WO2020062270A1 - 一种超声探头 - Google Patents

一种超声探头 Download PDF

Info

Publication number
WO2020062270A1
WO2020062270A1 PCT/CN2018/109171 CN2018109171W WO2020062270A1 WO 2020062270 A1 WO2020062270 A1 WO 2020062270A1 CN 2018109171 W CN2018109171 W CN 2018109171W WO 2020062270 A1 WO2020062270 A1 WO 2020062270A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
backing block
dissipation element
ultrasonic probe
heat
Prior art date
Application number
PCT/CN2018/109171
Other languages
English (en)
French (fr)
Inventor
王金池
吴飞
张�浩
郑洲
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
深圳迈瑞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司, 深圳迈瑞科技有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2018/109171 priority Critical patent/WO2020062270A1/zh
Publication of WO2020062270A1 publication Critical patent/WO2020062270A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves

Definitions

  • the present application relates to medical detection equipment, and in particular, to an ultrasound probe.
  • the working principle of the ultrasound probe 1 is to use the piezoelectric effect to convert the excitation electric pulse signal of the entire ultrasound machine into an ultrasound signal and enter the patient's body, and then convert the ultrasound echo signal reflected by the tissue into an electric signal, thereby realizing the detection of the tissue.
  • the working ultrasonic probe will generate a large amount of heat, which will cause the temperature of the probe to rise.
  • the probe's heat may affect the patient's personal safety. Regulations clearly stipulate that the temperature of the probe when in contact with the patient cannot exceed a certain temperature. On the other hand, if the probe works in high temperature for a long time, it will accelerate the aging of the probe and shorten the life of the probe.
  • the heat dissipation scheme of some ultrasound probes is to assemble heat sinks on the side or around the ultrasound probe to try to direct the heat to the back of the probe.
  • the main cause of the heating of the ultrasonic probe is the incomplete electro-acoustic conversion of the piezoelectric material, and the piezoelectric material is not a good heat conductor, the heat is mainly accumulated in the middle position of the probe element.
  • the heat sink on the side or around the probe cannot be sufficiently close to the center of the heat source, and the cross-sectional area of the heat sink side plate is too small to conduct sufficient heat exchange with the probe array element. The problem of probe heating is still not well solved.
  • an ultrasonic probe which includes an acoustic window, a matching layer, a piezoelectric layer, a backing block, and a probe housing, the acoustic window, the matching layer, the piezoelectric layer, The backing block and the probe housing are connected in sequence.
  • the ultrasound probe further includes a first heat radiating element disposed in the backing block.
  • the first heat radiating element includes an adjacent or extending to the backing block. The first end of the upper surface and the second end extending to the lower surface or the first side surface of the backing block, wherein the extending direction of the first heat dissipation element from the first end to the second end is The thickness direction of the backing block from the surface to the lower surface of the backing block forms a first included angle.
  • a plurality of the first heat dissipation elements are provided inside the backing block.
  • a plurality of the first heat dissipation elements are parallel to each other, and are arranged in a first direction perpendicular to a thickness direction of the backing block.
  • the first heat dissipation element is a metal foil or a flexible graphite film.
  • the thickness of the first heat dissipating element is not greater than 500 microns, or the thickness of the first heat dissipating element is not greater than 25 microns.
  • the acoustic impedance of the first heat dissipation element is equal to the acoustic impedance of the backing block, or the difference between the acoustic impedance of the first heat dissipation element and the acoustic impedance of the backing block is less than 1 trillion Swiss. Profit.
  • a second heat dissipation element is further provided inside the backing block, and the second heat dissipation element includes a first end adjacent to or extending to an upper surface of the backing block and extending to the backing block.
  • a plurality of the second heat dissipation elements are provided inside the backing block.
  • a plurality of the second heat dissipation elements are parallel to each other, and are arranged in a first direction perpendicular to a thickness direction of the backing block.
  • the first heat dissipation element and the second heat dissipation element are connected to each other.
  • a first end of the first heat dissipation element and a first end of the second heat dissipation element are connected to each other.
  • the second heat dissipation element is a metal foil or a flexible graphite film.
  • the thickness of the second heat dissipating element is not more than 500 microns, or the thickness of the second heat dissipating element is not greater than 25 microns.
  • the acoustic impedance of the second heat dissipation element is equal to the acoustic impedance of the backing block, or the difference between the acoustic impedance of the second heat dissipation element and the acoustic impedance of the backing block is less than 1 trillion Swiss. Profit.
  • a third heat dissipation element is further provided inside the backing block, and the third heat dissipation element includes a first end adjacent to or extending to an upper surface of the backing block and extending to the backing block.
  • the lower surface or the second end of the third side surface wherein the extending direction of the third heat dissipation element from the first end of the third heat dissipation element to the second end of the third heat dissipation element and the thickness direction of the backing block form a first Three angles.
  • a plurality of the third heat dissipation elements are provided inside the backing block.
  • a plurality of the third heat dissipation elements are parallel to each other, and are arranged in a second direction perpendicular to a thickness direction of the backing block.
  • the third heat dissipation element and the first heat dissipation element and / or the second heat dissipation element are connected to each other.
  • the first end of the third heat dissipation element is connected to the first end of the first heat dissipation element and / or the first end of the second heat dissipation element.
  • the third heat dissipation element is a metal foil or a flexible graphite film.
  • the thickness of the third heat dissipating element is not more than 500 microns, or the thickness of the third heat dissipating element is not greater than 25 microns.
  • the acoustic impedance of the third heat dissipation element is equal to the acoustic impedance of the backing block, or the difference between the acoustic impedance of the third heat dissipation element and the acoustic impedance of the backing block is less than 1 mega Rui. Profit.
  • a fourth heat dissipation element is further provided inside the backing block, and the fourth heat dissipation element includes a first end adjacent to or extending to an upper surface of the backing block and extending to the backing block.
  • the lower surface or the second end of the fourth side surface wherein the extending direction of the fourth heat dissipation element from the first end of the fourth heat dissipation element to the second end of the fourth heat dissipation element and the thickness direction of the backing block form a first Four angles.
  • a plurality of the fourth heat dissipation elements are provided inside the backing block.
  • a plurality of the fourth heat dissipating elements are parallel to each other, and are arranged along a second direction perpendicular to a thickness direction of the backing block.
  • the fourth heat dissipation element and the first heat dissipation element and / or the second heat dissipation element and / or the third heat dissipation element are mutually connected.
  • the first end of the fourth heat radiating element and the first end of the first heat radiating element and / or the first end of the second heat radiating element and / or the first end of the third heat radiating element One end is connected to the other.
  • the fourth heat dissipation element is a metal foil or a flexible graphite film.
  • the thickness of the fourth heat dissipating element is not greater than 500 microns, or the thickness of the fourth heat dissipating element is not greater than 25 microns.
  • the acoustic impedance of the fourth heat dissipation element is equal to the acoustic impedance of the backing block, or the difference between the acoustic impedance of the fourth heat dissipation element and the acoustic impedance of the backing block is less than 1 trillion Swiss. Profit.
  • the probe further includes a fifth heat radiating element, and the fifth heat radiating element is attached to the upper surface of the backing block.
  • the probe further includes a sixth heat dissipation element, and the sixth heat dissipation element is attached to at least one other surface of the backing block except the upper surface.
  • the fifth heat dissipation element is a metal foil or a flexible graphite film.
  • the thickness of the fifth heat dissipation element is not greater than 500 microns, or the thickness of the fifth heat dissipation element is not greater than 25 microns.
  • the acoustic impedance of the fifth heat radiating element is equal to the acoustic impedance of the backing block, or the difference between the acoustic impedance of the fifth heat radiating element and the acoustic impedance of the backing block is less than 1 trillion Swiss. Profit.
  • the sixth heat dissipation element is a metal foil or a flexible graphite film.
  • the probe further includes a heat dissipation block, and the heat dissipation block is attached to at least one surface of the backing block except the upper surface.
  • the heat dissipation block is attached to the lower surface of the backing block.
  • the heat dissipation block is a metal block.
  • the heat dissipation block is an aluminum block.
  • it further includes a seventh heat dissipation element, and the seventh heat dissipation film is adhered to at least one surface of the heat dissipation block.
  • the seventh heat dissipation element is a metal foil or a flexible graphite film.
  • the first heat dissipation element since the first heat dissipation element is provided in the backing block, the first heat dissipation element includes a first end adjacent to or extending to the upper surface of the backing block and extending to the backing block.
  • the lower surface or the second end of the first side surface wherein the extending direction of the first heat dissipation element from the first end to the second end and from the upper surface of the backing block to the backing block
  • the thickness of the backing block on the lower surface forms a first angle, which increases the reflection distance of the sound waves in the backing block, which helps the backing block to better absorb unwanted sound waves radiated from the piezoelectric layer, and increase the heat conduction area.
  • the heat conduction efficiency is improved, so that the heat exchange between the backing block and the middle of the piezoelectric layer is sufficient, so that the heat radiation effect of the ultrasonic probe is good, and it can ensure that the ultrasonic probe is still in a low temperature state during long-term use.
  • FIG. 1 is a schematic structural diagram of an ultrasound probe in an embodiment
  • FIG. 2 is a schematic structural diagram of an ultrasound probe in an embodiment
  • FIG. 3 is a schematic structural diagram of an ultrasound probe in an embodiment
  • FIG. 4 is a schematic structural diagram of an ultrasound probe in an embodiment
  • FIG. 5 is a schematic structural diagram of an ultrasound probe in an embodiment
  • FIG. 6 is a schematic structural diagram of an ultrasound probe in an embodiment
  • FIG. 7 is a schematic structural diagram of an ultrasound probe in an embodiment
  • FIG. 8 is a schematic structural diagram of an ultrasound probe in an embodiment
  • FIG. 9 is a schematic structural diagram of an ultrasound probe in an embodiment
  • FIG. 10 is a schematic structural diagram of an ultrasound probe in an embodiment
  • FIG. 11 is a schematic structural diagram of an ultrasound probe in an embodiment
  • FIG. 12 is a schematic structural diagram of an ultrasound probe in an embodiment
  • FIG. 13 is a schematic structural diagram of an ultrasound probe in an embodiment
  • FIG. 14 is a schematic structural diagram of an ultrasound probe in an embodiment
  • 15 is a schematic structural diagram of an ultrasound probe in an embodiment
  • 16 is a schematic structural diagram of an ultrasound probe in an embodiment
  • connection and “connection” in this application include direct and indirect connections (connections) unless otherwise specified.
  • an ultrasonic probe is provided.
  • the ultrasonic probe 1 of this embodiment mainly includes an acoustic window 2, a matching layer 3, a piezoelectric layer 4, a backing block 5, and a probe housing 6 (FIG. The middle probe housing 6 is not shown), where the matching layer 3 is connected to the acoustic window 2, the piezoelectric layer 4 is connected to the matching layer 3, and the backing block 5 is connected to the piezoelectric layer 4, where the acoustic window 2 can be designed as a flat structure, and It can be designed as a structure with a function of focusing ultrasound, such as a convex structure.
  • the sound window of the convex structure can be called an acoustic lens.
  • the backing block 5 includes an upper surface 51, a lower surface 52, a first side surface 53, and a second surface.
  • the side where the backing block 5 and the piezoelectric layer 4 are bonded is defined as the upper surface 51.
  • the other four side surfaces are shown in FIG. 1.
  • the probe housing 6 At least partially accommodates the acoustic window 2, the matching layer 3, the piezoelectric layer 4, and the backing block 5.
  • the inside of the backing block 5 is provided with a first heat radiating element 7.
  • the first heat radiating element 7 includes a first end adjacent to or extending to the upper surface of the backing block 5 and The second end of the lower surface, in which the first heat dissipation element 7 extends from the first end to the second end in the direction of the thickness of the backing block 5 from the upper surface of the backing block 5 to the lower surface of the backing block 5 to form a first clip. angle.
  • the first end of the upper surface of the backing block 5 may be close to the upper surface of the backing block 5 or may be in contact with the upper surface. When the first heat dissipation element 7 is in contact with the upper surface, the heat conduction effect is better.
  • the extending direction from the first end of the upper surface of the backing block 5 to the second end of the lower surface of the backing block 5 is a straight extending direction from the first end to the second end.
  • the thickness direction of the backing block 5 from the upper surface of the backing block 5 to the lower surface of the backing block 5 is the thickness direction of the backing block 5 perpendicular to the upper and lower surfaces of the backing block 5.
  • the first included angle formed by the straight extending direction from the first end of the upper surface of the backing block 5 to the second end of the lower surface and the thickness direction of the backing block 5 perpendicular to the upper and lower surfaces of the backing block 5 is an acute angle.
  • the first heat dissipation element 7 may be arranged in two layers, and the second end of the first heat dissipation element 7 may also be a second end extending to the first side surface of the backing block 5. , It is beneficial for the heat in the middle of the piezoelectric layer to be discharged to the side surface of the backing block as soon as possible.
  • a plurality of first heat dissipation elements 7 are provided inside the backing block 5.
  • the relative positional relationship of the first heat dissipation elements 7 may be arbitrarily arranged, may intersect, and may not intersect.
  • the backing block 5 is provided with a plurality of first heat dissipation elements 7 as described above. These first heat dissipation elements 7 are parallel to each other and are perpendicular to the thickness direction of the backing block 5. Are arranged in a first direction, and the first direction is a vertical direction from the first side surface to the second side surface.
  • the first heat dissipation element 7 is a metal foil with a high thermal conductivity or a flexible graphite film with a high thermal conductivity, such as a flexible graphite film with a high thermal conductivity.
  • the thermal conductivity of the flexible graphite film with a high thermal conductivity is 1500 to 1800 W / m ⁇ K.
  • Thermal conductivity of metal foils such as super copper and aluminum.
  • the thickness of the first heat dissipation element may be not more than 500 microns. Furthermore, in one embodiment, the thickness of the first heat-dissipating film may be not more than 25 microns.
  • the acoustic impedance of the first heat-dissipating element 7 may be equal to or similar to that of the backing block 5.
  • the acoustic impedance of the first heat-dissipating element 7 may be the same as the acoustic impedance of the backing block 5 or the difference between the two may be less than 1 trillion Rayleigh. . In this way, the influence of the first heat dissipation element on the acoustic performance of the probe can be reduced.
  • This embodiment provides an ultrasonic probe, which includes an acoustic window 2, a matching layer 3, a piezoelectric layer 4, a backing block 5 and a probe housing 6 and are connected in this order.
  • the backing block 5 is provided with a first heat dissipation element 7,
  • a heat radiating element 7 includes a first end adjacent to or extending to the upper surface of the backing block 5 and a second end extending to the lower surface of the backing block 5.
  • the extending direction of the first heat radiating element 7 from the first end to the second end Form a first angle with the thickness direction of the backing block 5 from the upper surface of the backing block 5 to the lower surface of the backing block 5 to increase the reflection distance of the sound waves in the backing block 5, which is beneficial to the backing block 5 It absorbs unwanted sound waves radiated from the piezoelectric layer, while increasing the heat conduction area and improving the heat conduction efficiency, so that the heat exchange between the backing block 5 and the middle of the piezoelectric layer 4 is sufficient, and the heat can be quickly introduced to the periphery or the back end of the probe in time.
  • the heat radiation effect of the ultrasonic probe is good, and it can ensure that the ultrasonic probe is still in a low temperature state during long-term use.
  • an ultrasonic probe is provided.
  • a second heat dissipation element 8 is added on the basis of the foregoing embodiment.
  • a second heat dissipation element 8 is added inside the backing block 5.
  • the second heat dissipation element 8 includes a first end adjacent to or extending to the upper surface of the backing block 5 and a lower portion of the backing block 5. The second end of the surface, wherein the extending direction of the second heat dissipation element from the first end to the second end and the thickness direction of the backing block 5 from the upper surface of the backing block 5 to the lower surface of the backing block 5 form a second angle.
  • the first end of the upper surface of the backing block 5 may be close to the upper surface of the backing block 5 or may be in contact with the upper surface. When the first heat dissipation element 7 is in contact with the upper surface, the heat conduction effect is better.
  • the extending direction from the first end of the upper surface of the backing block 5 to the second end of the lower surface of the backing block 5 is a straight extending direction from the first end to the second end.
  • the thickness direction of the backing block 5 from the upper surface of the backing block 5 to the lower surface of the backing block 5 is the thickness direction of the backing block 5 perpendicular to the upper and lower surfaces of the backing block 5.
  • the second included angle formed by the straight extending direction from the first end of the upper surface of the backing block 5 to the second end of the lower surface and the thickness direction of the backing block 5 perpendicular to the upper and lower surfaces of the backing block 5 is an acute angle.
  • the second end of the second heat sink 8 may also be provided to extend to the second end of the second side surface of the backing block 5.
  • the backing block 5 is further provided with a plurality of second heat dissipation elements 8 as described above, and the relative positional relationship of these second heat dissipation elements 8 may be arbitrarily arranged, may intersect, or may not intersect.
  • the backing block 5 is further provided with a plurality of second heat dissipation elements 8 as described above. These second heat dissipation elements 8 are parallel to each other and are perpendicular to the thickness direction of the backing block 5.
  • the first direction is arranged from the first side surface to the second side surface.
  • first heat dissipation element 7 and the second heat dissipation element 8 inside the backing block 5 are connected to each other.
  • the first end of the first heat dissipating element 7 and the first end of the second heat dissipating element 8 may be connected to each other, or the middle portions of the two ends of the first heat dissipating element and the middle portions of the two ends of the second heat dissipating element may be connected to each other, or the first heat dissipating element may be connected.
  • the first end of the second heat dissipation element 8 and the middle ends of the second heat dissipation element 8 are connected to each other, and the middle ends of the first heat dissipation element 7 and the second heat dissipation element 8 may be connected to each other.
  • the first end of the first heat dissipation element 7 inside the backing block 5 and the first end of the second heat dissipation element 8 are connected to each other.
  • the second heat dissipation element 8 is a metal foil with a high thermal conductivity or a flexible graphite film with a high thermal conductivity, such as a flexible graphite film with a high thermal conductivity.
  • the thermal conductivity of the flexible graphite film with a high thermal conductivity is 1500 to 1800 W / m ⁇ K.
  • Thermal conductivity of metal foils such as super copper and aluminum.
  • the thickness of the second heat dissipation element 8 may be not more than 500 micrometers. Furthermore, in one embodiment, the thickness of the second heat-dissipating element 8 may be not more than 25 micrometers.
  • the acoustic impedance of the second heat dissipation element 8 may be equal to or similar to the acoustic impedance of the backing block 5.
  • the acoustic impedance of the second heat dissipation element 8 may be the same as the acoustic impedance of the backing block 5 or the difference between the two is less than 1 trillion Rayleigh. . In this way, the influence of the second heat dissipation element on the acoustic performance of the probe can be reduced.
  • This embodiment provides an ultrasonic probe.
  • a second heat dissipation element 8 is added inside the backing block 5.
  • the simultaneous use of the first heat dissipation element 7 and the second heat dissipation element 8 will further increase the acoustic wave
  • the reflection stroke in the backing block 5 is beneficial to the backing block 5 to better absorb unwanted sound waves radiated by the piezoelectric layer, and at the same time to further increase the heat conduction area, so that the heat exchange between the backing block 5 and the middle of the piezoelectric layer 4 is sufficient,
  • the heat can be quickly introduced to the periphery or the back end of the backing block 5 in time, so that the heat radiation effect of the ultrasonic probe is good, and it can be ensured that the ultrasonic probe is still in a low temperature state during long-term use.
  • an ultrasonic probe is provided.
  • a third heat dissipation element 9 is added on the basis of the foregoing embodiment.
  • a third heat dissipation element 9 is further provided inside the backing block 5.
  • the third heat dissipation element 9 includes a first end adjacent to or extending to the upper surface of the backing block 5 and extending to the backing block 5.
  • the first end of the upper surface of the backing block 5 may be close to the upper surface of the backing block 5 or may be in contact with the upper surface. When the first heat dissipation element is in contact with the upper surface, the heat conduction efficiency is higher.
  • the extending direction from the first end of the upper surface of the backing block 5 to the second end of the lower surface of the backing block 5 refers to the straight extending direction from the first end to the second end.
  • the thickness direction of the backing block 5 from the upper surface of the backing block 5 to the lower surface of the backing block 5 refers to the vertical direction along the thickness of the backing block 5 from the upper surface to the lower surface of the backing block 5.
  • the third included angle formed by the straight extending direction from the first end of the upper surface of the backing block 5 to the second end of the lower surface and the vertical direction of the back surface of the backing block 5 along the thickness of the backing block 5 is an acute angle.
  • the second end of the third heat dissipation element 9 may also be provided to extend to the second end of the third side surface of the backing block 5.
  • the backing block 5 is further provided with a plurality of third heat dissipation elements 9 as described above.
  • the mutual positional relationship of the third heat dissipation elements 9 may be arbitrarily arranged, may intersect, or may not intersect.
  • the backing block 5 is further provided with a plurality of third heat dissipation elements 9 as described above. These third heat dissipation elements are parallel to each other and are perpendicular to the thickness direction of the backing block 5.
  • the second direction is aligned, and the second direction is a direction from the third side surface to the fourth side surface.
  • the third heat dissipating element 9 and the first heat dissipating element 7 inside the backing block 5 are connected to each other.
  • the third heat dissipating element 9 and the second heat dissipating element 8 inside the backing block 5 may be connected to each other, which may be a backing.
  • the third heat dissipation element 9 inside the block 5 is connected to the first heat dissipation element 7 and the second heat dissipation element 8 simultaneously.
  • the first end of the third heat dissipation element 9 inside the backing block 5 may be connected to the first end of the first heat dissipation element 7, and the first end of the third heat dissipation element 9 inside the backing block 5 may also be connected. It is connected to the first end of the second heat dissipation element 8, and the first end of the third heat dissipation element 9 inside the backing block 5 may be simultaneously with the first end of the first heat dissipation element 7 and the first end of the second heat dissipation element 8 connection.
  • the third heat dissipation element 9 is a metal foil with a high thermal conductivity or a flexible graphite film with a high thermal conductivity, such as a flexible graphite film with a high thermal conductivity.
  • the thermal conductivity of the flexible graphite film with a high thermal conductivity is 1500 to 1800 W / m ⁇ K.
  • Thermal conductivity of metal foils such as super copper and aluminum.
  • the thickness of the third heat dissipation element 9 may be not more than 500 micrometers. Furthermore, in one embodiment, the thickness of the third heat-dissipating element 8 may be not more than 25 micrometers.
  • the acoustic impedance of the third heat dissipation element 9 may be equal to or similar to the acoustic impedance of the backing block 5.
  • the acoustic impedance of the third heat dissipation element 9 may be the same as the acoustic impedance of the backing block 5 or the difference between the two is less than 1 trillion Rayleigh. . In this way, the influence of the third heat dissipation element on the acoustic performance of the probe can be reduced.
  • This embodiment provides an ultrasonic probe.
  • a third heat dissipation element 9 is additionally provided inside the backing block 5. The first heat dissipation element 7 and the second heat dissipation element 8 and the third heat dissipation element 9 are used simultaneously.
  • an ultrasonic probe is provided.
  • a fourth heat dissipation element 10 is added to the foregoing embodiment.
  • a fourth heat radiating element is further provided inside the backing block 5.
  • the fourth heat radiating element 10 includes a first end adjacent to or extending to the upper surface of the backing block 5 and a lower end extending to the lower surface of the backing block 5.
  • the second end where the extending direction of the fourth heat dissipation element 10 from the first end to the second end and the thickness direction of the backing block 5 from the upper surface of the backing block 5 to the lower surface of the backing block 5 form a fourth angle.
  • the first end of the upper surface of the backing block 5 may be close to the upper surface of the backing block 5 or may be in contact with the upper surface.
  • the heat conduction efficiency is higher.
  • the extending direction from the first end of the upper surface of the backing block 5 to the second end of the lower surface of the backing block 5 refers to the straight extending direction from the first end to the second end.
  • the thickness direction of the backing block 5 from the upper surface of the backing block 5 to the lower surface of the backing block 5 refers to the vertical direction along the thickness of the backing block 5 from the upper surface to the lower surface of the backing block 5.
  • the fourth included angle formed by the straight extending direction from the first end of the upper surface of the backing block 5 to the second end of the lower surface and the vertical direction of the back surface of the backing block 5 along the thickness of the backing block 5 is an acute angle.
  • the second end of the fourth heat dissipating element 10 may also be provided to extend to the second end of the fourth side surface of the backing block 5.
  • the backing block 5 is further provided with a plurality of fourth heat radiating elements 10 as described above.
  • the mutual positional relationship of the fourth heat radiating elements 10 may be arbitrarily arranged, may intersect, or may not intersect.
  • the backing block 5 is further provided with a plurality of fourth heat dissipation elements 10 as described above.
  • These fourth heat dissipation elements 10 are parallel to each other and are perpendicular to the thickness direction of the backing block 5. Aligned in the second direction.
  • the fourth heat dissipation element 10 inside the backing block 5 and any one of the first heat dissipation element 7, the second heat dissipation element 8, and the third heat dissipation element 9 are connected to each other, and the fourth heat dissipation element 10 and Any two of the first heat dissipating element 7, the second heat dissipating element 8, and the third heat dissipating element 9 may be connected to each other.
  • the fourth heat dissipating element 10 may be simultaneously with the first heat dissipating element 7, the second heat dissipating element 8, and the third heat dissipating element 9. connection.
  • any two of the terminals are connected to each other, and may also be the first end of the fourth heat dissipation element 10 and the first end of the first heat dissipation element 7, the first end of the second heat dissipation element 8, and the first end of the third heat dissipation element 9. Connect at the same time. As shown in FIG. 3, the first end of the fourth heat dissipation element is connected to the first end of the third heat dissipation element.
  • the fourth heat dissipation element 10 is a metal foil with a high thermal conductivity or a flexible graphite film with a high thermal conductivity, such as a flexible graphite film with a high thermal conductivity.
  • the thermal conductivity of the flexible graphite film with a high thermal conductivity is 1500 to 1800 W / m ⁇ K.
  • Thermal conductivity of metal foils such as super copper and aluminum.
  • the thickness of the fourth heat dissipation element 10 may be not more than 500 micrometers. Furthermore, in one embodiment, the thickness of the fourth heat-dissipating element 10 may be not more than 25 micrometers.
  • the acoustic impedance of the fourth heat-dissipating element 10 may be equal to or similar to the acoustic impedance of the backing block 5.
  • the acoustic impedance of the fourth heat-dissipating element 10 may be the same as the acoustic impedance of the backing block 5 or the difference between the two may be less than 1 trillion Rayleigh. . In this way, the influence of the fourth heat dissipation element 10 on the acoustic performance of the probe can be reduced.
  • This embodiment provides an ultrasonic probe.
  • a fourth heat dissipation element 10 a first heat dissipation element 7, a second heat dissipation element 8, a third heat dissipation element 9 and a fourth heat dissipation element are added inside the backing block 5.
  • the simultaneous use of the heat radiating element 10 will further increase the reflection distance of the sound waves in the backing block 5, which will help the backing block 5 to better absorb unwanted sound waves radiated by the piezoelectric layer, and further increase the heat conduction area, so that the backing
  • the heat exchange between the block 5 and the middle of the piezoelectric layer is sufficient, and the heat can be quickly introduced to the periphery or the back end of the backing block 5 in time, so that the ultrasonic probe has a good heat dissipation effect, and can ensure that the ultrasonic probe is still at a low temperature during long-term use. status.
  • This embodiment provides an ultrasound probe.
  • the ultrasound probe of this embodiment is added with a fifth heat dissipation element 11 on the basis of the above embodiment.
  • the fifth heat dissipation element 11 is attached to the upper surface of the backing block 5, and the fifth heat dissipation element 11 is disposed between the piezoelectric layer 4 and the backing block 5.
  • the fifth heat dissipation element 11 is a metal foil with a high thermal conductivity or a flexible graphite film with a high thermal conductivity, such as a flexible graphite film with a high thermal conductivity.
  • the thermal conductivity of the flexible graphite film with a high thermal conductivity is 1500 to 1800 W / m ⁇ K.
  • Thermal conductivity of metal foils such as super copper and aluminum.
  • the thickness of the fifth heat radiating element 11 may be not more than 500 micrometers. Furthermore, in one embodiment, the thickness of the fifth heat-dissipating element 11 may be not more than 25 micrometers.
  • the acoustic impedance of the fifth heat radiating element 11 may be equal to or similar to that of the backing block 5.
  • the acoustic impedance of the fifth heat radiating element 11 may be the same as the acoustic impedance of the backing block 5 or the difference between the two is less than 1 trillion Rayleigh. . In this way, the influence of the fifth heat radiating element 11 on the acoustic performance of the probe can be reduced.
  • a fifth heat dissipation element 11 is additionally provided on the backing block 5 on the basis of the above embodiment.
  • the fifth heat dissipation element 11 is provided between the piezoelectric layer 4 and the backing block 5, and the piezoelectric layer is The heat concentrated in the middle part is quickly transferred to the backing block and the heat dissipation element in the backing block through the fifth heat dissipation element 11 to increase the heat conduction area, improve the heat conduction efficiency, and further improve the heat dissipation effect.
  • This embodiment provides an ultrasonic probe, and a sixth heat dissipation element 12 is added to the above embodiment.
  • the sixth heat radiating element 12 is attached to at least one surface of the backing block 5 except the upper surface.
  • the sixth heat dissipation element 12 is attached to the lower surface 52 of the backing block 5; as shown in FIG. 10, the sixth heat dissipation element 12 is attached to the first side surface 53 and the second of the backing block 5.
  • Side surface 54 as shown in FIG. 11, the sixth heat dissipation element 12 is attached to the lower surface 52, the first side surface 53, and the second side surface 54 of the backing block 5.
  • the sixth heat dissipation element 12 The lower surface 52, the first side surface 53, the second side surface 54 and the third side surface 55 of the backing block 5 are bonded together.
  • the sixth heat dissipation element 12 is a metal foil with a high thermal conductivity or a flexible graphite film with a high thermal conductivity, such as a flexible graphite film with a high thermal conductivity.
  • the thermal conductivity of the flexible graphite film with a high thermal conductivity is 1500 to 1800 W / m ⁇ K.
  • Thermal conductivity of metal foils such as super copper and aluminum.
  • the sixth heat radiating element 12 is attached to at least one surface of the backing block 5 except the upper surface.
  • the sixth heat-dissipating element 12 is attached to the surface of the backing block other than the upper surface. The position of the sixth heat-dissipating element has little effect on the acoustic performance of the probe.
  • a sixth heat dissipation element 12 is added to the backing block 5 on the basis of the above embodiment.
  • the sixth heat dissipation element 12 is attached to the other surface of the backing block except the upper surface, and the piezoelectric layer is laminated.
  • the heat concentrated in the middle 4 is quickly transferred to the side surface of the backing block 5 through the sixth heat dissipation element 12, which increases the heat conduction area, improves the heat conduction efficiency, and further improves the heat dissipation effect.
  • This embodiment provides an ultrasonic probe.
  • the ultrasonic probe of this embodiment is added with a heat dissipation block 13 on the basis of the above embodiment.
  • the heat dissipation block 13 is attached to at least one surface of the backing block 5 except the upper surface.
  • the heat sink 13 is attached to the lower surface 52 of the backing block 5; And the first side surface 53 and the second side surface 54; as shown in FIG. 15, the heat dissipation block 13 is attached to the other five surfaces of the backing block 5 except the upper surface.
  • the heat dissipation block 13 is a metal block or a graphite block having a high thermal conductivity and a large specific heat capacity, and the heat dissipation block 13 is preferably an aluminum block.
  • a heat dissipation block 13 is added to the backing block 5 on the basis of the above embodiment, and the heat dissipation block 13 is attached to the other five surfaces of the backing block 5 except the upper surface to further improve the heat dissipation effect
  • the heat dissipation block 13 can be connected to the heat dissipation and structure of the back end of the backing block 5 and then bonded together with other components of the ultrasound probe to make an ultrasound probe with good heat dissipation effect, which can increase the heat capacity of the heat dissipation mechanism and prevent the sudden change of temperature. heat radiation.
  • This embodiment provides an ultrasonic probe.
  • the ultrasonic probe of this embodiment is added with a seventh heat dissipation element 14 on the basis of the above embodiment.
  • the seventh heat dissipation element 14 is attached to at least one surface of the heat dissipation block 13.
  • the heat dissipation block 13 is attached to the lower surface 52 of the backing block 5, and the seventh heat dissipation element 14 is attached to the first side surface 131 and the second side surface 132 of the heat dissipation block 13.
  • the side of the heat dissipation block 13 on the lower surface 52 of the backing block and the backing block is the upper surface 131 of the heat dissipation block 13 and the side opposite to the backing block is the lower surface 132.
  • the first side surface 133 and the first side surface of the heat dissipation block 13 The two side surfaces 134 are shown in FIG. 10.
  • the heat dissipation block 13 is attached to the lower surface 52 and the first side surface 53 and the second side surface 54 of the backing block 5, and the seventh surface of each heat dissipation block is attached to the backing block. Thermal element.
  • the seventh heat dissipation element 14 is a metal foil with a high thermal conductivity or a flexible graphite film with a high thermal conductivity, preferably a flexible graphite film with a high thermal conductivity.
  • the thermal conductivity of the flexible graphite film with a high thermal conductivity is 1500 to 1800 W / m ⁇ K. Far more than the thermal conductivity of copper, aluminum and other metal foils.
  • a seventh heat dissipation element 14 is added on the basis of the above embodiment to further improve heat conduction efficiency.
  • the heat dissipation block 13 can be connected to the heat dissipation and structure of the back end of the backing block 5 to increase the heat capacity of the heat dissipation mechanism. To prevent sudden temperature changes from affecting the heat dissipation effect.

Abstract

一种超声探头(1),包括声窗(2)、匹配层(3)、压电层(4),背衬块(5)以及探头外壳(6)并且依次连接,背衬块(5)内部设有第一散热元件(7),第一散热元件(7)包括邻近或延伸到背衬块(5)的上表面(51)的第一端和延伸到背衬块(5)的下表面(52)或第一侧表面(53)的第二端,其中第一散热元件(7)从第一端到第二端的延伸方向与从背衬块(5)的上表面(51)到背衬块(5)的下表面(52)的背衬块厚度方向形成第一夹角。增大声波在背衬块(5)中的反射行程,有利于背衬块(5)更好的吸收压电层(4)辐射的无用声波,同时增大热传导面积,提高热传导效率,使得背衬块(5)与压电层(4)中部的热交换充分,使得超声探头(1)的散热效果好,能够保证超声探头(1)长时间使用过程中仍处于低温状态。

Description

一种超声探头 技术领域
本申请涉及医疗检测设备,具体涉及一种超声探头。
背景技术
超声探头1的工作原理是利用压电效应将超声整机的激励电脉冲信号转换为超声波信号进入患者体内,再将组织反射的超声回波信号转换为电信号,从而实现对组织的检测。在电-声信号的转换过程中,工作中的超声探头会产生大量的热量,导致探头温度的上升。一方面探头发热可能会影响到患者的人身安全,法规有明确规定探头与患者接触时的温度不能超过特定温度。另一方面若探头长期工作在较高的温度中,会加速探头的老化,缩短探头使用寿命。而从医学检测诊断的角度,却希望能够提高探头的检测深度。提高整机对探头的激励电压是增加探头检测深度的有效手段。不过,激励电压的提高会使探头产生更大的热量。因此,探头发热严重影响到了患者舒适度、探头寿命和性能。
目前一些超声探头的散热方案,是在超声探头的侧边或四周装配散热片试图将热量导向探头后端。由于超声探头发热的主因是压电材料的电声转换不完全所致,而压电材料又不是的热的良导体,导致热量主要积聚在探头阵元的中间位置。而探头侧边或四周的散热片无法与热源中心充分靠近,同时散热侧板的截面积太小,无法与探头阵元进行充分的热交换。探头发热问题仍然没有得到很好的解决。
另一些超声探头的散热方案,是沿着探头法线方向在背衬材料里规则插入一些散热片或散热片阵列。该方案虽然可以让散热片靠近探头的热源中心,但因为这些散热片厚了会对探头声学造成很大的影响,薄了的散热效果又有限。难于在探头性能和散热同时兼而有之。
发明内容
一个实施例中,提供了一种超声探头,其特征在于,包括声窗、匹配层、压电层,背衬块以及探头外壳,所述声窗、所述匹配层、所述压电层、所述背衬块以及所述探头外壳依次连接,所超声探头还包括第一散热元件,所述第一散热元件设于背衬块内,所述第一散热元件包括邻近或延伸到背衬块的上表面的第一端和延伸到背衬块的下表面或第一侧表 面的第二端,其中第一散热元件从第一端到所述第二端的延伸方向与从背衬块的上表面到背衬块的下表面的背衬块厚度方向形成第一夹角。
一个实施例中,所述背衬块内部设有多个所述第一散热元件。
一个实施例中,多个所述第一散热元件相互平行,并且沿垂直于所述背衬块厚度方向的第一方向排列。
一个实施例中,所述第一散热元件为金属箔或柔性石墨膜。
一个实施例中,所述第一散热元件的厚度为不大于500微米、或者所述第一散热元件的厚度为不大于25微米。
一个实施例中,所述第一散热元件的声阻抗与所述背衬块的声阻抗相等、或者所述第一散热元件的声阻抗与所述背衬块的声阻抗的差异小于1兆瑞利。
一个实施例中,所述背衬块内部还设有第二散热元件,所述第二散热元件包括邻近或延伸到所述背衬块的上表面的第一端和延伸到所述背衬块的下表面或第二侧表面的第二端,其中所述第二散热元件从第二散热元件的第一端到第二散热元件的第二端的延伸方向与所述背衬块厚度方向形成第二夹角。
一个实施例中,所述背衬块内部设有多个所述第二散热元件。
一个实施例中,多个所述第二散热元件相互平行,并且沿垂直于所述背衬块厚度方向的第一方向排列。
一个实施例中,所述第一散热元件与所述第二散热元件相互连接。
一个实施例中,所述第一散热元件的第一端与所述第二散热元件的第一端相互连接。
一个实施例中,所述第二散热元件为金属箔或柔性石墨膜。
一个实施例中,所述第二散热元件的厚度为不大于500微米、或者所述第二散热元件的厚度为不大于25微米。
一个实施例中,所述第二散热元件的声阻抗与所述背衬块的声阻抗相等、或者所述第二散热元件的声阻抗与所述背衬块的声阻抗的差异小于1兆瑞利。
一个实施例中,所述背衬块内部还设有第三散热元件,所述第三散热元件包括邻近或延伸到所述背衬块的上表面的第一端和延伸到所述背衬块的下表面或第三侧表面的第二端,其中所述第三散热元件从第三散热元件的第一端到第三散热元件的第二端的延伸方向与所述背衬块厚度方向形成第三夹角。
一个实施例中,所述背衬块内部设有多个所述第三散热元件。
一个实施例中,多个所述第三散热元件相互平行,并且沿垂直于所述背衬块厚度方向的第二方向排列。
一个实施例中,所述第三散热元件与所述第一散热元件和/或所述第二散热元件相互连接。
一个实施例中,所述第三散热元件的第一端与所述第一散热元件的第一端和/或所述第二散热元件的第一端相互连接。
一个实施例中,所述第三散热元件为金属箔或柔性石墨膜。
一个实施例中,所述第三散热元件的厚度为不大于500微米、或者所述第三散热元件的厚度为不大于25微米。
一个实施例中,所述第三散热元件的声阻抗与所述背衬块的声阻抗相等、或者所述第三散热元件的声阻抗与所述背衬块的声阻抗的差异小于1兆瑞利。
一个实施例中,所述背衬块内部还设有第四散热元件,所述第四散热元件包括邻近或延伸到所述背衬块的上表面的第一端和延伸到所述背衬块的下表面或第四侧表面的第二端,其中所述第四散热元件从第四散热元件的第一端到第四散热元件的第二端的延伸方向与所述背衬块厚度方向形成第四夹角。
一个实施例中,所述背衬块内部设有多个所述第四散热元件。
一个实施例中,多个所述第四散热元件相互平行,并且沿垂直于所述背衬块厚度方向的第二方向排列。
一个实施例中,所述第四散热元件与所述第一散热元件和/或所述第二散热元件和/或所述第三散热元件相互连接。
一个实施例中,所述第四散热元件的第一端与所述第一散热元件的第一端和/或所述第二散热元件的第一端和/或所述第三散热元件的第一端相互连接。
一个实施例中,所述第四散热元件为金属箔或柔性石墨膜。
一个实施例中,所述第四散热元件的厚度为不大于500微米、或者所述第四散热元件的厚度为不大于25微米。
一个实施例中,所述第四散热元件的声阻抗与所述背衬块的声阻抗相等、或者所述第四散热元件的声阻抗与所述背衬块的声阻抗的差异小于1兆瑞利。
一个实施例中,所述探头还包括第五散热元件,所述第五散热元件 贴合在所述背衬块的上表面。
一个实施例中,所述探头还包括第六散热元件,所述第六散热元件贴合在所述背衬块除上表面的至少其它一个表面。
一个实施例中,所述第五散热元件为金属箔或柔性石墨膜。
一个实施例中,所述第五散热元件的厚度为不大于500微米、或者所述第五散热元件的厚度为不大于25微米。
一个实施例中,所述第五散热元件的声阻抗与所述背衬块的声阻抗相等、或者所述第五散热元件的声阻抗与所述背衬块的声阻抗的差异小于1兆瑞利。
一个实施例中,所述第六散热元件为金属箔或柔性石墨膜。
一个实施例中,所述探头还包括散热块,所述散热块贴合在背衬块除上表面之外其它至少一个表面。
一个实施例中,所述散热块贴合在所述背衬块下表面。
一个实施例中,所述散热块为金属块。
一个实施例中,所述散热块为铝块。
一个实施例中,还包括第七散热元件,所述第七散热膜贴合在所述散热块的至少一个表面。
一个实施例中,所述第七散热元件为金属箔或柔性石墨膜。
依据上述实施例的超声探头,由于在背衬块内设有第一散热元件,第一散热元件包括邻近或延伸到所述背衬块的上表面的第一端和延伸到所述背衬块的下表面或第一侧表面的第二端,其中所述第一散热元件从所述第一端到所述第二端的延伸方向与从所述背衬块的上表面到所述背衬块的下表面的背衬块厚度方向形成第一夹角,增大声波在背衬块中的反射行程,有利于背衬块更好的吸收压电层辐射的无用声波,同时增大热传导面积,提高热传导效率,使得背衬块与压电层中部的热交换充分,使得本超声探头的散热效果好,能够保证超声探头长时间使用过程中仍处于低温状态。
附图说明
图1为一个实施例中超声探头的结构示意图;
图2为一个实施例中超声探头的结构示意图;
图3为一个实施例中超声探头的结构示意图;
图4为一个实施例中超声探头的结构示意图;
图5为一个实施例中超声探头的结构示意图;
图6为一个实施例中超声探头的结构示意图;
图7为一个实施例中超声探头的结构示意图;
图8为一个实施例中超声探头的结构示意图;
图9为一个实施例中超声探头的结构示意图;
图10为一个实施例中超声探头的结构示意图;
图11为一个实施例中超声探头的结构示意图;
图12为一个实施例中超声探头的结构示意图;
图13为一个实施例中超声探头的结构示意图;
图14为一个实施例中超声探头的结构示意图;
图15为一个实施例中超声探头的结构示意图;
图16为一个实施例中超声探头的结构示意图;
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
一个实施例中,提供了一种超声探头,如图1所示,本实施例的超声探头1主要包括有声窗2、匹配层3、压电层4、背衬块5和探头外壳 6(图中探头外壳6未显示),其中匹配层3连接到声窗2,压电层4连接到匹配层3,背衬块5连接到压电层4,其中声窗2可以设计为平面结构,也可以设计为具有聚焦超声波功能的结构,比如凸面结构,所述凸面结构的声窗可以称之为声透镜,背衬块5包括有上表面51、下表面52、第一侧表面53、第二侧表面54,第三侧表面55及第四侧表面56,其中将背衬块5与压电层4贴合的一面定义为上表面51,其它四个侧表面如图1所示,探头外壳6至少部分收容声窗2、匹配层3、压电层4和背衬块5。
如图2、3所示,背衬块5的内部设有第一散热元件7,第一散热元件7包括邻近或延伸到背衬块5上表面的第一端和延伸到背衬块5的下表面的第二端,其中第一散热元件7从第一端到第二端的延伸方向与从背衬块5的上表面到背衬块5下表面的背衬块5厚度方向形成第一夹角。
背衬块5上表面的第一端可以是靠近背衬块5的上表面,也可以是与上表面相接触,当第一散热元件7与上表面相接触时导热效果会更好。
从背衬块5上表面第一端到背衬块5下表面的第二端的延伸方向是第一端到第二端直线延伸方向。
从背衬块5上表面到背衬块5下表面的背衬块5厚度方向是垂直于背衬块5上表面和下表面的背衬块5厚度方向。
由背衬块5上表面第一端到下表面的第二端直线延伸方向与垂直于背衬块5上表面和下表面的背衬块5厚度方向所形成第一夹角是锐角。
一种实施例中,如图4所示,第一散热元件7可以分成两层排列,第一散热元件7的第二端也可以是延伸到背衬块5的第一侧表面的第二端,,有利于压电层中部的热量尽快的导出到背衬块的侧表面。
一种实施例中,背衬块5内部设有多个第一散热元件7,这些第一散热元件7的相对位置关系可以任意排列,可以相交,可以不相交。
一种实施例中,如图3所示,背衬块5内部设有多个如上所述的第一散热元件7,这些第一散热元件7相互平行,并且沿垂直于背衬块5厚度方向的第一方向排列,第一方向为从第一侧表面至第二侧表面垂直方向。
第一散热元件7为高导热系数的金属箔或高导热系数的柔性石墨膜,例如高导热系数的柔性石墨膜,高导热系数的柔性石墨膜的导热系数为1500~1800W/m·K,远超铜、铝等金属箔的导热系数。第一散热元件的厚度可为不大于500微米。更进一步地,一个实施例中,第一散热 膜的厚度可以为不大于25微米。
第一散热元件7的声阻抗可以与背衬块5的声阻抗相等或者相近,例如,第一散热元件7的声阻抗可以与背衬块5的声阻抗相同或者二者差异小于1兆瑞利。这样,可以减小第一散热元件对探头声学性能的影响。
本实施例提供了一种超声探头,包括声窗2、匹配层3、压电层4,背衬块5以及探头外壳6并且依次连接,背衬块5内部设有第一散热元件7,第一散热元件7包括邻近或延伸到背衬块5上表面的第一端和延伸到背衬块5的下表面的第二端,其中第一散热元件7从第一端到第二端的延伸方向与从背衬块5的上表面到背衬块5下表面的背衬块5厚度方向形成第一夹角,增大声波在背衬块5中的反射行程,有利于背衬块5更好的吸收压电层辐射的无用声波,同时增大热传导面积,提高热传导效率,使得背衬块5与压电层4中部的热交换充分,能够及时将热量快速导入到探头的外围或者后端,使得本超声探头的散热效果好,能够保证超声探头长时间使用过程中仍处于低温状态。
一个实施例中,提供了一种超声探头,本实施例超声探头是在上述实施例的基础上增加了第二散热元件8。
如图2、3所示,背衬块5的内部增设第二散热元件8,第二散热元件8包括邻近或延伸到背衬块5上表面的第一端和延伸到背衬块5的下表面的第二端,其中第二散热元件从第一端到第二端的延伸方向与从背衬块5的上表面到背衬块5下表面的背衬块5厚度方向形成第二夹角。
背衬块5上表面的第一端可以是靠近背衬块5的上表面,也可以是与上表面相接触,当第一散热元件7与上表面相接触时导热效果会更好。
从背衬块5上表面第一端到背衬块5下表面的第二端的延伸方向是第一端到第二端直线延伸方向。
从背衬块5上表面到背衬块5下表面的背衬块5厚度方向是垂直于背衬块5上表面和下表面的背衬块5厚度方向。
由背衬块5上表面第一端到下表面的第二端直线延伸方向与垂直于背衬块5上表面和下表面的背衬块5厚度方向所形成第二夹角是锐角。
一个实施例中,如图4所示,第二散热元8的第二端也可以设置为延伸到背衬块5的第二侧表面的第二端。
一个实施例中,背衬块5内部还设有多个如上所述的第二散热元件8,这些第二散热元件8的相对位置关系可以任意排列,可以相交,也可 以不相交。
一个实施例中,如图3所示,背衬块5内部还设有多个如上所述的第二散热元件8,这些第二散热元件8相互平行,并且沿垂直于背衬块5厚度方向的第一方向排列,第一方向是从第一侧表面到第二侧表面方向。
一个实施例中,背衬块5内部的第一散热元件7和第二散热元8件相互连接。可以是第一散热元件7第一端与第二散热元件8第一端相互连接,也可以第一散热元件两端中间部分与第二散热元件两端中间部分相互连接,也可以第一散热元件7第一端与第二散热元件8两端中间部分相互连接,也可以第一散热元件7两端中间部分与第二散热元件8第一端相互连接。
一个实施例中,如图3所示,背衬块5内部的第一散热元件7第一端与所述第二散热元件8的第一端互相连接。
第二散热元件8为高导热系数的金属箔或高导热系数的柔性石墨膜,例如高导热系数的柔性石墨膜,高导热系数的柔性石墨膜的导热系数为1500~1800W/m·K,远超铜、铝等金属箔的导热系数。第二散热元件8的厚度可为不大于500微米。更进一步地,一个实施例中,第二散热元件8的厚度可以为不大于25微米。
第二散热元件8的声阻抗可以与背衬块5的声阻抗相等或者相近,例如,第二散热元件8的声阻抗可以与背衬块5的声阻抗相同或者二者差异小于1兆瑞利。这样,可以减小第二散热元件对探头声学性能的影响。
本实施例提供了一种超声探头,在上述实施例的基础上背衬块5内部增设有第二散热元件8,第一散热元件7与第二散热元件8同时使用将会进一步增大声波在背衬块5中的反射行程,有利于背衬块5更好的吸收压电层辐射的无用声波,同时进一步增大热传导面积,使得背衬块5与压电层4中部的热交换充分,能够及时将热量快速导入到背衬块5的外围或者后端,使得本超声探头的散热效果好,能够保证超声探头长时间使用过程中仍处于低温状态。
一个实施例中,提供了一种超声探头,本实施例超声探头是在上述实施例的基础上增加了第三散热元件9。
如图2、3所示,背衬块5的内部还设有第三散热元件9,第三散热元件9包括邻近或延伸到背衬块5上表面的第一端和延伸到背衬块5的下表面的第二端,其中第三散热元件9从第一端到第二端的延伸方向与 从背衬块5的上表面到背衬块5下表面的背衬块5厚度方向形成第三夹角。
背衬块5上表面的第一端可以是靠近背衬块5的上表面,也可以是与上表面相接触,当第一散热元件与上表面相接触时导热效率会更高。
从背衬块5上表面第一端到背衬块5下表面的第二端的延伸方向指的是第一端到第二端直线延伸方向。
从背衬块5上表面到背衬块5下表面的背衬块5厚度方向指的是从背衬块5上表面到下表面沿背衬块5厚度的垂直方向。
由背衬块5上表面第一端到下表面的第二端直线延伸方向与背衬块5上表面到下表面沿背衬块5厚度的垂直方向所形成第三夹角是锐角。
一个实施例中,第三散热元件9的第二端也可以设置为延伸到背衬块5的第三侧表面的第二端。
一个实施例中,背衬块5内部还设有多个如上所述的第三散热元件9,这些第三散热元件9的相互位置关系可以任意排列,可以相交,可以不相交。
一个实施例中,如图3所示,背衬块5内部还设有多个如上所述的第三散热元件9,这些第三散热元件相互平行,并且沿垂直于背衬块5厚度方向的第二方向排列,第二方向为从第三侧表面到第四侧表面方向。
一个实施例中,背衬块5内部的第三散热元件9和第一散热元件7相互连接,可以是背衬块5内部第三散热元件9与第二散热元件8相互连接,可以是背衬块5内部第三散热元件9与第一散热元件7和第二散热元件8同时连接。
一个实施例中,背衬块5内部的第三散热元件9的第一端可以和第一散热元件7的第一端相互连接,背衬块5内部第三散热元件9的第一端也可以与第二散热元件8的第一端相互连接,背衬块5内部第三散热元件9的第一端也可以与第一散热元件7的第一端和第二散热元件8的第一端同时连接。
第三散热元件9为高导热系数的金属箔或高导热系数的柔性石墨膜,例如高导热系数的柔性石墨膜,高导热系数的柔性石墨膜的导热系数为1500~1800W/m·K,远超铜、铝等金属箔的导热系数。第三散热元件9的厚度可为不大于500微米。更进一步地,一个实施例中,第三散热元件8的厚度可以为不大于25微米。
第三散热元件9的声阻抗可以与背衬块5的声阻抗相等或者相近, 例如,第三散热元件9的声阻抗可以与背衬块5的声阻抗相同或者二者差异小于1兆瑞利。这样,可以减小第三散热元件对探头声学性能的影响。
本实施例提供了一种超声探头,在上述实施例的基础上背衬块5内部增设有第三散热元件9,第一散热元件7与第二散热元件8以及第三散热元件9的同时使用将会进一步增大声波在背衬块5中的反射行程,有利于背衬块5更好的吸收压电层辐射的无用声波,同时进一步增大热传导面积,使得背衬块5与压电层4中部的热交换充分,能够及时将热量快速导入到背衬块5的外围或者后端,使得本超声探头的散热效果好,能够保证超声探头长时间使用过程中仍处于低温状态。
一个实施例中,提供了一种超声探头,本实施例超声探头是在上述实施例的基础上增加了第四散热元件10。
如图2、3背衬块5的内部还设有第四散热元件,第四散热元件10包括邻近或延伸到背衬块5上表面的第一端和延伸到背衬块5的下表面的第二端,其中第四散热元件10从第一端到第二端的延伸方向与从背衬块5的上表面到背衬块5下表面的背衬块5厚度方向形成第四夹角。
背衬块5上表面的第一端可以是靠近背衬块5的上表面,也可以是与上表面相接触,当第一散热元件7与上表面相接触时导热效率会更高。
从背衬块5上表面第一端到背衬块5下表面的第二端的延伸方向指的是第一端到第二端直线延伸方向。
从背衬块5上表面到背衬块5下表面的背衬块5厚度方向指的是从背衬块5上表面到下表面沿背衬块5厚度的垂直方向。
由背衬块5上表面第一端到下表面的第二端直线延伸方向与背衬块5上表面到下表面沿背衬块5厚度的垂直方向所形成第四夹角是锐角。
一个实施例中,第四散热元件10的第二端也可以设置为延伸到背衬块5的第四侧表面的第二端。
一个实施例中,背衬块5内部还设有多个如上所述的第四散热元件10,这些第四散热元件10的相互位置关系可以任意排列,可以相交,可以不相交。
一个实施例中,如图3所示,背衬块5内部还设有多个如上所述的第四散热元件10,这些第四散热元件10相互平行,并且沿垂直于背衬块5厚度方向的第二方向排列。
一个实施例中,背衬块5内部的第四散热元件10和第一散热元件7、 第二散热元件8、第三散热元件9中任一散热元件相互连接,可以是第四散热元件10与第一散热元件7、第二散热元件8、第三散热元件9中任意两个相互连接,可以是第四散热元件10与第一散热元件7、第二散热元件8以及第三散热元件9同时连接。
一种实施例中,背衬块5内部的第四散热元件10的第一端和第一散热元件7的第一端、第二散热元件8的第一端、第三散热元件9的第一端中任一散热元件相互连接,也可以是第四散热元件10的第一端与第一散热元件7的第一端、第二散热元件8的第一端、第三散热元件9的第一端中任意两个相互连接,还可以是第四散热元件10的第一端与第一散热元件7的第一端、第二散热元件8的第一端以及第三散热元件9的第一端同时连接。如图3所示,第四散热元件的第一端和第三散热元的第一端连接。
第四散热元件10为高导热系数的金属箔或高导热系数的柔性石墨膜,例如高导热系数的柔性石墨膜,高导热系数的柔性石墨膜的导热系数为1500~1800W/m·K,远超铜、铝等金属箔的导热系数。第四散热元件10的厚度可为不大于500微米。更进一步地,一个实施例中,第四散热元件10的厚度可以为不大于25微米。
第四散热元件10的声阻抗可以与背衬块5的声阻抗相等或者相近,例如,第四散热元件10的声阻抗可以与背衬块5的声阻抗相同或者二者差异小于1兆瑞利。这样,可以减小第四散热元件10对探头声学性能的影响。
本实施例提供了一种超声探头,在上述实施例的基础上背衬块5内部增设有第四散热元件10,第一散热元件7、第二散热元件8、第三散热元件9以及第四散热元件10的同时使用将会进一步增大声波在背衬块5中的反射行程,有利于背衬块5更好的吸收压电层辐射的无用声波,同时进一步增大热传导面积,使得背衬块5与压电层中部的热交换充分,能够及时将热量快速导入到背衬块5的外围或者后端,使得本超声探头的散热效果好,能够保证超声探头长时间使用过程中仍处于低温状态。
本实施例提供了一种超声探头,本实施例超声探头在上述实施例的基础上增加了第五散热元件11。
如图5所示,第五散热元件11贴合在背衬块5的上表面,第五散热元件11设在压电层4和背衬块5之间。
第五散热元件11为高导热系数的金属箔或高导热系数的柔性石墨 膜,例如高导热系数的柔性石墨膜,高导热系数的柔性石墨膜的导热系数为1500~1800W/m·K,远超铜、铝等金属箔的导热系数。第五散热元件11的厚度可为不大于500微米。更进一步地,一个实施例中,第五散热元件11的厚度可以为不大于25微米。
第五散热元件11的声阻抗可以与背衬块5的声阻抗相等或者相近,例如,第五散热元件11的声阻抗可以与背衬块5的声阻抗相同或者二者差异小于1兆瑞利。这样,可以减小第五散热元件11对探头声学性能的影响。
本实施例的超声探头,在上述实施例的基础上在背衬块5增设有第五散热元件11,第五散热元件11设在压电层4和背衬块5之间,将压电层4中部集中的热量通过第五散热元件11快速传递到背衬块及背衬块中的散热元件,增大热传导面积,提高热传导效率,进一步提高散热效果。
本实施例提供了一种超声探头,在上述实施例的基础上增加了第六散热元件12。
第六散热元件12贴合在背衬块5除上表面之外的其它至少一个表面。如图6所示,第六散热元件12贴合在背衬块5的下表面52;如图10所示,第六散热元件12贴合在背衬块5的第一侧表面53和第二侧表面54;如图11所示,第六散热元件12贴合在背衬块5的下表面52、第一侧表面53和第二侧表面54;如图12所示,第六散热元件12贴合在背衬块5的下表面52、第一侧表面53、第二侧表面54以及第三侧表面55。
第六散热元件12为高导热系数的金属箔或高导热系数的柔性石墨膜,例如高导热系数的柔性石墨膜,高导热系数的柔性石墨膜的导热系数为1500~1800W/m·K,远超铜、铝等金属箔的导热系数。
第六散热元件12贴合在背衬块5除上表面之外的至少其它一个表面。第六散热元件12贴合在背衬块除上表面的其它表面上,第六散热元件贴合位置对探头声学性能影响不大。
本实施例的超声探头,在上述实施例的基础上在背衬块5增设有第六散热元件12,第六散热元件12贴合在背衬块除上表面的其它表面上,将压电层4中部集中的热量通过第六散热元件12快速传递到背衬块5的侧表面,增大热传导面积,提高热传导效率,进一步提高散热效果。
本实施例提供了一种超声探头,本实施例超声探头在上述实施例的 基础上在增加了散热块13。
散热块13贴合在背衬块5除上表面之外其它至少一个表面。
如图6、7、8、9所示,散热块13贴合在背衬块5的下表面52上;如图13、14所示,散热块13贴合在背衬块5的下表面52及第一侧表面53和第二侧表面54;如图15所示,散热块13贴合在背衬块5除上表面的其它五个表面。
散热块13为高导热系数和较大比热容的金属块或石墨块,散热块13优选为铝块。
本实施例提供的超声探头,在上述实施例的基础上在背衬块5上增加散热块13,散热块13贴合在背衬块5除上表面的其它五个表面,进一步提高了散热效果,散热块13可与背衬块5后端的散热及构连接,然后与超声探头的其它组件贴合在一起制成具有良好散热效果的超声探头,可增加散热机构的热容,防止温度突变影响散热效果。
本实施例提供了一种超声探头,本实施例超声探头在上述实施例的基础上增加了第七散热元件14。
第七散热元件14贴合在散热块13的至少一个表面。
如图10、11所示,散热块13贴合在背衬块5的下表面52,第七散热元件14贴合在散热块13的第一侧表面131和第二侧表面132,其中贴合背衬块下表面52的散热块13与背衬块贴合的一面为散热块13的上表面131,相对背衬块一面为下表面132,所述散热块13的第一侧表面133和第二侧表面134如图10所示。
如图16所示,散热块13贴合在背衬块5的下表面52以及第一侧表面53和第二侧表面54,在各散热块相对背衬块的侧表面都贴合有第七散热元件。
第七散热元件14为高导热系数的金属箔或高导热系数的柔性石墨膜,优选为高导热系数的柔性石墨膜,高导热系数的柔性石墨膜的导热系数为1500~1800W/m·K,远超铜、铝等金属箔的导热系数。
本实施例提供的超声探头,在上述实施例基础上增加第七散热元件14,进一步提高了热传导效率,散热块13可与背衬块5后端的散热及构连接,可增加散热机构的热容,防止温度突变影响散热效果。

Claims (34)

  1. 一种超声探头,其特征在于,包括:
    声窗;
    匹配层,所述匹配层连接到所述声窗;
    压电层,所述压电层连接到所述匹配层;
    背衬块,所述背衬块包括上表面、下表面、第一侧表面、第二侧表面、第三侧表面和第四侧表面,所述背衬块的上表面连接到所述压电层;
    探头外壳,所述探头外壳至少部分收容所述声窗、所述匹配层、所述压电层和背衬块;
    其中,所述背衬块内部设有第一散热元件,所述第一散热元件包括邻近或延伸到所述背衬块的上表面的第一端和延伸到所述背衬块的下表面或第一侧表面的第二端,其中所述第一散热元件从所述第一端到所述第二端的延伸方向与从所述背衬块的上表面到所述背衬块的下表面的背衬块厚度方向形成第一夹角。
  2. 如权利要求1所述的超声探头,其特征在于,所述背衬块内部设有多个所述第一散热元件。
  3. 如权利要求2所述的超声探头,其特征在于,多个所述第一散热元件相互平行,并且沿垂直于所述背衬块厚度方向的第一方向排列。
  4. 如权利要求1至3中任意一项所述的超声探头,其特征在于,所述第一散热元件为金属箔或柔性石墨膜。
  5. 如权利要求1至3中任意一项所述的超声探头,其特征在于:所述第一散热元件的厚度为不大于500微米、或者所述第一散热元件的厚度为不大于25微米。
  6. 如权利要求1至3中任意一项所述的超声探头,其特征在于:所述第一散热元件的声阻抗与所述背衬块的声阻抗相等、或者所述第一散热元件的声阻抗与所述背衬块的声阻抗的差异小于1兆瑞利。
  7. 如权利要求1至6中任意一项所述的超声探头,其特征在于:所述背衬块内部还设有第二散热元件,所述第二散热元件包括邻近或延伸到所述背衬块的上表面的第一端和延伸到所述背衬块的下表面或第二侧表面的第二端,其中所述第二散热元件从第二散热元件的第一端到第二散热元件的第二端的延伸方向与所述背衬块厚度方向形成第二夹角。
  8. 如权利要求7所述的超声探头,其特征在于,所述背衬块内部设有多个所述第二散热元件。
  9. 如权利要求8所述的超声探头,其特征在于,多个所述第二散热元件相互平行,并且沿垂直于所述背衬块厚度方向的第一方向排列。
  10. 如权利要求7至9中任意一项所述的超声探头,其特征在于:所述第一散热元件与所述第二散热元件相互连接。
  11. 如权利要求10中任意一项所述的超声探头,其特征在于:所述第一散热元件的第一端与所述第二散热元件的第一端相互连接。
  12. 如权利要求7至11中任意一项所述的超声探头,其特征在于,所述第二散热元件为金属箔或柔性石墨膜。
  13. 如权利要求7至11中任意一项所述的超声探头,其特征在于:所述第二散热元件的厚度为不大于500微米、或者所述第二散热元件的厚度为不大于25微米。
  14. 如权利要求7至11中任意一项所述的超声探头,其特征在于:所述第二散热元件的声阻抗与所述背衬块的声阻抗相等、或者所述第二散热元件的声阻抗与所述背衬块的声阻抗的差异小于1兆瑞利。
  15. 如权利要求1至14中任意一项所述的超声探头,其特征在于:所述背衬块内部还设有第三散热元件,所述第三散热元件包括邻近或延伸到所述背衬块的上表面的第一端和延伸到所述背衬块的下表面或第三侧表面的第二端,其中所述第三散热元件从第三散热元件的第一端到第三散热元件的第二端的延伸方向与所述背衬块厚度方向形成第三夹角。
  16. 如权利要求15所述的超声探头,其特征在于,所述背衬块内部设有多个所述第三散热元件。
  17. 如权利要求16所述的超声探头,其特征在于,多个所述第三散热元件相互平行,并且沿垂直于所述背衬块厚度方向的第二方向排列。
  18. 如权利要求15至17中任意一项所述的超声探头,其特征在于:所述第三散热元件与所述第一散热元件和/或所述第二散热元件相互连接。
  19. 如权利要求18中任意一项所述的超声探头,其特征在于:所述第三散热元件的第一端与所述第一散热元件的第一端和/或所述第二散热元件的第一端相互连接。
  20. 如权利要求15至19中任意一项所述的超声探头,其特征在于,所述第三散热元件为金属箔或柔性石墨膜。
  21. 如权利要求15至19中任意一项所述的超声探头,其特征在于:所述第三散热元件的厚度为不大于500微米、或者所述第三散热元件的 厚度为不大于25微米。
  22. 如权利要求15至19中任意一项所述的超声探头,其特征在于:所述第三散热元件的声阻抗与所述背衬块的声阻抗相等、或者所述第三散热元件的声阻抗与所述背衬块的声阻抗的差异小于1兆瑞利。
  23. 如权利要求1至22中任意一项所述的超声探头,其特征在于:所述背衬块内部还设有第四散热元件,所述第四散热元件包括邻近或延伸到所述背衬块的上表面的第一端和延伸到所述背衬块的下表面或第四侧表面的第二端,其中所述第四散热元件从第四散热元件的第一端到第四散热元件的第二端的延伸方向与所述背衬块厚度方向形成第四夹角。
  24. 如权利要求23所述的超声探头,其特征在于,所述背衬块内部设有多个所述第四散热元件。
  25. 如权利要求24所述的超声探头,其特征在于,多个所述第四散热元件相互平行,并且沿垂直于所述背衬块厚度方向的第二方向排列。
  26. 如权利要求23至25中任意一项所述的超声探头,其特征在于:所述第四散热元件与所述第一散热元件和/或所述第二散热元件和/或所述第三散热元件相互连接。
  27. 如权利要求26中任意一项所述的超声探头,其特征在于:所述第四散热元件的第一端与所述第一散热元件的第一端和/或所述第二散热元件的第一端和/或所述第三散热元件的第一端相互连接。
  28. 如权利要求23至27中任意一项所述的超声探头,其特征在于,所述第四散热元件为金属箔或柔性石墨膜。
  29. 如权利要求23至27中任意一项所述的超声探头,其特征在于:所述第四散热元件的厚度为不大于500微米、或者所述第四散热元件的厚度为不大于25微米。
  30. 如权利要求23至27中任意一项所述的超声探头,其特征在于:所述第四散热元件的声阻抗与所述背衬块的声阻抗相等、或者所述第四散热元件的声阻抗与所述背衬块的声阻抗的差异小于1兆瑞利。
  31. 如权利要求1至30任一所述的超声探头,其特征在于,所述探头还包括第五散热元件,所述第五散热元件贴合在所述背衬块的上表面。
  32. 如权利要求1至31任一所述的超声探头,其特征在于,所述探头还包括第六散热元件,所述第六散热元件贴合在所述背衬块除上表面的至少其它一个表面。
  33. 如权利要求1至32任意一项所述的超声探头,其特征在于,所 述探头还包括散热块,所述散热块贴合在背衬块除上表面之外其它至少一个表面。
  34. 如权利要求33所述的超声探头,其特征在于,还包括第七散热元件,所述第七散热膜贴合在所述散热块的至少一个表面。
PCT/CN2018/109171 2018-09-30 2018-09-30 一种超声探头 WO2020062270A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/109171 WO2020062270A1 (zh) 2018-09-30 2018-09-30 一种超声探头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/109171 WO2020062270A1 (zh) 2018-09-30 2018-09-30 一种超声探头

Publications (1)

Publication Number Publication Date
WO2020062270A1 true WO2020062270A1 (zh) 2020-04-02

Family

ID=69950178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109171 WO2020062270A1 (zh) 2018-09-30 2018-09-30 一种超声探头

Country Status (1)

Country Link
WO (1) WO2020062270A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11642105B2 (en) 2018-06-12 2023-05-09 Edan Instruments, Inc. Ultrasonic transducer, ultrasonic probe, and ultrasonic detection apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1859871A (zh) * 2003-09-30 2006-11-08 松下电器产业株式会社 超声波探头
CN101444430A (zh) * 2007-09-03 2009-06-03 富士胶片株式会社 背衬材料、超声波探头、内窥镜、诊断设备和内窥设备
CN102098965A (zh) * 2008-07-22 2011-06-15 人体扫描有限公司 具有热沉的超声波探头
CN103300889A (zh) * 2013-05-17 2013-09-18 深圳市理邦精密仪器股份有限公司 一种超声阵列探头信号采集元件及其探头与其制备方法
EP2878269A1 (en) * 2013-10-29 2015-06-03 Samsung Medison Co., Ltd. Ultrasonic probe and ultrasonic imaging apparatus having the same
CN104720847A (zh) * 2013-12-20 2015-06-24 三星麦迪森株式会社 超声波探头和制造该超声波探头的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1859871A (zh) * 2003-09-30 2006-11-08 松下电器产业株式会社 超声波探头
CN101444430A (zh) * 2007-09-03 2009-06-03 富士胶片株式会社 背衬材料、超声波探头、内窥镜、诊断设备和内窥设备
CN102098965A (zh) * 2008-07-22 2011-06-15 人体扫描有限公司 具有热沉的超声波探头
CN103300889A (zh) * 2013-05-17 2013-09-18 深圳市理邦精密仪器股份有限公司 一种超声阵列探头信号采集元件及其探头与其制备方法
EP2878269A1 (en) * 2013-10-29 2015-06-03 Samsung Medison Co., Ltd. Ultrasonic probe and ultrasonic imaging apparatus having the same
CN104720847A (zh) * 2013-12-20 2015-06-24 三星麦迪森株式会社 超声波探头和制造该超声波探头的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11642105B2 (en) 2018-06-12 2023-05-09 Edan Instruments, Inc. Ultrasonic transducer, ultrasonic probe, and ultrasonic detection apparatus

Similar Documents

Publication Publication Date Title
JP6068782B2 (ja) 超音波トランスジューサ用の熱伝達及び音響整合層
JP6548201B2 (ja) 超音波変換器のための熱移動および音響整合層
KR20150006519A (ko) 초음파 프로브 및 그 제조방법
US8084923B2 (en) Diagnostic ultrasound transducer
JP4843395B2 (ja) 超音波探触子
US20110114303A1 (en) Ultrasonic probe having heat sink
US8378557B2 (en) Thermal transfer and acoustic matching layers for ultrasound transducer
WO2006038632A1 (ja) 超音波プローブ
JP7057849B2 (ja) 超音波トランスデューサの熱管理のためのシステム、方法、及び装置
JP2023502230A (ja) 超音波トランスデューサ、バッキング構造体及び関連する方法
WO2020062270A1 (zh) 一种超声探头
CN209474649U (zh) 一种超声探头及面阵超声探头
CN108451544B (zh) 超声成像诊断阵列探头和其制造方法及其设备
JP4643227B2 (ja) 超音波プローブ及び超音波診断装置
CN210170072U (zh) 一种超声探头
JP2017099504A (ja) 超音波プローブ及び超音波画像表示装置
WO2020062272A1 (zh) 超声探头及面阵超声探头
KR20160084255A (ko) 초음파 프로브 및 그 제조방법
WO2020062274A1 (zh) 一种超声探头
WO2020062258A1 (zh) 一种超声探头
CN110960258A (zh) 一种超声探头
CN210170071U (zh) 超声探头及面阵超声探头
WO2020062259A1 (zh) 一种超声探头及面阵超声探头
CN110960253A (zh) 一种超声探头及面阵超声探头
CN210170073U (zh) 一种超声探头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/09/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18934776

Country of ref document: EP

Kind code of ref document: A1