EP2305876B1 - Sorptions-Trockner mit Zeolith - Google Patents

Sorptions-Trockner mit Zeolith Download PDF

Info

Publication number
EP2305876B1
EP2305876B1 EP10013149.9A EP10013149A EP2305876B1 EP 2305876 B1 EP2305876 B1 EP 2305876B1 EP 10013149 A EP10013149 A EP 10013149A EP 2305876 B1 EP2305876 B1 EP 2305876B1
Authority
EP
European Patent Office
Prior art keywords
sorption medium
sorption
sorbent
air
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10013149.9A
Other languages
English (en)
French (fr)
Other versions
EP2305876A1 (de
Inventor
Peter Dr. Maier-Laxhuber
Ralf Dr. Schmidt
Reiner Dipl.-Ing. Wörz
Andreas Becky
Gert Richter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeo Tech Zeolith Technologie GmbH
Original Assignee
Zeo Tech Zeolith Technologie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeo Tech Zeolith Technologie GmbH filed Critical Zeo Tech Zeolith Technologie GmbH
Publication of EP2305876A1 publication Critical patent/EP2305876A1/de
Application granted granted Critical
Publication of EP2305876B1 publication Critical patent/EP2305876B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/24Condensing arrangements
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/48Drying arrangements
    • A47L15/481Drying arrangements by using water absorbent materials, e.g. Zeolith

Definitions

  • the invention relates to methods and apparatus with a sorption dryer, which receives a sorbent containing moisture from an air stream and the sorbent in a subsequent desorption process dries (regenerated). To dry the sorbent, its temperature must be greatly increased. The escaping water vapor is used to heat the objects to be dried.
  • Dryers are among the most energy-intensive technical devices. For household tumble dryers, even the best condensing dryers achieve only energy efficiency class B. Additional energy recovery measures are necessary for the division into energy efficiency class A.
  • the DE 10 2005 062 941 . DE 10 2005 062 942 . EP0777998A1 and DE 10 2005 062 943 propose for this purpose the use of closed adsorption apparatus, which raise a part of the heat of condensation to a higher temperature level. Part of the heat required for evaporation heat can be saved.
  • the closed-working adsorption apparatus are technically complex and require an internal heat exchange in order to be able to be used economically.
  • a dishwasher with a sorption dryer which uses a zeolite filling for drying wetting residues on the dishes.
  • the zeolite filling is regenerated by means of hot air.
  • the air flow through the zeolite filling must be homogeneous and must not lead to local overheating neither within the zeolite filling nor in the dishware container.
  • the heat input is to match the zeolite filling and can not be adapted to the respective heat demand of the dishwasher become.
  • the circulating hot air is too hot (> 110 ° C) to be introduced into the crockery container. The heating and thus further drying of the zeolite filling must then be adjusted.
  • an additional heating in the useful volume is necessary.
  • the heat that is released via this additional heating to the wash water, is not available for the sorption process and thus can not be used for energy conservation.
  • the additional heating is a separately controlled component.
  • the object of the invention is to reduce the energy consumption, the drying time and the cost of materials in sorption dryers.
  • the sorbent is not heated in hot air flow but only over heating surfaces, so purely static.
  • the desorbed from the sorbent, hot steam flows independently in the overlying useful volume and heats the wash water and the objects to be dried (dishes, laundry, etc.).
  • the temperature of the water vapor is about 100 ° C. The vapor can condense out of the usable volume on all objects that are colder and heat them up.
  • the sorbent itself can be heated to significantly higher temperatures during static heating than is possible with heating by circulating hot air.
  • the exiting from the sorbent hot air is namely, and especially at low sorbent bed height, quickly hotter than allow the objects to be heated in the connected useful volume.
  • higher sorbent temperatures the sorbent filling used can be used much more efficiently.
  • the sorbent can be optimally desorbed because it can be heated unimpaired by the prevailing air outlet temperature.
  • the stored in the zeolite filling warmth, sensitive Heat and heat of loading can be fully buffered for the later drying step.
  • the heating of the objects to be heated are not sufficient by the desorbed water vapor, at the end of the desorption and the fan can be put into operation , which converts heat from the sorbent into the useful volume.
  • the same air circulation is used for this purpose, which dries the objects (dishes, laundry, etc.) during the drying phase.
  • a separate additional heating can be omitted, which must be provided in the prior art only to further heat the objects in the useful volume to the required final temperature.
  • Bypass circuits for air circuits are known. Simple in construction and at the same time cost are flaps that divide the air flows in the desired manner via an adjusting.
  • the adjusting member is seated in the region of the air inlet into the useful volume, while the flap is arranged in terms of flow before the sorbent filling and flow at low air temperatures less partial air on the sorbent and the second partial air flow passes this past.
  • the adjusting member may advantageously contain a bimetal element which adjusts the flap depending on the temperature. Useful are also control interventions, which for example clock the runtime of the fan or reduce its speed.
  • Sorbents are exposed periodically to extreme hydrothermal decomposition conditions.
  • type Y zeolite is used. This is particularly stable in addition to some naturally occurring zeolite types under extreme hydrothermal conditions.
  • the zeolite types X and A used so far are far less suitable. They are slowly turning into inactive compounds.
  • Zeolites still have a considerable water vapor sorption capacity even at relatively high temperatures (above 100 ° C.) and are therefore also particularly suitable for the use according to the invention.
  • the maximum temperature in the sorbent should be limited to max. 600 ° C are limited. Desorbing the entire amount of water, however, already far lower temperatures are sufficient.
  • Zeolite is a crystalline mineral that contains silicon and aluminum oxides in a framework structure.
  • the very regular framework structure contains cavities in which water molecules can be sorbed with release of heat. Within the framework structure, the water molecules are exposed to strong field forces whose strength depends on the amount of water already contained in the framework structure and the temperature of the zeolite.
  • a Y zeolite should be heated according to the invention to 300 ° C to be dried at a partial pressure of water vapor of 1000 hPa to a residual moisture content of less than 7% by mass. Only at temperatures above 400 ° C, the zeolite would be almost dry (about 2% by mass). At 200 ° C and a water vapor pressure of 1000 hPa, the moisture content is still about 16% by mass.
  • the sorbent After drying the sorbent, it is to be shielded from moisture storage. Storage in moist air would lead to an independent absorption of water vapor from the air. However, as long as the temperature of the zeolite filling remains at a high temperature, absorption of moisture is ruled out.
  • the amount of sorbent used in each case is to be dimensioned for the drying process and arranged so that only a minimal pressure drop within the sorbent must be overcome for the moist air flow flowing through. At the same time, however, the sorbent must provide the inflowing air flow with sufficient surface area for attaching the water vapor molecules.
  • the sorbent remains hot after desorption until the drying process, ie during the washing process in dishwashers. Only at the beginning of the drying process is air circulated through the objects to be dried (laundry, dishes, etc.) and through the still hot sorbent by means of the blower. The dry sorbent absorbs moisture from the circulating air and releases heat to the dried circulating air. The heated circulating air, in turn, transfers the heat to the objects, which in turn evaporate water from the surface and transfer it into the circulating air flow. At the beginning of this drying phase, the sorbent according to the invention is still very hot. In order to prevent an excessively high air inlet temperature in the useful volume here, too, the bypass circuit described above can be used.
  • the entire heat used for the desorption of the water vapor from the sorbent is thus used for the later cleaning and drying process.
  • the usual, additional energy to heat the objects before the actual drying process can be omitted.
  • the recirculating air stream can transport dirt particles from dirty objects (eg dishes) into the sorbent during desorption.
  • dirty objects eg dishes
  • no dirt particles from the useful volume can be shipped to the sorbent, since during desorption no air flow through the sorbent takes place. Dirt particles thus do not even reach the sorbent filling where they can clog the flow channels or coke at high temperatures and give off unwanted odors.
  • any dirt particles from the useful volume are already removed.
  • a purely static desorption of the sorbent over heating surfaces is more energy-efficient than regeneration via a stream of hot air.
  • a purely static desorption of the sorbent over heating surfaces is more energy-efficient than regeneration via a stream of hot air.
  • no heat is lost through the outflowing hot air.
  • the blower 5 conveys recirculated air via the electric heater 6 and through the sorbent 4.
  • the circulating air heated by the heater 6 heats the sorbent 4 and desorbs the water vapor adsorbed in the preceding drying process.
  • the desorbed steam is transported by the outgoing from the sorbent 4 circulating air to the dishes 2 and condensed there.
  • the heat of condensation heats the dishes 2 as well as the circulating air.
  • the hot air flowing out in this process phase circulating air reduces the efficiency of the sorption dryer 3, since the discharged amount of heat can not be used for desorption of water vapor.
  • the circulating air flowing into the useful volume 1 becomes too hot.
  • the regeneration process must then be stopped and the dishes 2 and the wash water via a conventional heating (not shown) to the necessary washing temperature of about 55 ° C further heated.
  • the energy used for this purpose can not be used to regenerate the sorbent 4.
  • Non-regenerated sorbent 4 can then absorb no water vapor.
  • the dishes 2 are still dirty.
  • the circulating air dirt particles and odors can be entered into the sorbent 4 and optionally clog channels.
  • the high temperatures prevailing on the heating surface and in the sorbent 4 can also chemically convert the introduced particles into undesirable substances.
  • the heated dishes 2 are washed as usual and then dried.
  • the blower 5 goes into operation and promotes moist circulating air through the sorbent 4 partially desorbed from the preceding desorption. This adsorbs the water vapor and transfers the heat of adsorption and the still present sensible heat to the circulating air flow.
  • the recirculating air stream heats the still damp crockery again. 2.
  • the steam is in turn transferred from the recirculating air stream into the sorbent amount.
  • an additional heating must be put into operation.
  • Fig. 2 shows a sorption dryer 3 according to the invention under the effective volume 1 of a dishwasher.
  • the sorbent 4 contains Na-Y zeolite in granular form. It is heated statically in this embodiment by the electrically heated tubular heater 7.
  • the fan 5 does not have to be in operation for this purpose. Thus, no dirt particles can be transferred from the useful volume 1 into the sorbent in this operating phase.
  • the sorbent 4 releases water vapor when heated. This flows independently through the sorbent area 4 a in front of it to the dishes 2 and condenses there. An unwanted heat leakage through a forced-circulating air flow is omitted.
  • the sorbent area 4a is primarily not heated by the tubular heater 7, but by the outflowing water vapor and the ultimately moving along air flow, which absorbs heat from the sorbent 4 and a few millimeters can deliver it again.
  • a thermostat 12 embedded in the sorbent 4 prevents overheating of the sorbent 4. If the thermostat 12 responds and the dishes or wash water are not yet heated to the required wash temperature (eg 55 ° C), the fan 5 can go into operation and a Transfer part of the heat stored in the sorbent into the useful volume 1. The heating via the tubular heater 7 can be continued during this time or be interrupted. After heating the washing water to the required washing temperature (eg 55 ° C), the cleaning process runs until the subsequent drying process begins.
  • the sorbent 4, 4a remains hot during this time. Consequently, it can not adsorb any water vapor which may flow back from the useful volume 1. Only at the beginning of the drying phase, the fan 5 is put into operation.
  • the recirculated air stream 8 conveyed by this removes heat from the sorbent 4 and conveys it via the inlet opening 13 into the useful volume 1.
  • the recirculating air stream 8 heats the crockery-wetted crockery 2.
  • the water thereby evaporates and the water vapor is directed by the recirculating air stream 8 in the sorbent 4.
  • the sorbent 4 adsorbs the water vapor and releases the released heat of adsorption to the circulating air stream 8.
  • Fig. 3 shows an electrically heatable tubular plate radiator in a sectional view.
  • steel plates 10 are mounted and connected by hot dip galvanizing good heat conductivity with the tubular heater 9.
  • Y zeolite is filled in as ball granules 11. It can be fixed by a wire mesh against rolling out.
  • the bed height of the sorbent should typically be 2 to 4 cm. The flow resistance can be kept significantly lower due to the significantly shorter flow path compared to a hot air regenerated bed.
  • Fig. 4 shows a further, according to the invention sorption dryer 3, which is equipped with a bypass circuit 19 for the recirculating air stream 20.
  • Analogous to Fig. 2 contains the sorbent dryer 3, a sorbent 4 of zeolite granules, in the lower part of a Fig. 3 known tubular plate radiator can be heated. Also, this radiator is located in the lower part of the sorbent (4).
  • a spiral 14 made of bimetal, which can act on a flap 15. At higher air temperatures in the region of the spiral 14, the flap 15 opens a flow channel 18 for a partial air flow 16.
  • the inlet temperature in the useful volume (1) can be limited to any desired maximum temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Drying Of Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Drying Of Solid Materials (AREA)

Description

  • Die Erfindung betrifft Verfahren und Vorrichtungen mit einem Sorptions-Trockner, der ein Sorptionsmittel enthaltend aus einem Luftstrom Feuchtigkeit aufnimmt und das Sorptionsmittel in einem darauffolgenden Desorptionsprozess trocknet (regeneriert). Um das Sorptionsmittel zu trocknen muss dessen Temperatur stark erhöht werden. Der dabei entweichende Wasserdampf wird zur Erwärmung der zu trocknenden Gegenstände genutzt.
  • Trockner zählen zu den energieintensivsten technischen Vorrichtungen. Bei Haushalts-Wäschetrocknern erreichen selbst die besten Kondensationstrockner nur die Energieeffizienzklasse B. Für die Einteilung in die Energieeffizienzklasse A sind zusätzliche Energierückgewinnungsmaßnahmen notwendig.
  • Die DE 10 2005 062 941 , DE 10 2005 062 942 , EP0777998A1 und DE 10 2005 062 943 schlagen zu diesem Zweck den Einsatz von geschlossen arbeitenden Adsorptionsapparaten vor, die einen Teil der Kondensationswärme auf ein höheres Temperaturniveau anheben. Ein Teil der zur Verdunstung notwendigen Heizwärme kann dadurch eingespart werden. Die geschlossen arbeitenden Adsorptionsapparate sind technisch aufwändig und benötigen einen inneren Wärmeaustausch um ökonomisch eingesetzt werden zu können.
  • In der DE 3626887 wird eine Entfeuchtungseinrichtung für einen Wäschetrockner vorgestellt, die einen offenen Adsorptionsprozess enthält. Zum Trocknen des Sorptionsmittels muss heiße Luft durch die Schüttung geleitet werden. Die aus dem Adsorptionsmittel ausströmende, Luft trägt neben dem desorbierten Wasserdampf auch einen erheblichen Anteil der durch die heiße Luft eingebrachten Wärme aus dem Sorptionsmittel mit aus. Eine Energieeinsparung erscheint damit nicht möglich.
  • In der Gebrauchsmusterschrift 20 2008 011 159 wird eine Geschirrspülmaschine mit einem Sorptions-Trockner beschrieben, die zur Trocknung von Benetzungsrückständen auf dem Geschirr eine Zeolithfüllung nutzt. Die Zeolithfüllung wird dabei mittels Heißluft regeneriert. Die Luftführung durch die Zeolithfüllung muss homogen erfolgen und darf zu keinen lokalen Überhitzungen weder innerhalb der Zeolithfüllung noch im Geschirrbehälter führen. Die Wärmezufuhr ist auf die Zeolithfüllung abzustimmen und kann nicht auf den jeweiligen Wärmebedarf des Geschirrspülers angepasst werden. Gegen Ende der Regenerationsphase ist die zirkulierende Heißluft zu heiß (>110°C), um in den Geschirrbehälter eingeleitet werden zu können. Die Beheizung und damit eine weitere Trocknung der Zeolithfüllung muss dann eingestellt werden. Um das Waschwasser und das Geschirr weiter auf die notwendige Waschtemperatur aufzuheizen, ist eine Zusatzheizung im Nutzvolumen notwendig. Die Wärme, die über diese Zusatzheizung an das Waschwasser abgegeben wird, steht nicht für den Sorptionsprozess zur Verfügung und kann somit nicht für eine Energieeinsparung genutzt werden. Die Zusatzheizung ist eine separat anzusteuernde Komponente.
  • Aufgabe der Erfindung ist es, bei Sorptions-Trocknern den Energieverbrauch, die Trocknungszeit und den Materialaufwand zu reduzieren.
  • Gelöst wird diese Aufgabe durch die kennzeichnenden Merkmale der Ansprüche 1 und 7. Die abhängigen Ansprüche zeigen weitere erfinderische Verfahrensschritte und Vorrichtungen auf.
  • Erfindungsgemäß wird das Sorptionsmittel nicht im Heißluftstrom sondern nur über Heizflächen, also rein statisch aufgeheizt. Der aus dem Sorptionsmittel desorbierte, heiße Wasserdampf strömt dabei selbstständig in das darüber liegende Nutzvolumen ab und erwärmt dort das Waschwasser und die zu trocknenden Gegenstände (Geschirr, Wäsche usw.). Die Temperatur des Wasserdampfes liegt bei ca. 100 °C. Der Dampf kann innerhalb des Nutzvolumens an allen Gegenständen, die kälter sind, auskondensieren und diese erwärmen.
  • Das Sorptionsmittel selbst kann bei statischer Erwärmung auf wesentlich höhere Temperaturen erwärmt werden, als es bei einer Erwärmung durch zirkulierende Heißluft möglich ist. Die aus dem Sorptionsmittel austretende Heißluft ist nämlich, und ganz besonders bei geringer Sorptionsmittel-Schütthöhe, schnell heißer als es die zu erwärmenden Gegenstände im angeschlossenen Nutzvolumen erlauben. Bei erfindungsgemäß höheren Sorptionsmittel-Temperaturen kann die eingesetzte Sorptionsmittelfüllung weitaus effizienter genutzt werden.
  • Das Sorptionsmittel kann optimal desorbiert werden, da es unbeeinträchtigt von der herrschenden Luftaustrittstemperatur erhitzt werden kann. Die in der Zeolithfüllung gespeicherten Wärmen, sensible Wärme und Beladungswärme, können vollumfänglich für den späteren Trocknungsschritt gepuffert werden.
  • Sollte trotzdem in Einzelfällen (z.B. sehr massereiches Geschirr, sehr kaltes Wasser usw.) die Aufheizung der zu erwärmenden Gegenstände (Geschirr, Waschwasser, Wäsche usw.) durch den desorbierten Wasserdampf nicht ausreichen, kann gegen Ende der Desorption auch das Gebläse in Betrieb genommen werden, das aus dem Sorptionsmittel Wärme in das Nutzvolumen überführt. Vorteilhaft wird hierfür derselbe Luftkreislauf benutzt, der während der Trocknungsphase die Gegenstände (Geschirr, Wäsche usw.) trocknet. Mit Hilfe dieser Verfahrensvariante kann eine separate Zusatzheizung entfallen, die beim Stand der Technik nur dazu vorgesehen werden muss, die Gegenstände im Nutzvolumen auf die erforderliche Endtemperatur weiter aufzuheizen.
  • Um die Einblastemperaturen in das Nutzvolumen nicht zu hoch werden zu lassen, kann über eine Bypass-Schaltung nur ein Teilluftstrom über das Sorptionsmittel gelenkt werden, während der verbleibende Hauptluftstrom durch die Bypass-Schaltung an dem heißen Sorptionsmittel vorbei gelenkt wird.
  • Bypass-Schaltungen für Luftkreisläufe sind bekannt. Einfach im Aufbau und zugleich kostengünstig sind Klappen, die über ein Verstellglied die Luftströme in gewünschter Weise aufteilen. Vorteilhaft sitzt dabei das Verstellglied im Bereich des Lufteintritts in das Nutzvolumen, während die Klappe strömungsmäßig vor der Sorptionsmittelfüllung angeordnet ist und bei zu hohen Lufttemperaturen weniger Teilluft über das Sorptionsmittel strömen lässt und den zweiten Teilluftstrom an diesem vorbei leitet. Das Verstellglied kann vorteilhaft ein Bimetall-Element enthalten, das temperaturabhängig die Klappe verstellt. Nützlich sind auch Steuerungseingriffe, die beispielsweiße die Laufzeit des Lüfters takten oder dessen Drehzahl reduzieren.
  • Besonders vorteilhaft kann es sein, die Beheizung des Sorptionsmittels im unteren Bereich der Sorptionsmittelfüllung anzuordnen. Desorbierter, heißer Wasserdampf steigt selbständig auf und strömt durch die vor bzw. über ihm liegenden Sorptionsmittelbereiche in das Nutzvolumen. Überhitzter Dampf kühlt sich dabei ab und kann die durchströmten, nicht direkt beheizten Bereiche weiter desorbieren.
  • Unter hohen Wasserdampfdrücken und gleichzeitig hohen Temperaturen sind nicht alle Sorptionsmittel stabil. Außer Zeolith kann kein
  • Sorptionsmittel periodisch extremen hydrothermalen Zersetzungsbedingungen ausgesetzt werden. Erfindungsgemäß wird Zeolith vom Typ Y verwendet. Dieser ist neben einigen natürlich vorkommenden Zeolithtypen unter extremen hydrothermalen Bedingungen besonders stabil. Die bisher zum Einsatz kommenden Zeolithtypen X und A sind weitaus weniger geeignet. Sie wandeln sich langsam in inaktive Verbindungen um.
  • Zeolithe haben auch bei relativ hohen Temperaturen (über 100° C) noch ein beträchtliches Wasserdampf-Sorptionsvermögen und eignen sich auch deshalb besonders für den erfindungsgemäßen Einsatz. Aus Stabilitätsgründen sollte die maximale Temperatur im Sorptionsmittel auf max. 600 °C begrenzt werden. Zum Desorbieren der gesamten Wassermenge genügen aber bereits weitaus niedrigere Temperaturen.
  • Zeolith ist ein kristallines Mineral, das in einer Gerüststruktur Silizium- und Aluminiumoxide enthält. Die sehr regelmäßige Gerüststruktur enthält Hohlräume, in welchen Wassermoleküle unter Wärmefreisetzung sorbiert werden können. Innerhalb der Gerüststruktur sind die Wassermoleküle starken Feldkräften ausgesetzt, deren Stärke von der bereits in der Gerüststruktur enthaltenen Wassermenge und der Temperatur des Zeolithen abhängt.
  • Wegen dieser starken Bindungskräfte gegenüber Wasser sollte ein Y-Zeolith erfindungsgemäß auf 300 °C erhitzt werden, um bei einem Wasserdampfpartialdruck Von 1000 hPa auf einen Restfeuchtegehalt von unter 7 Massen-% getrocknet zu werden. Erst bei Temperaturen von über 400 °C wäre der Zeolith nahezu trocken (ca. 2 Massen-%). Bei 200 °C und einem Wasserdampfdruck von 1000 hPa beträgt der Feuchtegehalt noch ca. 16 Massen-%.
  • Nach dem Trocknen des Sorptionsmittels ist es abgeschirmt von Feuchtigkeit zu lagern. Eine Lagerung an feuchter Luft würde zu einer selbständigen Wasserdampfaufnahme aus der Luft führen. Solange jedoch die Temperatur der Zeolithfüllung auf hoher Temperatur bleibt ist eine Aufnahme von Feuchtigkeit ausgeschlossen.
  • Die jeweils zum Einsatz kommende Sorptionsmittel-Menge ist für den Trocknungsprozess so zu dimensionieren und so anzuordnen, dass für den durchströmenden feuchten Luftstrom nur ein minimaler Druckabfall innerhalb des Sorptionsmittels überwunden werden muss. Zugleich muss aber das Sorptionsmittel dem zuströmenden Luftstrom ausreichend Oberfläche zur Anlagerung der Wasserdampfmoleküle bieten.
  • Um eine gleichmäßige Sorption innerhalb des Sorptionsmittels und gleichzeitig einen geringen Druckabfall zu gewährleisten, haben sich besonders Sorptionsmittel-Granulate bewährt. Granulatdurchmesser zwischen 2 und 6 mm zeigen für die erfindungsgemäßen Verfahren optimale Resultate.
  • Noch vorteilhafter sind formbeständige Zeolith-Formkörper, in die bereits die Strömungskanäle eingearbeitet sein können und deren Formgebung der gewünschten Heizflächen-Geometrie angepasst ist.
  • Von Vorteil ist es, wenn das Sorptionsmittel nach der Desorption bis zum Trocknungsprozess, also während des Waschprozesses bei Geschirrspülern, heiß bleibt. Erst mit Beginn des Trocknungsprozesses wird dann mittels des Gebläses Umluft über die zu trocknenden Gegenstände (Wäsche, Geschirr usw.) und durch das noch heiße Sorptionsmittel geführt. Das trockene Sorptionsmittel nimmt dabei Feuchte aus der Umluft auf und gibt Wärme an die getrocknete Umluft ab. Die erwärmte Umluft gibt die Wärme wiederum an die Gegenstände ab, bei denen dadurch Wasser von der Oberfläche verdampft und in den Umluftstrom übertragen wird. Zu Beginn dieser Trocknungsphase ist das Sorptionsmittel erfindungsgemäß noch sehr heiß. Um auch hier gegebenenfalls eine zu hohe Lufteintrittstemperatur in das Nutzvolumen zu verhindern, kann die oben beschriebene Bypass-Schaltung genutzt werden.
  • Auf die erfindungsgemäße Weise wird somit die gesamte für die Desorption des Wasserdampfes aus dem Sorptionsmittel aufgewandte Wärme für den späteren Reinigungs- und Trocknungsprozess genutzt. Der sonst übliche, zusätzliche Energieeinsatz zur Erwärmung der Gegenstände vor dem eigentlichen Trocknungsprozess kann entfallen. Mit entfallen kann somit auch die separate Zusatzheizung samt Regelung und Ansteuerung. Da die Trocknungsphase ohne zusätzliche Vorerwärmung des Geschirrs (Wäsche usw.) beginnen kann und zudem das Sorptionsmittel dank der höheren Desorptionstemperaturen besonders aufnahmefähig ist, ist die Trocknungszeit deutlich kürzer als beim Stand der Technik.
  • Bei heute üblichen Umluft-Trocknern kann der Umluftstrom während der Desorption Schmutzpartikel von schmutzigen Gegenständen (z.B. Geschirr) in das Sorptionsmittel verfrachten. Bei einer erfindungsgemäß rein statischen Beheizung des Sorptionsmittels können auch keine Schmutzpartikel aus dem Nutzvolumen in das Sorptionsmittel verfrachtet werden, da während der Desorption keine Luftströmung durch das Sorptionsmittel erfolgt. Schmutzpartikel gelangen somit erst gar nicht in die Sorptionsmittelfüllung wo sie die Strömungskanäle verstopfen können bzw. bei hohen Temperaturen verkoken und unerwünschte Gerüche abgeben würden. Beim anschließenden Trocknungsprozess, bei dem Umluft gefördert wird, sind eventuelle Schmutzpartikel aus dem Nutzvolumen bereits entfernt.
  • Eine rein statische Desorption des Sorptionsmittels über Heizflächen ist gegenüber der Regeneration über einen Heißluftstrom e-nergieeffizienter. Insbesondere bei strömungsgünstiger Bauweise mit dünnem Sorptionsmittelbett geht keine Wärme durch die abströmende Heißluft verloren.
  • Bei statischer Desorption und damit still stehendem Lüfter wird zudem Energie eingespart. Ein Gebläsestillstand von bis zu 40 Minuten kann gegenüber der bekannten Betriebsweise deutlich Stromkosten sparen.
  • Bei Haushalts-Wäschetrocknern mit üblichem Fassungsvermögen sind der Wäsche 2 bis 3 kg Feuchtigkeit zu entziehen. Da hierfür über 10 kg Sorptionsmittel notwendig wären, wird erfindungsgemäß vorgeschlagen, eine deutlich kleinere Sorptionsmittel-Menge einzusetzen und den Rest der Feuchtigkeit auf konventionelle Weise zu entfernen. Zumindest die im Sorptionsmittel adsorbierte Wassermasse kann bei tieferen Verdunstungstemperaturen aus der Wäsche schonender entfernt werden.
  • Obwohl die erfindungsgemäßen Vorteile überwiegend für den Anwendungsfall Geschirrtrockner beschrieben sind, gilt Analoges auch für einen Wäschetrockner. Neben der angestrebten höheren Energieeffizienz erreicht man mit dem erfindungsgemäßen Verfahren eine niedrigere Trocknungstemperatur, die wiederum für empfindliche Gewebe vorteilhaft ist. Damit einhergehend darf eine kürzere Trocknungszeit erwartet werden.
  • Die Zeichnung zeigt in:
    • Fig. 1 einen Geschirrtrockner mit einem Sorptionsmittel nach dem Stand der Technik;
    • Fig. 2 einen erfindungsgemäßen Geschirrtrockner mit einem statisch aufzuwärmenden Sorptionsmittel unterhalb des Nutzvolumens,
    • Fig. 3 einen elektrisch beheizbaren Rohrlamellen-Heizkörper in geschnittener Darstellung,
    • Fig. 4 einen Sorptions-Trockner mit einer Bypass-Schaltung.
    • Fig. 1 zeigt schematisch einen Geschirrspüler mit einem Nutzvolumen 1 in dem das zu waschende und anschließend zu trocknende Geschirr 2 in zwei Etagen gestapelt ist. In einem Sorptions-Trockner 3 befindet sich ein Sorptionsmittel 4, das mittels eines Gebläses 5 und einer elektrischen Heizung 6 desorbiert werden kann.
  • Zu Beginn des Reinigungsprozesses fördert das Gebläse 5 Umluft über die elektrische Heizung 6 und durch das Sorptionsmittel 4. Die von der Heizung 6 erhitzte Umluft erhitzt das Sorptionsmittel 4 und desorbiert den beim vorausgehenden Trocknungsprozess adsorbierten Wasserdampf. Der desorbierte Dampf wird von der aus dem Sorptionsmittel 4 abströmenden Umluft an das Geschirr 2 weitertransportiert und dort kondensiert. Die Kondensationswärme erwärmt das Geschirr 2 ebenso wie die Umluft. Die in dieser Prozessphase heiß ausströmende Umluft reduziert den Wirkungsgrad des Sorptions-Trockners 3, da die ausgetragene Wärmemenge nicht zur Desorption des Wasserdampfes eingesetzt werden kann. Bei fortschreitendem Regenerationsprozess wird die in das Nutzvolumen 1 einströmende Umluft zu heiß. Der Regenerationsprozess muss dann abgebrochen werden und das Geschirr 2 und das Waschwasser über eine konventionelle Heizung (nicht dargestellt) auf die notwendige Waschtemperatur von ca. 55 °C weiter erhitzt werden. Die hierfür eingesetzte Energie kann nicht dazu verwendet werden, das Sorptionsmittel 4 zu regenerieren. Nicht regeneriertes Sorptionsmittel 4 kann anschließend keinen Wasserdampf aufnehmen.
  • Zu Beginn des Regenerationsprozesses ist das Geschirr 2 noch schmutzig. Durch die Umluft können Schmutzpartikel und Gerüche in das Sorptionsmittel 4 eingetragen werden und gegebenenfalls Kanäle verstopfen. Die auf der Heizungsoberfläche und im Sorptionsmittel 4 herrschenden hohen Temperaturen können die eingetragenen Partikel zudem chemisch in unerwünschte Stoffe umwandeln.
  • Nach dem Desorptionsprozess wird das erwärmte Geschirr 2 wie üblich gewaschen und anschließend getrocknet. Beim Trocknungsschritt geht hierbei das Gebläse 5 in Betrieb und fördert feuchte Umluft durch das von der vorausgehenden Desorption teilweise desorbierte Sorptionsmittel 4. Dieses adsorbiert den Wasserdampf und gibt die Adsorptionswärme und die noch vorhandene fühlbare Wärme an den Umluftstrom weiter. Der Umluftstrom erwärmt damit wieder das noch feuchte Geschirr 2. An diesem noch anhaftendes Wasser verdampft und der Dampf wird wiederum vom Umluftstrom in die Sorptionsmittel-Menge überführt. Da für den Trocknungsprozess das Geschirr auf mindestens 40°C erwärmt werden muss, muss eine Zusatzheizung in Betrieb genommen werden.
  • Fig. 2 zeigt einen erfindungsgemäßen Sorptions-Trockner 3 unter dem Nutzvolumen 1 eines Geschirrspülers. Das Sorptionsmittel 4 enthält Na-Y Zeolith in Granulatform. Es wird in dieser Ausführung statisch durch den elektrisch beheizten Rohrheizkörper 7 erhitzt. Das Gebläse 5 muss hierfür nicht in Betrieb sein. Es können somit in dieser Betriebsphase keine Schmutzpartikel aus dem Nutzvolumen 1 in das Sorptionsmittel übertragen werden. Das Sorptionsmittel 4 gibt beim Erhitzen Wasserdampf ab. Dieser strömt selbstständig durch den vor ihm liegenden Sorptionsmittelbereich 4a zum Geschirr 2 und kondensiert dort. Ein unerwünschter Wärmeaustrag durch einen zwangsgeführten Umluftstrom unterbleibt. Der Sorptionsmittelbereich 4a wird primär nicht durch den Rohrheizkörper 7 erhitzt, sondern durch den abströmenden Wasserdampf und den letztendlich dabei mitbewegten Luftstrom, der aus dem Sorptionsmittel 4 Wärme aufnimmt und wenige Millimeter darüber wieder abgeben kann. Ein im Sorptionsmittel 4 eingebetteter Thermostat 12 verhindert ein Überhitzen des Sorptionsmittels 4. Falls der Thermostat 12 anspricht und das Geschirr bzw. das Waschwasser noch nicht auf der geforderten Waschtemperatur (z.B. 55°C) erwärmt sind, kann das Gebläse 5 in Betrieb gehen und einen Teil der im Sorptionsmittel gespeicherten Wärme in das Nutzvolumen 1 überführen. Die Beheizung über den Rohrheizkörper 7 kann währenddessen weitergeführt werden oder aber unterbrochen sein. Nach dem Aufheizen des Waschwassers auf die geforderte Waschtemperatur (z.B. 55 °C) läuft der Reinigungsprozess bis zum anschließend beginnenden Trocknungsprozess. Das Sorptionsmittel 4, 4a bleibt währenddessen heiß. Es kann folglich auch keinen eventuell aus dem Nutzvolumen 1 rückströmenden Wasserdampf adsorbieren. Erst zu Beginn der Trocknungsphase wird das Gebläse 5 in Betrieb genommen. Der von diesem geförderte Umluftstrom 8 entnimmt Wärme aus dem Sorptionsmittel 4 und fördert diese über die Eintrittsöffnung 13 in das Nutzvolumen 1. Hier erwärmt der Umluftstrom 8 das mit Wasser benetzte Geschirr 2. Das Wasser verdunstet dadurch und der Wasserdampf wird vom Umluftstrom 8 in das Sorptionsmittel 4 gelenkt. Das Sorptionsmittel 4 adsorbiert den Wasserdampf und gibt die dabei freigesetzte Adsorptionswärme an den Umluftstrom 8 weiter. Da erfindungsgemäß eine größere Wärmemenge im Sorptionsmittel 4 gespeichert ist und das Sorptionsmittel mehr Adsorptionswärme abgeben kann, muss keine Zusatzheizung vor dem Trocknungsprozess das Geschirr zusätzlich aufheizen, um auf die vorgesehene Starttemperatur zu gelangen. Der Trocknungsprozess kann vielmehr sofort beginnen und dementsprechend zu einer Verkürzung des gesamten Reinigungsprozesses beitragen.
  • Fig. 3 zeigt einen elektrisch beheizbaren Rohrlamellen-Heizkörper in geschnittener Darstellung. Auf einem U-förmig gebogenen Rohrheizkörper 9 sind Stahllamellen 10 aufgezogen und durch Feuerverzinkung gut wärmeleitend mit dem Rohrheizkörper 9 verbunden. Zwischen den Stahllamellen 10 ist Y-Zeolith als Kugelgranulat 11 eingefüllt. Es kann durch ein Drahtgitter gegen Herausrollen fixiert sein. Die Schütthöhe des Sorptionsmittels sollte typischerweise 2 bis 4 cm betragen. Der Strömungswiderstand kann auf Grund der deutlich kürzeren Durchströmungsstrecke gegenüber einer durch Heißluft regenerierten Schüttung deutlich niedriger gehalten werden.
  • Fig. 4 zeigt einen weiteren, erfindungsgemäßen Sorptions-Trockner 3, der mit einer Bypass-Schaltung 19 für den Umluftstrom 20 ausgestattet ist. Analog zu Fig. 2 enthält der Sorptions-Trockner 3 ein Sorptionsmittel 4 aus Zeolith-Granulat, das im unteren Bereich über einen aus Fig. 3 bekannten Rohrlamellen-Heizkörper beheizt werden kann. Auch dieser Heizkörper ist im unteren Bereich des Sorptionsmittels (4) angeordnet. Im Bereich der Eintrittsöffnung 13 zum nicht gezeichneten Nutzvolumen (1) befindet sich eine Spirale 14 aus Bimetall, die auf eine Klappe 15 einwirken kann. Bei höheren Lufttemperaturen im Bereich der Spirale 14 öffnet die Klappe 15 einen Strömungskanal 18 für einen Teilluftstrom 16. Bei geöffnetem Strömungskanal 18 wird nur ein kleinerer Teilluftstrom 17 durch das Sorptionsmittel 4, 4a gedrückt. Die Ausblastemperatur des wieder vereinten Umluftstromes 20 in das Nutzvolumen wird damit kleiner. Bei geeigneter Auslegung der Bypass-Schaltung 19 kann die Eintrittstemperatur in das Nutzvolumen (1) auf jede gewünschte Maximaltemperatur begrenzt werden.

Claims (10)

  1. Verfahren zum Regenerieren eines festen Sorptionsmittels (4), das innerhalb eines Sorptions-Trockners (3) untergebracht ist und aus einem Luftstrom (8) Feuchtigkeit aufgenommen hatte, der durch ein Nutzvolumen (1) zirkuliert wurde,
    dadurch gekennzeichnet, dass
    das Sorptionsmittel (4) in einem späteren Zeitraum innerhalb des Sorptions-Trockners (3) durch direkte, statische Wärmezufuhr und ohne erzwungene Luftbewegung auf über 250 °C erhitzt wird und dass der dabei aus dem Sorptionsmittel (4) desorbierte Wasserdampf in das darüber angeordnete Nutzvolumen (1) aufsteigt, dort kondensiert und seine Kondensationswärme innerhalb des Nutzvolumens (1) an darin befindliche Gegenstände (2) abgibt.
  2. Verfahren zum Regenerieren eines Sorptionsmittels (4) nach Anspruch 1,
    dadurch gekennzeichnet, dass
    das Sorptionsmittel (4) Zeolith vom Typ Y enthält.
  3. Verfahren zum Regenerieren eines Sorptionsmittels (4) nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Sorptionsmittel (4) durch direkten Kontakt mit heißen, elektrisch beheizten Heizflächen (7, 9, 10) soweit erhitzt wird, bis der Restwassergehalt innerhalb des Sorptionsmittels (4) auf weniger als 6 Massen-% abgesenkt ist.
  4. Verfahren zum Regenerieren eines Sorptionsmittels (4) nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der aus dem Sorptionsmittel (4) abströmende Wasserdampf weitere, in seiner Strömungsrichtung angeordnete Sorptionsmittelbereiche (4a) durchströmt und diese dabei erwärmt und desorbiert.
  5. Verfahren zum Regenerieren eines Sorptionsmittels (4) nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    gegen Ende der Regeneration erstmals ein Luftstrom (20) durch den Sorptions-Trockner (3) geführt wird, der aus dem Sorptionsmittel (4, 4a) Wärme aufnimmt und an Gegenstände im Nutzvolumen (1) überträgt bis deren Temperatur einen angestrebten Sollwert erreicht.
  6. Verfahren zum Regenerieren eines Sorptionsmittels (4) nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Austrittstemperatur des Luftstromes (20) aus dem Sorptions-Trockner (3) mittels einer Bypass-Schaltung (19) auf einen maximalen Wert begrenzt wird.
  7. Vorrichtung zur Durchführung eines der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die elektrische Heizfläche (7, 9, 10) im unteren Bereich des Sorptionsmittels (4) angeordnet ist und dass der abströmende Wasserdampf die darüber bzw. der Strömung nachfolgend angeordneten, nicht direkt beheizten Sorptionsmittelbereiche (4a) durchströmen kann.
  8. Vorrichtung zur Durchführung eines der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Sorptionsmittel (4) in einen Festkörper eingebunden ist, der mit geeigneten Strömungskanälen für die Luft- bzw. Dampfströmung versehen ist.
  9. Vorrichtung zur Durchführung eines der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Bypass-Schaltung (19) eine Bimetall-Spirale (14) enthält, die im Luftstrom (20) vor dem Eintritt in das Nutzvolumen (1) angeordnet ist und deren Wegänderung eine Luft-Klappe (15) verstellen kann.
  10. Vorrichtung zur Durchführung eines der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    ein Temperaturfühler (12) im Sorptionsmittel (4) angeordnet ist, der die maximale Temperatur des Sorptionsmittels (4) begrenzt.
EP10013149.9A 2009-10-02 2010-10-01 Sorptions-Trockner mit Zeolith Active EP2305876B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009048005A DE102009048005A1 (de) 2009-10-02 2009-10-02 Sorptions-Trockner mit Zeolith

Publications (2)

Publication Number Publication Date
EP2305876A1 EP2305876A1 (de) 2011-04-06
EP2305876B1 true EP2305876B1 (de) 2013-04-10

Family

ID=43515990

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10013149.9A Active EP2305876B1 (de) 2009-10-02 2010-10-01 Sorptions-Trockner mit Zeolith

Country Status (2)

Country Link
EP (1) EP2305876B1 (de)
DE (1) DE102009048005A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104856627A (zh) * 2015-05-19 2015-08-26 佛山市顺德区美的洗涤电器制造有限公司 洗碗机

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010029888A1 (de) * 2010-06-09 2011-12-15 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zum Trocknen eines Gutes und Hausgerät mit einer Adsorptionseinrichtung
DE102011000167A1 (de) * 2011-01-17 2012-07-19 Miele & Cie. Kg Haushaltgerät mit Sorptionstrocknung
PL2736655T3 (pl) 2011-07-27 2021-12-20 Dürr Systems Ag Kompaktowa instalacja lakiernicza
EP2736654B1 (de) 2011-07-27 2022-07-06 Dürr Systems AG Filteranlage und verfahren zum betrieb einer filteranlage
DE202011107555U1 (de) 2011-07-27 2012-10-29 Dürr Systems GmbH Filteranlage
WO2013050541A1 (en) * 2011-10-05 2013-04-11 Arcelik Anonim Sirketi A dishwasher comprising a dehumidifying unit
DE102012000013A1 (de) * 2012-01-02 2013-07-04 Zeo-Tech Zeolith-Technologie Gmbh Sorber mit Sorptionsmittel zur Luftentfeuchtung
JP6403414B2 (ja) * 2014-04-16 2018-10-10 東芝ライフスタイル株式会社 衣類乾燥機
DE102018129408A1 (de) 2018-11-22 2020-05-28 Dbk David + Baader Gmbh Vorrichtung zum Klimatisieren eines Fluids und Verfahren zum Betreiben einer derartigen Vorrichtung
CN110787627B (zh) * 2019-11-21 2024-02-13 宁波德业日用电器科技有限公司 一种空气清净机的加热再生式脱臭方法及装置
WO2022184228A1 (en) * 2021-03-01 2022-09-09 Vestel Elektronik Sanayi Ve Ticaret A.S. Dishwashing machine and method of operating a dishwashing machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3626887A1 (de) 1986-08-08 1988-02-11 Miele & Cie Waeschebehandlungs- und spuelgeraet, herd o. dgl., mit einer entfeuchtungseinrichtung
DE69525350T2 (de) * 1995-12-09 2002-08-14 Whirlpool Co Verfahren zur Energieeinsparung in Haushaltsgeräten und Gerät mit verbessertem Energiewirkungsgrad
DE10356786A1 (de) * 2003-12-04 2005-07-07 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zum Trocknen in einem Haushaltgerät
DE102005062942A1 (de) 2005-12-29 2007-07-05 BSH Bosch und Siemens Hausgeräte GmbH Hausgerät umfassend einen Adsorptionsapparat, und Verfahren zum Betrieb eines solchen Hausgerätes
DE102005062943A1 (de) 2005-12-29 2007-07-05 BSH Bosch und Siemens Hausgeräte GmbH Hausgerät umfassend einen Adsorptionsapparat
DE102005062941A1 (de) 2005-12-29 2007-07-05 BSH Bosch und Siemens Hausgeräte GmbH Hausgerät mit einem Adsorptionsapparat und einer Heizvorrichtung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104856627A (zh) * 2015-05-19 2015-08-26 佛山市顺德区美的洗涤电器制造有限公司 洗碗机

Also Published As

Publication number Publication date
EP2305876A1 (de) 2011-04-06
DE102009048005A1 (de) 2011-04-07

Similar Documents

Publication Publication Date Title
EP2305876B1 (de) Sorptions-Trockner mit Zeolith
EP1737334B1 (de) Spülverfahren einer geschirrspülmaschine, sowie geschirrspülmaschine
EP1968424B1 (de) Hausgerät umfassend einen adsorptionsapparat, und verfahren zum betrieb eines solchen hausgerätes
DE102008032228B4 (de) Verfahren zum Regenerieren eines Sorptionsmittels
EP1667569B1 (de) Geschirrspülmaschine
EP2465406B1 (de) Sorptions-Trockner für Geschirrspüler
EP2301409B1 (de) Geschirrspüler mit Sorptionsmedium und Frischluftzufuhr
WO2005053503A1 (de) Geschirrspülmaschine
WO2014082825A1 (de) Wäschetrockner und verfahren zum betreiben eines wäschetrockners
DE10353774A1 (de) Geschirrspülmaschine
EP2286708B1 (de) Geschirrspüler mit Sorptionsmedium und zumindest teilweise getrennten Kondensations- und Trockenkreisläufen
WO2009007289A1 (de) Waschtrockner
EP2609981B1 (de) Verfahren und adsorber zur luftentfeuchtung
DE102009029149A1 (de) Geschirrspülmaschine sowie zugehöriges Steuerverfahren
DE10334792A1 (de) Geschirrspülmaschine
EP1651091B1 (de) Geschirrspülmaschine mit einem wärmerohr
WO2007074106A1 (de) Hausgerät umfassend einen adsorptionsapparat
DE102012013322A1 (de) Geschirrspülmaschine
EP2394730B1 (de) Verfahren zum Trocknen eines Gutes und Hausgerät mit einer Adsorptionseinrichtung
EP3091117B1 (de) Waschtrockner und verfahren zum betreiben eines waschtrockners
EP1651092B1 (de) Spülverfahren in einer geschirrspülmaschine
DE102010043467B4 (de) Geschirrspülmaschine, insbesondere Haushaltsgeschirrspülmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RICHTER, GERT

Inventor name: BECKY, ANDREAS

Inventor name: SCHMIDT, RALF, DR.

Inventor name: MAIER-LAXHUBER, PETER, DR.

Inventor name: WOERZ, REINER, DIPL.-ING.

17P Request for examination filed

Effective date: 20110428

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: D06F 58/00 20060101AFI20121115BHEP

Ipc: F25B 17/08 20060101ALI20121115BHEP

Ipc: A47L 15/48 20060101ALI20121115BHEP

Ipc: D06F 58/24 20060101ALI20121115BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 606097

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010002893

Country of ref document: DE

Effective date: 20130606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130410

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130812

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130721

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130711

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130810

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

26N No opposition filed

Effective date: 20140113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010002893

Country of ref document: DE

Effective date: 20140113

BERE Be: lapsed

Owner name: ZEO-TECH ZEOLITH TECHNOLOGIE G.M.B.H.

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010002893

Country of ref document: DE

Owner name: HOBART GMBH, DE

Free format text: FORMER OWNER: ZEO-TECH ZEOLITH-TECHNOLOGIE GMBH, 85716 UNTERSCHLEISSHEIM, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010002893

Country of ref document: DE

Representative=s name: MEISSNER, BOLTE & PARTNER GBR, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010002893

Country of ref document: DE

Owner name: HOBART GMBH, DE

Free format text: FORMER OWNER: ZEO-TECH GMBH, 85716 UNTERSCHLEISSHEIM, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010002893

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010002893

Country of ref document: DE

Representative=s name: MEISSNER, BOLTE & PARTNER GBR, DE

Effective date: 20150618

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010002893

Country of ref document: DE

Owner name: HOBART GMBH, DE

Free format text: FORMER OWNER: ZEO-TECH ZEOLITH-TECHNOLOGIE GMBH, 85716 UNTERSCHLEISSHEIM, DE

Effective date: 20150528

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010002893

Country of ref document: DE

Owner name: HOBART GMBH, DE

Free format text: FORMER OWNER: ZEO-TECH GMBH, 85716 UNTERSCHLEISSHEIM, DE

Effective date: 20150618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101001

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131001

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20151119 AND 20151125

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: HOBART, DE

Effective date: 20160105

REG Reference to a national code

Ref country code: FR

Ref legal event code: RM

Effective date: 20160411

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 606097

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151001

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20201026

Year of fee payment: 11

Ref country code: GB

Payment date: 20201027

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231027

Year of fee payment: 14