EP2294309A1 - Fuel injector - Google Patents

Fuel injector

Info

Publication number
EP2294309A1
EP2294309A1 EP09765667A EP09765667A EP2294309A1 EP 2294309 A1 EP2294309 A1 EP 2294309A1 EP 09765667 A EP09765667 A EP 09765667A EP 09765667 A EP09765667 A EP 09765667A EP 2294309 A1 EP2294309 A1 EP 2294309A1
Authority
EP
European Patent Office
Prior art keywords
pressure
fuel
injector
annular space
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09765667A
Other languages
German (de)
French (fr)
Other versions
EP2294309B1 (en
Inventor
Matthias Burger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2294309A1 publication Critical patent/EP2294309A1/en
Application granted granted Critical
Publication of EP2294309B1 publication Critical patent/EP2294309B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/31Fuel-injection apparatus having hydraulic pressure fluctuations damping elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/31Fuel-injection apparatus having hydraulic pressure fluctuations damping elements
    • F02M2200/315Fuel-injection apparatus having hydraulic pressure fluctuations damping elements for damping fuel pressure fluctuations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/003Valve inserts containing control chamber and valve piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0078Valve member details, e.g. special shape, hollow or fuel passages in the valve member
    • F02M63/008Hollow valve members, e.g. members internally guided

Definitions

  • the invention relates to a fuel injector, in particular a common rail injector, for injecting fuel into a combustion chamber of an internal combustion engine according to the preamble of claim 1.
  • the invention has for its object to propose a designed for highest injection pressures fuel injector. Preferably, this should be produced with conventional materials such as C45 steel.
  • injector bodies of fuel injectors designed for well over 2000 bar to be designed with conventional materials such as C45 steel, in particular if the fuel pressure in the annular space does not exceed about 1800 bar , If the pressure in the high-pressure chamber of the fuel injector is, for example, at most 2000 bar, it is generally sufficient if the pressure difference between the annular space and the high-pressure space is approximately 200 bar.
  • the pressure in the annular space during operation of the fuel injector is at least half as high as the pressure in the pressure chamber so as not to burden the separation between the annulus and the high-pressure chamber overly.
  • the fuel flowing in from the fuel supply connection from an external high-pressure fuel accumulator (rail) is conducted directly into the high-pressure space.
  • a channel passing through the annular space in the radial direction is preferably provided, which is formed, for example, by the injector component which radially bounds the annular space.
  • the fuel injector is preferably a so-called low-leakage injector, preferably without a permanent, low-pressure stage which produces a hydraulic closing force acting on the one-part or multi-part injection valve element.
  • Such fuel injectors are preferably equipped with a long injection valve element whose axial extent preferably corresponds to at least 50%, preferably at least 60% or 70%, of the axial extent of the entire fuel injector.
  • the high-pressure space in which the injection valve element is accommodated extends in the axial direction as far as a nozzle hole arrangement, wherein the high-pressure space can be subdivided as required into two axially adjacent space sections, between which a closing throttle is arranged is to lower the fuel pressure in the region of an injection valve element tip slightly, for example by 100 to 200 bar, thereby to produce a hydraulic closing force component.
  • the high-pressure chamber extends in the axial direction into a nozzle body which is axially adjacent to the injector body, in which case an embodiment can also be realized in which the pressure-reduced annular space formed between the injector body and the high-pressure chamber extends in the axial direction as far as into the nozzle body.
  • a series-connected throttle combination which consists of at least one annular space inlet throttle and at least one annular space drain throttle, flowing over the annular space inlet throttle under high pressure, in particular at least approximately under rail pressure, standing fuel in the annulus can.
  • Fuel can in turn flow out of the annular space in the direction of the low-pressure region of the fuel injector via the annular space drain throttle, wherein the flow cross-sections of the at least one annular space inlet throttle and the at least one annular space drain throttle are dimensioned such that the desired pressure difference between annular space and high-pressure space adjusts.
  • This pressure reduction mechanism is comparable to known Steuerraumdruckab- reduction, as is known from servo-controlled fuel injectors.
  • the essential difference is that the annular space pressure in comparison to the control chamber pressure has no influence on the injection behavior of the fuel injector, so that a lower accuracy requirement can be made in the production of the at least one annular space inlet throttle and the at least one annulus flow restrictor.
  • the at least one annular space inlet throttle and / or the at least one annular space outlet throttle are structurally realized via a guide and / or a leak gap, as a result of which additional working steps for producing throttle bores can be saved.
  • the at least one annulus drain can also be replaced or formed by a pressure relief valve to be explained later.
  • an embodiment of the fuel injector is not lowered in the pressure in the annulus during the entire operating time against the pressure in the high pressure chamber, but only at times when the pressure in the high pressure chamber exceeds a critical limit. This is usually only the case when the internal combustion engine is operated under full load.
  • an embodiment is preferred in which the pressure in the annular space is reduced or reduced in comparison with the pressure in the high-pressure space only when a minimum pressure, in particular of approximately 1800 bar, is exceeded.
  • At least one pressure relief valve is provided in the fuel flow direction between the annulus and the low pressure region of the fuel injector, which is preferably designed as a check valve.
  • the overpressure valve is designed in such a way that it acts as an annular space outlet throttle in the open state, so that the desired annular space pressure is set in a defined manner. Due to the only temporary opening of the pressure relief valve, the parasitic drainage quantity can be reduced to an absolute minimum.
  • the overpressure valve comprises at least one spring which has an adjustable valve element spring-force-loaded. beat.
  • the spring is particularly preferably a leaf spring and / or the valve element is a valve ball, in particular designed as a steel ball.
  • Structurally elegant is an embodiment in which the valve element is pressed by the spring onto a valve seat which is formed on an injector component axially delimiting the low-pressure region.
  • the leaf spring can be clamped axially between a valve clamping screw for securing the injector component in the injector body and the injector component.
  • the adjustable valve element of the pressure relief valve is formed by the low pressure region axially limiting injector component, said injector component is in this case by means of a spring, for example an expansion sleeve or a disc spring, against the injector body spring-loaded.
  • a spring for example an expansion sleeve or a disc spring
  • the fuel from the annulus with open pressure relief valve flows through an annular leakage gap in the low pressure region of the fuel injector, wherein the leakage gap, preferably axially, is formed between the Injektorbauteil and the injector, wherein to ensure sufficient tightness of the closed overpressure valve on the injector body and / or on the injector component, preferably at least one biting edge is formed.
  • the spring of the pressure relief valve is arranged such that the bias of the spring and thus the maximum pressure of the annular space is adjustable by means of a valve clamping screw, the valve clamping screw preferably an axial securing for the low pressure region of the Fuel injector in the axial direction limiting injector component.
  • FIG. 1 shows a first embodiment of a fuel injector with an annular space formed between a high-pressure chamber and an injector body in which the fuel pressure during operation of the fuel injector relative to the fuel pressure in
  • Fig. 2 an alternative, second embodiment of a fuel Inj ector arranged between the annulus and low pressure region of the fuel injector designed as a check valve overpressure valve, which has the task to reduce the fuel pressure in the annulus only when a minimum pressure is exceeded and
  • FIG. 3 shows a further alternative, third exemplary embodiment of a fuel injector, in which the valve element of the pressure relief valve is formed by an injector component delimiting a control chamber.
  • FIG. 1 shows a fuel injector 1 designed as a common-rail injector for injecting fuel into a combustion chamber, not shown, of an internal combustion engine of a motor vehicle.
  • a high pressure pump 2 delivers fuel from a reservoir 3 into a high-pressure fuel accumulator 4 (rail).
  • this fuel especially diesel or gasoline, under high pressure, of about 2500 bar in this embodiment, stored.
  • the fuel injector 1 is connected, among other injectors, not shown, via a supply line 5.
  • This supply line 5 leads to a fuel supply connection 6 of the fuel Inj ector 1, which leads via a supply channel 7 to a central, serving as a minirail high pressure chamber 8.
  • this high-pressure chamber 8 there is essentially rail pressure of about 2500 bar.
  • a fuel return port 10 is provided, to which a return line 11 is connected.
  • a control quantity to be explained later and a leakage quantity of fuel can be discharged from a low-pressure region 12 of the fuel injector 1 to the reservoir 3, which is also at low pressure of approximately 1 to 10 bar.
  • an injection valve element 13 which is integral in the embodiment shown is one recorded axially adjustable.
  • the injection valve element 13 is designed in several parts and consists for example of an upper control rod and a lower nozzle needle.
  • the injection valve element 13 is guided longitudinally displaceable in a guide bore 14 of a lower nozzle body 15 in the drawing plane.
  • axial channels 16 are realized on the outer circumference of the injection valve element 13 in the region of its lower guide as polished sections, via which the fuel can flow in the axial direction down to a nozzle hole arrangement 17 when the injection valve element 13 is open.
  • the nozzle body 15 is clamped by means of a union nut 18 with an injector body 19.
  • the injector body 19 forms the largest housing part of a housing 20.
  • the injection valve element 13 has at its tip 21 a closing surface 22 with which the injection valve element 13 can be brought into tight contact with an injection valve element seat 23 formed inside the nozzle body 15.
  • an injection valve element seat 23 formed inside the nozzle body 15.
  • the injection valve element 13 abuts against its injection valve element seat 23, ie is in a closed position, the fuel outlet from the nozzle hole arrangement 17 is blocked. If, on the other hand, it is lifted off its injection valve element seat 23, fuel can flow from the high-pressure chamber 8 in the axial direction via the axial channels 16 into a lower nozzle space 24 designed as an annular space and from there past the injection valve element seat 23 to the nozzle hole arrangement 17 and there substantially under high pressure (FIG. Rail pressure) standing in the combustion chamber (not shown) to be injected.
  • FOG. Rail pressure high pressure standing in the combustion chamber
  • a control chamber 28 is limited, which is supplied via an introduced into the injection valve element 13 inlet throttle 29 with fuel from the high-pressure chamber 8.
  • the control chamber 28 is connected via a axially extending in the injector component 27 drain passage 30 with outlet throttle 31 with a valve chamber 32 of a control valve 33 (servo-valve).
  • the valve chamber 32 is bounded radially on the outside by a sleeve-shaped control valve element 34.
  • the sleeve-shaped control valve element 34 is substantially pressure-balanced in its closed position in the axial direction.
  • valve chamber 32 is bounded in the axial direction upward by a pressure pin 35, which is supported axially on Injektorde- disgust 9 and is formed as a component separate from the injector component 27.
  • a co-operating with the sleeve-shaped control valve element 34 control valve seat 36 (here flat seat) is formed on the injector component 27.
  • the sleeve-shaped control valve element 34 is integrally formed with an anchor plate 37 which cooperates with an electromagnetic actuator 38. If this is energized, lifts the control valve member 34 in the axial direction of its control valve seat 36 so that fuel from the valve chamber 32 and subsequently from the control chamber 28 in the low pressure region 12 and from there via the fuel return port 10 and the return line 11 to the reservoir 3 can flow out.
  • the flow cross-sections of the inlet throttle 29, which may alternatively be embodied, for example, in the injector component 27, and the outlet throttle 31 are matched to one another such that when the control valve 33 is open, a net outflow of fuel from the control chamber 28 results. with the result that the fuel pressure in the control chamber 33 drops rapidly and thus a hydraulic opening force acts on the injection valve element 13, which lifts in sequence from its injection valve element seat 23 and the nozzle hole assembly 17 for injecting fuel into the combustion chamber releases.
  • the energization of the electromagnetic actuator 38 is interrupted. With a one end on a shoulder of the pressure pin 35 and the other end on an upper end face of the armature plate 37 supporting the control closing spring 39, the sleeve-shaped control valve member 34 is moved back to its control valve seat 36.
  • the fuel flowing in through the inlet throttle 29 causes an increase in pressure in the control chamber 28, with the result that the injection valve element 13 is moved back onto the injection valve element seat 23 assisted by a closing spring 40.
  • the closing spring 40 is arranged in the high-pressure space 8 projecting into the nozzle body 15 and is supported at one end on a lower end face of the injector component 27 and at the other end against a circumferential collar 41 of the injection valve element 13.
  • the axial channels 16 may be formed as throttle channels, thus reducing the pressure in the nozzle chamber 24 in comparison to the high pressure chamber 8 something.
  • the pressure is advantageously reduced by only about 100 to 200 bar, so that the nozzle chamber 24 and the high-pressure chamber 8 can be regarded as a common space.
  • the fuel injector 1 shown in FIG. 1 provides an annular space 42 extending radially in between the high-pressure chamber 8 and the injector body 19 is located.
  • the annular space 42 extends in the axial direction over the largest part of the axial extent of the injector body 19 and, if necessary, can also project axially into the nozzle body 15.
  • the annular space 42 is bounded radially inwards with respect to the high-pressure space 8 by a tubular portion 43 of the injector component 27.
  • a stepped bore 44 is introduced for this purpose, which delimits the control chamber 28 in its upper end in the drawing plane.
  • the pressure in the annular space 42 is permanently lower than in the high pressure chamber 8. Die Flow cross sections of the chokes to be explained below are adjusted so that the pressure in the annular space 42 does not exceed 1800 bar. As a result, the pressure load of the injector body 19, at least in druckkriti- see areas reduced over most of its axial extent.
  • the supply channel 7 is formed in sections as a bore in a sleeve-shaped connection part 60 screwed to the injector body 19, wherein the supply channel 7 continues in the radial direction into the high-pressure space 8, and thereby the annular space 42 in FIG Passed through radial direction and sealed against this.
  • the injector component 22 is provided with a positive diameter jump 45 (circumferential collar) in the region of the supply channel 7, into which recesses 46 running at a distance from the supply channel 7 are introduced, via which the fuel flows from a lower section of the annular space 42 into an upper one Section of the annular space 42 can flow unhindered and preferably unthrottled.
  • the injector component 27 shown in FIG. 1 does not necessarily have to be made in one piece.
  • the annular space 42 is bounded by the plate section 47 of the injector component 27, which, as mentioned above, can also be embodied as a separate component. This is pressed by a valve clamping screw 48 against an annular shoulder 49 of the injector body 19.
  • a sealing element 50 In the axial direction down the annular space 42 is bounded by a sealing element 50, which is located radially between the lower region of the tubular section 43 of the injector component 27 and the injector body 19.
  • 2500 bar of fuel can flow in the radial direction via an annular space inlet throttle 51 into the annular space 42. From there, fuel flows through an annular component outlet throttle 52 provided in the injector component 27 into the low-pressure region 12 of the fuel injector 1.
  • the flow cross-sections of the annular space inlet throttle 51 and the annular space outlet throttle 52 are matched to one another such that the pressure in the annular space 42, as explained above, does not exceed a maximum pressure of 1800 bar, whereby the pressure load of the injector body 19 is significantly reduced.
  • the annular space inlet throttle 51 and the annular space outlet throttle 52 are designed as throttle bores, whereby alternative production possibilities can also be realized.
  • the annular space inlet throttle 51 and the annular space drain throttle 52 can be made very small, whereby the necessary for the pressure reduction parasitic flow rate is low.
  • the pressure in the annular space 42 does not react to highly dynamic pressure changes in the high-pressure space 8 serving as a minirail, but only to function-related rail pressure changes.
  • FIGS. 2 and 3 further alternative embodiments of a fuel injector 1 are explained with reference to FIGS. 2 and 3.
  • the structure of these embodiments substantially corresponds to that shown in Fig. 1 and before described embodiment.
  • FIG. 1 With regard to common features, reference is made to FIG. 1 and the preceding description of the figures.
  • the pressure in the annular space 42 is not permanently reduced in the embodiment of FIG. 2 compared to the high-pressure chamber 8. This is due to the fact that the fuel from the annular space 42 can only temporarily flow into the low-pressure region 12 of the fuel Inj ector 1.
  • the flow from the high-pressure chamber 8 into the annular space 42 also takes place in the exemplary embodiment shown in FIG. 2 via an annular space inlet throttle 51 designed as a throttle bore.
  • the annular space drain throttle 52 is formed by a pressure relief valve 53 designed as a check valve in the embodiment according to FIG is designed that this opens only in the direction of low pressure area 12 when a minimum pressure in the annular space 42 is exceeded.
  • the overpressure valve 53 comprises a valve element 54 formed as a steel ball, which is acted upon by a spring 55 designed as a flat spring in the direction of a valve seat 56 formed on the injector component 27, more precisely on the plate section 47.
  • a spring 55 designed as a flat spring in the direction of a valve seat 56 formed on the injector component 27, more precisely on the plate section 47.
  • the underside of the valve element 54 via a channel 57 in the injector 27 is permanently in communication with the annulus volume of the annular space 42.
  • the pressure relief valve 53 is dimensioned so that the throttling action of the pressure relief valve 53 has the desired level of pressure reduction in the annular space 42 result.
  • the spring 55 designed as a flat spring is clamped axially between the valve clamping screw 48 and the upper side of the plate section 47 of the injector component 27 in the plane of the drawing.
  • the exemplary embodiment of a fuel injector 1 shown in FIG. 3 functions on the same principle as the exemplary embodiment shown in FIG. 2 and described above.
  • the annular space inlet throttle 51 is not designed as a throttle bore but as a leakage gap between a circumferential collar 58 of the tubular section 43 of the injector component 27 and the injector body 19.
  • a further annular space inlet throttle 51 is provided between the upper positive diameter jump 45 (circumferential collar) and the injector body 19.
  • annular space drain throttle 52 no throttle channel is provided as annular space drain throttle 52.
  • This is formed by the pressure relief valve 53, via which the annular space 42 is connected to the low-pressure region 12 of the fuel Inj ector 1.
  • the valve element 54 is formed by the plate portion 47 of the Injektorbauteils 27. This is in the closed state of the pressure relief valve 53 on the annular shoulder 49 of the injector body 9 on.
  • the overpressure valve 53 is open, the plate section 47 is adjusted in the axial direction upward, so that an annular gap is formed axially between the plate section 47 and a biting edge 59 of the injector body 19, with the flow cross-section of the annular gap being adjusted so that the desired throttling is achieved ,
  • the plate section 47 only lifts off from its valve seat 56 formed by the biting edge 59 on the injector body 19 when the pressure force acting on it exceeds the spring force of a spring 55 designed as a plate spring, which is supported in the axial direction upward on the valve clamping screw 48.
  • the spring 55 tends to press the plate portion 47 axially downwardly against the annular shoulder 49 of the injector body 19.

Abstract

The invention relates to a fuel injector, in particular common rail injector, for injecting fuel into a combustion chamber of an internal combustion engine, having a fuel return port (10) and having a single-part or multi-part injection valve element (13) which can be adjusted between an open position and a closed position and which is arranged at least in sections in a high-pressure chamber (8) which is provided in an injector body (19). According to the invention, an annular chamber (42) is arranged radially between the high-pressure chamber (8) and the injector body (19), in which annular chamber (42), during the operation of the fuel injector (1), the fuel pressure is at least intermittently lower than the fuel pressure in the high-pressure chamber (8) and higher than the fuel pressure in the fuel return port (10).

Description

Beschreibungdescription
Titeltitle
Kraftstoff-InjektorFuel injector
Stand der TechnikState of the art
Die Erfindung betrifft einen Kraftstoff-injektor, insbesondere einen Common-Rail-Injektor, zum Einspritzen von Kraft- Stoff in einen Brennraum einer Brennkraftmaschine gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a fuel injector, in particular a common rail injector, for injecting fuel into a combustion chamber of an internal combustion engine according to the preamble of claim 1.
Die Einhaltung von Schadstoffgrenzwerten hat bei der Entwicklung von Verbrennungsmotoren die höchste Priorität. Ge- rade das Common-Rail-Einspritzsystem hat einen entscheidenden Beitrag zur Reduzierung der Schadstoffe geleistet. Der Vorteil der Common-Rail-Systeme liegt in ihrer Unabhängigkeit des Einspritzdrucks von Drehzahl und Last. Für die Einhaltung zukünftiger Abgaswerte ist jedoch gerade bei Dieselmotoren eine signifikante Erhöhung des Einspritzdruckes notwendig.Compliance with emission limits has the highest priority in the development of internal combustion engines. Especially the common-rail injection system has made a decisive contribution to the reduction of pollutants. The advantage of the common-rail systems lies in their independence of the injection pressure of speed and load. For the compliance with future exhaust gas values, however, a significant increase of the injection pressure is necessary, especially for diesel engines.
Neueste Kraftstoff-Injektoren, wie beispielsweise der in der DE 10 2007 021 330 beschriebene Kraftstoff-Injektor, werden leckagearm ausgeführt, indem auf eine Niederdruckstufe am Einspritzventilelement verzichtet wird. Bauteile wie der Injektorkörper (Gehäuseteil) werden flächendeckend mit Hochdruck beaufschlagt, wodurch im Vergleich zu früheren Kraftstoff-Injektoren ein völlig neuer Belastungsfall entsteht. Gerade bei Raildrücken jenseits von 2000 bar sind nicht nur Bauteilverschneidungen problematisch, sondern auch Materialfehler an an für sich unauffälligen Stellen, wie beispielsweise an einer Zentralbohrung im Injektorkör- per, führen zu Ausfällen. Diese Ausfälle sind statistisch bedingt. Gerade wenn ein Bauteil großflächig mit Druck beaufschlagt wird, wird es immer wahrscheinlicher, dass das Bauteil unter hohen Druckbelastungen aufgrund eines Gefüge- fehlers versagt. Diese Versagensart ist mit herkömmlichen Berechnungsverfahren nur schwer zu bewerten, weil das Versagen nicht an Stellen auftritt, die durch eine Spannungsspitze charakterisiert sind, sondern vielmehr an Stellen, die von der Spannungsverteilung her weniger kritisch sind.Latest fuel injectors, such as the fuel injector described in DE 10 2007 021 330, are carried out low leakage, by dispensing with a low-pressure stage on the injection valve element. Components such as the injector body (housing part) are subjected to high pressure throughout the entire area, resulting in a completely new load case compared to earlier fuel injectors. Especially at rail pressures beyond 2000 bar, not only component intersections are problematic, but also material defects on at inconspicuous places, such as at a central bore in Injektorkör- per, lead to failures. These failures are statistically determined. Especially when a component is subjected to pressure over a large area, it becomes more and more probable that the component will fail under high pressure loads due to a structural defect. This type of failure is difficult to evaluate with conventional computational methods because failure does not occur at locations characterized by a peak stress, but rather at locations that are less critical in terms of stress distribution.
Daher müssen zur Herstellung von Kraftstoff-Injektoren für höchste Einspritzdrücke von wesentlich größer als 2000 bar äußerst kostenintensive Spezialwerkstoffe eingesetzt werden, wobei nicht nur der Werkstoff an sich, sondern auch dessen Bearbeitung mit hohen Kosten verbunden ist.Therefore, for the production of fuel injectors for highest injection pressures of much greater than 2000 bar extremely expensive specialty materials must be used, whereby not only the material itself, but also its processing is associated with high costs.
Offenbarung der Erfindung Technische AufgabeDISCLOSURE OF THE INVENTION Technical Problem
Der Erfindung liegt die Aufgabe zugrunde, einen für höchste Einspritzdrücke ausgelegten Kraftstoff-Injektor vorzuschlagen. Bevorzugt soll dieser mit herkömmlichen Werkstoffen wie beispielsweise C45-Stahl herstellbar sein.The invention has for its object to propose a designed for highest injection pressures fuel injector. Preferably, this should be produced with conventional materials such as C45 steel.
Technische LösungTechnical solution
Diese Aufgabe wird mit einem Kraftstoff-Injektor mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben. In den Rahmen der Erfindung fallen sämtliche Kombinationen aus zumindest zwei von in der Beschreibung, den Ansprüchen und/oder den Figuren offenbarten Merkmalen. Der Erfindung liegt der Gedanke zugrunde, radial zwischen dem Injektorkörper (Gehäuseteil) und einem, vorzugsweise als inj ektorseitiger Raildruckspeicher (Minirail) ausgebildeten, Hochdruckraum einen Ringraum anzuordnen, in dem dau- erhaft oder zeitweise ein geringerer Kraftstoff-Druck als im Hochdruckraum und ein höherer Kraftstoffdruck als im Niederdruckbereich des Kraftstoff-Injektors herrscht. Auf diese Weise wird erreicht, dass auf die den Ringraum radial innen begrenzende Umfangswand lediglich der Differenzdruck aus dem Kraftstoff-Druck im Hochdruckraum und dem Kraftstoff-Druck im Ringraum wirkt. Die auf den außen angeordneten Injektorkörper wirkende Belastung ist ebenfalls reduziert, da dieser lediglich dem Kraftstoff-Druck im Ringraum ausgesetzt ist. Durch das Vorsehen eines Ringraums mit ge- ringerem Hydraulikdruck als der Hochdruckraum wird der Druck also von radial innen nach radial außen stufenweise abgebaut, so dass kritische Materialbelastungen vermieden werden können. Auf diese Weise ist es möglich, dass auch Injektorkörper von für weit über 2000 bar ausgelegte Kraft- stoff-Injektoren mit herkömmlichen Werkstoffen, wie C45- Stahl, ausgeführt werden können, insbesondere dann, wenn der Kraftstoff-Druck im Ringraum etwa 1800 bar nicht überschreitet. Soll der Druck im Hochdruckraum des Kraftstoff- Injektors beispielsweise maximal 2000 bar betragen, ist es in der Regel ausreichend, wenn die Druckdifferenz zwischen dem Ringraum und dem Hochdruckraum etwa 200 bar beträgt.This object is achieved with a fuel injector having the features of claim 1. Advantageous developments of the invention are specified in the subclaims. All combinations of at least two features disclosed in the description, the claims and / or the figures fall within the scope of the invention. The invention is based on the idea of arranging an annular space radially between the injector body (housing part) and a high-pressure chamber, preferably as an injector-side rail pressure accumulator (minirail), in which permanently or temporarily a lower fuel pressure than in the high-pressure space and a higher one Fuel pressure prevails as in the low pressure region of the fuel injector. In this way, it is achieved that only the differential pressure from the fuel pressure in the high-pressure chamber and the fuel pressure in the annular space acts on the annular space bounding the annular space radially inside. The load acting on the outer injector body is also reduced because it is only exposed to the fuel pressure in the annulus. By providing an annular space with lower hydraulic pressure than the high-pressure space, the pressure is thus gradually reduced from radially inward to radially outward, so that critical material loads can be avoided. In this way it is possible for injector bodies of fuel injectors designed for well over 2000 bar to be designed with conventional materials such as C45 steel, in particular if the fuel pressure in the annular space does not exceed about 1800 bar , If the pressure in the high-pressure chamber of the fuel injector is, for example, at most 2000 bar, it is generally sufficient if the pressure difference between the annular space and the high-pressure space is approximately 200 bar.
Besonders bevorzugt ist eine Ausführungsform des Kraftstoff-Injektors, bei der der Druck im Ringraum während des Betriebs des Kraftstoffs-Injektors mindestens halb so hoch ist wie der Druck im Druckraum um somit die Abtrennung zwischen dem Ringraum und dem Hochdruckraum nicht über Gebühr zu belasten. Besonders bevorzugt ist eine Ausführungsform, bei der der aus dem Kraftstoff-Versorgungsanschluss von einem externen Kraftstoff-Hochdruckspeicher (Rail) zuströmende Kraftstoff unmittelbar in den Hochdruckraum geleitet wird. Bevorzugt ist hierzu ein den Ringraum in radialer Richtung durchsetzender Kanal vorgesehen, der beispielsweise von dem den Ringraum radial innen begrenzenden Injektorbauteil gebildet ist .Particularly preferred is an embodiment of the fuel injector, wherein the pressure in the annular space during operation of the fuel injector is at least half as high as the pressure in the pressure chamber so as not to burden the separation between the annulus and the high-pressure chamber overly. Particularly preferred is an embodiment in which the fuel flowing in from the fuel supply connection from an external high-pressure fuel accumulator (rail) is conducted directly into the high-pressure space. For this purpose, a channel passing through the annular space in the radial direction is preferably provided, which is formed, for example, by the injector component which radially bounds the annular space.
Bevorzugt handelt es sich bei dem Kraftstoff-Injektor um einen sogenannten leckagearmen Injektor, vorzugsweise ohne dauerhafte, auf das ein- oder mehrteilig ausgebildete Einspritzventilelement wirkende, eine hydraulische Schließ- kraft erzeugende, Niederdruckstufe. Derartige Kraftstoff- Injektoren werden bevorzugt mit einem langen Einspritzventilelement ausgestattet, dessen Axialerstreckung bevorzugt mindestens 50%, vorzugsweise mindestens 60% oder 70% der Axialerstreckung des gesamten Kraftstoff-Injektors ent- spricht. Dabei ist eine Ausführungsform besonders bevorzugt, bei der sich der Hochdruckraum, in dem das Einspritzventilelement aufgenommen ist, in axialer Richtung bis zu einer Düsenlochanordnung erstreckt, wobei der Hochdruckraum bei Bedarf in zwei axial benachbarte Raumabschnitte unter- teilt werden kann, zwischen denen eine Schließdrossel angeordnet ist, um den Kraftstoff-Druck im Bereich einer Ein- spritzventilelementspitze etwas, beispielsweise um 100 bis 200 bar, abzusenken, um hierdurch eine hydraulische Schließkraftkomponente zu erzeugen. Besonders bevorzugt ist eine Ausführungsform, bei der sich der Hochdruckraum in axialer Richtung bis in einen axial zu dem Injektorkörper benachbarten Düsenkörper hineinerstreckt, wobei in diesem Fall auch eine Ausführungsform realisierbar ist, bei der sich der zwischen dem Injektorkörper und dem Hochdruckraum ausgebildete, druckreduzierte Ringraum in axialer Richtung bis in den Düsenkörper hineinerstreckt.The fuel injector is preferably a so-called low-leakage injector, preferably without a permanent, low-pressure stage which produces a hydraulic closing force acting on the one-part or multi-part injection valve element. Such fuel injectors are preferably equipped with a long injection valve element whose axial extent preferably corresponds to at least 50%, preferably at least 60% or 70%, of the axial extent of the entire fuel injector. In this case, an embodiment is particularly preferred in which the high-pressure space in which the injection valve element is accommodated extends in the axial direction as far as a nozzle hole arrangement, wherein the high-pressure space can be subdivided as required into two axially adjacent space sections, between which a closing throttle is arranged is to lower the fuel pressure in the region of an injection valve element tip slightly, for example by 100 to 200 bar, thereby to produce a hydraulic closing force component. Particularly preferred is an embodiment in which the high-pressure chamber extends in the axial direction into a nozzle body which is axially adjacent to the injector body, in which case an embodiment can also be realized in which the pressure-reduced annular space formed between the injector body and the high-pressure chamber extends in the axial direction as far as into the nozzle body.
Zur Erzielung der benötigten Druckabsenkung im Ringraum ist es denkbar eine in Reihe geschaltete Drosselkombination zu realisieren, die aus mindestens einer Ringraumzulaufdrossel und mindestens einer Ringraumablaufdrossel besteht, wobei über die Ringraumzulaufdrossel unter Hochdruck, insbesonde- re zumindest näherungsweise unter Raildruck, stehender Kraftstoff in den Ringraum zuströmen kann. Über die Ringraumablaufdrossel kann wiederum Kraftstoff aus dem Ringraum in Richtung des Niederdruckbereichs des Kraftstoff- Injektors abströmen, wobei die Durchflussquerschnitte der mindestens einen Ringraumzulaufdrossel und der mindestens einen Ringraumablaufdrossel derart dimensioniert sind, dass sich der gewünschte Druckunterschied zwischen Ringraum und Hochdruckraum einstellt. Dieser Druckabsenkungsmechanismus ist vergleichbar zur an sich bekannten Steuerraumdruckab- Senkung, wie diese von servogesteuerten Kraftstoff- Injektoren bekannt ist. Der wesentliche Unterschied besteht darin, dass der Ringraumdruck im Vergleich zum Steuerraumdruck keinen Einfluss auf das Einspritzverhalten des Kraftstoff-Injektors hat, so dass an die mindestens eine Ring- raumzulaufdrossel und die mindestens eine Ringraumablaufdrossel eine geringere Genauigkeitsanforderung bei der Fertigung gestellt werden kann. Besonders vorteilhaft ist es, wenn die mindestens eine Ringraumzulaufdrossel und/oder die mindestens eine Ringraumablaufdrossel konstruktiv über eine Führung und/oder einen Leckspalt realisiert sind, wodurch zusätzliche Arbeitsschritte zur Herstellung von Drosselbohrungen eingespart werden können. Selbstverständlich ist es auch möglich zumindest eine der Drosseln als Drosselbohrung auszuführen .To achieve the required pressure reduction in the annular space, it is conceivable to realize a series-connected throttle combination, which consists of at least one annular space inlet throttle and at least one annular space drain throttle, flowing over the annular space inlet throttle under high pressure, in particular at least approximately under rail pressure, standing fuel in the annulus can. Fuel can in turn flow out of the annular space in the direction of the low-pressure region of the fuel injector via the annular space drain throttle, wherein the flow cross-sections of the at least one annular space inlet throttle and the at least one annular space drain throttle are dimensioned such that the desired pressure difference between annular space and high-pressure space adjusts. This pressure reduction mechanism is comparable to known Steuerraumdruckab- reduction, as is known from servo-controlled fuel injectors. The essential difference is that the annular space pressure in comparison to the control chamber pressure has no influence on the injection behavior of the fuel injector, so that a lower accuracy requirement can be made in the production of the at least one annular space inlet throttle and the at least one annulus flow restrictor. It is particularly advantageous if the at least one annular space inlet throttle and / or the at least one annular space outlet throttle are structurally realized via a guide and / or a leak gap, as a result of which additional working steps for producing throttle bores can be saved. Of course it is also possible to perform at least one of the throttles as a throttle bore.
Die mindestens eine Ringraumablaufdrossel kann auch durch ein später noch zu erläuterndes Überdruckventil ersetzt bzw. gebildet werden.The at least one annulus drain can also be replaced or formed by a pressure relief valve to be explained later.
Besonders bevorzugt ist eine Ausführungsform des Kraftstoff-Injektors, bei der Druck im Ringraum nicht während der gesamten Betriebszeit gegenüber dem Druck im Hochdruckraum abgesenkt wird, sondern nur zu Zeiten, in denen der Druck im Hochdruckraum eine kritische Grenze überschreitet. Dies ist in der Regel nur dann der Fall, wenn der Verbrennungsmotor unter Volllast betrieben wird. Anders ausge- drückt ist eine Ausführungsform bevorzugt, bei der der Druck im Ringraum im Vergleich zum Druck im Hochdruckraum erst ab Überschreiten eines Mindestdrucks, insbesondere von etwa 1800 bar, reduziert ist bzw. reduziert wird.Particularly preferred is an embodiment of the fuel injector, is not lowered in the pressure in the annulus during the entire operating time against the pressure in the high pressure chamber, but only at times when the pressure in the high pressure chamber exceeds a critical limit. This is usually only the case when the internal combustion engine is operated under full load. In other words, an embodiment is preferred in which the pressure in the annular space is reduced or reduced in comparison with the pressure in the high-pressure space only when a minimum pressure, in particular of approximately 1800 bar, is exceeded.
Diese Forderung kann konstruktiv dadurch realisiert werden, dass in KraftstoffStrömungsrichtung zwischen dem Ringraum und dem Niederdruckbereich des Kraftstoff-Injektors mindestens ein Überdruckventil vorgesehen ist, welches bevorzugt als Rückschlagventil ausgebildet ist. Dabei ist eine Aus- führungsform besonders bevorzugt, bei der das Überdruckventil derart ausgelegt ist, dass es im geöffneten Zustand als Ringraumablaufdrossel wirkt, so dass sich der gewünschte Ringraumdruck definiert einstellt. Durch die nur zeitweise Öffnung des Überdruckventils kann die parasitäre Ablaufmen- ge auf ein absolutes Minimum reduziert werden.This requirement can be realized constructively in that at least one pressure relief valve is provided in the fuel flow direction between the annulus and the low pressure region of the fuel injector, which is preferably designed as a check valve. In this case, an embodiment is particularly preferred in which the overpressure valve is designed in such a way that it acts as an annular space outlet throttle in the open state, so that the desired annular space pressure is set in a defined manner. Due to the only temporary opening of the pressure relief valve, the parasitic drainage quantity can be reduced to an absolute minimum.
Bevorzugt umfasst das Überdruckventil mindestens eine Feder, die ein verstellbares Ventilelement federkraftbeauf- schlagt. Besonders bevorzugt handelt es sich bei der Feder um eine Blattfeder und/oder bei dem Ventilelement um eine, insbesondere als Stahlkugel ausgebildete, Ventilkugel. Konstruktiv elegant ist eine Ausführungsform, bei der das Ven- tilelement von der Feder auf einen an einem den Niederdruckbereich axial begrenzenden Injektorbauteil ausgebildeten Ventilsitz gepresst wird. Dabei kann die Blattfeder beispielsweise axial zwischen einer Ventilspannschraube zum Festlegen des Injektorbauteils im Injektorkörper und dem Injektorbauteil geklemmt werden.Preferably, the overpressure valve comprises at least one spring which has an adjustable valve element spring-force-loaded. beat. The spring is particularly preferably a leaf spring and / or the valve element is a valve ball, in particular designed as a steel ball. Structurally elegant is an embodiment in which the valve element is pressed by the spring onto a valve seat which is formed on an injector component axially delimiting the low-pressure region. In this case, for example, the leaf spring can be clamped axially between a valve clamping screw for securing the injector component in the injector body and the injector component.
Alternativ ist eine Ausführungsform realisierbar, bei der das verstellbare Ventilelement des Überdruckventils von dem den Niederdruckbereich axial begrenzenden Injektorbauteil gebildet ist, wobei dieses Injektorbauteil in diesem Fall mittels einer Feder, beispielsweise einer Dehnhülse oder einer Tellerfeder, gegen den Injektorkörper federkraftbeaufschlagt ist. Besonders bevorzugt ist es dabei, wenn der Kraftstoff aus dem Ringraum bei geöffnetem Überdruckventil durch einen ringförmigen Leckagespalt in den Niederdruckbereich des Kraftstoff-Injektors strömt, wobei der Leckagespalt, vorzugsweise axial, zwischen dem Injektorbauteil und dem Injektorkörper gebildet ist, wobei zur Gewährleistung einer ausreichenden Dichtheit des geschlossenen Überdruck- ventils am Injektorkörper und/oder am Injektorbauteil bevorzugt mindestens eine Beißkante ausgebildet ist.Alternatively, an embodiment can be realized in which the adjustable valve element of the pressure relief valve is formed by the low pressure region axially limiting injector component, said injector component is in this case by means of a spring, for example an expansion sleeve or a disc spring, against the injector body spring-loaded. It is particularly preferred if the fuel from the annulus with open pressure relief valve flows through an annular leakage gap in the low pressure region of the fuel injector, wherein the leakage gap, preferably axially, is formed between the Injektorbauteil and the injector, wherein to ensure sufficient tightness of the closed overpressure valve on the injector body and / or on the injector component, preferably at least one biting edge is formed.
Bevorzugt ist die Feder des Überdruckventils derart angeordnet, dass die Vorspannung der Feder und damit der maxi- male Druck des Ringraums mittels einer Ventilspannschraube einstellbar ist, wobei die Ventilspannschraube vorzugsweise eine Axialsicherung für das den Niederdruckbereich des Kraftstoff-Injektors in axialer Richtung begrenzende Injektorbauteil ist.Preferably, the spring of the pressure relief valve is arranged such that the bias of the spring and thus the maximum pressure of the annular space is adjustable by means of a valve clamping screw, the valve clamping screw preferably an axial securing for the low pressure region of the Fuel injector in the axial direction limiting injector component.
Kurze Beschreibung der ZeichnungenBrief description of the drawings
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnungen. Diese zeigen in:Further advantages, features and details of the invention will become apparent from the following description of preferred embodiments and from the drawings. These show in:
Fig. 1: eine erste Ausführungsform eines Kraftstoff- Injektors mit einem zwischen einem Hochdruckraum und einem Injektorkörper ausgebildeten Ringraum in dem der Kraftstoff-Druck im Betrieb des Kraft- Stoff-Inj ektors gegenüber dem Kraftstoff-Druck im1 shows a first embodiment of a fuel injector with an annular space formed between a high-pressure chamber and an injector body in which the fuel pressure during operation of the fuel injector relative to the fuel pressure in
Hochdruckraum dauerhaft reduziert ist,High pressure space is permanently reduced,
Fig. 2: eine alternative, zweite Ausführungsform eines Kraftstoff-Inj ektors mit einem zwischen Ringraum und Niederdruckbereich des Kraftstoff-Injektors angeordneten, als Rückschlagventil ausgebildeten Überdruckventils, das die Aufgabe hat, den Kraftstoff-Druck im Ringraum nur bei Überschreiten eines Mindestdrucks zu reduzieren undFig. 2: an alternative, second embodiment of a fuel Inj ector arranged between the annulus and low pressure region of the fuel injector designed as a check valve overpressure valve, which has the task to reduce the fuel pressure in the annulus only when a minimum pressure is exceeded and
Fig. 3: ein weiteres alternatives, drittes Ausführungsbeispiel eines Kraftstoff-Injektors, bei dem das Ventilelement des Überdruckventils von einem eine Steuerkammer begrenzenden Injektorbauteil gebil- det ist. Ausführungsformen der Erfindung3 shows a further alternative, third exemplary embodiment of a fuel injector, in which the valve element of the pressure relief valve is formed by an injector component delimiting a control chamber. Embodiments of the invention
In den Figuren sind gleiche Bauteile und Bauteile mit der gleichen Funktion mit den gleichen Bezugszeichen gekenn- zeichnet.In the figures, the same components and components with the same function with the same reference numerals are marked.
In Fig. 1 ist ein als Common-Rail-Injektor ausgebildeter Kraftstoff-Injektor 1 zum Einspritzen von Kraftstoff in einen nicht gezeigten Brennraum einer Brennkraftmaschine ei- nes Kraftfahrzeugs dargestellt. Eine Hochdruckpumpe 2 fördert Kraftstoff von einem Vorratsbehälter 3 in einen Kraftstoff-Hochdruckspeicher 4 (Rail) . In diesem ist Kraftstoff, insbesondere Diesel oder Benzin, unter hohem Druck, von in diesem Ausführungsbeispiel etwa 2500 bar, gespeichert. An den Kraftstoff-Hochdruckspeicher 4 ist der Kraftstoff- Injektor 1 neben anderen, nicht gezeigten Injektoren über eine Versorgungsleitung 5 angeschlossen. Diese Versorgungsleitung 5 führt zu einem Kraftstoff-Versorgungsanschluss 6 des Kraftstoff-Inj ektors 1, der über einen Versorgungskanal 7 zu einem zentrischen, als Minirail dienenden Hochdruckraum 8 führt. In diesem Hochdruckraum 8 herrscht im Wesentlichen Raildruck von etwa 2500 bar. An einem Injektordeckel 9 ist ein Kraftstoffrücklaufanschluss 10 vorgesehen, an den eine Rücklaufleitung 11 angeschlossen ist. Über den Kraft- stoffrücklaufanschluss 10 und die Rücklaufleitung 11 kann eine später noch zu erläuternde Steuermenge sowie eine Leckagemenge an Kraftstoff aus einem Niederdruckbereich 12 des Kraftstoff-Inj ektors 1 zu dem ebenfalls auf Niederdruck von etwa 1 bis 10 bar liegenden Vorratsbehälter 3 abflie- ßen.FIG. 1 shows a fuel injector 1 designed as a common-rail injector for injecting fuel into a combustion chamber, not shown, of an internal combustion engine of a motor vehicle. A high pressure pump 2 delivers fuel from a reservoir 3 into a high-pressure fuel accumulator 4 (rail). In this fuel, especially diesel or gasoline, under high pressure, of about 2500 bar in this embodiment, stored. To the high-pressure fuel accumulator 4, the fuel injector 1 is connected, among other injectors, not shown, via a supply line 5. This supply line 5 leads to a fuel supply connection 6 of the fuel Inj ector 1, which leads via a supply channel 7 to a central, serving as a minirail high pressure chamber 8. In this high-pressure chamber 8 there is essentially rail pressure of about 2500 bar. At a Injektordeckel 9, a fuel return port 10 is provided, to which a return line 11 is connected. By way of the fuel return connection 10 and the return line 11, a control quantity to be explained later and a leakage quantity of fuel can be discharged from a low-pressure region 12 of the fuel injector 1 to the reservoir 3, which is also at low pressure of approximately 1 to 10 bar.
Innerhalb des Hochdruckraums 8 ist ein in dem gezeigten Ausführungsbeispiel einteiliges Einspritzventilelement 13 axial verstellbar aufgenommen. Alternativ ist das Einspritzventilelement 13 mehrteilig ausgeführt und besteht beispielsweise aus einer oberen Steuerstange und einer unteren Düsennadel.Within the high-pressure chamber 8, an injection valve element 13 which is integral in the embodiment shown is one recorded axially adjustable. Alternatively, the injection valve element 13 is designed in several parts and consists for example of an upper control rod and a lower nozzle needle.
Das Einspritzventilelement 13 ist längsverschieblich in einer Führungsbohrung 14 eines in der Zeichnungsebene unteren Düsenkörpers 15 geführt. Dabei sind am Außenumfang des Einspritzventilelementes 13 im Bereich seiner unteren Führung Axialkanäle 16 als Anschliffe realisiert, über die der Kraftstoff bei geöffnetem Einspritzventilelement 13 in axialer Richtung nach unten zu einer Düsenlochanordnung 17 strömen kann. Der Düsenkörper 15 ist mittels einer Überwurfmutter 18 mit einem Injektorkörper 19 verspannt. Der Injektorkörper 19 bildet bei dem gezeigten Ausführungsbeispiel das größte Gehäuseteil eines Gehäuses 20.The injection valve element 13 is guided longitudinally displaceable in a guide bore 14 of a lower nozzle body 15 in the drawing plane. In this case, axial channels 16 are realized on the outer circumference of the injection valve element 13 in the region of its lower guide as polished sections, via which the fuel can flow in the axial direction down to a nozzle hole arrangement 17 when the injection valve element 13 is open. The nozzle body 15 is clamped by means of a union nut 18 with an injector body 19. In the exemplary embodiment shown, the injector body 19 forms the largest housing part of a housing 20.
Das Einspritzventilelement 13 weist an seiner Spitze 21 eine Schließfläche 22 auf, mit der das Einspritzventilelement 13 in dichte Anlage an einen innerhalb des Düsenkörpers 15 ausgebildeten Einspritzventilelementsitz 23 bringbar ist. Wenn das Einspritzventilelement 13 an seinem Einspritzventilelementsitz 23 anliegt, d.h. sich in einer Schließstellung befindet, ist der Kraftstoffaustritt aus der Düsen- lochanordnung 17 gesperrt. Ist es dagegen von seinem Einspritzventilelementsitz 23 abgehoben, kann Kraftstoff aus dem Hochdruckraum 8 in axialer Richtung über die Axialkanäle 16 in einen unteren, als Ringraum ausgebildeten Düsenraum 24 und von dort aus am Einspritzventilelementsitz 23 vorbei zur Düsenlochanordnung 17 strömen und dort im Wesentlichen unter Hochdruck (Raildruck) stehend in den Brennraum (nicht gezeigt) gespritzt werden. Von einer oberen Stirnseite 25 des Einspritzventilelements 13 und einem Steuerraumabschnitt 26 eines Injektorbauteils 27 wird eine Steuerkammer 28 begrenzt, die über eine in das Einspritzventilelement 13 eingebrachte Zulaufdrossel 29 mit Kraftstoff aus dem Hochdruckraum 8 versorgt wird. Die Steuerkammer 28 ist über einen axial im Injektorbauteil 27 verlaufenden Ablaufkanal 30 mit Ablaufdrossel 31 mit einer Ventilkammer 32 eines Steuerventils 33 (Servo-Ventil) verbunden. Die Ventilkammer 32 wird radial außen von einem hülsenförmigen Steuerventilelement 34 begrenzt. Das hülsen- förmige Steuerventilelement 34 ist in seiner Schließstellung in axialer Richtung im Wesentlichen druckausgeglichen. Die Ventilkammer 32 wird in axialer Richtung nach oben von einem Druckstift 35 begrenzt, der sich axial am Injektorde- ekel 9 abstützt und als von dem Injektorbauteil 27 separates Bauteil ausgebildet ist. Ein mit dem hülsenförmigen Steuerventilelement 34 zusammenwirkender Steuerventilsitz 36 (hier Flachsitz) ist am Injektorbauteil 27 ausgebildet.The injection valve element 13 has at its tip 21 a closing surface 22 with which the injection valve element 13 can be brought into tight contact with an injection valve element seat 23 formed inside the nozzle body 15. When the injection valve element 13 abuts against its injection valve element seat 23, ie is in a closed position, the fuel outlet from the nozzle hole arrangement 17 is blocked. If, on the other hand, it is lifted off its injection valve element seat 23, fuel can flow from the high-pressure chamber 8 in the axial direction via the axial channels 16 into a lower nozzle space 24 designed as an annular space and from there past the injection valve element seat 23 to the nozzle hole arrangement 17 and there substantially under high pressure (FIG. Rail pressure) standing in the combustion chamber (not shown) to be injected. From an upper end face 25 of the injection valve element 13 and a control chamber portion 26 of an injector 27, a control chamber 28 is limited, which is supplied via an introduced into the injection valve element 13 inlet throttle 29 with fuel from the high-pressure chamber 8. The control chamber 28 is connected via a axially extending in the injector component 27 drain passage 30 with outlet throttle 31 with a valve chamber 32 of a control valve 33 (servo-valve). The valve chamber 32 is bounded radially on the outside by a sleeve-shaped control valve element 34. The sleeve-shaped control valve element 34 is substantially pressure-balanced in its closed position in the axial direction. The valve chamber 32 is bounded in the axial direction upward by a pressure pin 35, which is supported axially on Injektorde- disgust 9 and is formed as a component separate from the injector component 27. A co-operating with the sleeve-shaped control valve element 34 control valve seat 36 (here flat seat) is formed on the injector component 27.
Das hülsenförmige Steuerventilelement 34 ist einteilig mit einer Ankerplatte 37 ausgebildet, die mit einem elektromagnetischen Aktuator 38 zusammenwirkt. Wird dieser bestromt, hebt das Steuerventilelement 34 in axialer Richtung von seinem Steuerventilsitz 36 ab, so dass Kraftstoff aus der Ventilkammer 32 und in der Folge aus der Steuerkammer 28 in den Niederdruckbereich 12 und von dort aus über den Kraftstoffrücklaufanschluss 10 und die Rücklaufleitung 11 zum Vorratsbehälter 3 abströmen kann. Dabei sind die Durchflussquerschnitte der Zulaufdrossel 29, die alternativ bei- spielsweise auch im Injektorbauteil 27 ausgebildet sein kann, und der Ablaufdrossel 31 derart aufeinander abgestimmt, dass bei geöffnetem Steuerventil 33 ein Nettoab- fluss von Kraftstoff aus der Steuerkammer 28 resultiert, mit der Folge, dass der Kraftstoffdruck in der Steuerkammer 33 rapide abfällt und somit eine hydraulische Öffnungskraft auf das Einspritzventilelement 13 wirkt, welches in der Folge von seinem Einspritzventilelementsitz 23 abhebt und die Düsenlochanordnung 17 zum Einspritzen von Kraftstoff in den Brennraum freigibt.The sleeve-shaped control valve element 34 is integrally formed with an anchor plate 37 which cooperates with an electromagnetic actuator 38. If this is energized, lifts the control valve member 34 in the axial direction of its control valve seat 36 so that fuel from the valve chamber 32 and subsequently from the control chamber 28 in the low pressure region 12 and from there via the fuel return port 10 and the return line 11 to the reservoir 3 can flow out. In this case, the flow cross-sections of the inlet throttle 29, which may alternatively be embodied, for example, in the injector component 27, and the outlet throttle 31 are matched to one another such that when the control valve 33 is open, a net outflow of fuel from the control chamber 28 results. with the result that the fuel pressure in the control chamber 33 drops rapidly and thus a hydraulic opening force acts on the injection valve element 13, which lifts in sequence from its injection valve element seat 23 and the nozzle hole assembly 17 for injecting fuel into the combustion chamber releases.
Zum Beenden des Einspritzvorgangs wird die Bestromung des elektromagnetischen Aktuators 38 unterbrochen. Mit einer sich einenends an einer Schulter des Druckstiftes 35 und anderenends an einer oberen Stirnseite der Ankerplatte 37 abstützenden Steuerschließfeder 39 wird das hülsenförmige Steuerventilelement 34 zurück auf seinen Steuerventilsitz 36 bewegt. Der durch die Zulaufdrossel 29 nachströmende Kraftstoff sorgt für eine Druckerhöhung in der Steuerkammer 28 mit der Folge, dass das Einspritzventilelement 13 unterstützt durch eine Schließfeder 40 zurück auf den Einspritzventilelementsitz 23 bewegt wird. Die Schließfeder 40 ist dabei in dem in den Düsenkörper 15 hineinragenden Hoch- druckraum 8 angeordnet und stützt sich einenends an einer unteren Stirnseite des Injektorbauteils 27 und anderenends an einem Umfangsbund 41 des Einspritzventilelementes 13 ab. Zum Erzeugen einer ausreichend hohen Schließkraft können die Axialkanäle 16 als Drosselkanäle ausgebildet sein, um somit den Druck im Düsenraum 24 im Vergleich zum Hochdruckraum 8 etwas zu reduzieren. Der Druck wird jedoch mit Vorteil etwa nur um etwa 100 bis 200 bar reduziert, so dass der Düsenraum 24 und der Hochdruckraum 8 als ein gemeinsamer Raum angesehen werden können. Durch den durch das Schließen des Einspritzventilelementes 13 hervorgerufenen abrupten Abfall der Einspritzrate entsteht im Düsenraum 24 und vor allem im Hochdruckraum 8 ein Druckstoß (Joukowski- Stoß) der am Kraftstoff-Hochdruckspeicher 4 reflektiert wird. Diese Mengenwellen führen zu Druckschwingungen. Die dadurch bedingten Spitzendrücke können mehrere hundert bar über dem maximalen Raildruck liegen, wodurch der gesamte Kraftstoff-Injektor 1 sowie das Versorgungssystem entspre- chend auf die Spitzendrücke ausgelegt werden müssen.To end the injection process, the energization of the electromagnetic actuator 38 is interrupted. With a one end on a shoulder of the pressure pin 35 and the other end on an upper end face of the armature plate 37 supporting the control closing spring 39, the sleeve-shaped control valve member 34 is moved back to its control valve seat 36. The fuel flowing in through the inlet throttle 29 causes an increase in pressure in the control chamber 28, with the result that the injection valve element 13 is moved back onto the injection valve element seat 23 assisted by a closing spring 40. The closing spring 40 is arranged in the high-pressure space 8 projecting into the nozzle body 15 and is supported at one end on a lower end face of the injector component 27 and at the other end against a circumferential collar 41 of the injection valve element 13. To generate a sufficiently high closing force, the axial channels 16 may be formed as throttle channels, thus reducing the pressure in the nozzle chamber 24 in comparison to the high pressure chamber 8 something. However, the pressure is advantageously reduced by only about 100 to 200 bar, so that the nozzle chamber 24 and the high-pressure chamber 8 can be regarded as a common space. By caused by the closing of the injection valve element 13 abrupt drop in the injection rate arises in the nozzle chamber 24 and especially in the high-pressure chamber 8 a pressure surge (Joukowski shock) of the fuel high-pressure accumulator 4 reflected becomes. These volume waves lead to pressure oscillations. The resulting peak pressures may be several hundred bar above the maximum rail pressure, whereby the entire fuel injector 1 and the supply system must be designed according to the peak pressures.
Um zu ermöglichen, dass der Injektorkörper 19 nicht über die Maßen druckbelastet wird und in der Folge aus herkömmlichen Stählen, wie beispielsweise C45, hergestellt werden kann, sieht der in Fig. 1 gezeigte Kraftstoff-Injektor 1 einen Ringraum 42 vor, der sich radial zwischen dem Hochdruckraum 8 und dem Injektorkörper 19 befindet. Der Ringraum 42 erstreckt sich in axialer Richtung über den größten Teil der Axialerstreckung des Injektorkörpers 19 und kann bei Bedarf auch axial bis in den Düsenkörper 15 hineinragen .In order to allow the injector body 19 to not be overly stressed and subsequently made from conventional steels such as C45, the fuel injector 1 shown in FIG. 1 provides an annular space 42 extending radially in between the high-pressure chamber 8 and the injector body 19 is located. The annular space 42 extends in the axial direction over the largest part of the axial extent of the injector body 19 and, if necessary, can also project axially into the nozzle body 15.
Der Ringraum 42 wird radial innen gegenüber dem Hochdruckraum 8 begrenzt von einem rohrförmigen Abschnitt 43 des In- jektorbauteils 27. Im Injektorbauteil 27 ist hierzu eine Stufenbohrung 44 eingebracht, die in ihrem in der Zeichnungsebene oberen Ende die Steuerkammer 28 begrenzt. Im Ringraum 42 herrscht dauerhaft ein geringerer Kraftstoffdruck als im Hochdruckraum 8 und dauerhaft ein höherer Kraftstoffdruck als im Niederdruckbereich 12 des Kraftstoff-Injektors 1. Durch mittels einer im Folgenden noch zu erläuternden Drosselanordnung ist der Druck im Ringraum 42 dauerhaft geringer als im Hochdruckraum 8. Die Durchflussquerschnitte der im Folgenden noch zu erläuternden Drosseln sind dabei derart abgestimmt, dass der Druck im Ringraum 42 1800 bar nicht überschreitet. Hierdurch wird die Druckbelastung des Injektorkörpers 19, zumindest in druckkriti- sehen Bereichen über den größten Teil seiner Axialerstreckung reduziert.The annular space 42 is bounded radially inwards with respect to the high-pressure space 8 by a tubular portion 43 of the injector component 27. In the injector component 27, a stepped bore 44 is introduced for this purpose, which delimits the control chamber 28 in its upper end in the drawing plane. In the annular space 42 there is permanently a lower fuel pressure than in the high pressure chamber 8 and permanently higher fuel pressure than in the low pressure region 12 of the fuel injector 1. By means of a throttle arrangement to be explained below, the pressure in the annular space 42 is permanently lower than in the high pressure chamber 8. Die Flow cross sections of the chokes to be explained below are adjusted so that the pressure in the annular space 42 does not exceed 1800 bar. As a result, the pressure load of the injector body 19, at least in druckkriti- see areas reduced over most of its axial extent.
Wie sich aus Fig. 1 ergibt, ist der Versorgungskanal 7 ab- schnittsweise als Bohrung in einem mit dem Injektorkörper 19 verschraubten, hülsenförmigen Anschlussteil 60 ausgebildet, wobei sich der Versorgungskanal 7 in radialer Richtung in den Hochdruckraum 8 fortsetzt, und dabei den Ringraum 42 in radialer Richtung durchsetzt und gegenüber diesem abge- dichtet ist. Das Injektorbauteil 22 ist hierzu im Bereich des Versorgungskanals 7 mit einem positiven Durchmessersprung 45 (Umfangsbund) versehen, in den mit Abstand zum Versorgungskanal 7 axial verlaufende Aussparungen 46 eingebracht sind, über die der Kraftstoff aus einem unteren Ab- schnitt des Ringraums 42 in einen oberen Abschnitt des Ringraums 42 ungehindert und vorzugsweise ungedrosselt strömen kann.As is apparent from FIG. 1, the supply channel 7 is formed in sections as a bore in a sleeve-shaped connection part 60 screwed to the injector body 19, wherein the supply channel 7 continues in the radial direction into the high-pressure space 8, and thereby the annular space 42 in FIG Passed through radial direction and sealed against this. For this purpose, the injector component 22 is provided with a positive diameter jump 45 (circumferential collar) in the region of the supply channel 7, into which recesses 46 running at a distance from the supply channel 7 are introduced, via which the fuel flows from a lower section of the annular space 42 into an upper one Section of the annular space 42 can flow unhindered and preferably unthrottled.
Das in Fig. 1 gezeigte Injektorbauteil 27 muss nicht zwangsläufig einteilig ausgeführt werden. So ist es beispielsweise denkbar, den Ringraum 42 mit einem eigenständigen, rohrförmigen, hier von dem rohrförmigen Abschnitt 43 gebildeten Element zu begrenzen, das sich an einem hier als Plattenabschnitt 47 des Injektorbauteils 27 realisierten separaten, den Niederdruckbereich 12 begrenzenden Bauteil in axialer Richtung abstützt.The injector component 27 shown in FIG. 1 does not necessarily have to be made in one piece. Thus, it is conceivable, for example, to limit the annular space 42 with an independent, tubular element formed here by the tubular section 43, which is supported in the axial direction on a separate component which defines the low-pressure region 12 here as a plate section 47 of the injector component 27.
In axialer Richtung nach oben wird der Ringraum 42 begrenzt von dem wie erwähnt auch als separates Bauteil ausführbaren Plattenabschnitt 47 des Injektorbauteils 27. Dieses ist von einer Ventilspannschraube 48 gegen eine Ringschulter 49 des Injektorkörpers 19 gepresst. In axialer Richtung nach unten wird der Ringraum 42 begrenzt von einem Dichtelement 50, welches sich radial zwischen dem unteren Bereich des rohr- förmigen Abschnitts 43 des Injektorbauteils 27 und dem Injektorkörper 19 befindet.In the axial direction upward, the annular space 42 is bounded by the plate section 47 of the injector component 27, which, as mentioned above, can also be embodied as a separate component. This is pressed by a valve clamping screw 48 against an annular shoulder 49 of the injector body 19. In the axial direction down the annular space 42 is bounded by a sealing element 50, which is located radially between the lower region of the tubular section 43 of the injector component 27 and the injector body 19.
Wie sich aus Fig. 1 weiter ergibt kann unter Hochdruck von in dem gezeigten Ausführungsbeispiel 2500 bar stehender Kraftstoff in radialer Richtung über eine Ringraumzulaufdrossel 51 in den Ringraum 42 strömen. Von dort aus strömt Kraftstoff über eine im Injektorbauteil 27 vorgesehene Ringraumablaufdrossel 52 in den Niederdruckbereich 12 des Kraftstoff-Inj ektors 1. Die Durchflussquerschnitte der Ringraumzulaufdrossel 51 und der Ringraumablaufdrossel 52 sind dabei so aufeinander abgestimmt, dass der Druck im Ringraum 42, wie zuvor erläutert, einen Maximaldruck von 1800 bar nicht überschreitet, wodurch die Druckbelastung des Injektorkörpers 19 deutlich reduziert wird. Wie sich aus Fig. 1 ergibt, sind die Ringraumzulaufdrossel 51 und die Ringraumablaufdrossel 52 als Drosselbohrungen ausgeführt, wobei auch alternative Herstellungsmöglichkeiten re- alisierbar sind. Da der Druck im Ringraum 42 keinerlei Ein- fluss auf das Einspritzverhalten des Kraftstoff-Injektors 1 hat, können die Ringraumzulaufdrossel 51 und die Ringraumablaufdrossel 52 sehr klein ausgeführt werden, wodurch die für die Druckabsenkung notwendige parasitäre Ablaufmenge gering ist. Zum anderen reagiert der Druck im Ringraum 42 nicht auf hochdynamische Druckänderungen im als Minirail dienenden Hochdruckraum 8, sondern nur auf funktionsbedingte Raildruckänderungen .As can be seen from FIG. 1, under high pressure, in the exemplary embodiment shown, 2500 bar of fuel can flow in the radial direction via an annular space inlet throttle 51 into the annular space 42. From there, fuel flows through an annular component outlet throttle 52 provided in the injector component 27 into the low-pressure region 12 of the fuel injector 1. The flow cross-sections of the annular space inlet throttle 51 and the annular space outlet throttle 52 are matched to one another such that the pressure in the annular space 42, as explained above, does not exceed a maximum pressure of 1800 bar, whereby the pressure load of the injector body 19 is significantly reduced. As can be seen from FIG. 1, the annular space inlet throttle 51 and the annular space outlet throttle 52 are designed as throttle bores, whereby alternative production possibilities can also be realized. Since the pressure in the annular space 42 has no influence on the injection behavior of the fuel injector 1, the annular space inlet throttle 51 and the annular space drain throttle 52 can be made very small, whereby the necessary for the pressure reduction parasitic flow rate is low. On the other hand, the pressure in the annular space 42 does not react to highly dynamic pressure changes in the high-pressure space 8 serving as a minirail, but only to function-related rail pressure changes.
Im Folgenden werden anhand der Fig. 2 und 3 weitere alternative Ausführungsbeispiele eines Kraftstoff-Injektors 1 erläutert. Dabei entspricht der Aufbau dieser Ausführungsformen im Wesentlichen der in Fig. 1 gezeigten und zuvor beschriebenen Ausführungsform. Zur Vermeidung von Wiederholungen werden daher im Folgenden im Wesentlichen nur Unterschiede zu dem in Fig. 1 gezeigten und zuvor beschriebenen Ausführungsbeispiel erläutert. Im Hinblick auf Gemeinsam- keiten wird auf Fig. 1 sowie die vorhergehende Figurenbeschreibung verwiesen.In the following, further alternative embodiments of a fuel injector 1 are explained with reference to FIGS. 2 and 3. In this case, the structure of these embodiments substantially corresponds to that shown in Fig. 1 and before described embodiment. To avoid repetition, therefore, only differences from the exemplary embodiment shown in FIG. 1 and described above will be explained below. With regard to common features, reference is made to FIG. 1 and the preceding description of the figures.
Im Gegensatz zu dem Ausführungsbeispiel gemäß Fig. 1 ist der Druck im Ringraum 42 bei dem Ausführungsbeispiel gemäß Fig. 2 im Vergleich zum Hochdruckraum 8 nicht dauerhaft reduziert. Dies ist darauf zurückzuführen, dass der Kraftstoff aus dem Ringraum 42 nur zeitweise in den Niederdruckbereich 12 des Kraftstoff-Inj ektors 1 abströmen kann. Der Zustrom aus dem Hochdruckraum 8 in den Ringraum 42 erfolgt auch bei dem in Fig. 2 gezeigten Ausführungsbeispiel über eine als Drosselbohrung ausgeführte Ringraumzulaufdrossel 51. Die Ringraumablaufdrossel 52 wird bei dem Ausführungsbeispiel gemäß Fig. 2 von einem als Rückschlagventil ausgebildeten Überdruckventil 53 gebildet, das so ausgelegt ist, dass dieses erst dann in Richtung Niederdruckbereich 12 öffnet, wenn ein Mindestdruck im Ringraum 42 überschritten wird. Auf diese Weise wird eine Druckabsenkung im Ringraum 42 also nur dann realisiert, wenn dies notwendig ist, also für die Stabilität kritische Drücke auftreten. Insgesamt kann hierdurch die parasitäre Ablaufmenge weiter reduziert werden. Das Überdruckventil 53 umfasst ein als Stahlkugel ausgebildetes Ventilelement 54, welches von einer als Plattfeder ausgebildeten Feder 55 in Richtung auf einen am Injektorbauteil 27, genauer am Plattenabschnitt 47 ausge- bildeten Ventilsitz 56 federkraftbeaufschlagt wird. Dabei steht die Unterseite des Ventilelementes 54 über einen Kanal 57 im Injektorbauteil 27 dauerhaft in Verbindung mit dem Ringraumvolumen des Ringraums 42. Übersteigt der Druck im Ringraum 42 einen Mindestdruck, wird das kugelförmige Ventilelement 54 entgegen der Federkraft der Feder 55 von seinem Ventilsitz 56 abgehoben, so dass Kraftstoff gedrosselt aus dem Ringraum 42 in den Niederdruckbereich 12 ab- strömen kann. Das Überdruckventil 53 ist so dimensioniert, dass die Drosselwirkung des Überdruckventils 53 das gewünschte Maß an Druckabsenkung im Ringraum 42 zur Folge hat.In contrast to the embodiment of FIG. 1, the pressure in the annular space 42 is not permanently reduced in the embodiment of FIG. 2 compared to the high-pressure chamber 8. This is due to the fact that the fuel from the annular space 42 can only temporarily flow into the low-pressure region 12 of the fuel Inj ector 1. The flow from the high-pressure chamber 8 into the annular space 42 also takes place in the exemplary embodiment shown in FIG. 2 via an annular space inlet throttle 51 designed as a throttle bore. The annular space drain throttle 52 is formed by a pressure relief valve 53 designed as a check valve in the embodiment according to FIG is designed that this opens only in the direction of low pressure area 12 when a minimum pressure in the annular space 42 is exceeded. In this way, a pressure reduction in the annular space 42 is thus only realized if this is necessary, so critical pressures occur for the stability. Overall, this can further reduce the parasitic outflow quantity. The overpressure valve 53 comprises a valve element 54 formed as a steel ball, which is acted upon by a spring 55 designed as a flat spring in the direction of a valve seat 56 formed on the injector component 27, more precisely on the plate section 47. In this case, the underside of the valve element 54 via a channel 57 in the injector 27 is permanently in communication with the annulus volume of the annular space 42. The pressure exceeds In the annular space 42, a minimum pressure, the spherical valve element 54 is lifted against its spring force from its valve seat 56 so that throttled fuel can flow out of the annular space 42 into the low-pressure region 12. The pressure relief valve 53 is dimensioned so that the throttling action of the pressure relief valve 53 has the desired level of pressure reduction in the annular space 42 result.
Wie sich weiter aus Fig. 2 ergibt, ist die als Plattfeder ausgebildete Feder 55 axial geklemmt zwischen der Ventilspannschraube 48 und der in der Zeichnungsebene oberen Seite des Plattenabschnittes 47 des Injektorbauteils 27.As is further apparent from FIG. 2, the spring 55 designed as a flat spring is clamped axially between the valve clamping screw 48 and the upper side of the plate section 47 of the injector component 27 in the plane of the drawing.
Das in Fig. 3 gezeigte Ausführungsbeispiel eines Kraftstoff-Injektors 1 funktioniert nach dem gleichen Prinzip wie das in Fig. 2 gezeigte und zuvor beschriebene Ausführungsbeispiel. Im Unterschied zu dem Ausführungsbeispiel gemäß Fig. 2 ist hier die Ringraumzulaufdrossel 51 nicht als Drosselbohrung sondern als Leckagespalt zwischen einem Umfangsbund 58 des rohrförmigen Abschnitts 43 des Injektorbauteils 27 und dem Injektorkörper 19 ausgebildet. Eine weitere Ringraumzulaufdrossel 51 ist vorgesehen zwischen dem oberen positiven Durchmessersprung 45 (Umfangsbund) und dem Injektorkörper 19.The exemplary embodiment of a fuel injector 1 shown in FIG. 3 functions on the same principle as the exemplary embodiment shown in FIG. 2 and described above. In contrast to the exemplary embodiment according to FIG. 2, here the annular space inlet throttle 51 is not designed as a throttle bore but as a leakage gap between a circumferential collar 58 of the tubular section 43 of the injector component 27 and the injector body 19. A further annular space inlet throttle 51 is provided between the upper positive diameter jump 45 (circumferential collar) and the injector body 19.
Auch ist kein Drosselkanal als Ringraumablaufdrossel 52 vorgesehen. Diese wird gebildet von dem Überdruckventil 53, über das der Ringraum 42 mit dem Niederdruckbereich 12 des Kraftstoff-Inj ektors 1 verbindbar ist. Das Ventilelement 54 wird gebildet von dem Plattenabschnitt 47 des Injektorbauteils 27. Dieses liegt im geschlossenen Zustand des Überdruckventils 53 auf der Ringschulter 49 des Injektorkörpers 9 auf. Bei geöffnetem Überdruckventil 53 ist der Plattenabschnitt 47 in axialer Richtung nach oben verstellt, sodass ein Ringspalt axial zwischen dem Plattenabschnitt 47 und einer Beißkante 59 des Injektorkörpers 19 gebildet ist, wo- bei der Durchflussquerschnitt des Ringspaltes so abgestimmt ist, dass die gewünschte Drosselung erzielt wird.Also, no throttle channel is provided as annular space drain throttle 52. This is formed by the pressure relief valve 53, via which the annular space 42 is connected to the low-pressure region 12 of the fuel Inj ector 1. The valve element 54 is formed by the plate portion 47 of the Injektorbauteils 27. This is in the closed state of the pressure relief valve 53 on the annular shoulder 49 of the injector body 9 on. When the overpressure valve 53 is open, the plate section 47 is adjusted in the axial direction upward, so that an annular gap is formed axially between the plate section 47 and a biting edge 59 of the injector body 19, with the flow cross-section of the annular gap being adjusted so that the desired throttling is achieved ,
Der Plattenabschnitt 47 hebt erst dann von seinem von der Beißkante 59 gebildeten Ventilsitz 56 am Injektorkörper 19 ab, wenn die auf ihn wirkende Druckkraft die Federkraft einer als Tellerfeder ausgebildeten Feder 55 überschreitet, die sich in axialer Richtung nach oben an der Ventilspannschraube 48 abstützt. Die Feder 55 ist bestrebt, den Plattenabschnitt 47 axial nach unten gegen die Ringschulter 49 des Injektorkörpers 19 zu pressen. Durch Verstellen der Ventilspannschraube 48 kann die Vorspannung der Feder 55 eingestellt werden. The plate section 47 only lifts off from its valve seat 56 formed by the biting edge 59 on the injector body 19 when the pressure force acting on it exceeds the spring force of a spring 55 designed as a plate spring, which is supported in the axial direction upward on the valve clamping screw 48. The spring 55 tends to press the plate portion 47 axially downwardly against the annular shoulder 49 of the injector body 19. By adjusting the valve clamping screw 48, the bias of the spring 55 can be adjusted.

Claims

Ansprüche claims
1. Kraftstoff-Inj ektor, insbesondere Common-Rail- Injektor, zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine, mit einem Kraftstoffrücklaufanschluss (10) und mit einem einteiligen oder mehrteiligen, zwischen einer Öffnungsstellung und einer Schließstellung verstellbaren Einspritzventilelement (13), das zumindest abschnittsweise in einem in einem Injektorkörper (19) vorgesehenen Hochdruckraum (8) angeordnet ist,1. Fuel Inj ector, in particular common rail injector, for injecting fuel into a combustion chamber of an internal combustion engine, with a fuel return port (10) and with a one-piece or multi-part, adjustable between an open position and a closed position injection valve element (13) at least in sections, in a high-pressure chamber (8) provided in an injector body (19),
dadurch gekennzeichnet,characterized,
dass radial zwischen dem Hochdruckraum (8) und dem Injektorkörper (19) ein Ringraum (42) angeordnet ist, in dem der Kraftstoffdruck während des Betriebs des Kraftstoff-Injektors (1), zumindest zeitweise, geringer als der Kraftstoffdruck im Hochdruckraum (8) und höher als der Kraftstoffdruck im Kraftstoffrücklaufanschluss (10) ist.that between the high-pressure chamber (8) and the injector body (19) an annular space (42) is arranged, in which the fuel pressure during operation of the fuel injector (1), at least temporarily, less than the fuel pressure in the high-pressure chamber (8) and is higher than the fuel pressure in the fuel return port (10).
2. Kraftstoff-Inj ektor nach Anspruch 1, dadurch gekennzeichnet, dass der Druck in dem Ringraum (42) mindestens halb so hoch ist wie der Druck im Hochdruckraum (8) .2. Fuel Inj ector according to claim 1, characterized in that the pressure in the annular space (42) is at least half as high as the pressure in the high-pressure chamber (8).
3. Kraftstoff-Inj ektor nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der aus einem Versorgungskanal (7) zuströmende Kraftstoff unmittelbar in den Hochdruckraum (8) geleitet wird. 3. fuel Inj ector according to one of claims 1 or 2, characterized in that the from a supply channel (7) inflowing fuel is passed directly into the high-pressure chamber (8).
4. Kraftstoff-Injektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich der Hochdruckraum (8) axial bis zu einer Du- senlochanordnung (17) erstreckt.4. Fuel injector according to one of the preceding claims, characterized in that the high-pressure chamber (8) extends axially up to a nozzle senlochanordnung (17).
5. Kraftstoff-Inj ektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Hochdruckraum (8) und/oder ein zum Hochdruckraum (8) führender Versorgungskanal (7) über mindestens eine Ringraumzulaufdrossel (51) hydraulisch mit dem Ringraum (42) verbunden ist.5. Fuel Inj ector according to any one of the preceding claims, characterized in that the high-pressure chamber (8) and / or a high-pressure chamber (8) leading supply channel (7) via at least one annular space inlet throttle (51) hydraulically connected to the annular space (42) is.
6. Kraftstoff-Inj ektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Ringraum (42) über mindestens eine Ringraumablaufdrossel (52) mit einem, vorzugsweise einem Steu- erventil (33) hydraulisch nachgeordneten, Niederdruckbereich (12) des Kraftstoff-Inj ektors (1) verbunden ist.6. Fuel Inj ector according to any one of the preceding claims, characterized in that the annular space (42) via at least one annular space drain throttle (52) with a, preferably a control erventil (33) hydraulically downstream, low pressure region (12) of the fuel Inj ector (1).
7. Kraftstoff-Injektor nach einem der vorhergehenden An- sprüche, dadurch gekennzeichnet, dass der Ringraum (42) radial innen von einem zumindest abschnittsweise rohrförmigen, vorzugsweise eine Steuerkammer (28) begrenzenden, Injektorbauteil (27) begrenzt ist. 7. Fuel injector according to one of the preceding claims, characterized in that the annular space (42) is bounded radially inwardly by an at least partially tubular, preferably a control chamber (28) limiting injector component (27).
8. Kraftstoff-Injektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Druck im Ringraum (42) im Vergleich zum Druck im Hochdruckraum (8) erst ab Überschreiten eines Mindestdrucks, insbesondere von mehr als 1800 bar, reduziert ist.8. Fuel injector according to one of the preceding claims, characterized in that the pressure in the annular space (42) in comparison to the pressure in the high-pressure chamber (8) only after exceeding a minimum pressure, in particular more than 1800 bar, is reduced.
9. Kraftstoff-Inj ektor nach einem der vorhergehenden An- sprüche, dadurch gekennzeichnet, dass der Ringraum (42) über mindestens ein, vorzugsweise im geöffneten Zustand drosselndes, insbesondere als Rückschlagventil ausgebildetes, Überdruckventil (53) mit dem Niederdruckbereich (12) des Kraftstoff- Injektors (1) hydraulisch verbindbar ist.9. Fuel Inj ector according to one of the preceding claims, characterized in that the annular space (42) via at least one, preferably throttled in the open state, in particular designed as a check valve, pressure relief valve (53) with the low pressure region (12) of the fuel - Injector (1) is hydraulically connectable.
10. Kraftstoff-Injektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Überdruckventil (53) eine Feder (55) , insbesondere eine Blattfeder, und ein, insbesondere kugelförmiges, Ventilelement umfasst, das von der Feder (55) , vorzugsweise gegen ein den Niederdruckbereich (12) begrenzendes Injektorbauteil (27), federkraftbeaufschlagt wird.10. Fuel injector according to one of the preceding claims, characterized in that the pressure relief valve (53) comprises a spring (55), in particular a leaf spring, and a, in particular spherical, valve element, by the spring (55), preferably against a the low-pressure region (12) limiting injector component (27), spring force is applied.
11. Kraftstoff-Inj ektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein verstellbares Ventilelement des Überdruckventils (53) von einem den Niederdruckbereich (12) begrenzenden Injektorbauteil (27) gebildet ist, das mit- tels einer Feder (55) , insbesondere mittels einer Dehnhülse oder einer Tellerfeder, gegen den Injektorkörper (19) gepresst wird.11. fuel Inj ector according to any one of the preceding claims, characterized in that an adjustable valve element of the pressure relief valve (53) by a low pressure region (12) limiting the injector component (27) is formed, the mit- A spring (55), in particular by means of an expansion sleeve or a plate spring, against the injector body (19) is pressed.
12. Kraftstoff-Inj ektor nach Anspruch 11, dadurch gekennzeichnet, dass bei geöffnetem Überdruckventil (53) ein, insbesondere ringförmiger, Leckagespalt, vorzugsweise axial, zwischen dem Injektorbauteil (27) und dem Injek- torkörper (19) gebildet ist.12. Fuel Inj ector according to claim 11, characterized in that when the overpressure valve (53) is open, in particular an annular, leakage gap, preferably axially, between the injector component (27) and the injector torkörper (19) is formed.
13. Kraftstoff-Injektor nach einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, dass die Vorspannung der Feder (55) des Überdruckventils (53) mittels einer Ventilspannschraube (48) einstellbar ist. 13. Fuel injector according to one of claims 11 or 12, characterized in that the bias of the spring (55) of the pressure relief valve (53) by means of a valve clamping screw (48) is adjustable.
EP09765667.2A 2008-06-19 2009-04-22 Fuel injector Not-in-force EP2294309B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008002527A DE102008002527A1 (en) 2008-06-19 2008-06-19 Fuel injector
PCT/EP2009/054814 WO2009153087A1 (en) 2008-06-19 2009-04-22 Fuel injector

Publications (2)

Publication Number Publication Date
EP2294309A1 true EP2294309A1 (en) 2011-03-16
EP2294309B1 EP2294309B1 (en) 2014-06-11

Family

ID=40887985

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09765667.2A Not-in-force EP2294309B1 (en) 2008-06-19 2009-04-22 Fuel injector

Country Status (6)

Country Link
EP (1) EP2294309B1 (en)
CN (1) CN102066741B (en)
BR (1) BRPI0914857A2 (en)
DE (1) DE102008002527A1 (en)
RU (1) RU2541484C2 (en)
WO (1) WO2009153087A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010003202A1 (en) * 2010-03-24 2011-09-29 Robert Bosch Gmbh Common rail injector with pressure compensated switching valve and additional storage volume
CH710127A1 (en) * 2014-09-17 2016-03-31 Ganser Crs Ag Fuel injection valve for internal combustion engines.
JP6384366B2 (en) * 2015-03-09 2018-09-05 株式会社デンソー Fuel injection device
GB2553140B (en) * 2016-08-25 2020-04-01 Delphi Tech Ip Ltd Control valve assembly of a fuel injector
CN108513600B (en) * 2016-12-28 2020-02-07 白保忠 Double-feed sequence valve and sequence driving method thereof
CN110848060B (en) * 2019-10-14 2022-03-15 中国北方发动机研究所(天津) Electric control pressure accumulation oil sprayer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6012644A (en) * 1997-04-15 2000-01-11 Sturman Industries, Inc. Fuel injector and method using two, two-way valve control valves
US5720318A (en) * 1995-05-26 1998-02-24 Caterpillar Inc. Solenoid actuated miniservo spool valve
US6047899A (en) * 1998-02-13 2000-04-11 Caterpillar Inc. Hydraulically-actuated fuel injector with abrupt end to injection features
DE10002109A1 (en) * 2000-01-19 2001-08-02 Bosch Gmbh Robert Injection system
DE102006051581A1 (en) * 2006-11-02 2008-05-08 Robert Bosch Gmbh Fuel injector for common-rail-high pressure storage injection system, has cavity formed in injection valve unit, where cavity represents storage space for damping pressure vibration
DE102007021330A1 (en) 2007-05-07 2008-11-13 Robert Bosch Gmbh Fuel injector for an internal combustion engine with common rail injection system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009153087A1 *

Also Published As

Publication number Publication date
RU2541484C2 (en) 2015-02-20
RU2011101635A (en) 2012-07-27
CN102066741B (en) 2014-07-09
CN102066741A (en) 2011-05-18
BRPI0914857A2 (en) 2020-08-18
EP2294309B1 (en) 2014-06-11
WO2009153087A1 (en) 2009-12-23
DE102008002527A1 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
EP2235354B1 (en) Fuel injector the control valve element of which comprises a support region
EP2183476B1 (en) Fuel injection valve with improved tightness on the sealing seat of a pressure-compensated control valve
DE102007001363A1 (en) Injector for injecting fuel into combustion chambers of internal combustion engines
EP2294309B1 (en) Fuel injector
DE102009001704A1 (en) Fuel injector i.e. common rail injector, for combustion chamber of diesel engine, has sleeve or disk applying spring force along axial direction and penetrated into valve element, where sleeve or disk has borehole to form closing throttle
WO2012163759A1 (en) Nozzle assembly for a fuel injector, and fuel injector
EP2310662B1 (en) Fuel injector
EP2206912A2 (en) Fuel injector
EP1918570B1 (en) Fuel injector with accumulator volume segment
DE102006009659A1 (en) Fuel injection device for internal combustion engine, has valve unit arranged in housing and composed of several parts including control piston and nozzle needle, where piston and needle are coupled to each other via hydraulic coupler
DE102008001907A1 (en) Fuel injector
EP2156045B1 (en) Injector
EP1939441A2 (en) Fuel injector
EP2138704B1 (en) Fuel injector
DE102007005382A1 (en) Injector i.e. common rail injector, for injecting fuel e.g. diesel, into combustion chamber of internal-combustion engine, has control valve for varying control pressure, and fuel tank connected with nozzle chamber via throttle channel
DE102009027494A1 (en) Fuel injector with pressure compensated control valve
WO2008125536A1 (en) Injector
DE102006050033A1 (en) Injector, in particular common rail injector
DE10050599B4 (en) Injection valve with a pump piston
DE10160490B4 (en) Fuel injection device, fuel system and internal combustion engine
EP2439398A1 (en) Fuel injector valve
DE102007001365A1 (en) Common rail injector, for injecting e.g. petrol, into combustion chamber of internal combustion engine, has switching chamber connected with low pressure area by connecting channel that is closed and opened by control valve
DE102008044093A1 (en) Fuel injector for internal combustion engine, has throttle plate arranged between inner storage chamber and pressure chamber and remaining in nozzle needle-side sealing seat in stop position when nozzle needle is placed in needle seat
EP2195522A1 (en) Injector having a sleeve-shaped control valve element
DE102007013248A1 (en) Fuel injector, has pressure-balanced switching valve actuated by solenoid valve and seat surface formed in area of valve seat, where seat surface increases outwards in radial direction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130604

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131126

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 672388

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009009510

Country of ref document: DE

Effective date: 20140724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140611

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140912

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140911

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140611

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140611

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140611

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140611

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140611

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140611

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140611

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140611

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141013

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140611

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141011

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140611

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009009510

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140611

26N No opposition filed

Effective date: 20150312

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009009510

Country of ref document: DE

Effective date: 20150312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140611

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150422

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150422

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150422

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 672388

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140611

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090422

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140611

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140611

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190419

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190423

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190627

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009009510

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200422