from: hydrogen and C1 -C4-alkyl, preferably hydrogen or methyl;
  • Preferred dyes are direct violet 7, direct violet 9, direct violet 1 1 , direct violet 26, direct violet 31 , direct violet 35, direct violet 40, direct violet 41 , direct violet 51 , and direct violet 99.
  • Bis-azo copper containing dyes such as direct violet 66 may be used.
  • the benzidene based dyes are less preferred.
  • the direct dye is present at 0.00001 wt% to 0.0010 wt% of the formulation.
  • the direct dye may be covalently linked to the photo- bleach, for example as described in WO2006/024612.
  • Cotton substantive acid dyes give benefits to cotton containing garments.
  • Preferred dyes and mixes of dyes are blue or violet.
  • Preferred acid dyes are: (i) azine dyes, wherein the dye is of the following core structure:
  • R a , R b , R c and R d are selected from: H, a branched or linear C1 to C7- alkyl chain, benzyl a phenyl, and a naphthyl;
  • the dye is substituted with at least one SO3 " or -COO " group
  • the B ring does not carry a negatively charged group or salt thereof
  • the A ring may further substituted to form a naphthyl; the dye is optionally substituted by groups selected from: amine, methyl, ethyl, hydroxyl, methoxy, ethoxy, phenoxy, CI, Br, I, F, and NO 2 .
  • Preferred azine dyes are: acid blue 98, acid violet 50, and acid blue 59, more preferably acid violet 50 and acid blue 98.
  • non-azine acid dyes are acid violet 17, acid black 1 and acid blue 29.
  • acid dye is present at 0.0005 wt% to 0.01 wt% of the formulation.
  • Hydrophobic dyes are particularly preferred non-azine acid dyes.
  • composition may comprise one or more hydrophobic dyes selected from benzodifuranes, methine, triphenylmethanes, napthalimides, pyrazole,
  • Hydrophobic dyes are dyes which do not contain any charged water solubilising group. Hydrophobic dyes may be selected from the groups of disperse and solvent dyes. Blue and violet anthraquinone and mono-azo dye are preferred.
  • Preferred dyes include solvent violet 13, disperse violet 27 disperse violet 26, disperse violet 28, disperse violet 63 and disperse violet 77.
  • the hydrophobic dye is present at 0.0001 wt% to 0.005 wt% of the formulation.
  • Basic dyes
  • Basic dyes are organic dyes which carry a net positive charge. They deposit onto cotton. They are of particular utility for used in composition that contain
  • Dyes may be selected from the basic violet and basic blue dyes listed in the Colour Index International.
  • Preferred examples include triarylmethane basic dyes, methane basic dye, anthraquinone basic dyes, basic blue 16, basic blue 65, basic blue 66, basic blue 67, basic blue 71 , basic blue 159, basic violet 19, basic violet 35, basic violet 38, basic violet 48; basic blue 3, basic blue 75, basic blue 95, basic blue 122, basic blue 124, basic blue 141 .
  • Reactive dyes are dyes which contain an organic group capable of reacting with cellulose and linking the dye to cellulose with a covalent bond. They deposit onto cotton.
  • the reactive group is hydrolysed or reactive group of the dyes has been reacted with an organic species such as a polymer, so as to the link the dye to this species.
  • Dyes may be selected from the reactive violet and reactive blue dyes listed in the Colour Index International. Preferred examples include reactive blue 19, reactive blue 163, reactive blue 182 and reactive blue 96.
  • Dye conjugates are formed by binding direct, acid or basic dyes to polymers or particles via physical forces.
  • Particularly preferred dyes are: direct violet 7, direct violet 9, direct violet 1 1 , direct violet 26, direct violet 31 , direct violet 35, direct violet 40, direct violet 41 , direct violet 51 , direct violet 99, acid blue 98, acid violet 50, acid blue 59, acid violet 17, acid black 1 , acid blue 29, solvent violet 13, disperse violet 27 disperse violet 26, disperse violet 28, disperse violet 63, disperse violet 77 and mixtures thereof.
  • compositions of the present invention may comprise one or more perfumes if desired.
  • the perfume is preferably present in an amount from 0.01 to 10 % by weight, more preferably from 0.05 to 5 % by weight, even more preferably from 0.1 to 4.0 %, most preferably from 0.15 to 4.0 % by weight, based on the total weight of the composition.
  • Useful components of the perfume include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavor Ingredients, 1975, CRC Press; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostrand; or Perfume and Flavor Chemicals by S.
  • perfume in this context is not only meant a fully formulated product fragrance, but also selected components of that fragrance, particularly those which are prone to loss, such as the so-called 'top notes'.
  • Top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955]). Examples of well known top-notes include citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol. Top notes typically comprise 15-25%wt of a perfume composition and in those embodiments of the invention which contain an increased level of top-notes it is envisaged at that least 20%wt would be present within the encapsulate.
  • perfume or pro-fragrance may be encapsulated, typical perfume components which it is advantageous to encapsulate, include those with a relatively low boiling point, preferably those with a boiling point of less than 300, preferably 100-250 Celsius and pro-fragrances which can produce such components.
  • perfume components which have a low Clog P (i.e. those which will be partitioned into water), preferably with a Clog P of less than 3.0.
  • Clog P i.e. those which will be partitioned into water
  • materials, of relatively low boiling point and relatively low Clog P have been called the "delayed blooming" perfume ingredients and include the following materials:
  • Preferred non-encapsulated perfume ingredients are those hydrophobic perfume components with a ClogP above 3.
  • ClogP means the calculated logarithm to base 10 of the octanol/water partition coefficient (P).
  • the octanol/water partition coefficient of a perfume raw material (PRM) is the ratio between its equilibrium concentrations in octanol and water. Given that this measure is a ratio of the equilibrium concentration of a PRM in a non-polar solvent (octanol) with its concentration in a polar solvent (water), ClogP is also a measure of the hydrophobicity of a material-the higher the ClogP value, the more
  • ClogP values can be readily calculated from a program called "CLOGP" which is available from Daylight Chemical Information Systems Inc, Irvine Calif., USA. Octanol/water partition coefficients are described in more detail in U.S. Pat. No. 5,578,563.
  • Perfume components with a ClogP above 3 comprise: Iso E super, citronellol, Ethyl cinnamate, Bangalol, 2,4,6-Trimethylbenzaldehyde, Hexyl cinnamic aldehyde, 2,6-Dimethyl-2-heptanol, Diisobutylcarbinol, Ethyl salicylate, Phenethyl isobutyrate, Ethyl hexyl ketone, Propyl amyl ketone, Dibutyl ketone, Heptyl methyl ketone, 4,5-Dihydrotoluene, Caprylic aldehyde, Citral, Geranial, Isopropyl benzoate, Cyclohexanepropionic acid, Campholene aldehyde, Caprylic acid, Caprylic alcohol, Cuminaldehyde, 1 -Ethyl-4-nitrobenzene, Heptyl formate,
  • compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components from the list given of delayed blooming perfumes given above and/or the list of perfume components with a ClogP above 3 present in the perfume.
  • perfumes with which the present invention can be applied are the so-called 'aromatherapy' materials. These include many components also used in perfumery, including components of essential oils such as Clary Sage, Eucalyptus, Geranium, Lavender, Mace Extract, Neroli, Nutmeg, Spearmint, Sweet Violet Leaf and Valerian.
  • compositions of the invention may contain one or more other ingredients.
  • ingredients include further preservatives (e.g. bactericides), pH buffering agents, perfume carriers, hydrotropes, anti-redeposition agents, soil-release agents, polyelectrolytes, anti-shrinking agents, anti-wrinkle agents, anti-oxidants, sunscreens, anti-corrosion agents, drape imparting agents, anti-static agents, ironing aids, silicones, antifoams, colourants, pearlisers and/or opacifiers, natural oils/extracts, processing aids, e.g. electrolytes, hygiene agents, e.g. anti-bacterials and antifungals, thickeners and skin benefit agents.
  • compositions of the present invention are preferably rinse conditioner compositions and may be used in the rinse cycle of a domestic laundry process.
  • the composition is preferably used in the rinse cycle of a home textile laundering operation, where, it may be added directly in an undiluted state to a washing machine, e.g. through a dispenser drawer or, for a top-loading washing machine, directly into the drum. Alternatively, it can be diluted prior to use.
  • a washing machine e.g. through a dispenser drawer or, for a top-loading washing machine, directly into the drum.
  • it can be diluted prior to use.
  • compositions may also be used in a domestic hand-washing laundry operation. It is also possible, though less desirable, for the compositions of the present invention to be used in industrial laundry.
  • Pad Mangle Vertical laboratory padder VFM type ex. Werner Mathis AG
  • Bottle roller Stuart Scientific Roller mixer SRT1
  • Fabric 100% Polyester (Knit 140gm "2 ) Treatments :2 types of titanium dioxide were used in the treatment of the fabric:- T1O2 nanopowder (ex. Sigma Aldrich) of particle size of approximately 100 nm. TiO 2 PCX-S7 (ex. Cristal Global)of particle size 6-10 nm.
  • Example 1 - Preparation of Fabric Conditioners 1 and 2 in accordance with the invention and Comparative Examples A and B.
  • Compositions 1 , 2, A and B were dilute liquid fabric conditioners.
  • compositions are shown in Table 1 .
  • Table 1 Composition of Fabric Conditioners 1 and 2 in accordance with the invention and Comparative Examples A and B.
  • Example 2 - Treatement of dyed fabrics with Fabric Conditioners 1 and 2 in accordance with the invention and Comparative Examples A and B.
  • the Fabric Softeners 1 and A were diluted to make a 25% w/w dispersions for further dilution. This 25% dispersion was further diluted to make a 2% w/w dispersion for pad application.
  • the 2% w/w dispersion was pad applied to the polyester at 100% pick-up. This evenly delivered 1 .0% on weight of fabric (o.w.f.) of the metal oxide and 0.1 16 % o.w.f. of standard rinse conditioner active to the fabric.
  • This 25% dispersion was diluted to make 0.25% w/w dispersion for exhaust application.
  • the 0.25% w/w dispersion placed in a bottle with a fabric sample.
  • the bottle was rolled for 10 minutes to allow deposition to take place.
  • the fabric sample was then spun for 15 seconds in a domestic spin dryer.
  • the fabric samples were then exposed to a 2kW Xenon light source for 3 hours with a relative humidity of from 60 to 80%.
  • Example 3 - Wetting behaviour of fabric treated with Composition 1 and Comparative Example A
  • Table 2 Wetting time for fabric (knitted polyester) treated with compositions 1 and A.
  • Example 4 - Colour of fabric treated with Composition 1 and Comparative Example A
  • Measurennent of colour was performed using a Datacolor- Microflash 200 Portable Spectrophotometer.
  • the colour of the treated textiles was measured by placing the measuring sphere of the spectrophotometer onto the fabric.
  • Table 3 Colour of fabric (knitted polyester) treated (by padding) with compositions 1 and A.
  • composition in accordance with the invention leads to a much smaller change in colour than the comparative example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

L'invention porte sur une composition d'assouplissement de tissu comprenant un composé d'assouplissement de tissu et une substance modifiable pouvant changer ses propriétés hydrophobes-hydrophiles en réponse à une étape d'activation, la substance modifiable étant présente à hauteur de 0,1 à 50 % en poids, par rapport au poids total de la composition, et ayant un diamètre moyen des particules de 1 à 50 nm, laquelle composition confère du confort sans perte de couleur d'un tissu teint.
PCT/EP2012/075918 2012-01-19 2012-12-18 Procédé et composition de traitement de tissu WO2013107583A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12151771 2012-01-19
EP12151771.8 2012-01-19

Publications (1)

Publication Number Publication Date
WO2013107583A1 true WO2013107583A1 (fr) 2013-07-25

Family

ID=47469985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/075918 WO2013107583A1 (fr) 2012-01-19 2012-12-18 Procédé et composition de traitement de tissu

Country Status (1)

Country Link
WO (1) WO2013107583A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107011479A (zh) * 2017-04-18 2017-08-04 苏州大学 一种智能型织物及其制备方法
CN108049188A (zh) * 2017-12-23 2018-05-18 青岛大学 提高二氧化钛对羊毛/粘胶/涤纶织物处理效果的方法
CN110172122A (zh) * 2017-04-18 2019-08-27 苏州大学 一种表面亲疏性可转换的智能型织物整理剂的制备方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137180A (en) 1976-07-02 1979-01-30 Lever Brothers Company Fabric treatment materials
US4386213A (en) 1980-07-21 1983-05-31 Bayer Aktiengesellschaft Di- and Oligo-1,2,4-triazolidine-3,5-diones and processes for their production
AU1441688A (en) 1987-04-10 1988-10-13 Procter & Gamble Company, The Novel solid, nondigestible, fat-like compounds
US5578563A (en) 1994-08-12 1996-11-26 The Procter & Gamble Company Composition for reducing malodor impression on inanimate surfaces
WO2001046361A1 (fr) 1999-12-22 2001-06-28 Unilever Plc Compositions d'assouplissement de tissu
US6774096B1 (en) * 2003-10-09 2004-08-10 Colgate-Palmolive Co. Zinc oxide containing surfactant solution
WO2004108846A2 (fr) 2003-06-05 2004-12-16 Chemetall Gmbh Systeme de revetement de surfaces en verre, son procede de production et son utilisation
JP2005082708A (ja) * 2003-09-09 2005-03-31 Soushin:Kk 洗浄剤
US20050186871A1 (en) 2004-02-25 2005-08-25 Energy Related Devices, Inc. Photocatalysts, electrets, and hydrophobic surfaces used to filter, clean, disinfect, and deodorize
WO2006024612A1 (fr) 2004-08-30 2006-03-09 Ciba Specialty Chemicals Holding Inc. Procede de coloration legere
WO2006055787A1 (fr) 2004-11-19 2006-05-26 The Procter & Gamble Company Compositions de perception de la blancheur
WO2006097207A1 (fr) * 2005-03-18 2006-09-21 Unilever Plc Compositions d’entretien pour tissus
US20070089244A1 (en) * 2004-04-21 2007-04-26 Josef Penninger Textile care product
WO2008058831A1 (fr) 2006-11-17 2008-05-22 Unilever Plc Procédé et composition de traitement de textiles permettant de leur conférer une hydrophobicité différentielle
WO2008128827A1 (fr) * 2007-04-23 2008-10-30 Henkel Ag & Co. Kgaa Systèmes liquides contenant un matériau photocatalytique
WO2011042275A1 (fr) * 2009-10-07 2011-04-14 Unilever Plc Assouplissants de tissu

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137180A (en) 1976-07-02 1979-01-30 Lever Brothers Company Fabric treatment materials
US4386213A (en) 1980-07-21 1983-05-31 Bayer Aktiengesellschaft Di- and Oligo-1,2,4-triazolidine-3,5-diones and processes for their production
AU1441688A (en) 1987-04-10 1988-10-13 Procter & Gamble Company, The Novel solid, nondigestible, fat-like compounds
US5578563A (en) 1994-08-12 1996-11-26 The Procter & Gamble Company Composition for reducing malodor impression on inanimate surfaces
WO2001046361A1 (fr) 1999-12-22 2001-06-28 Unilever Plc Compositions d'assouplissement de tissu
WO2004108846A2 (fr) 2003-06-05 2004-12-16 Chemetall Gmbh Systeme de revetement de surfaces en verre, son procede de production et son utilisation
JP2005082708A (ja) * 2003-09-09 2005-03-31 Soushin:Kk 洗浄剤
US6774096B1 (en) * 2003-10-09 2004-08-10 Colgate-Palmolive Co. Zinc oxide containing surfactant solution
US20050186871A1 (en) 2004-02-25 2005-08-25 Energy Related Devices, Inc. Photocatalysts, electrets, and hydrophobic surfaces used to filter, clean, disinfect, and deodorize
US20070089244A1 (en) * 2004-04-21 2007-04-26 Josef Penninger Textile care product
WO2006024612A1 (fr) 2004-08-30 2006-03-09 Ciba Specialty Chemicals Holding Inc. Procede de coloration legere
WO2006055787A1 (fr) 2004-11-19 2006-05-26 The Procter & Gamble Company Compositions de perception de la blancheur
WO2006097207A1 (fr) * 2005-03-18 2006-09-21 Unilever Plc Compositions d’entretien pour tissus
WO2008058831A1 (fr) 2006-11-17 2008-05-22 Unilever Plc Procédé et composition de traitement de textiles permettant de leur conférer une hydrophobicité différentielle
EP2082089B1 (fr) 2006-11-17 2010-06-23 Unilever PLC Procédé et composition de traitement de textiles permettant de leur conférer une hydrophobicité différentielle
WO2008128827A1 (fr) * 2007-04-23 2008-10-30 Henkel Ag & Co. Kgaa Systèmes liquides contenant un matériau photocatalytique
WO2011042275A1 (fr) * 2009-10-07 2011-04-14 Unilever Plc Assouplissants de tissu

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Fenaroli's Handbook of Flavor Ingredients", 1975, CRC PRESS
J. AM. CHEM. SOC, vol. 126, 2004, pages 62 - 63
JOHNSON; SHOOLERY, ANAL. CHEM., vol. 34, 1962, pages 1136
M. B. JACOBS: "Synthetic Food Adjuncts", 1947, VAN NOSTRAND
POUCHER, JOURNAL OF THE SOCIETY OF COSMETIC CHEMISTS, vol. 6, no. 2, 1955, pages 80
S. ARCTANDER: "Perfume and Flavor Chemicals", 1969
SOFT MATTER, vol. 1, 2005, pages 55 - 61

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107011479A (zh) * 2017-04-18 2017-08-04 苏州大学 一种智能型织物及其制备方法
CN110172122A (zh) * 2017-04-18 2019-08-27 苏州大学 一种表面亲疏性可转换的智能型织物整理剂的制备方法
CN110172122B (zh) * 2017-04-18 2021-07-09 苏州大学 一种表面亲疏性可转换的智能型织物整理剂的制备方法
CN108049188A (zh) * 2017-12-23 2018-05-18 青岛大学 提高二氧化钛对羊毛/粘胶/涤纶织物处理效果的方法

Similar Documents

Publication Publication Date Title
EP2561057B1 (fr) Améliorations associées aux adoucissants textiles
EP2791304B1 (fr) Traitement des tissus
WO2013087366A1 (fr) Traitement de tissus
EP2646533B2 (fr) Compositions assouplissantes pour le linge
WO2013087548A2 (fr) Améliorations associées aux compositions de lessive
WO2010012590A1 (fr) Perfectionnements se rapportant aux assouplissants pour tissus
WO2011020652A1 (fr) Améliorations se rapportant à des assouplissants pour tissus
EP2791306B1 (fr) Traitement de tissu
EP2791307B1 (fr) Améliorations associées aux compositions de traitement de tissu
EP2791311B1 (fr) Traitement de tissus
EP2294168A1 (fr) Améliorations se rapportant à des produits assouplissants pour tissus
EP2614133B1 (fr) Améliorations se rapportant à des assouplissants pour textile
WO2013107583A1 (fr) Procédé et composition de traitement de tissu
EP2486118B1 (fr) Assouplissants de tissu
WO2012072369A1 (fr) Conditionneurs de tissu
WO2013029904A1 (fr) Améliorations concernant des assouplissants textiles
EP2646536B1 (fr) Adjuvants adoucissants pour le linge
EP2791303B1 (fr) Traitement des tissus
EP2748295B1 (fr) Agent bénéfique encapsulé

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12808808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12808808

Country of ref document: EP

Kind code of ref document: A1