EP2299336B1 - Flat hairspring for a clock balance wheel and balance wheel -hairspring assembly - Google Patents
Flat hairspring for a clock balance wheel and balance wheel -hairspring assembly Download PDFInfo
- Publication number
- EP2299336B1 EP2299336B1 EP10405172.7A EP10405172A EP2299336B1 EP 2299336 B1 EP2299336 B1 EP 2299336B1 EP 10405172 A EP10405172 A EP 10405172A EP 2299336 B1 EP2299336 B1 EP 2299336B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- balance spring
- spiral
- hairspring
- balance
- pitch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007423 decrease Effects 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 11
- 238000011161 development Methods 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 230000003247 decreasing effect Effects 0.000 claims description 4
- 239000002178 crystalline material Substances 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 11
- 208000002740 Muscle Rigidity Diseases 0.000 description 9
- 230000005484 gravity Effects 0.000 description 8
- 230000003121 nonmonotonic effect Effects 0.000 description 5
- 230000010355 oscillation Effects 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/04—Oscillators acting by spring tension
- G04B17/06—Oscillators with hairsprings, e.g. balance
- G04B17/066—Manufacture of the spiral spring
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/20—Compensation of mechanisms for stabilising frequency
Definitions
- the present invention relates to a flat spring balance spring comprising a wound blade, shaped to ensure a substantially concentric development of the hairspring and a virtually zero force exerted on the pivots and the embedding point, during the rotation less than 360 ° of its inner end relative to its outer end in both directions, from its rest position.
- This invention also relates to a sprung balance assembly.
- the non-concentric development of a hairspring associated with a watch pendulum during the oscillation of the balance-hairspring assembly causes a decentering of the center of gravity of the hairspring, which is translated, according to the positions occupied by the watch, by a delay or advance effect, that is to say by a decrease or an increase in the natural frequency of the balance spring system.
- This decentering of the center of gravity of the spiral also causes a lateral pressure of the pivots of the balance on the bearings.
- the Breguet hairspring involves the formation of a terminal curve in a plane parallel to that of the flat hairspring, which requires the formation of two inverted bends to form an inclined connecting segment between the hairspring and the parallel terminal curve.
- a Breguet hairspring can be made of different ferromagnetic or paramagnetic alloys, especially for self-compensating hairsprings.
- a fragile material such as monocrystalline silicon or polycrystalline silicon. Indeed, it is not possible to form the two inverted bends intended to allow the formation of the terminal Breguet curve because of the brittle nature of such a fragile material, and it is thus necessary to resort to a technique to form solidarity structures on several levels.
- the CH 327 796 proposes to modify the cross-section of the spiral blade to give it superior rigidity, over an arc of up to 180 °, either in the center or the outside. This modification is carried out by folding, adding material (galvanic deposition, welding), or pickling (rolling, etching).
- the US 3,550,928 recommends to stiffen the terminal curve of the spiral by a non-rectangular section obtained by plastic deformation of a part of the last turn.
- the EP 1 473 604 relates to a planar hairspring having on its outer turn a stiffened portion arranged to make the deformations of the turns substantially concentric.
- the BE 526689 proposes to vary the section of the spiral blade on one or more parts of its length, or to modify the profile or to add to one or more parts of the blade any body intended to modify the flexibility of these parts. No further details are given as to these variations or modifications.
- the EP 1431844 refers to a spiral whose section varies from one to the other of its ends. However, little precision is provided as to the mode of variation of the spiral section. The only information is that given in Figure 11 and in the part of the description associated with it.
- the definition given on page 4, lines 55-57 speaks of "variable parallelepipedal section", "in this case a rectangular section E towards the center evolving to a square section E 'on the outside”. This definition, which is the only information on the type of variation, suggests a monotonic variation. Indeed, the two sections EE 'between which the section evolves seem to imply a continuous and monotonous variation of the section.
- All the aforementioned spirals aim to improve the isochronism of the balance-balance oscillator for the different positions of the watch.
- the simulation study of these different spirals shows that it is difficult to reduce significantly below a maximum difference between the different positions of 4 s / d for typical operating amplitudes, ie amplitudes greater than 200 °, while keeping sufficient security to prevent the turns from touching during the contraction and expansion of the hairspring , or following a shock suffered by the wristwatch.
- the average slope of the gait curves as a function of the amplitude of the balance-balance oscillator should be as small as possible, ideally slightly negative so as to compensate for the isochronism defects generated by a flight exhaust. Swiss anchor. It will also be more difficult to obtain good performance for small spirals, for example below 2.5mm distance between the axis of rotation and the outer end.
- the object of the present invention is to provide a solution that makes it possible to be closer to these objectives than the spirals of the state of the art.
- this invention firstly relates to a flat spring balance spring comprising a wound blade and shaped to ensure a substantially concentric development of the hairspring and a virtually zero force exerted on the pivots and the mounting point during rotation less than 360 ° from its inner end relative to its external end in both directions from its rest position, as defined by claim 1.
- Another subject of the invention is a balance spring and spiral assembly. according to claim 11.
- substantially concentric development and “almost zero force” are intended to encompass spirals capable of achieving at least performance equal to that of Breguet curve spirals, its aim being to achieve at least such performance, but with a flat hairspring.
- the hairspring according to the invention is equally applicable to ductile material spirals to fragile materials such as silicon.
- the performance of the balance-balance oscillator in particular the difference between the positions, can vary substantially with the torque developed by the spiral and with its bulk, that is to say the distance between the point of contact. internal attachment of the spiral to the ferrule and the external attachment point.
- the number of turns also has a significant influence.
- the spirals given by way of examples in the figures all have the same nominal torque (same inertia of the balanced balance spring to obtain an oscillation frequency of 4 Hz), and the same size.
- the spirals are made of Si.
- the distance to the axis of rotation is 0.6mm for the inner end and 2.1mm for the outer end.
- the height of the turns is 150 ⁇ m.
- the section can be modified, and more particularly the thickness of the blade as it is known that the rigidity of a blade varies with the thickness of the cube. It would also be possible to use a localized heat treatment or to act on the shape of the blade for example, without changing the section, for example by changing the orientation of the cross section of the spiral relative to a center of rotation provided for this spiral. This could be achieved by twisting or waving the spiral blade, or combining these stiffening modes with the section change.
- the spiral object of the invention may be of a fragile material, in particular a crystalline material such as silicon. It is easy to realize such a spiral having a variable section by using the manufacturing process described in EP 0732635 B1 which uses the etching techniques with etching which are perfectly mastered in the field of electronics for the work of silicon wafers in particular.
- This document precisely describes a manufacturing method that can be used in particular for spirals. Although this document does not mention the possibility of making a hairspring with non-constant section, it is obvious that the masking technique used lends itself perfectly to obtaining such a result. In addition, this method allows for the spiral integrally with its ferrule and its embedding means.
- the processes mentioned are particularly suitable for producing spirals whose section of the blade is not constant to obtain a non-monotonically variable rigidity in order to maintain the center of gravity of the spiral substantially on a center of rotation provided for this hairspring.
- Other methods could also be used, for example heat treatment or machining. laser, to subsequently modify the rigidity of the hairspring in a non-monotonic manner in order to obtain the desired result.
- a treatment or machining could also be associated with a spiral comprising at least two segments of different sections.
- thermocompensation of the spirals is carried out by known means.
- a layer of material on the surface of the turns that compensates for the first thermal coefficient of the Young's modulus of the base material.
- a suitable material for the layer is SiO 2 .
- the spiral object of the invention illustrated by the figure 1 has an extra thickness that decreases from its inner end over 360 ° and a thickening that grows gradually over 360 ° (more than five turns in the case of the figure 1 ) before the outer end and up to this outer end.
- This non monotonic thickness variation is illustrated by the diagram of the figure 2 . Between the outer end of the hairspring and its minimum thickness, the thickness decreases by a factor of 2.6. Between its inner end and its minimum thickness, the thickness decreases by 35%.
- the pitch of the spiral object of the invention can also vary from non-monotonic way, as illustrated by the diagram of the figure 3 .
- This diagram shows a decrease in pitch from the inner end of the hairspring, followed by a slight increase and then a local maximum, two turns of the outer end in this example.
- This local maximum (a sudden increase followed by a sudden decrease) is intended to prevent the turns from touching during oscillations of the sprung balance assembly.
- this variation of pitch does not require a substantial increase in the spacing of the end turn, which makes it possible to have a hairspring with a high number of turns, in this example more than 14 turns for a hairspring of 2.1 mm radius.
- the maximum pitch of the hairspring is not located at its outer end, but is located on the outer third of the hairspring (between 1 and 3 turns of this end, and more precisely to 1.75 turns in this example) and that the value of the pitch has a local maximum on the outer third of the hairspring (between 1 and 3 turns of the outer end).
- the second embodiment illustrated by the figure 5 comprises two end-stage curves with progressive rigidity, one internal and the other external, whose function is to achieve a smooth transition between the ends and the central turns.
- the areas where the pitch is larger are useful so that the turns do not touch in operation, that is to say in contraction and expansion.
- the intermediate part between these two zones can very well be satisfied by a small step approximately constant (variation of the pitch of about 4% in the example of the figure 7 ).
- the middle part moves globally as a whole towards the contraction center, or outwardly expanding. She needs space on both sides.
- the square located towards the center may be smaller than the one located outside, and is not necessarily necessary as shown in the diagram of the figure 3 .
- the thickness diagram of the figure 6 is similar to that of the form of execution of Figures 1-4 , that is to say, extra thicknesses at both ends of the spiral thus constituting terminal curves extending over more than 360 °. Between the outer end of the hairspring and its minimum thickness, the thickness decreases by a factor of 4.4. Between its inner end and its minimum thickness, the thickness decreases by 48%.
- the thickness of the inner and / or outer coil could cease to grow, or even decrease slightly, on the last internal and / or external turn, without noticeably changing the properties of the oscillator.
- the step diagram of the figure 7 has non-monotonic and progressive variations, with a local maximum located in the first third of the hairspring (at 2 turns of the inner end) in addition to that located in the outer third (about 3 turns from the outer end) .
- the 250 ° amplitude difference of the balance-balance oscillator is 1.99 s / d and is comparable to the example of the figure 4 , with an average of the difference between 200 and 300 ° of amplitude lower than for the spiral of the figure 1 .
- Two other forms of execution are still represented.
- One is illustrated by the figure 9 with zones with turns spaced apart in the inner third and the outer third, with a continuous variation of the pitch, with no local maximum of the pitch neither inside nor outside.
- the thickness variation curve has a similar appearance to that of the first embodiment illustrated by the figure 2 , with a decrease from the inner end to the inner third (first four rounds), a portion of constant thickness, then an increase on the outer third to the outer end (last two rounds).
- the pitch it varies non-monotonically, gradually decreasing from the inner end to the middle of the length of the hairspring and then increasing progressively to the outer end of the hairspring, with no maximum local.
- the chronometric performances are better than for the spirals with constant pitch and thickness, but slightly less good than for the first two embodiments (maximum gap between positions of 2.67 s / d at 250 °).
- the other embodiment is illustrated by the figure 10 and has a much larger central area and no variation of pitch in the inner part of the hairspring.
- the thickness variation curve looks similar to that of the first embodiment illustrated by the figure 2 , with a decrease from the inner end to the inner third (first four rounds), a portion of constant thickness, then an increase on the outer third to the outer end (last three rounds).
- the spiral pitch illustrated by the figure 10 is constant on the inner first third of the length of the hairspring, then it undergoes a sudden increase followed by a decrease, ie a local maximum, at 3 and a half turns of the outer end. The pitch then increases again to the outer end.
- the chronometric performances are comparable to those of the first two forms of execution (maximum difference between positions of 2.08 s / d at 250 °).
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Springs (AREA)
- Stringed Musical Instruments (AREA)
- Toys (AREA)
Description
La présente invention se rapporte à un spiral plat pour balancier d'horlogerie comportant une lame enroulée, conformée pour assurer un développement sensiblement concentrique du spiral et une force quasi nulle exercée sur les pivots et le point d'encastrement, lors de la rotation inférieure à 360° de son extrémité interne par rapport à son extrémité externe dans les deux sens, à partir de sa position de repos. Cette invention se rapporte également à un ensemble balancier-spiral.The present invention relates to a flat spring balance spring comprising a wound blade, shaped to ensure a substantially concentric development of the hairspring and a virtually zero force exerted on the pivots and the embedding point, during the rotation less than 360 ° of its inner end relative to its outer end in both directions, from its rest position. This invention also relates to a sprung balance assembly.
Le développement non concentrique d'un spiral associé à un balancier d'horlogerie lors de l'oscillation de l'ensemble balancier-spiral provoque un décentrage du centre de gravité du spiral, qui se traduit, suivant les positions occupées par la montre, par un effet de retard ou d'avance, c'est-à-dire par une diminution ou une augmentation de la fréquence propre du système balancier-spiral. Ce décentrage du centre de gravité du spiral provoque également une pression latérale des pivots du balancier sur les paliers.The non-concentric development of a hairspring associated with a watch pendulum during the oscillation of the balance-hairspring assembly causes a decentering of the center of gravity of the hairspring, which is translated, according to the positions occupied by the watch, by a delay or advance effect, that is to say by a decrease or an increase in the natural frequency of the balance spring system. This decentering of the center of gravity of the spiral also causes a lateral pressure of the pivots of the balance on the bearings.
Ces effets de déséquilibre du spiral et de pressions latérales des pivots détruisent les conditions nécessaires à l'isochronisme des oscillations du balancier. Depuis le milieu du XVIIIe siècle, les horlogers s'étaient rendu compte que le développement non concentrique du spiral a une mauvaise influence sur l'isochronisme et en particulier que la pression latérale provoquée par un spiral décentré sur les pivots du balancier occasionne des perturbations de la marche et une usure des pivots. Ces mêmes horlogers ont alors préconisé de former une ou deux courbes terminales tout d'abord sur des spiraux cylindriques puis sur un spiral de type Archimède contenu dans un plan, c'est le spiral Breguet du nom de son inventeur.These effects of imbalance of the balance and lateral pressures of the pivots destroy the conditions necessary for the isochronism of the pendulum oscillations. Since the mid-eighteenth century, watchmakers had realized that the non-concentric development of the spring has a bad influence on the isochronism and in particular the lateral pressure caused by an off-spring of the pivots of the balance causes disruptions walking and wear of the pivots. These same watchmakers then recommended forming one or two terminal curves first of all on cylindrical spirals then on a spiral of the type Archimedes contained in a plan is the spiral Breguet name of its inventor.
Ces courbes étaient faites de manière plus ou moins empiriques et corrigées en fonction des résultats de la marche de l'oscillateur, avant que certaines formes soient retenues en fonction de ces résultats. Ce n'est que plusieurs dizaines d'années plus tard que les conditions mathématiques de cette courbe terminale ont été étudiées par Ed. Phillips, apportant ainsi une confirmation théorique aux intuitions antérieures des horlogers, à savoir que si le centre de gravité du spiral est maintenu sensiblement sur l'axe de balancier pendant l'oscillation du système balancier-spiral, le spiral n'exerce pratiquement aucune force latérale sur les pivots du balancier et son développement reste concentrique.These curves were made in a more or less empirical way and corrected according to the results of the oscillator's progress, before certain forms were selected according to these results. It is only several decades later that the mathematical conditions of this terminal curve have been studied by Ed. Phillips, thus bringing a theoretical confirmation to the previous intuitions of watchmakers, namely that if the center of gravity of the hairspring is maintained substantially on the balance shaft during the oscillation of the balance spring system, the spiral exerts virtually no lateral force on the pivots of the balance and its development remains concentric.
Les conditions énoncées par Phillips sont les mêmes que celles définies par les horlogers qui les avaient eux-mêmes déduites de leurs observations des défauts induits par le spiral, par rapport aux règles de l'isochronisme d'un corps oscillant énoncées au XVIIe siècle par Huygens.The conditions set by Phillips are the same as those defined by the watchmakers who themselves had deduced from their observations of defects induced by the spiral, from the rules of the isochronous a tumbling body set in the seventeenth century by Huygens.
Le spiral Breguet implique la formation d'une courbe terminale dans un plan parallèle à celui du spiral plat, ce qui nécessite la formation de deux coudes inversés pour former un segment de liaison incliné entre le spiral et la courbe terminale parallèle.The Breguet hairspring involves the formation of a terminal curve in a plane parallel to that of the flat hairspring, which requires the formation of two inverted bends to form an inclined connecting segment between the hairspring and the parallel terminal curve.
Un spiral Breguet peut être réalisé en différents alliages ferromagnétiques ou paramagnétiques, notamment pour les spiraux auto-compensateurs. Par contre, il est beaucoup plus difficile à réaliser en un matériau fragile tel que le silicium mono-cristallin ou poly-cristallin. En effet, il n'est pas possible de former les deux coudes inversés destinés à permettre la formation de la courbe Breguet terminale en raison de la nature cassante d'un tel matériau fragile, et il est ainsi nécessaire de recourir à une technique permettant de former des structures solidaires sur plusieurs niveaux.A Breguet hairspring can be made of different ferromagnetic or paramagnetic alloys, especially for self-compensating hairsprings. On the other hand, it is much more difficult to produce a fragile material such as monocrystalline silicon or polycrystalline silicon. Indeed, it is not possible to form the two inverted bends intended to allow the formation of the terminal Breguet curve because of the brittle nature of such a fragile material, and it is thus necessary to resort to a technique to form solidarity structures on several levels.
On a déjà proposé d'obtenir un effet technique comparable à celui de la courbe Breguet sur un spiral plat, en variant l'épaisseur de la lame du spiral.It has already been proposed to obtain a technical effect comparable to that of the Breguet curve on a flat hairspring, by varying the thickness of the spiral blade.
Dans le
Le
Le
Le
Le
On a proposé dans l'article d'
Le
La question de la variation du pas illustrée par la
Enfin dans le
Tous les spiraux susmentionnés visent à améliorer l'isochronisme de l'oscillateur balancier-spiral pour les différentes positions de la montre. L'étude par simulation de ces différents spiraux montre cependant qu'il est difficile de descendre sensiblement au-dessous d'un écart maximal entre les différentes positions de 4 s/j pour des amplitudes typiques de fonctionnement, soit des amplitudes supérieures à 200°, tout en gardant des sécurités suffisantes pour éviter que les spires ne se touchent en fonctionnement lors de la contraction et de l'expansion du spiral, ou suite à un choc subi par la montre-bracelet. Par ailleurs, la pente moyenne des courbes de marche en fonction de l'amplitude de l'oscillateur balancier-spiral devrait être la plus faible possible, dans l'idéal légèrement négative de façon à compenser les défauts d'isochronisme engendrés par un échappement à ancre suisse. Il sera en outre d'autant plus difficile d'obtenir de bonnes performances pour des spiraux de petite taille, par exemple en dessous de 2.5mm de distance entre l'axe de rotation et l'extrémité externe.All the aforementioned spirals aim to improve the isochronism of the balance-balance oscillator for the different positions of the watch. The simulation study of these different spirals, however, shows that it is difficult to reduce significantly below a maximum difference between the different positions of 4 s / d for typical operating amplitudes, ie amplitudes greater than 200 °, while keeping sufficient security to prevent the turns from touching during the contraction and expansion of the hairspring , or following a shock suffered by the wristwatch. Moreover, the average slope of the gait curves as a function of the amplitude of the balance-balance oscillator should be as small as possible, ideally slightly negative so as to compensate for the isochronism defects generated by a flight exhaust. Swiss anchor. It will also be more difficult to obtain good performance for small spirals, for example below 2.5mm distance between the axis of rotation and the outer end.
Le but de la présente invention est d'apporter une solution qui permette de se rapprocher davantage de ces objectifs que les spiraux de l'état de la technique.The object of the present invention is to provide a solution that makes it possible to be closer to these objectives than the spirals of the state of the art.
A cet effet, cette invention a tout d'abord pour objet un spiral plat pour balancier d'horlogerie comportant une lame enroulée et conformée pour assurer un développement sensiblement concentrique du spiral et une force quasi nulle exercée sur les pivots et le point d'encastrement, lors de la rotation inférieure à 360° de son extrémité interne par rapport à son extrémité externe dans les deux sens à partir de sa position de repos, tel que défini par la revendication 1. Cette invention a également pour objet un ensemble balancier-spiral selon la revendication 11.For this purpose, this invention firstly relates to a flat spring balance spring comprising a wound blade and shaped to ensure a substantially concentric development of the hairspring and a virtually zero force exerted on the pivots and the mounting point during rotation less than 360 ° from its inner end relative to its external end in both directions from its rest position, as defined by claim 1. Another subject of the invention is a balance spring and spiral assembly. according to claim 11.
Les expressions "développement sensiblement concentrique" et "force quasi nulle" sont destinées à englober des spiraux susceptibles d'atteindre au moins des performances égales à celle des spiraux à courbes Breguet, son but étant d'atteindre au moins de telles performances, mais avec un spiral plat.The terms "substantially concentric development" and "almost zero force" are intended to encompass spirals capable of achieving at least performance equal to that of Breguet curve spirals, its aim being to achieve at least such performance, but with a flat hairspring.
Le spiral selon l'invention s'applique aussi bien à des spiraux en matériau ductile qu'à des matériaux fragiles tel que le silicium.The hairspring according to the invention is equally applicable to ductile material spirals to fragile materials such as silicon.
Les dessins annexés illustrent, schématiquement et à titre d'exemple, différentes formes d'exécution du spiral plat objet de la présente invention.
- La
figure 1 est une vue en plan d'un spiral plat au repos dont le centre de gravité est situé sur un centre de rotation prévu pour ce spiral; - la
figure 2 est un diagramme de l'épaisseur E de la lame du spiral en fonction du nombre de tours N du spiral de lafigure 1 ; - la
figure 3 est un diagramme du pas P du spiral en fonction du nombre de tours N du spiral de lafigure 1 ; - la
figure 4 est un diagramme des courbes de marche théoriques d'un oscillateur balancier-spiral équipé du spiral de lafigure 1 , dans les différentes positions en fonction de l'amplitude de cet oscillateur (isochronisme libre); - la
figure 5 est une vue en plan d'une deuxième forme d'exécution de spiral plat au repos dont le centre de gravité est situé sur un centre de rotation prévu pour ce spiral; - la
figure 6 est un diagramme de l'épaisseur E de la lame du spiral en fonction du nombre de tours N du spiral de lafigure 5 ; - la
figure 7 est un diagramme du pas du spiral P en fonction du nombre de tours N du spiral de lafigure 5 ; - la
figure 8 est un diagramme des courbes de marche théoriques d'un oscillateur balancier équipé du spiral de lafigure 5 , dans les différentes positions en fonction de l'amplitude de cet oscillateur (isochronisme libre); - la
figure 9 est une vue en plan d'une troisième forme d'exécution du spiral plat au repos dont le centre de gravité est situé sur un centre de rotation prévu pour ce spiral; - la
figure 10 est une vue en plan d'une quatrième forme d'exécution du spiral plat au repos dont le centre de gravité est situé sur un centre de rotation prévu pour ce spiral.
- The
figure 1 is a plan view of a flat hairspring at rest whose center of gravity is located on a center of rotation provided for this hairspring; - the
figure 2 is a diagram of the thickness E of the spiral blade as a function of the number of turns N of the spiral of thefigure 1 ; - the
figure 3 is a diagram of the pitch of the spiral as a function of the number of turns N of the spiral of thefigure 1 ; - the
figure 4 is a diagram of the theoretical curves of a balance-balance oscillator equipped with the spiral of thefigure 1 , in the different positions according to the amplitude of this oscillator (free isochronism); - the
figure 5 is a plan view of a second embodiment of flat spiral rest whose center of gravity is located on a center of rotation provided for this spiral; - the
figure 6 is a diagram of the thickness E of the spiral blade as a function of the number of turns N of the spiral of thefigure 5 ; - the
figure 7 is a diagram of the pitch of the spiral P as a function of the number of turns N of the spiral of thefigure 5 ; - the
figure 8 is a diagram of the theoretical curves of a pendulum oscillator equipped with the spiral of thefigure 5 , in the different positions according to the amplitude of this oscillator (free isochronism); - the
figure 9 is a plan view of a third embodiment of the flat hairspring at rest whose center of gravity is located on a center of rotation provided for this hairspring; - the
figure 10 is a plan view of a fourth embodiment of the flat hairspring at rest whose center of gravity is located on a center of rotation provided for this hairspring.
Les performances de l'oscillateur balancier-spiral, en particulier l'écart de marche entre les positions, peuvent varier sensiblement avec le couple développé par le spiral et avec son encombrement, c'est-à-dire la distance entre le point d'attache interne du spiral à la virole et le point d'attache externe. Le nombre de tours a également une influence non-négligeable. Pour cette raison, les spiraux donnés à titre d'exemples dans les figures présentent tous le même couple nominal (même inertie du balancier apparié au spiral pour obtenir une fréquence d'oscillation de 4 Hz), et le même encombrement. Les spiraux sont réalisés en Si. La distance à l'axe de rotation est de 0.6mm pour l'extrémité interne et 2.1mm pour l'extrémité externe. La hauteur des spires est de 150µm.The performance of the balance-balance oscillator, in particular the difference between the positions, can vary substantially with the torque developed by the spiral and with its bulk, that is to say the distance between the point of contact. internal attachment of the spiral to the ferrule and the external attachment point. The number of turns also has a significant influence. For this reason, the spirals given by way of examples in the figures all have the same nominal torque (same inertia of the balanced balance spring to obtain an oscillation frequency of 4 Hz), and the same size. The spirals are made of Si. The distance to the axis of rotation is 0.6mm for the inner end and 2.1mm for the outer end. The height of the turns is 150 μm.
Pour augmenter ou diminuer sélectivement la rigidité de la lame du spiral, on peut en modifier la section, et plus particulièrement l'épaisseur de la lame vu qu'il est connu que la rigidité d'une lame varie avec l'épaisseur au cube. Il serait aussi possible d'avoir recours à un traitement thermique localisé ou encore d'agir sur la forme de la lame par exemple, sans en changer la section, par exemple en modifiant l'orientation de la section droite du spiral par rapport à un centre de rotation prévu pour ce spiral. Ceci pourrait être obtenu en la vrillant ou en formant des ondulations sur la lame du spiral, ou en combinant ces modes de rigidification avec le changement de section.To selectively increase or decrease the rigidity of the spiral blade, the section can be modified, and more particularly the thickness of the blade as it is known that the rigidity of a blade varies with the thickness of the cube. It would also be possible to use a localized heat treatment or to act on the shape of the blade for example, without changing the section, for example by changing the orientation of the cross section of the spiral relative to a center of rotation provided for this spiral. This could be achieved by twisting or waving the spiral blade, or combining these stiffening modes with the section change.
Le spiral objet de l'invention peut être en un matériau fragile, notamment un matériau cristallin tel que le silicium. On peut aisément réaliser un tel spiral présentant une section variable en ayant recours au procédé de fabrication décrit dans le
D'autres techniques utilisant l'électrodéposition multi-couches associée à la technique de masquage pour fabriquer des pièces de micromécanique sont décrites dans deux articles publiés dans
Bien entendu, les procédés mentionnés sont particulièrement adaptés à la fabrication de spiraux dont la section de la lame n'est pas constante pour obtenir une rigidité variable de façon non monotone en vue de maintenir le centre de gravité du spiral sensiblement sur un centre de rotation prévu pour ce spiral. On pourrait aussi utiliser d'autres procédés, par exemple un traitement thermique ou un usinage par laser, pour modifier ultérieurement à sa fabrication proprement dite, la rigidité du spiral de façon non monotone en vue d'obtenir le résultat recherché. Un traitement ou usinage pourrait aussi être associé à un spiral comprenant au moins deux segments de sections différentes.Of course, the processes mentioned are particularly suitable for producing spirals whose section of the blade is not constant to obtain a non-monotonically variable rigidity in order to maintain the center of gravity of the spiral substantially on a center of rotation provided for this hairspring. Other methods could also be used, for example heat treatment or machining. laser, to subsequently modify the rigidity of the hairspring in a non-monotonic manner in order to obtain the desired result. A treatment or machining could also be associated with a spiral comprising at least two segments of different sections.
D'autres moyens de rigidifier sélectivement le spiral pour atteindre le but recherché peuvent être envisagés. C'est ainsi que l'on pourrait varier de manière non monotone la rigidité de ce spiral en formant une couche d'un matériau plus rigide. Cette couche pourrait notamment être réalisée par électrodéposition.Other means of selectively stiffening the hairspring to achieve the desired purpose can be envisaged. Thus one could vary non-monotonously the rigidity of this spiral forming a layer of a more rigid material. This layer could in particular be made by electrodeposition.
On pourrait encore changer la rigidité de ce spiral par dopage du silicium notamment par une technique d'implantation ionique ou par diffusion.We could still change the rigidity of this spiral by doping silicon in particular by an ion implantation technique or by diffusion.
La thermocompensation des spiraux est réalisée par des moyens connus. On peut par exemple utiliser une couche de matériau à la surface des spires qui compense le premier coefficient thermique du module d'Young du matériau de base. Dans le cas d'un spiral en Si, un matériau adéquat pour la couche est le SiO2.The thermocompensation of the spirals is carried out by known means. For example, it is possible to use a layer of material on the surface of the turns that compensates for the first thermal coefficient of the Young's modulus of the base material. In the case of a Si spiral, a suitable material for the layer is SiO 2 .
Le spiral objet de l'invention illustré par la
Parallèlement à cette variation d'épaisseur non monotone de la lame du spiral et donc de sa rigidité, avantageusement, le pas du spiral objet de l'invention peut aussi varier de façon non monotone, comme illustré par le diagramme de la
On peut constater que dans cette forme d'exécution, le pas maximal du spiral n'est pas situé à son extrémité externe, mais se situe sur le tiers externe du spiral (entre 1 et 3 tours de cette extrémité, et plus précisément à 1.75 tours dans cet exemple) et que la valeur du pas présente un maximum local sur le tiers externe du spiral (entre 1 et 3 tours de l'extrémité externe).We can see that in this embodiment, the maximum pitch of the hairspring is not located at its outer end, but is located on the outer third of the hairspring (between 1 and 3 turns of this end, and more precisely to 1.75 turns in this example) and that the value of the pitch has a local maximum on the outer third of the hairspring (between 1 and 3 turns of the outer end).
Les simulations effectuées à l'aide de ce spiral ont montré que cette géométrie de spiral permet de diviser par 2 l'écart maximum entre les différentes positions dans lesquelles la pièce d'horlogerie est testée (CH et FH qui sont les positions horizontales, fond tourné vers le haut, respectivement cadran tourné vers le haut; 3H, 6H, 9H et 12H qui sont les positions verticales avec rotation de 90° entre les positions successives) par rapport à un spiral à pas et à épaisseur constants. L'écart à 250° d'amplitude de l'oscillateur balancier-spiral est de 1,87 s/j. Quant à la pente moyenne de l'isochronisme, le diagramme de la
La deuxième forme d'exécution illustrée par la
En résumé, le diagramme d'épaisseur de la
Selon une variante de la
Le diagramme du pas de la
Comme le montre la
Deux autres formes d'exécution sont encore représentées. L'une est illustrée par la
L'autre forme d'exécution est illustrée par la
Les formes d'exécution qui précèdent sont données à titre d'exemples non limitatifs. De plus, les variations d'épaisseur et de pas devront être optimisées en fonction du cahier des charges du spiral, c'est-à-dire du couple développé et de l'encombrement (rayon à la virole et rayon au piton) afin d'obtenir des performances chronométriques optimales (écarts de marche entre positions et pente moyenne de l'isochronisme les plus faibles possibles) tout en évitant un contact entre les spires lors du fonctionnement.The foregoing embodiments are given by way of non-limiting examples. In addition, variations in thickness and pitch will have to be optimized according to the specifications of the hairspring, that is to say the developed torque and the size (radius to the shell and radius to the piton) in order to to obtain optimal chronometric performances (differences between the positions and the average isochronism slope as low as possible) while avoiding contact between the turns during operation.
Claims (11)
- A flat balance spring for a horological balance comprising a wound strip shaped to ensure an approximately concentric development of the balance spring and almost zero force on the pivots and on the fixing point, during a rotation of less than 360° of its inner end relative to its outer end in both directions from its rest position, the stiffness of its strip decreasing gradually and through more than 360° from, on the one hand from a point situated between its inner end and its second turn, characterized in that the stiffness of its strip decreases on the other hand from a point situated between its outer end and its penultimate turn, the lowest stiffness being situated in the median part of said strip.
- The balance spring as claimed in claim 1, in which the pitch of the balance spring varies non-monotonically, decreasing between its outer end and the outer third, counted in terms of the number of turns.
- The balance spring as claimed in one of the preceding claims, in which the pitch of the balance spring varies non-monotonically, decreasing between its inner end and the inner third, counted in terms of the number of turns.
- The balance spring as claimed in one of the preceding claims, in which the pitch of the balance spring undergoes a sudden increase followed by a sudden decrease, the whole occupying more than 360° and being situated at least one turn away from at least one of its ends.
- The balance spring as claimed in one of the preceding claims, in which the different respective stiffnesses correspond to different respective cross sections of the strip of the balance spring.
- The balance spring as claimed in one of the preceding claims, in which the stiffness decreases by at least a factor of 8 between a point situated between its outer end and its penultimate turn, and the minimum value.
- The balance spring as claimed in one of the preceding claims, in which the stiffness decreases by at least 50% between its inner end and the minimum value.
- The balance spring as claimed in one of the preceding claims, manufactured in a fragile material.
- The balance spring as claimed in one of the preceding claims, manufactured in a crystalline material.
- The balance spring as claimed in one of the preceding claims, manufactured in silicon.
- A balance wheel/balance spring assembly using a balance spring as claimed in one of the preceding claims.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH14542009 | 2009-09-21 | ||
CH00319/10A CH701846B8 (en) | 2009-09-21 | 2010-03-09 | Flat spiral for clockwork pendulum and balance-sprung assembly. |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2299336A2 EP2299336A2 (en) | 2011-03-23 |
EP2299336A3 EP2299336A3 (en) | 2017-10-11 |
EP2299336B1 true EP2299336B1 (en) | 2019-04-24 |
Family
ID=42985690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10405172.7A Active EP2299336B1 (en) | 2009-09-21 | 2010-09-16 | Flat hairspring for a clock balance wheel and balance wheel -hairspring assembly |
Country Status (5)
Country | Link |
---|---|
US (1) | US8348497B2 (en) |
EP (1) | EP2299336B1 (en) |
JP (1) | JP5496034B2 (en) |
CN (1) | CN102023558B (en) |
CH (1) | CH701846B8 (en) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2284629A1 (en) * | 2009-08-13 | 2011-02-16 | ETA SA Manufacture Horlogère Suisse | Thermocompensated mechanical resonator |
GB201001897D0 (en) * | 2010-02-05 | 2010-03-24 | Levingston Gideon | Non magnetic mateial additives and processes for controling the thermoelastic modulus and spring stiffness within springs for precision instruments |
US8562206B2 (en) | 2010-07-12 | 2013-10-22 | Rolex S.A. | Hairspring for timepiece hairspring-balance oscillator, and method of manufacture thereof |
CH705471B1 (en) * | 2011-09-07 | 2016-03-31 | Patek Philippe Sa Geneve | clockwork spring balance. |
US8777195B2 (en) * | 2011-09-23 | 2014-07-15 | Adicep Technologies, Inc. | Non-linear torsion spring assembly |
CH706087B1 (en) * | 2012-02-01 | 2016-09-15 | Société Anonyme De La Mft D'horlogerie Audemars Piguet & Cie | flat spiral for regulating organ of a watch movement. |
HK1178377A2 (en) * | 2012-07-17 | 2013-09-06 | Master Dynamic Ltd | Hairspring design for concentricity |
HK1178376A2 (en) * | 2012-07-17 | 2013-09-06 | Master Dynamic Ltd | Hairspring for mechanical timepiece |
US9658598B2 (en) * | 2012-07-17 | 2017-05-23 | Master Dynamic Limited | Hairspring for a time piece and hairspring design for concentricity |
EP2690507B1 (en) * | 2012-07-26 | 2014-12-31 | Nivarox-FAR S.A. | Holorological hairspring |
CH707165B1 (en) * | 2012-11-07 | 2016-12-30 | Patek Philippe Sa Geneve | Watch movement with sprung balance. |
WO2014075859A1 (en) * | 2012-11-16 | 2014-05-22 | Nivarox-Far S.A. | Resonator that is less sensitive to climatic variations |
CH706532B1 (en) * | 2012-11-26 | 2013-11-29 | Detra Sa Zi | Anchor escapement for a timepiece. |
EP2781968A1 (en) * | 2013-03-19 | 2014-09-24 | Nivarox-FAR S.A. | Resonator that is less sensitive to climate variations |
DE102013106505B8 (en) * | 2013-06-21 | 2014-08-21 | Damasko Uhrenmanufaktur KG | Oscillation system for mechanical movements |
WO2014203085A1 (en) * | 2013-06-21 | 2014-12-24 | Damasko Uhrenmanufaktur KG | Oscillating system for mechanical clockwork movements, method for producing a helical spring, and helical spring |
WO2014203086A1 (en) | 2013-06-21 | 2014-12-24 | Damasko Uhrenmanufaktur KG | Oscillating system for mechanical clockwork mechanisms, spiral spring and method for production thereof |
DE102013110090A1 (en) * | 2013-09-13 | 2015-03-19 | Damasko Uhrenmanufaktur KG | Oscillation system for mechanical movements |
CH708429A1 (en) | 2013-08-19 | 2015-02-27 | Manuf Et Fabrique De Montres Et Chronomètres Ulysse Nardin Le Locle S A | Spiral for a regulating member of a mechanical watch, a regulating member provided with such a hairspring, and method of making such a hairspring. |
EP2908183B1 (en) * | 2014-02-14 | 2018-04-18 | ETA SA Manufacture Horlogère Suisse | Clock hairspring |
WO2016192957A1 (en) * | 2015-06-03 | 2016-12-08 | Eta Sa Manufacture Horlogère Suisse | Resonator with fine adjustment by index-assembly |
EP3159746B1 (en) * | 2015-10-19 | 2018-06-06 | Rolex Sa | Heavily doped silicon hairspring for timepiece |
EP3214506B1 (en) * | 2016-03-04 | 2019-01-30 | ETA SA Manufacture Horlogère Suisse | Compact hairspring with constant double cross-section |
EP3159748B1 (en) * | 2015-10-22 | 2018-12-12 | ETA SA Manufacture Horlogère Suisse | Compact hairspring with variable cross-section |
EP3159747A1 (en) * | 2015-10-22 | 2017-04-26 | ETA SA Manufacture Horlogère Suisse | Compact hairspring with constant cross-section |
SG11201806735QA (en) | 2016-03-23 | 2018-09-27 | Patek Philippe Sa Geneve | Balance-hairspring oscillator for a timepiece |
CH713822A2 (en) * | 2017-05-29 | 2018-11-30 | Swatch Group Res & Dev Ltd | Apparatus and method for gait adjustment and state correction of a watch |
EP3534222A1 (en) * | 2018-03-01 | 2019-09-04 | Rolex Sa | Method for producing a thermally compensated oscillator |
FR3088396B1 (en) | 2018-11-08 | 2021-06-18 | Abdou Dib | ALMOST CONSTANT TORQUE SPIRAL SPRING FOR ENERGY STORAGE |
EP3913441B1 (en) | 2020-05-22 | 2024-05-01 | Patek Philippe SA Genève | Oscillator for a timepiece |
EP4293428A1 (en) * | 2022-06-14 | 2023-12-20 | Patek Philippe SA Genève | Hairspring for timepiece resonator |
EP4372479A1 (en) * | 2022-11-18 | 2024-05-22 | Richemont International S.A. | Method for manufacturing timepiece hairsprings |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US209642A (en) | 1878-11-05 | Improvement in balance-springs for time-keepers | ||
CA910060A (en) * | 1972-09-19 | Timex Corporation | Horological hairspring | |
BE526689A (en) | ||||
CH327796A (en) | 1954-02-22 | 1958-02-15 | Horlogerie Suisse S A Asuag | Flat hairspring |
CH499094A (en) | 1967-11-09 | 1970-11-15 | Kienzle Apparate Gmbh | Return spring for measuring devices |
US3528237A (en) * | 1968-04-30 | 1970-09-15 | Timex Corp | Horological hairspring |
CH564219A (en) * | 1969-07-11 | 1975-07-15 | ||
EP0045814B1 (en) * | 1980-08-05 | 1983-12-14 | Közuti Közlekedési Tudományos Kutato Intézet | Adjustable spiral spring for measuring instruments |
FR2731715B1 (en) | 1995-03-17 | 1997-05-16 | Suisse Electronique Microtech | MICRO-MECHANICAL PART AND METHOD FOR PRODUCING THE SAME |
DE69911913T2 (en) * | 1999-03-26 | 2004-09-09 | Rolex Sa | Self-compensating coil spring for clockwork coil spring balance and method for treating the same |
DE60206939T2 (en) * | 2002-11-25 | 2006-07-27 | Csem Centre Suisse D'electronique Et De Microtechnique S.A. | Spiral clockwork spring and process for its production |
EP1431844A1 (en) | 2002-12-19 | 2004-06-23 | SFT Services SA | Assembly for the regulating organ of a watch movement |
EP1445670A1 (en) * | 2003-02-06 | 2004-08-11 | ETA SA Manufacture Horlogère Suisse | Balance-spring resonator spiral and its method of fabrication |
EP2224293B1 (en) * | 2003-04-29 | 2012-07-18 | Patek Philippe SA Genève | Balance and flat hairspring regulator for a watch movement |
DE602004027471D1 (en) * | 2004-06-08 | 2010-07-15 | Suisse Electronique Microtech | Balance spring oscillator with temperature compensation |
JP2008116204A (en) * | 2006-10-31 | 2008-05-22 | Seiko Epson Corp | Mainspring, drive device and apparatus using the same, and method of manufacturing mainspring |
EP2151722B8 (en) * | 2008-07-29 | 2021-03-31 | Rolex Sa | Hairspring for balance-spring resonator |
EP2184653A1 (en) * | 2008-11-06 | 2010-05-12 | Montres Breguet S.A. | Spiral with terminal curve elevation in micro-machinable material |
-
2010
- 2010-03-09 CH CH00319/10A patent/CH701846B8/en unknown
- 2010-09-16 US US12/883,540 patent/US8348497B2/en active Active
- 2010-09-16 EP EP10405172.7A patent/EP2299336B1/en active Active
- 2010-09-17 JP JP2010209805A patent/JP5496034B2/en active Active
- 2010-09-20 CN CN201010520935.4A patent/CN102023558B/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CN102023558B (en) | 2014-08-20 |
CH701846A1 (en) | 2011-03-31 |
EP2299336A2 (en) | 2011-03-23 |
CH701846B1 (en) | 2014-07-15 |
CN102023558A (en) | 2011-04-20 |
EP2299336A3 (en) | 2017-10-11 |
JP2011064687A (en) | 2011-03-31 |
US8348497B2 (en) | 2013-01-08 |
US20110069591A1 (en) | 2011-03-24 |
JP5496034B2 (en) | 2014-05-21 |
CH701846B8 (en) | 2015-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2299336B1 (en) | Flat hairspring for a clock balance wheel and balance wheel -hairspring assembly | |
EP2476028B1 (en) | Spiral spring | |
EP2151722B1 (en) | Hairspring for balance-spring resonator | |
EP2407831B1 (en) | Hairspring for oscillator balance of a clock piece and method for manufacturing same | |
EP1921518B1 (en) | Assembly component comprising overlaid blade-shaped elastic structures and timepiece equipped with this component | |
EP1562087B1 (en) | Balance for a watch mechanism | |
EP2520984B1 (en) | Barrel comprising additional resilient means for the accumulation of energy | |
WO2013045706A2 (en) | Integral assembly of a hairspring and a collet | |
EP2705271B1 (en) | Barrel spring comprising energy accumulation curves | |
WO2011072960A1 (en) | Resonator thermally compensated for at least the first and second orders | |
EP2707777A1 (en) | Silicon spiral spring for a mechanical watch | |
CH707554A2 (en) | Thermocompensated resonator for use in electronic quartz watch, has body whose portion is arranged with metal coating whose Young's modulus is changed based on temperature so as to enable resonator to have variable frequency | |
EP1921516A1 (en) | Assembly component comprising two series of elastic structures and timepiece incorporating this component | |
EP2690506B1 (en) | Anti-tripping clock hairspring | |
EP3159746B1 (en) | Heavily doped silicon hairspring for timepiece | |
EP3252542B1 (en) | Part for fastening a timepiece hairspring | |
CH713409B1 (en) | Balance wheel for balance-spring of the thermocompensated type, balance-spring of the thermocompensated type, movement and timepiece. | |
EP2869138A2 (en) | Hairspring for a regulating member of a mechanical watch, regulating member provided with such a hairspring, and method for manufacturing such a hairspring | |
CH705234B1 (en) | Method of manufacturing a spiral. | |
CH708272B1 (en) | spiral spring watch movement. | |
WO2023242756A1 (en) | Timepiece movement with increased power reserve | |
CH708270B1 (en) | spiral spring watch movement. | |
CH704889A2 (en) | Barrel for use in timepiece, has spring torque increasing device comprising energy accumulating bent parts formed on spiral spring such that torque of barrel is personalized based on winding tension of spring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME RS |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME RS |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G04B 17/20 20060101ALI20170905BHEP Ipc: G04B 17/06 20060101AFI20170905BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180409 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20181102 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1124849 Country of ref document: AT Kind code of ref document: T Effective date: 20190515 Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010058398 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: MOINAS AND SAVOYE SARL, CH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190424 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190424 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190824 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190424 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190424 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190424 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190424 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190424 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190725 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190424 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1124849 Country of ref document: AT Kind code of ref document: T Effective date: 20190424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190824 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010058398 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190424 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190424 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190424 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190424 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190424 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190424 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190424 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190424 |
|
26N | No opposition filed |
Effective date: 20200127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190424 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190916 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190916 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100916 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190424 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230528 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20231001 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240912 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240923 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240925 Year of fee payment: 15 |