EP2309930A1 - Ultraschallsonde mit kühlkörper - Google Patents

Ultraschallsonde mit kühlkörper

Info

Publication number
EP2309930A1
EP2309930A1 EP09800515A EP09800515A EP2309930A1 EP 2309930 A1 EP2309930 A1 EP 2309930A1 EP 09800515 A EP09800515 A EP 09800515A EP 09800515 A EP09800515 A EP 09800515A EP 2309930 A1 EP2309930 A1 EP 2309930A1
Authority
EP
European Patent Office
Prior art keywords
ultrasonic probe
heat sink
heat
rear layer
heat conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09800515A
Other languages
English (en)
French (fr)
Other versions
EP2309930A4 (de
Inventor
Sung Min Rhim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Humanscan Co Ltd
Original Assignee
Humanscan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Humanscan Co Ltd filed Critical Humanscan Co Ltd
Publication of EP2309930A1 publication Critical patent/EP2309930A1/de
Publication of EP2309930A4 publication Critical patent/EP2309930A4/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • A61B8/546Control of the diagnostic device involving monitoring or regulation of device temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/004Mounting transducers, e.g. provided with mechanical moving or orienting device

Definitions

  • the present invention relates, in general, to ultrasonic probes and, more particularly, to an ultrasonic probe having a heat sink which prevents deterioration of the characteristics of a piezoelectric device, thus preventing deterioration in performance and durability of the ultrasonic probe, and also prevents an acoustic lens from becoming excessively heated, thereby reducing the temperature of the surface of the ultrasonic probe in contact with a patient.
  • ultrasonic imaging apparatuses mainly include an ultrasonic probe which performs conversion between electric and ultrasonic signals, a signal processing unit which processes transmitted or received signals, and a display which expresses images by using signals received from the ultrasonic probe and signals processing unit.
  • the ultrasonic probe performing signal conversions is a very important part determining the quality of ultrasonic images.
  • the ultrasonic probe performs conversion between electrical energy and acoustic energy.
  • the ultrasonic probe must satisfy basic conditions: which are good electric-acoustic conversion efficiency (electromechanical coupling coefficient), ultrasonic pulse characteristics, and focusability of ultrasonic beams.
  • FIG. 1 is a cross sectional view illustrating a conventional medical ultrasonic probe.
  • the medical ultrasonic probe 10 includes an acoustic lens 11, a matching layer 12, a piezoelectric device 13 and a rear layer 14, which are arranged in sequence from a front front end contacting with a patient.
  • the acoustic lens 11 covers the front surface of the matching layer 12 and functions to focus ultrasonic waves.
  • the matching layer 12 is provided on an electrode of an ultrasonic wave sending/receiving surface of the piezoelectric device 13 and functions to enhance the reflectivity and efficiency of ultrasonic waves.
  • the piezoelectric device 13 is attached to the front surface of the rear layer 14 and is connected to a main PCB (printed circuit board) through a FPCB (flexible printed circuit board; 15).
  • the piezoelectric device 130 converts electrical signals into ultrasonic waves which are acoustic signals and emits the ultrasonic waves into air.
  • the piezoelectric device 130 converts ultrasonic reflection signals, which are returned from air by reflection, into electrical signals and transmits the electrical signals to a main apparatus.
  • the rear layer 14 is fastened to a casing 16 in such a way as to apply silicon to the rear layer 14 and the casing 16 after they are closed together.
  • the rear layer 14 functions to absorb ultrasonic waves which are undesirably emitted backwards.
  • the conventional medical ultrasonic probes 10 having the above-mentioned construction are classified into two kinds of probes, i.e., an image sensing probe of image diagnostic apparatuses and, a medical treatment probe used in HIFU (high intensity focused ultrasound) treatment systems for cancer treatment or fat burning.
  • HIFU high intensity focused ultrasound
  • the number of devices mounted to a small area of the ultrasonic probes has gradually increased to enhance the resolution.
  • small devices increase the difference in electrical impedance between the image diagnostic apparatuses and the probes, so that electrical energy which is not converted into ultrasonic waves is converted into thermal energy and is lost.
  • the ultrasonic probe used for medical treatment requires relatively high output, unlike the ultrasonic probe for imaging. Thus, the amount of heat generated from devices used in the probe is higher.
  • the piezoelectric device used in the ultrasonic probe has the characteristic that it cannot stand much heat. Therefore, if the ultrasonic probe is continuously maintained at a high temperature, the characteristics of the piezoelectric device deteriorate, resulting in deterioration of performance and durability of the probe.
  • the ultrasonic probe is typically brought into contact with a patient when it is in operation, so that the temperature of the contact surface of the ultrasonic probe with the patient must be limited.
  • a comparatively low voltage is applied to the ultrasonic probe when it is operated, because the temperature of the contact surface of the ultrasonic probe with the patient must not exceed the limiting temperature owing to heat generation of the ultrasonic probe itself.
  • this decreases the output of the ultrasonic probe, thus deteriorating the performance thereof.
  • a piezoelectric device having a high dielectric constant may be used, and heat dissipation efficiency of the ultrasonic probe may be increased.
  • the piezoelectric device having a high dielectric constant because a difference in electrical impedance between the piezoelectric device and the system is reduced, heat generation of the ultrasonic probe can be restrained.
  • a stack type piezoelectric device or a piezoelectric device having a high dielectric constant may be used to achieve the above purposes, there is a limitation owing to limited availability of such piezoelectric device or difficulty in manufacturing the stack type piezoelectric device.
  • an object of the present invention is to provide an ultrasonic probe which is constructed such that heat is dissipated through a rear layer to prevent heat from being emitted through a contact surface contacting with a patient and such heat dissipation structure does not deteriorate the performance of the ultrasonic probe.
  • the present invention provides an ultrasonic probe which includes a heat sink provided in a rear layer to dissipate heat.
  • heat generated from a piezoelectric device is rapidly conducted to a heat sink via a rear layer and dissipated. Therefore, deterioration in characteristics of the piezoelectric device can be prevented, so that deterioration in performance and durability of the ultrasonic probe can be prevented.
  • a temperature of the contact surface of the ultrasonic probe with the patient can be reduced by preventing heat generation in an acoustic lens.
  • ultrasonic waves absorbed into the rear layer are prevented from being re-reflected towards the front surface of the rear layer, so that the performance of the ultrasonic probe can be maintained.
  • FIG. 1 is a cross sectional view illustrating a conventional medical ultrasonic probe
  • FIG. 2 is a perspective view illustrating an ultrasonic probe having a heat sink in accordance with a first embodiment of the present invention
  • FIG. 3 is a cross sectional view of the ultrasonic probe having the heat sink in accordance with the first embodiment of the present invention
  • FIG. 4 is a perspective view showing the heat sink of the ultrasonic probe in accordance with the first embodiment of the present invention
  • FIG. 5 is a perspective view illustrating an ultrasonic probe having a heat sink, in accordance with a second embodiment of the present invention.
  • FIG. 6 is a cross sectional view of the ultrasonic probe having the heat sink in accordance with the second embodiment of the present invention.
  • FIG. 7 is a perspective view showing the heat sink of the ultrasonic probe in accordance with the second embodiment of the present invention.
  • FIG. 8 is a cross sectional view of an ultrasonic probe having a heat sink in accordance with a third embodiment of the present invention.
  • FIG. 9 is a perspective view showing the heat sink of the ultrasonic probe in accordance with the third embodiment of the present invention.
  • FIG. 10 is a cross sectional view of an ultrasonic probe having a heat sink in accordance with a fourth embodiment of the present invention.
  • FIG. 11 is a perspective view showing the heat sink of the ultrasonic probe in accordance with the fourth embodiment of the present invention.
  • FIG. 12 is a cross sectional view of an ultrasonic probe having a heat sink in accordance with a fifth embodiment of the present invention.
  • FIG. 13 is a perspective view showing the heat sink of the ultrasonic probe in accordance with the fifth embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating an ultrasonic probe 100 having a heat sink 150, in accordance with a first embodiment of the present invention.
  • FIG. 3 is a cross sectional view of the ultrasonic probe 100 having the heat sink 150 in accordance with the first embodiment of the present invention.
  • FIG. 4 is a perspective view showing the heat sink 150 of the ultrasonic probe 100 in accordance with the first embodiment of the present invention.
  • the ultrasonic probe 100 having the heat sink 150 in accordance with the first embodiment of the present invention includes, from the front end to be contacted with a patient sequentially, an acoustic lens 110, a matching layer 120, a piezoelectric device 130 and a rear layer 140.
  • the heat sink 150 is provided in the rear layer 140.
  • the acoustic lens 110 is attached to the matching layer 120 in a shape which covers the front surface of the matching layer 120.
  • the acoustic lens 110 serves to focus ultrasonic waves.
  • the matching layer 120 is provided on an electrode of an ultrasonic wave receive/send surface of the piezoelectric device 130 to increase ultrasonic wave transmitting efficiency and reflectivity of ultrasonic waves.
  • the piezoelectric device 130 is adhered to the front surface of the rear layer 140.
  • First and second electrodes which are connected to a PCB (not shown) through an FPCB 160 (flexible printed circuit board) are provided on the respective opposite surfaces of the piezoelectric device 130.
  • the piezoelectric device 130 converts electrical signals into ultrasonic waves, which are acoustic signals, and emits the ultrasonic waves into air.
  • the piezoelectric device 130 converts ultrasonic reflection signals, which are returned from the air by reflection, into electrical signals and transmits the electrical signals to a main apparatus.
  • the rear layer 140 is coupled to the heat sink 150 and absorbs unnecessary ultrasonic waves that are emitted backwards.
  • the rear layer 140 may be integrally molded with the heat sink 150.
  • the heat sink 150 is made of high heat conductivity, e.g., metal such as aluminum (Al) and copper (Cu).
  • the heat sink 150 is fastened to a rear surface 141 of the rear layer 140, that is, to a surface of the rear layer 140 which is opposite the surface to which the piezoelectric device 130 is adhered.
  • the heat sink 150 is fastened to a casing 170 by applying silicon to the heat sink 150 and the casing 170 after they are closed together.
  • the heat sink 150 is coupled to the rear surface 141 of the rear layer 140 such that the contact area therebetween can be large enough to increase heat transfer therebetween.
  • a plurality of heat transfer protrusions 152 for increasing heat transfer efficiency with the rear layer 140 is provided on one surface of a base body 151 of the heat sink 150.
  • a plurality of heat conductive depressions 142 which have shapes corresponding to the heat conductive protrusions 152 is formed in the rear layer 140, so that the heat conductive protrusions 152 are inserted into the respective heat conductive depressions 142.
  • the rear layer 140 has the heat conductive depressions 142 having shapes corresponding to the heat conductive protrusions 152, a closer contact between the heat conductive depressions 142 and the heat conductive protrusions 152 is provided, thus enhancing heat transfer between the rear layer 140 and the heat sink 150.
  • each heat conductive protrusion 152 preferably has a bar shape, thus maximizing the contact area with the rear layer 140 which is connected to the heat conductive protrusions 152 through the heat conductive depressions 142.
  • the ultrasonic probe 100 having the heat sink 150 in accordance with the first embodiment of the present invention having the above-mentioned construction heat generated from the piezoelectric device 130 is conducted to the heat sink 150 via the rear layer 140 and dissipated, thus increasing a heat transfer rate to the rear layer 140.
  • the ultrasonic probe 100 is constructed such that the heat conductive protrusions 152 of the heat sink 150 are inserted into the respective heat conductive depressions 142 of the rear layer 140, the contact surface between the rear layer 140 and the heat sink 150 is increased, so that the heat transfer from the rear layer 140 to the heat sink 150 can be markedly enhanced.
  • heat generated from the piezoelectric device 130 can be rapidly dissipated by using the heat sink 150. Therefore, the piezoelectric device 130 can be protected from heat, thus preventing deterioration in characteristics of the piezoelectric device 130.
  • the rear layer 140 can maintain its ultrasonic attenuation characteristic. Accordingly, deterioration in performance and durability of the ultrasonic probe 100 can be prevented. Further, since heat conduction to the acoustic lens 110 is reduced, the temperature of the contact surface of the ultrasonic probe 100 to be contacted with the patient can be reduced.
  • FIG. 5 is a perspective view illustrating an ultrasonic probe 200 having a heat sink 250 in accordance with a second embodiment of the present invention.
  • FIG. 6 is a cross sectional view of the ultrasonic probe 200 having the heat sink 250 in accordance with the second embodiment of the present invention.
  • the ultrasonic probe 200 having the heat sink 250 in accordance with the second embodiment of the present invention includes, sequentially from the front end to be brought into contact with a patient, an acoustic lens 210, a matching layer 220, a piezoelectric device 230 and a rear layer 240.
  • the heat sink 250 is provided in the rear layer 240.
  • the general construction of the ultrasonic probe 200 in accordance with the second embodiment, except for the heat sink 250 remains the same as that of the ultrasonic probe 100 in accordance with the first embodiment, and therefore further explanation is deemed unnecessary.
  • heat conductive protrusions 252 are perpendicularly provided on one surface of a base body 251 of the heat sink 250 and are inserted into respective heat conductive depressions 242 which are formed in the rear layer 240. As shown in FIG. 7, each heat conductive protrusion 252 has a bar shape which has an inclined surface 252a on an end thereof to form an acute end.
  • Each of the heat conductive depressions 242 of the rear layer 240 has a shape corresponding to that of the corresponding heat conductive protrusion 252, so that the entire surfaces of heat conductive protrusions 252 can be in close contact with the rear layer 240.
  • the ultrasonic probe 200 having the heat sink 250 in accordance with the second embodiment of the present invention having the above-mentioned construction heat generated from the piezoelectric device 230 is rapidly conducted to the heat sink 250 via the rear layer 240 and is dissipated, thus preventing deterioration of characteristics of the piezoelectric device 230. Accordingly, deterioration in performance and durability of the ultrasonic probe 200 can be prevented. As well, the temperature of the contact surface of the ultrasonic probe 200 to be contacted with the patient can be reduced by virtue of a reduction in temperature of the acoustic lens 210.
  • ultrasonic waves absorbed into the rear layer 240 are reflected in transverse directions by the inclined surfaces 252a that are formed on the heat conductive protrusions 252 of the heat sink 250.
  • ultrasonic waves absorbed into the rear layer 240 are prevented from being re-reflected towards the front surface of the ultrasonic probe 200, so that the ultrasonic waves can be reabsorbed in the rear layer 240 and thus extinguished. Therefore, the intended purpose of the rear layer 240, that is, the purpose of absorbing back reflection waves, can be achieved, thus preventing deterioration in performance of the ultrasonic probe 200.
  • FIG. 8 is a cross sectional view of an ultrasonic probe 300 having a heat sink 350 in accordance with a third embodiment of the present invention.
  • FIG. 9 is a perspective view showing the heat sink 350 of the ultrasonic probe 300 in accordance with the third embodiment of the present invention.
  • the ultrasonic probe 300 having the heat sink 350 in accordance with the third embodiment of the present invention includes, sequentially from the front end which is to be brought into contact with a patient, an acoustic lens 310, a matching layer 320, a piezoelectric device 330 and a rear layer 340.
  • the heat sink 350 is provided in the rear layer 340.
  • the general construction of the ultrasonic probe 300 in accordance with the third embodiment, except for the heat sink 350 remains the same as that of the ultrasonic probe 100 in accordance with the first embodiment, therefore further explanation is deemed unnecessary.
  • heat conductive protrusions 352 are perpendicularly provided on one surface of a base body 351 of the heat sink 350 and are inserted into respective heat conductive depressions 342 which are formed in the rear layer 340.
  • Each heat conductive protrusion 352 is formed in a bar shape and has therein an insert hole 352a which penetrated from the distal end of the heat conductive protrusion 352 towards the proximal end thereof.
  • the insert hole 352a has a conical shape to prevent ultrasonic waves absorbed into the rear layer 340 from being re-reflected towards the front surface of the ultrasonic probe 300 by the heat sink 350.
  • Each of the heat conductive depressions 342 of the rear layer 340 has a shape corresponding to that of the corresponding heat conductive protrusion 352, so that the entire surface of heat conductive protrusions 352 can be in close contact with the rear layer 340.
  • each heat conductive depression 342 has a shape capable of receiving the corresponding heat conductive protrusion 352, and an insert protrusion 342a is provided in each heat conductive depression 342 and inserted into the insert hole 352a of the corresponding heat conductive protrusion 352.
  • the ultrasonic probe 300 having the heat sink 350 in accordance with the third embodiment of the present invention having the above-mentioned construction heat generated from the piezoelectric device 330 is rapidly conducted to the heat sink 350 via the rear layer 340 and is dissipated, thus preventing deterioration of characteristics of the piezoelectric device 330. Accordingly, deterioration in performance and durability of the ultrasonic probe 300 can be prevented. As well, the temperature of the contact surface of the ultrasonic probe 300 to be contacted with the patient can be reduced by virtue of a reduction in temperature of the acoustic lens 310.
  • ultrasonic waves absorbed into the rear layer 340 are repeatedly reflected by the inner surfaces of the insert holes 352a of the heat sink 350 and are eventually cancelled out, thus reducing reflection of the ultrasonic waves towards the front surface of the rear layer 340, thereby preventing deterioration in performance of the ultrasonic probe 300.
  • FIG. 10 is a cross sectional view of an ultrasonic probe 400 having a heat sink 450 in accordance with a fourth embodiment of the present invention.
  • FIG. 11 is a perspective view showing the heat sink 450 of the ultrasonic probe 400 in accordance with the fourth embodiment of the present invention.
  • the ultrasonic probe 400 having the heat sink 450 in accordance with the fourth embodiment of the present invention includes, sequentially from the front end which is to be brought into contact with a patient, an acoustic lens 410, a matching layer 420, a piezoelectric device 430 and a rear layer 440.
  • the heat sink 450 is provided in the rear layer 440.
  • the general construction of the ultrasonic probe 400 in accordance with the fourth embodiment remains the same as that of the ultrasonic probe 100 in accordance with the first embodiment except for the heat sink 450, and therefore further explanation is deemed unnecessary.
  • heat conductive protrusions 452 are perpendicularly provided on one surface of a base body 451 of the heat sink 450 and are inserted into respective heat conductive depressions 442 which are formed in the rear layer 440.
  • Each heat conductive depression 442 has a shape corresponding to that of the corresponding heat conductive protrusion 452.
  • Each heat conductive protrusion 452 has a conical shape to prevent ultrasonic waves absorbed into the rear layer 440 from being re-reflected towards the front surface of the rear layer 440.
  • each of the heat conductive depressions 442 of the rear layer 440 has a shape, i.e., a conical shape, corresponding to the corresponding heat conductive protrusion 452, so that the entire surface of the heat conductive protrusions 452 can be in close contact with the rear layer 440.
  • the ultrasonic probe 400 having the heat sink 450 in accordance with the fourth embodiment of the present invention having the above-mentioned construction heat generated from the piezoelectric device 430 is rapidly conducted to the heat sink 450 via the rear layer 440 and is dissipated, thus preventing deterioration of characteristics of the piezoelectric device 430. Accordingly, deterioration in performance and durability of the ultrasonic probe 400 can be prevented. As well, the temperature of the surface of the ultrasonic probe 400 coming into contact with the patient can be reduced by virtue of a reduction in temperature of the acoustic lens 410.
  • the ultrasonic waves absorbed into the rear layer 440 are reflected in transverse directions by the conical heat conductive protrusions 452 of the heat sink 450, the ultrasonic waves are prevented from being re-reflected towards the front surface of the rear layer 440 and are reabsorbed into portions of the rear layer 440 which are disposed around the heat conductive protrusions 452. The reabsorbed ultrasonic waves are eventually cancelled out. Therefore, deterioration in performance of the ultrasonic probe 400 can be prevented.
  • FIG. 12 is a cross sectional view of an ultrasonic probe 500 having a heat sink 550 in accordance with a fifth embodiment of the present invention.
  • FIG. 13 is a perspective view showing the heat sink 550 of the ultrasonic probe 500 in accordance with the fifth embodiment of the present invention.
  • the ultrasonic probe 500 having the heat sink 550 in accordance with the fifth embodiment of the present invention includes, sequencially from the front end which is to be brought into contact with a patient, an acoustic lens 510, a matching layer 520, a piezoelectric device 530 and a rear layer 540.
  • the heat sink 550 is provided in the rear layer 540.
  • the general construction of the ultrasonic probe 500 in accordance with the fifth embodiment, except for the rear layer 540 and the heat sink 550 remains the same as that of the ultrasonic probe 100 in accordance with the first embodiment, and therefore further explanation is deemed unnecessary.
  • an insert part 552 is provided on one surface of a base body 551 of the heat sink 550 and is embedded in the rear surface 541 of the rear layer 540.
  • the insert part 552 be made of a wire 552a having a coil shape to increase heat conductivity between the rear layer 540 and the heat sink 550.
  • the insert part 552 includes a plurality of coil-shaped wires 552a which are, for example, arranged in parallel with each other on a base body 551 of the heat sink 550.
  • Each coil-shaped wire 552a may be provided in such a way that the opposite ends thereof are integrated with the base body 551 when the base body 551 is formed or, alternatively, in such a way that the opposite ends thereof force-fitted into the base body 551.
  • the coil-shaped wires 552a is embedded in the rear layer 540 when the rear layer 540 is formed on the base body 551 of the heat sink 550 by molding. Accordingly, the base body 551 of the heat sink 550 is coupled to the rear layer 540. Furthermore, interference with ultrasonic waves absorbed into the rear layer 540 is minimized, thus preventing the ultrasonic waves from being re-reflected towards the front surface of the rear layer 540.
  • the ultrasonic probe 500 having the heat sink 550 in accordance with the fifth embodiment of the present invention having the above-mentioned construction heat generated from the piezoelectric device 530 is rapidly conducted to the heat sink 550 via the rear layer 540 and is dissipated, thus preventing deterioration of characteristics of the piezoelectric device 430. Accordingly, deterioration in performance and durability of the ultrasonic probe 400 can be prevented. Further, the temperature of the acoustic lens 410 can be reduced.
  • the coil-shaped wires 552a which are embedded in the rear layer 540 serve to increase the area of a heat conduction passage between the rear layer 540 and the heat sink 550, thus further enhancing the heat transfer efficiency of the heat sink 550.
  • the ultrasonic waves absorbed into the rear layer 540 pass between the coil-shaped wires 552a, the ultrasonic waves are prevented from being re-reflected towards the front surface of the rear layer 540, thus preventing deterioration in performance of the ultrasonic probe 500.
  • heat generated from a piezoelectric device is rapidly conducted to a heat sink via a rear layer and dissipated. Therefore, deterioration in characteristics of the piezoelectric device can be prevented, so that deterioration in performance and durability of the ultrasonic probe can be prevented. Further, the temperature of the surface of the ultrasonic probe which comes into contact with the patient can be reduced by virtue of a reduction in temperature of the acoustic lens.
  • the present invention can overcome a disadvantage in which the heat sink cannot be disposed adjacent to the piezoelectric device due to the possibility of re-reflection of ultrasonic waves to the front surface of the rear layer. Accordingly, the efficiency of heat transfer to the rear layer can be markedly enhanced.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)
EP09800515A 2008-07-22 2009-07-06 Ultraschallsonde mit kühlkörper Withdrawn EP2309930A4 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080071290A KR101018626B1 (ko) 2008-07-22 2008-07-22 히트 싱크를 가지는 초음파 프로브
PCT/KR2009/003677 WO2010011034A1 (en) 2008-07-22 2009-07-06 Ultrasonic probe having heat sink

Publications (2)

Publication Number Publication Date
EP2309930A1 true EP2309930A1 (de) 2011-04-20
EP2309930A4 EP2309930A4 (de) 2011-10-05

Family

ID=41570461

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09800515A Withdrawn EP2309930A4 (de) 2008-07-22 2009-07-06 Ultraschallsonde mit kühlkörper

Country Status (6)

Country Link
US (1) US20110114303A1 (de)
EP (1) EP2309930A4 (de)
JP (1) JP2011528929A (de)
KR (1) KR101018626B1 (de)
CN (1) CN102098965A (de)
WO (1) WO2010011034A1 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132531A1 (ja) * 2010-04-23 2011-10-27 株式会社 日立メディコ 超音波探触子とその製造方法及び超音波診断装置
US9402598B2 (en) * 2010-08-20 2016-08-02 Hitachi Medical Corporation Ultrasound probe and ultrasound diagnostic device using same
DE102010062593A1 (de) * 2010-12-08 2012-06-14 Robert Bosch Gmbh Ultraschallsensor mit einer Dämpfungseinrichtung und Verwendung desselben
US8841823B2 (en) * 2011-09-23 2014-09-23 Ascent Ventures, Llc Ultrasonic transducer wear cap
US9072487B2 (en) * 2012-05-11 2015-07-07 General Electric Company Ultrasound probe thermal drain
KR20150025066A (ko) * 2013-08-28 2015-03-10 삼성메디슨 주식회사 초음파 프로브 및 그 제조 방법
KR101613413B1 (ko) 2013-12-09 2016-04-19 삼성메디슨 주식회사 초음파 프로브 및 그 제조방법
JP5923539B2 (ja) * 2014-03-20 2016-05-24 富士フイルム株式会社 超音波探触子
KR101607245B1 (ko) * 2014-06-19 2016-03-30 주식회사 휴먼스캔 초음파 소거 블록 및 이를 갖는 초음파 프로브
KR102373132B1 (ko) * 2014-12-26 2022-03-11 삼성메디슨 주식회사 초음파 프로브 장치 및 초음파 촬영 장치
JP6564615B2 (ja) * 2015-05-22 2019-08-21 スタンレー電気株式会社 照明装置
US20180028159A1 (en) * 2016-07-29 2018-02-01 Butterfly Network, Inc. Rearward acoustic diffusion for ultrasound-on-a-chip transducer array
CN110049728A (zh) * 2016-12-13 2019-07-23 蝴蝶网络有限公司 声透镜及其应用
US10797221B2 (en) * 2017-02-24 2020-10-06 Baker Hughes, A Ge Company, Llc Method for manufacturing an assembly for an ultrasonic probe
EP3808277B1 (de) 2018-06-12 2023-09-27 Edan Instruments, Inc Ultraschallwandler, ultraschallsonde und ultraschalldetektor
WO2020062259A1 (zh) * 2018-09-30 2020-04-02 深圳迈瑞生物医疗电子股份有限公司 一种超声探头及面阵超声探头
WO2020062270A1 (zh) * 2018-09-30 2020-04-02 深圳迈瑞生物医疗电子股份有限公司 一种超声探头
WO2020062274A1 (zh) * 2018-09-30 2020-04-02 深圳迈瑞生物医疗电子股份有限公司 一种超声探头
WO2020062272A1 (zh) * 2018-09-30 2020-04-02 深圳迈瑞生物医疗电子股份有限公司 超声探头及面阵超声探头
CA3153080A1 (en) * 2019-10-10 2021-04-15 Sunnybrook Research Institute SYSTEMS AND METHODS FOR COOLING ULTRASOUND TRANSDUCERS AND ULTRASOUND TRANSDUCER ARRAYS
JP7403358B2 (ja) * 2020-03-16 2023-12-22 テルモ株式会社 超音波探触子

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545942A (en) * 1994-11-21 1996-08-13 General Electric Company Method and apparatus for dissipating heat from a transducer element array of an ultrasound probe
EP0727259A2 (de) * 1995-02-15 1996-08-21 Hewlett-Packard Company Ultraschallwandler
EP0782125A2 (de) * 1995-12-29 1997-07-02 General Electric Company Verfahren und Anordnung zur Übertragung von Wärme von einer Wandleranordnung in einer Ultraschallkopf
US20040002655A1 (en) * 2002-06-27 2004-01-01 Acuson, A Siemens Company System and method for improved transducer thermal design using thermo-electric cooling

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01293851A (ja) * 1988-05-23 1989-11-27 Yokogawa Medical Syst Ltd 超音波探触子
JPH08140973A (ja) * 1994-11-25 1996-06-04 Toshiba Ceramics Co Ltd 超音波発生装置
US6208513B1 (en) * 1995-01-17 2001-03-27 Compaq Computer Corporation Independently mounted cooling fins for a low-stress semiconductor package
US5602718A (en) * 1995-09-29 1997-02-11 Hewlett-Packard Company Thermal sink for a transducer assembly
US5622175A (en) * 1995-09-29 1997-04-22 Hewlett-Packard Company Miniaturization of a rotatable sensor
AT413163B (de) * 2001-12-18 2005-11-15 Fotec Forschungs Und Technolog Kühlvorrichtung für einen chip sowie verfahren zur herstellung
JP2004063898A (ja) * 2002-07-30 2004-02-26 Hitachi Cable Ltd 放熱材及びその製造方法
JP2005026248A (ja) * 2003-06-30 2005-01-27 Enplas Corp 電気部品用放熱部材
JP4624659B2 (ja) * 2003-09-30 2011-02-02 パナソニック株式会社 超音波探触子
TWI381494B (zh) * 2004-01-07 2013-01-01 Jisouken Co Ltd Cooling device
JP4643227B2 (ja) * 2004-11-04 2011-03-02 株式会社東芝 超音波プローブ及び超音波診断装置
US7834520B2 (en) * 2004-12-09 2010-11-16 Hitachi Medical Coporation Ultrasonic probe and ultrasonic diagnosis apparatus
US20090114372A1 (en) * 2005-09-13 2009-05-07 Mitsubishi Electric Corporation Heat sink
JP5065593B2 (ja) * 2005-11-30 2012-11-07 株式会社東芝 超音波探触子および超音波画像装置
US7281573B2 (en) * 2005-12-14 2007-10-16 Hua-Hsin Tsai Cooler
JP4851210B2 (ja) * 2006-03-15 2012-01-11 日立アロカメディカル株式会社 超音波診断装置
JP2008084965A (ja) * 2006-09-26 2008-04-10 Seiko Epson Corp 電子装置、放熱用基板及び電子機器
KR20080061012A (ko) * 2006-12-27 2008-07-02 주식회사 하이닉스반도체 반도체 패키지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545942A (en) * 1994-11-21 1996-08-13 General Electric Company Method and apparatus for dissipating heat from a transducer element array of an ultrasound probe
EP0727259A2 (de) * 1995-02-15 1996-08-21 Hewlett-Packard Company Ultraschallwandler
EP0782125A2 (de) * 1995-12-29 1997-07-02 General Electric Company Verfahren und Anordnung zur Übertragung von Wärme von einer Wandleranordnung in einer Ultraschallkopf
US20040002655A1 (en) * 2002-06-27 2004-01-01 Acuson, A Siemens Company System and method for improved transducer thermal design using thermo-electric cooling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2010011034A1 *

Also Published As

Publication number Publication date
EP2309930A4 (de) 2011-10-05
KR101018626B1 (ko) 2011-03-03
JP2011528929A (ja) 2011-12-01
US20110114303A1 (en) 2011-05-19
KR20100010358A (ko) 2010-02-01
CN102098965A (zh) 2011-06-15
WO2010011034A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
WO2010011034A1 (en) Ultrasonic probe having heat sink
WO2015160088A1 (ko) 휴대용 초음파 진단장치의 방열구조
WO2015160100A1 (en) Ultrasonic imaging apparatus
WO2015005586A1 (en) Ultrasonic probe and manufacturing method thereof
CN101396289B (zh) 超声波内窥镜
WO2010093083A1 (ko) 초음파 탐촉자, 초음파 영상 장치 및 그의 제조 방법
WO2014193013A1 (ko) 냉각 기능을 가진 초음파 트랜스듀서
JPH09294744A (ja) 超音波プローブ
WO2012070711A1 (ko) 스캔헤드가 분리가능한 프로브
EP1154269A3 (de) Ultraschallsonde, Ultraschallempfänger und Ultraschalldiagnoseapparat
US6142947A (en) Ultrasound probe and related methods of assembly/disassembly
WO2014080312A1 (en) Frameless ultrasound probes with heat dissipation
KR20000001944A (ko) 컴퓨터와 포트 레프리케이터 결합 구조체
JPH1094540A (ja) 超音波プローブ
WO2015147355A1 (ko) 초음파 트랜스듀서의 방열구조
WO2015129938A1 (ko) 개선된 방열 특성을 갖는 초음파 프로브
TWI308454B (en) Optical scanning module
WO2017146364A1 (ko) 초음파 프로브
US11076838B2 (en) Ultrasonic endoscope
WO2015194733A1 (ko) 초음파 소거 블록 및 이를 갖는 초음파 프로브
WO2014193012A1 (ko) 이미지 품질을 개선하기 위한 트랜스듀서 구조
WO2014181966A1 (ko) 단위 초음파 프로브, 이를 갖는 초음파 프로브 모듈 및 이를 갖는 초음파 프로브 장치
WO2023048378A1 (ko) 초음파 미용기구
WO2014035049A1 (ko) 초음파 프로브용 후면블록 및 그의 제조방법
WO2016117721A1 (ko) 열 분산 향상을 위한 흡음층을 가진 초음파 트랜스듀서

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RHIM, SUNG MIN

A4 Supplementary search report drawn up and despatched

Effective date: 20110905

RIC1 Information provided on ipc code assigned before grant

Ipc: A61B 8/00 20060101AFI20110830BHEP

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140701

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20161117