EP2294292B1 - Verfahren und vorrichtung zum betreiben eines abgasnachbehandlungssystems - Google Patents

Verfahren und vorrichtung zum betreiben eines abgasnachbehandlungssystems Download PDF

Info

Publication number
EP2294292B1
EP2294292B1 EP09765682.1A EP09765682A EP2294292B1 EP 2294292 B1 EP2294292 B1 EP 2294292B1 EP 09765682 A EP09765682 A EP 09765682A EP 2294292 B1 EP2294292 B1 EP 2294292B1
Authority
EP
European Patent Office
Prior art keywords
regeneration
catalytic converter
particle filter
nox storage
lambda probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09765682.1A
Other languages
English (en)
French (fr)
Other versions
EP2294292A1 (de
Inventor
Andreas Fritsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2294292A1 publication Critical patent/EP2294292A1/de
Application granted granted Critical
Publication of EP2294292B1 publication Critical patent/EP2294292B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0231Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using special exhaust apparatus upstream of the filter for producing nitrogen dioxide, e.g. for continuous filter regeneration systems [CRT]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/025Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by changing the composition of the exhaust gas, e.g. for exothermic reaction on exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method for controlling a fuel addition to initiate the regeneration of a particulate filter in the exhaust passage of an internal combustion engine, wherein at least one catalyst for the oxidation of hydrocarbons is provided in the exhaust gas upstream of the particulate filter and wherein the initiation of the regeneration of the particulate filter by a post injection of fuel in at least a combustion chamber of the internal combustion engine or by an injection of fuel into an exhaust passage in front of the catalyst is started.
  • the invention further relates to a device for controlling a fuel addition to initiate the regeneration of a particulate filter in the exhaust passage of an internal combustion engine, wherein at least one catalyst for the oxidation of hydrocarbons is provided in the exhaust gas upstream of the particulate filter, wherein between the catalyst and the particulate filter, a first lambda probe is arranged and wherein for controlling the fuel addition, a controller is provided in a motor controller
  • the temperature increase upstream of the particulate filter often takes place via a post-injection burning on the oxidation catalytic converter, wherein the exhaust gas temperature upstream of the oxidation catalytic converter is raised by engine measures to a temperature above light-off of the oxidation catalytic converter.
  • the regulation of the temperature upstream of the oxidation catalyst and upstream of the particle filter is carried out on the basis of a respective temperature measurement.
  • the temperature control in front of the oxidation catalyst are often performed with an inner loop and the temperature control in front of the particulate filter in an outer loop.
  • An exhaust aftertreatment device or a method of the type mentioned is in the EP 1 426 592 A2 specified.
  • the air / fuel ratio is controlled by including a lambda probe arranged between a NOx catalyst and a particle filter.
  • a method for controlling an exhaust aftertreatment system, in particular a particulate filter, an internal combustion engine wherein a desired value for a lambda signal or a change of a lambda signal is predetermined and an actual value for the lambda signal or for the change of the lambda signal is detected, and wherein, starting from the Comparison between the actuator, with which the reaction in the exhaust aftertreatment system is controlled, is specified such that the actual value approaches the target value. It may be provided that the desired value is predetermined such that a predetermined temperature is established in the exhaust gas treatment system.
  • the lambda control regulates the oxygen concentration in the exhaust gas to a value which leads to an optimal combustion rate during the regeneration of the particulate filter.
  • a regulator stored in an engine control system usually varies the amount of post-injection stored by the predetermined lambda value.
  • the signals from lambda probes arranged upstream and / or downstream of the exhaust gas aftertreatment system are evaluated, the exhaust gas aftertreatment system having at least one particle filter.
  • a regulation of the temperature of the exhaust gas upstream of the particulate filter is claimed by determining and regulating an exhaust gas composition correlating with the temperature of the exhaust gas and / or a change in the temperature of the exhaust gas and / or changing the exhaust gas composition.
  • the EP 1433 932 A1 is concerned with an apparatus and a method for exempting a NOx catalyst of a diesel engine from sulfur poisoning, wherein a lambda probe arranged upstream of the NOx catalyst is used.
  • a disadvantage of the aforementioned methods is that no late post-injection can be discontinued in the range of active lambda control since the cross-sensitivity of the lambda probe for hydrocarbons would influence the measured values. In the lambda-controlled range, therefore, the exhaust gas temperature can not be actively influenced via the engine control and specification of the lambda value. A limitation of the temperature of the particulate filter via the lambda control is thus not possible in this area.
  • the object of the invention relating to the method is achieved in that the signal of a first lambda probe arranged between the catalytic converter and the particle filter is used as the controlled variable for controlling the fuel addition.
  • the catalyst can implement the hydrocarbons occurring through the post-injection and avoid influencing the measured values of the lambda probe because of their cross-sensitivity to hydrocarbons.
  • a lambda probe is usually arranged downstream of it for monitoring purposes in the exhaust gas direction, so that no additional costs are incurred by the method according to the invention.
  • the lambda probe can be arranged downstream of it in the exhaust gas direction, so that there are no additional costs in this case as well.
  • the method makes it possible to discontinue a late post-injection even in the area of active lambda control and to actively influence the exhaust gas temperature also in this area. It is possible - within the physical limits - a decoupling of temperature and oxygen in the exhaust gas.
  • an oxidation catalyst or a NOx storage catalyst is used as the catalyst.
  • the signal of the first lambda probe which is arranged downstream of the catalyst, and is used as a controlled variable for controlling the fuel addition for the regeneration of the NOx storage catalytic converter
  • the signal of a second lambda probe which the catalyst is used
  • the temperature control and the temperature limit for the particulate filter can be wholly or partially also in the range of active lambda control.
  • the regulation of the fuel addition to initiate the regeneration of the particulate filter and the control of the fuel addition for the regeneration of the upstream NOx storage catalytic converter are performed with the same controller with different control parameters.
  • control of the fuel addition to initiate the regeneration of the particulate filter by adjusting the setpoint of the lambda control.
  • This setpoint formation takes into account the amount of later post-injection such that this quantity, or a part thereof, converted into a lambda difference at the operating point is subtracted from the nominal value.
  • a method alternative envisages that the post-injection of fuel into at least one combustion chamber of the internal combustion engine consists of several partial injections.
  • the device-related object of the invention is achieved in that the controller for regulating the fuel addition to initiate the regeneration of the particulate filter is acted upon by the output signal of the first lambda probe.
  • This first lambda probe is arranged downstream of the hydrocarbon-oxidizing catalyst in the exhaust gas direction, it also being possible for a plurality of catalysts to be arranged in the exhaust gas duct. As a result, a cross-sensitivity of the lambda probe for hydrocarbons can not adversely affect the determination of the exhaust gas composition.
  • the controller for controlling the fuel addition for the regeneration of the NOx storage catalyst and the fuel addition to initiate the regeneration of the particulate filter is provided and is a switch for acting on the controller in the engine control unit with the output of one before the NOx Storage device arranged second lambda probe provided during the regeneration of the NOx storage catalytic converter, the device for the regeneration of the NOx storage catalyst and the particulate filter can be used and also in the range of active lambda control and monitoring the temperature of the particulate filter can be made.
  • FIG. 1 shows a schematic representation of the technical environment in which the invention can be used. Shown is an internal combustion engine 10 in the form of a diesel engine with an air supply passage 20 in which a supply air flow 21 is guided, and an exhaust passage 30 in which an exhaust gas stream 32 of the internal combustion engine 10 is guided.
  • an air supply passage 20 in which a supply air flow 21 is guided
  • an exhaust passage 30 in which an exhaust gas stream 32 of the internal combustion engine 10 is guided.
  • a H adoptedsteadmassensensor 22 HFM a compression stage 24 of a turbocharger 23 and a throttle valve 25 are arranged in the flow direction of the supply air 21.
  • An exhaust gas recirculation 26 connects the air supply channel 20 with the exhaust passage 30.
  • an exhaust gas turbine 31 of the turbocharger 23 and as components of an exhaust aftertreatment system 40 an oxidizing catalyst 42 and a particulate filter 45 are provided after the internal combustion engine.
  • the internal combustion engine supplied fresh air.
  • the fresh air is thereby compressed by the compression stage 24 of the turbocharger 23, which is driven by the exhaust gas turbine 31 from the exhaust gas stream 32.
  • the throttle valve 25 By the throttle valve 25, the supplied amount of air, which is determined by the H adopted Kunststofffilmmassensensor 22, can be adjusted.
  • the supply air flow 21 is admixed via the exhaust gas recirculation 26 into quantities of exhaust gas from the exhaust gas duct 30 that depend on the operating parameters of the internal combustion engine 10.
  • the catalytic converter 42 may be embodied as a NOx storage catalytic converter and, in this embodiment, converts nitrogen oxides from the exhaust gas.
  • the particulate filter 45 fills until the achievement of its storage capacity is signaled. Subsequently, a regeneration phase of the particulate filter 45 is triggered, in which the particles stored in the particulate filter 45 are burned in an exothermic reaction.
  • a regeneration phase of the particulate filter 45 is triggered, in which the particles stored in the particulate filter 45 are burned in an exothermic reaction.
  • exhaust gas temperatures 600 ° C to 650 ° C are necessary in front of the particulate filter. Since these temperatures are reached during normal operation of the internal combustion engine 10 only near the full load, a temperature increase must be effected by additional measures. In particular, in the case of low engine loads and speeds, in addition to air system interventions, for example via the throttle valve 25, further measures in the field of fuel injection are required. These can be internal engine measures such as a late-shift of the main injection or a post-injection which burns torque neutral in the internal combustion engine 10. It may also be provided in the exhaust passage 30 before the catalyst 42 and supplied to the catalyst 42 burning post
  • a temperature sensor 44 is provided, which is connected to an engine control unit 50, which also controls the metered addition of fuel to the internal combustion engine 10 via a signal line.
  • the monitoring of the temperature of the exhaust gas is necessary to prevent damage to the particulate filter 45.
  • the exhaust gas composition is monitored during regeneration of the particulate filter 45 with a first lambda probe 43 arranged in front of the particulate filter 45 and connected to a regulator 51 provided in the engine control unit 50.
  • the controller 51 determines the amount and timing of the metering of fuel and also controls the post-injection.
  • hydrocarbons in the exhaust gas at the oxidizing catalyst 42 may be oxidized and thereby removed, so that the cross-sensitivity of the first lambda probe 43 for hydrocarbons does not distort their measured values.
  • the engine control unit 50 initiates post-injection of fuel to increase the exhaust gas temperature and determines the exhaust gas composition upstream of the catalytic converter 42 with a second lambda probe 41.
  • a switch 52 is provided in front of the regulator 51 in the engine control unit 50, so that the output of the second lambda probe 41 can be supplied to the regulator 51 at least temporarily during the regeneration of the catalytic converter 42 and during regeneration of the particle filter 45, the controller 51, the output of the first lambda probe 43 can be supplied.
  • a late post-injection can also be carried out in the lambda-controlled operation of the internal combustion engine 10, without the cross-sensitivity of lambda probes for hydrocarbons distorts the determination of the exhaust gas composition.
  • exhaust gas composition and temperature of the exhaust gas are adjusted simultaneously and largely independently.

Description

    Stand der Technik
  • Die Erfindung betrifft ein Verfahren zur Regelung einer Kraftstoffzugabe zur Einleitung der Regeneration eines Partikelfilters im Abgaskanal einer Brennkraftmaschine, wobei in Abgasrichtung vor dem Partikelfilter zumindest ein Katalysator zur Oxidation von Kohlenwasserstoffen vorgesehen ist und wobei die Einleitung der Regeneration des Partikelfilters durch eine Nacheinspritzung von Kraftstoff in zumindest einen Brennraum der Brennkraftmaschine oder durch eine Einspritzung von Kraftstoff in einen Abgaskanal vor dem Katalysator gestartet wird.
  • Die Erfindung betrifft weiterhin eine Vorrichtung zur Regelung einer Kraftstoffzugabe zur Einleitung der Regeneration eines Partikelfilters im Abgaskanal einer Brennkraftmaschine, wobei in Abgasrichtung vor dem Partikelfilter zumindest ein Katalysator zur Oxidation von Kohlenwasserstoffen vorgesehen ist, wobei zwischen dem Katalysator und dem Partikelfilter eine erste Lambdasonde angeordnet ist und wobei zur Regelung der Kraftstoffzugabe ein Regler in einer Motorsteuerung vorgesehen ist
  • Bei Dieselmotoren werden aufgrund der geforderten niedrigen Emissionsgrenzwerte Abgasnachbehandlungssysteme mit Oxidationskatalysatoren und in Abgasrichtung nachgeschalteten Partikelfiltern eingesetzt. Partikelfilter weisen eine begrenzte Speicherfähigkeit auf und müssen zur Wiederherstellung der Reinigungswirkung in bestimmten Abständen regeneriert werden. Dies geschieht typischerweise alle 250 bis 1000 km. Bei Russpartikelfiltern wird die Regeneration durch eine Erhöhung der Abgastemperatur auf typischerweise 600 °C bis 650 °C eingeleitet, so dass der in dem Partikelfilter eingelagerte Ruß abzubrennen beginnt. Dies kann durch innermotorische Maßnahmen, zum Beispiel in der Gemischaufbereitung des Motors, oder durch nachmotorische Maßnahmen wie einer an dem Oxidationskatalysator verbrennenden Nacheinspritzung in den Abgaskanal erfolgen. In beiden Varianten wird in dem Partikelfilter eine exotherme Reaktion angestoßen, die einen Abbrand der Russpartikel bewirkt und innerhalb einiger Minuten (z.B. 20 Minuten) den Partikelfilter regeneriert.
  • Insbesondere bei Verwendung thermisch kritischer Filtermaterialien muss darauf geachtet werden, dass die maximale Temperatur der Abgase vor dem Partikelfilter sehr genau eingehalten wird, da ansonsten irreversible Schädigungen des Partikelfilters auftreten können. Dabei ist zusätzlich zu beachten, dass durch den exotherm verlaufenden Partikelabbrand während der Regeneration eine zusätzliche und gegebenenfalls inhomogene Erwärmung des Partikelfilters erfolgt, was ebenfalls zu einer Schädigung des Partikelfilters führen kann.
  • Gemäß dem Stand der Technik erfolgt die Temperaturanhebung vor dem Partikelfilter häufig über eine an dem Oxidationskatalysator verbrennende Nacheinspritzung, wobei die Abgastemperatur vor dem Oxidationskatalysator durch motorische Maßnahmen auf eine Temperatur über light off des Oxidationskatalysators angehoben wird. Die Regelung der Temperatur vor dem Oxidationskatalysator und vor dem Partikelfilter erfolgt dabei auf Basis einer jeweiligen Temperaturmessung. Dabei werden häufig die Temperaturregelung vor dem Oxidationskatalysator mit einem inneren Regelkreis und die Temperaturregelung vor dem Partikelfilter in einem äußeren Regelkreis durchgeführt.
  • Zur Regeneration eines als Oxidationskatalysator verwendeten NOx-Speicherkatalysators wird dieser aufgeheizt, indem ihm über Nacheinspritzung ein geeignetes Luft-Kraftstoff-Gemisch zugeführt wird. Dabei wird nach dem Stand der Technik das Luft-Kraftstoff-Verhältnis mit einer vor dem NOx-Speicherkatalysator angebrachten Lambdasonde mit zugehöriger Regelung überwacht. Zum Schutz des Partikelfilters wird üblicherweise dieselbe Regelung mit anderen Parametern verwendet.
  • Eine Abgasnachbehandlungsvorrichtung bzw. ein Verfahren der eingangs genannten Art ist in der EP 1 426 592 A2 angegeben. Dabei wird während des Regenerationsprozesses eines Partikelfilters das Luft/Brennstoff-Verhältnis unter Einbeziehung einer zwischen einem NOx-Katalysator und einem Partikelfilter angeordneten Lambdasonde geregelt. Durch das Verfahren, bzw. die Vorrichtung soll eine Verschlechterung von Emissionswerten während des Regenerationsprozesses für einen Partikelfilter vermieden werden.
  • Aus der DE 103 33 441 A1 ist ein Verfahren zur Steuerung eines Abgasnachbehandlungssystems, insbesondere eines Partikelfilters, einer Brennkraftmaschine bekannt, wobei ein Sollwert für ein Lambdasignal oder eine Änderung eines Lambdasignals vorgebbar ist und ein Istwert für das Lambdasignal oder für die Änderung des Lambdasignals erfasst wird, und wobei, ausgehend von dem Vergleich zwischen dem Stellelement, mit dem die Reaktion im Abgasnachbehandlungssystem steuerbar ist, derart vorgegeben wird, dass sich der Istwert dem Sollwert annähert. Dabei kann es vorgesehen sein, dass der Sollwert derart vorgegeben wird, dass sich eine vorgegebene Temperatur im Abgasbehandlungssystem einstellt.
  • Durch die Lambda-Regelung wird die Sauerstoffkonzentration im Abgas auf einen Wert geregelt, der zu einer optimalen Abbrandgeschwindigkeit während der Regeneration des Partikelfilters führt. Ein in einer Motorsteuerung hinterlegter Regler variiert dazu üblicherweise die Menge der angelagerten Nacheinspritzung um den vorgegebenen Lambdawert zu erzielen. Zur Bestimmung des Lambdawerts werden die Signale von vor und/oder nach dem Abgasnachbehandlungssystem angeordneten Lambda-Sonden ausgewertet, wobei das Abgasnachbehandlungssystem zumindest einen Partikelfilter aufweist.
  • In der EP 1930 572 A2 der Anmelderin wird ein Verfahren zum Betreiben eines Abgasnachbehandlungssystems im Abgaskanal einer Brennkraftmaschine mit zumindest einem Oxidationskatalysator und einem dem Oxidationskatalysator nachgeordneten Partikelfilter beschrieben, wobei eine Regeneration des Partikelfilters durch eine Temperaturerhöhung des Abgases vor dem Partikelfilter durch Luftsystemeingriffe und/oder durch innermotorische Maßnahmen und/oder durch eine an dem Oxidationskatalysator verbrennende Nacheinspritzung eingeleitet wird und wobei eine Bestimmung der Abgaszusammensetzung vor dem Partikelfilter vorgenommen wird. In der Schrift wird eine Regelung der Temperatur des Abgases vor dem Partikelfilter durch Bestimmung und Regelung einer mit der Temperatur des Abgases und/oder einer Änderung der Temperatur des Abgases korrelierenden Abgaszusammensetzung und/oder Änderung der Abgaszusammensetzung beansprucht.
  • Die EP 1433 932 A1 befasst sich mit einer Vorrichtung und einem Verfahren, um einen NOx-Katalysator eines Dieselmotors von Schwefelvergiftung zu befreien, wobei eine stromauf des NOx-Katalysators angeordnete Lambdasonde Verwendung findet.
  • Ein Nachteil der vorgenannten Verfahren ist, dass im Bereich aktiver Lambdaregelung keine späte Nacheinspritzung abgesetzt werden kann, da die Querempfindlichkeit der Lambdasonde für Kohlenwasserstoffe die Messwerte beeinflussen würde. Im lambdageregelten Bereich kann daher die Abgastemperatur nicht aktiv über die Motorsteuerung und Vorgabe des Lambdawerts beeinflusst werden. Auch eine Begrenzung der Temperatur des Partikelfilters über die Lambdaregelung ist somit in diesem Bereich nicht möglich.
  • Es ist Aufgabe der Erfindung, ein Verfahren zum Betreiben eines Abgasnachbehandlungssystems bereitzustellen, welches eine verbesserte Steuerung und Begrenzung der Abgastemperatur und der Temperatur des Partikelfilters ermöglicht.
  • Offenbarung der Erfindung Vorteile der Erfindung
  • Die das Verfahren betreffende Aufgabe der Erfindung wird dadurch gelöst, dass als Regelgröße für die Regelung der Kraftstoffzugabe das Signal einer zwischen dem Katalysator und dem Partikelfilter angeordneten ersten Lambdasonde verwendet wird. Durch diese Vorgehensweise kann der Katalysator die durch die Nacheinspritzung auftretenden Kohlenwasserstoffe umsetzen und eine Beeinflussung der Messwerte der Lambdasonde wegen deren Querempfindlichkeit für Kohlenwasserstoffe vermeiden. Wird als Katalysator ein NOx-Speicherkatalysator eingesetzt, wird zu Überwachungszwecken in Abgasrichtung nach diesem üblicherweise eine Lambdasonde angeordnet, so dass durch das erfindungsgemäße Verfahren keine Mehrkosten entstehen. In Systemen mit einem Oxidationskatalysator kann die Lambdasonde in Abgasrichtung hinter diesem angeordnet werden, so dass auch in diesem Fall keine Mehrkosten entstehen. Das Verfahren erlaubt es, auch im Bereich aktiver Lambdaregelung eine späte Nacheinspritzung abzusetzen und die Abgastemperatur auch in diesem Bereich aktiv zu beeinflussen. Es wird - im Rahmen der physikalischen Grenzen - eine Entkopplung von Temperatur und Sauerstoff im Abgas ermöglicht.
  • Erfindungsgemäß wird als Katalysator ein Oxidationskatalysator oder ein NOx-Speicherkatalysator verwendet.
  • Wird als Regelgröße für die Regelung der Einleitung der Regeneration des Partikelfilters das Signal der ersten Lambdasonde, welche nach dem Katalysator angeordnet ist, verwendet, und wird als Regelgröße für eine Regelung der Kraftstoffzugabe zur Regeneration des NOx-Speicherkatalysators das Signal einer zweiten Lambdasonde, welche vor dem Katalysator angeordnet ist, verwendet, kann die Temperatursteuerung und die Temperaturbegrenzung für den Partikelfilter ganz oder teilweise auch im Bereich aktiver Lambdaregelung erfolgen.
  • Erfindungsgemäß werden die Regelung der Kraftstoffzugabe zur Einleitung der Regeneration des Partikelfilters und die Regelung der Kraftstoffzugabe zur Regeneration des vorgeschalteten NOx-Speicherkatalysators mit dem selben Regler mit unterschiedlichen Regelparametern durchgeführt.
  • Wird bei Verwendung des Oxidationskatalysators als Regelgröße für die Lambdaregelung der Brennkraftmaschine im Normalbetrieb das Signal der ersten Lambdasonde, welche nach dem Katalysator angeordnet ist, verwendet, entstehen keine zusätzlichen Kosten zur Umsetzung des Verfahrens.
  • In einer Ausführungsform erfolgt die Regelung der Kraftstoffzugabe zur Einleitung der Regeneration des Partikelfilters durch eine Anpassung des Sollwertes der Lambdaregelung. Diese Sollwertbildung berücksichtigt die Menge an später Nacheinspritzung dergestalt, dass diese Menge, oder ein Teil davon, umgerechnet in einen Lambda-Unterschied am Arbeitspunkt, vom Sollwert subtrahiert wird.
  • Eine Verfahrensalternative sieht vor, dass die Nacheinspritzung von Kraftstoff in zumindest einen Brennraum der Brennkraftmaschine aus mehreren Teileinspritzungen besteht.
  • Die die Vorrichtung betreffende Aufgabe der Erfindung wird dadurch gelöst dass der Regler zur Regelung der Kraftstoffzugabe zur Einleitung der Regeneration des Partikelfilters mit dem Ausgangssignal der ersten Lambdasonde beaufschlagt ist. Diese erste Lambdasonde ist in Abgasrichtung nach dem die Kohlenwasserstoffe oxidierenden Katalysator angeordnet, wobei im Abgaskanal auch mehrere Katalysatoren angeordnet sein können. Hierdurch kann sich eine Querempfindlichkeit der Lambdasonde für Kohlenwasserstoffe nicht verfälschend auf die Bestimmung der Abgaszusammensetzung auswirken.
  • Ist ein NOx-Speicherkatalysator als oxidierender Katalysator vorgesehen, ist der Regler zur Regelung der Kraftstoffzugabe zur Regeneration des NOx-Speicherkatalysators und der Kraftstoffzugabe zur Einleitung der Regeneration des Partikelfilters vorgesehen und ist ein Umschalter zur Beaufschlagung des Reglers im Motorsteuergerät mit dem Ausgangssignal einer vor dem NOx-Speicherkatalysator angeordneten zweiten Lambdasonde während der Regeneration des NOx-Speicherkatalysators vorgesehen, kann die Vorrichtung zur Regeneration des NOx-Speicherkatalysators und des Partikelfilters verwendet werden und auch im Bereich aktiver Lambdaregelung eine Regelung und Überwachung der Temperatur des Partikelfilters vorgenommen werden.
  • Kurze Beschreibung der Zeichnung
  • Die Erfindung wird im Folgenden anhand eines in der Figur dargestellten Ausführungsbeispiels näher erläutert. Es zeigt:
  • Figur 1
    in schematischer Darstellung das technische Umfeld, in dem die Erfindung eingesetzt wird.
    Ausführungsform der Erfindung
  • Figur 1 zeigt in schematischer Darstellung das technisch Umfeld, in dem die Erfindung eingesetzt werden kann. Dargestellt ist eine Brennkraftmaschine 10 in Form eines Dieselmotors mit einem Luftzufuhrkanal 20, in dem ein Zuluftstrom 21 geführt ist, und einem Abgaskanal 30, in dem ein Abgasstrom 32 der Brennkraftmaschine 10 geführt ist. Entlang des Luftzufuhrkanals 20 sind in Strömungsrichtung des Zuluftstroms 21 ein Heißluftfilmmassensensor 22 HFM, eine Kompressionsstufe 24 eines Turboladers 23 und eine Drosselklappe 25 angeordnet. Eine Abgasrückführung 26 verbindet den Luftzufuhrkanal 20 mit dem Abgaskanal 30. In Strömungsrichtung des Abgasstromes 32 sind nach der Brennkraftmaschine 10 eine Abgasturbine 31 des Turboladers 23 sowie als Bestandteile eines Abgasnachbehandlungssystems 40 ein oxidierender Katalysator 42 und ein Partikelfilter 45 vorgesehen.
  • Über den Luftzufuhrkanal 20 wir der Brennkraftmaschine 10 Frischluft zugeführt. Die Frischluft wird dabei von der Kompressionsstufe 24 des Turboladers 23, welche über die Abgasturbine 31 vom Abgasstrom 32 angetrieben wird, komprimiert. Durch die Drosselklappe 25 kann die zugeführte Luftmenge, die von dem Heißluftfilmmassensensor 22 bestimmt wird, eingestellt werden. Zur Schadstoffreduzierung wird dem Zuluftstrom 21 über die Abgasrückführung 26 in von den Betriebsparametern der Brennkraftmaschine 10 abhängigen Mengen Abgas aus dem Abgaskanal 30 zugemischt.
  • In dem Abgasnachbehandlungssystem 40 werden von der Brennkraftmaschine 10 emittierte Schadstoffe umgesetzt beziehungsweise ausgefiltert. So werden in dem oxidierenden Katalysator 42 Kohlenwasserstoffe oxidiert, während der Partikelfilter 45 Rußpartikel zurückhält. Der Katalysator 42 kann als NOx-Speicherkatalysator ausgeführt sein und in dieser Ausführung Stickoxide aus dem Abgas umsetzen.
  • Durch den Betrieb der Brennkraftmaschine 10 füllt sich der Partikelfilter 45, bis das Erreichen seiner Speicherkapazität signalisiert wird. Daraufhin wird eine Regenerationsphase des Partikelfilters 45 angestoßen, bei der die in dem Partikelfilter 45 gespeicherten Partikel in einer exotherm verlaufenden Reaktion verbrannt werden. Um diese exotherme Reaktion einzuleiten sind vor dem Partikelfilter 45 Abgastemperaturen von 600°C bis 650°C notwendig. Da diese Temperaturen bei normalem Betrieb der Brennkraftmaschine 10 nur nahe der Volllast erreicht werden, muss ein Temperaturanstieg durch zusätzliche Maßnahmen bewirkt werden. Insbesondere im Fall niedriger Motorlasten und Drehzahlen sind neben Luftsystemeingriffen, beispielsweise über die Drosselklappe 25, weitere Maßnahmen im Umfeld der Kraftstoffeinspritzung erforderlich. Diese können innermotorische Maßnahmen wie eine Spät-Verschiebung der Haupteinspritzung oder eine in der Brennkraftmaschine 10 drehmomentneutral verbrennende Nacheinspritzung sein. Es kann auch eine in den Abgaskanal 30 vor dem Katalysator 42 zugeführte und an dem Katalysator 42 verbrennende Nacheinspritzung vorgesehen sein.
  • Zur Überwachung der Temperatur des Abgases von dem Partikelfilter 45 ist ein Temperatursensor 44 vorgesehen, der mit einem Motorsteuergerät 50 verbunden ist, das auch die Zudosierung von Kraftstoff zur Brennkraftmaschine 10 über eine Signalleitung steuert. Die Überwachung der Temperatur des Abgases ist notwendig um eine Schädigung des Partikelfilters 45 zu verhindern. Erfindungsgemäß wird die Abgaszusammensetzung während einer Regeneration des Partikelfilters 45 mit einer vor dem Partikelfilter 45 angeordneten ersten Lambdasonde 43 überwacht, die mit einem im Motorsteuergerät 50 vorgesehenen Regler 51 verbunden ist. Der Regler 51 bestimmt Menge und Zeitablauf der Dosierung von Kraftstoff und steuert auch die Nacheinspritzung. In dieser Anordnung können Kohlenwasserstoffe im Abgas an dem oxidierenden Katalysator 42 oxidiert und damit entfernt werden, so dass die Querempfindlichkeit der ersten Lambdasonde 43 für Kohlenwasserstoffe deren Messwerte nicht verfälscht.
  • Während einer Regeneration des als NOx-Speicherkatalysator ausgeführten Katalysators 42 wird vom Motorsteuergerät 50 eine Nacheinspritzung von Kraftstoff zur Anhebung der Abgastemperatur veranlasst und die Abgaszusammensetzung vor dem Katalysator 42 mit einer zweiten Lambdasonde 41 bestimmt. In einer Ausführungsform der Erfindung ist vorgesehen, dass vor dem Regler 51 im Motorsteuergerät 50 ein Umschalter 52 vorgesehen ist, so dass zumindest zeitweise während der Regeneration des Katalysators 42 dem Regler 51 das Ausgangssignal der zweiten Lambdasonde 41 zugeführt werden kann und während einer Regeneration des Partikelfilters 45 dem Regler 51 das Ausgangssignal der ersten Lambdasonde 43 zugeführt werden kann. In dieser Anordnung kann eine späte Nacheinspritzung auch im lambdageregelten Betrieb der Brennkraftmaschine 10 vorgenommen werden, ohne dass die Querempfindlichkeit von Lambdasonden für Kohlenwasserstoffe die Bestimmung der Abgaszusammensetzung verfälscht. Somit können Abgaszusammensetzung und Temperatur des Abgases gleichzeitig und weitgehend unabhängig voneinander eingestellt werden.
  • Nicht dargestellt sind für den Betrieb der Brennkraftmaschine 10 und des Abgasnachbehandlungssystems 40 notwendige Einheiten zur Kraftstoffzuführung sowie Einheiten zur Beladungsdiagnose des Partikelfilters 45.

Claims (4)

  1. Verfahren zur Regelung einer Kraftstoffzugabe zur Einleitung der Regeneration eines im Abgaskanal (30) einer Brennkraftmaschine (10) angeordneten Partikelfilters (45) und eines in Abgasrichtung vor dem Partikelfilter (45) angeordneten NOx-Speicherkatalysators (42) zur Oxidation von Kohlenwasserstoffen, wobei die Einleitung der Regeneration des Partikelfilters (45) und die Regeneration des NOx-Speicherkatalysators (42) durch eine Nacheinspritzung von Kraftstoff in zumindest einen Brennraum der Brennkraftmaschine (10) oder durch eine Einspritzung von Kraftstoff in den Abgaskanal (30) vor dem NOx-Speicherkatalysator (42) gestartet wird, wobei als Regelgröße für die Regelung der Kraftstoffzugabe zur Regeneration des Partikelfilters (45) das Ausgangssignal einer zwischen dem NOx-Speicherkatalysator (42) und dem Partikelfilter (45) angeordneten ersten Lambdasonde (43) verwendet wird, dadurch gekennzeichnet, dass als Regelgröße für eine Regelung der Kraftstoffzugabe zur Regeneration des NOx-Speicherkatalysators (42) das Ausgangssignal einer zweiten vor dem NOx-Speicherkatalysator (42) angeordneten Lambdasonde (41) verwendet wird, dass die Regelung der Kraftstoffzugabe zur Einleitung der Regeneration des Partikelfilters (45) und die Regelung der Kraftstoffzugabe zur Regeneration des NOx-Speicherkatalysators (42) mit dem selben Regler (51) mit unterschiedlichen Regelparametern durchgeführt wird, dass der Regler (51) zur Regeneration des Partikelfilters (45) mit dem Ausgangssignal der ersten Lambdasonde (43) und zur Regeneration des NOx-Speicherkatalysators (42) mit dem Ausgangssignal der zweiten Lambdasonde (41) beaufschlagt wird, wobei dem Regler (51) mittels eines Umschalters (52) während der Regeneration des NOx-Speicherkatalysators (42) das Ausgangssignal der zweiten Lambdasonde (41) zugeführt wird und während der Regeneration des Partikelfilters (45) das Ausgangssignal der ersten Lambdasonde (43) zugeführt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Regelung der Kraftstoffzugabe zur Einleitung der Regeneration des Partikelfilters (45) durch eine Anpassung des Sollwertes der Lambdaregelung erfolgt.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Nacheinspritzung von Kraftstoff in zumindest einen Brennraum der Brennkraftmaschine (10) aus mehreren Teileinspritzungen besteht.
  4. Vorrichtung zur Regelung einer Kraftstoffzugabe zur Einleitung der Regeneration eines im Abgaskanal (30) einer Brennkraftmaschine (10) angeordneten Partikelfilters (45) und eines in Abgasrichtung vor dem Partikelfilter (45) angeordneten NOx-Speicherkatalysators (42), wobei die Vorrichtung derart konfiguriert ist, daß die Einleitung der Regeneration des Partikelfilters (45) und die Regeneration des NOx-Speicherkatalysators (42) durch eine Nacheinspritzung von Kraftstoff in zumindest einen Brennraum der Brennkraftmaschine (10) oder durch eine Einspritzung von Kraftstoff in den Abgaskanal (30) vor dem NOx-Speicherkatalysator (42) gestartet wird, wobei zwischen dem NOx-Speicherkatalysator (42) und dem Partikelfilter (45) eine erste Lambdasonde (43) angeordnet ist, wobei die Vorrichtung derart konfiguriert ist, daß zur Regelung der Kraftstoffzugabe zur Regeneration des Partikelfilters (45) das Ausgangssignal der ersten Lambdasonde (43) vorgesehen ist, wobei ein Regler (51) in einer Motorsteuerung (50) vorgesehen ist und wobei der Regler (51) zur Regelung der Kraftstoffzugabe zur Einleitung der Regeneration des Partikelfilters (45) mit dem Ausgangssignal der ersten Lambdasonde (43) beaufschlagt ist, dadurch gekennzeichnet, dass vor dem NOx-Speicherkatalysator (42) eine zweite Lambdasonde (41) angeordnet ist, dass der Regler (51) zur Regelung der Kraftstoffzugabe zur Regeneration des NOx-Speicherkatalysators (42) mit dem Ausgangssignal der zweiten Lambdasonde (41) beaufschlagt ist und dass ein Umschalter (52) zur Beaufschlagung des Reglers (51) mit dem Ausgangssignal der ersten oder der zweiten Lambdasonde (41, 43) vorgesehen ist.
EP09765682.1A 2008-06-20 2009-05-08 Verfahren und vorrichtung zum betreiben eines abgasnachbehandlungssystems Not-in-force EP2294292B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008002557A DE102008002557A1 (de) 2008-06-20 2008-06-20 Verfahren und Vorrichtung zum Betreiben eines Abgasnachbehandlungssystems
PCT/EP2009/055599 WO2009153102A1 (de) 2008-06-20 2009-05-08 Verfahren und vorrichtung zum betreiben eines abgasnachbehandlungssystems

Publications (2)

Publication Number Publication Date
EP2294292A1 EP2294292A1 (de) 2011-03-16
EP2294292B1 true EP2294292B1 (de) 2017-03-29

Family

ID=41009305

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09765682.1A Not-in-force EP2294292B1 (de) 2008-06-20 2009-05-08 Verfahren und vorrichtung zum betreiben eines abgasnachbehandlungssystems

Country Status (3)

Country Link
EP (1) EP2294292B1 (de)
DE (1) DE102008002557A1 (de)
WO (1) WO2009153102A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011015488B4 (de) * 2011-03-29 2015-07-09 Avl List Gmbh Verfahren und Motorsteuerungseinrichtung zur Detektion von Schwefelvergiftungen im Dieselkraftstoff
JP6586976B2 (ja) 2017-07-26 2019-10-09 マツダ株式会社 エンジンの制御装置
CN114810383B (zh) * 2022-05-05 2023-03-24 苏州清研博浩汽车科技有限公司 一种发动机燃烧参数的调节方法、装置及电子设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1384868A3 (de) 2002-07-26 2004-06-16 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung eines Abgasnachbehandlungssystems
JP2004176663A (ja) * 2002-11-28 2004-06-24 Honda Motor Co Ltd 内燃機関の排気浄化装置
FR2849103B1 (fr) * 2002-12-23 2005-02-18 Renault Sa Procede et systeme de determination de masse de suie dans un filtre a particules
JP4241032B2 (ja) * 2002-12-26 2009-03-18 日産自動車株式会社 ディーゼルエンジン用触媒の硫黄被毒解除制御装置
US7299626B2 (en) * 2005-09-01 2007-11-27 International Engine Intellectual Property Company, Llc DPF regeneration monitoring method
DE102006056100A1 (de) * 2006-11-28 2008-05-29 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Abgasnachbehandlungssystems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2294292A1 (de) 2011-03-16
WO2009153102A1 (de) 2009-12-23
DE102008002557A1 (de) 2009-12-24

Similar Documents

Publication Publication Date Title
EP1121513B1 (de) Verfahren zur stickoxidreduzierung im abgas einer mager betriebenen brennkraftmaschine
DE102015212514B4 (de) Verfahren zur Abgasnachbehandlung und Vorrichtung zur Reinigung des Abgases einer Brennkraftmaschine
EP3475543B1 (de) Verfahren und vorrichtung zur abgasnachbehandlung eines verbrennungsmotors
EP1364110B1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
EP1336037B1 (de) Verfahren und vorrichtung zur steuerung eines abgasnachbehandlungssystems
DE10066237B4 (de) Verfahren zur Regeneration eines Partikelfilters einer Kraftfahrzeug-Brennkraftmaschine
EP1161618B1 (de) Verfahren zur de-sulfatierung eines nox-speicherkatalysators
EP1121519B1 (de) Verfahren und vorrichtung zur de-sulfatierung eines nox-speicherkatalysators
EP2788598B1 (de) Verfahren und vorrichtung zum betreiben einer verbrennungskraftmaschine mit einer abgasreinigungseinheit
WO2012143025A1 (de) Betriebsverfahren für einen kraftfahrzeug-dieselmotor mit einer abgasreinigungsanlage
DE102010003705A1 (de) Verfahren zum Heizen eines Katalysators in einem Motorsystem und zur Diagnose der Wirksamkeit von Maßnahmen zum Heizen des Katalysators
DE102013003701A1 (de) Verfahren zur Steuerung einer Regeneration eines Partikelfilters sowie einer zur Ausführung des Verfahrens ausgebildete Abgasanlage
EP3572634B1 (de) Verfahren und vorrichtung zur abgasnachbehandlung eines verbrennungsmotors
DE102013202142A1 (de) Verfahren und Vorrichtung zur Regeneration eines Partikelfilters
DE102007010189A1 (de) Verfahren zur Regelung der Regeneration eines Partikelfilters
EP2294292B1 (de) Verfahren und vorrichtung zum betreiben eines abgasnachbehandlungssystems
EP1930572A2 (de) Verfahren und Vorrichtung zum Betreiben eines Abgasnachbehandlungssystems
EP1132584B1 (de) Verfahren und Vorrichtung zur Steuerung einer Heizmassnahme in einer Abgasreinigungsanlage von Brennkraftmaschinen
EP1368561B1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
DE102009046151A1 (de) Verfahren und Vorrichtung zur Begrenzung der Temperatur eines Partikelfilters
DE102009045379A1 (de) Verfahren und Vorrichtung zur Regelung der Regeneration eines Partikelfilters
DE102005032457A1 (de) Verfahren und Vorrichtung zur Steuerung oder Regelung der Rußabbrandgeschwindigkeit
DE102005043161A1 (de) Verfahren und Vorrichtung zur Temperaturregelung bei einem Abgasnachbehandlungssystem
EP4095364B1 (de) Verfahren zum betreiben einer verbrennungskraftmaschine
DE102009058339A1 (de) Verfahren zur Abgasnachbehandlung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151028

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170109

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 879993

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009013822

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170630

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170629

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170629

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170731

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170729

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009013822

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

26N No opposition filed

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170508

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170508

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170629

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 879993

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170508

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090508

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190521

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190521

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200728

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200508

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009013822

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201