EP2291245A1 - Joint pour dispositif de dosage de liquides - Google Patents

Joint pour dispositif de dosage de liquides

Info

Publication number
EP2291245A1
EP2291245A1 EP09729290A EP09729290A EP2291245A1 EP 2291245 A1 EP2291245 A1 EP 2291245A1 EP 09729290 A EP09729290 A EP 09729290A EP 09729290 A EP09729290 A EP 09729290A EP 2291245 A1 EP2291245 A1 EP 2291245A1
Authority
EP
European Patent Office
Prior art keywords
seal
piston
cylinder
contact
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP09729290A
Other languages
German (de)
English (en)
Inventor
Jean-Pierre Uldry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Socorex Isba SA
Original Assignee
Socorex Isba SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP08154368A external-priority patent/EP2108450A1/fr
Application filed by Socorex Isba SA filed Critical Socorex Isba SA
Priority to EP09729290A priority Critical patent/EP2291245A1/fr
Publication of EP2291245A1 publication Critical patent/EP2291245A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/021Pipettes, i.e. with only one conduit for withdrawing and redistributing liquids
    • B01L3/0217Pipettes, i.e. with only one conduit for withdrawing and redistributing liquids of the plunger pump type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3204Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip
    • F16J15/3232Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip having two or more lips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0605Metering of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0478Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure pistons

Definitions

  • the present invention relates to a device for dosing liquids, particularly in a laboratory. It therefore relates more particularly to the dosing of liquids in relatively small quantities but exact, for example of the order of ⁇ l up to 100 ml. More particularly, the invention relates to a pipette, a bottle dispenser or a syringe.
  • Document US 2002/0012613 may be cited as an example for an approach which concerns the ergonomics of the dosing instrument consisting of a pipette. This approach aims to adapt the shape of the pipette to the hand of the user, so that it fits more easily in the hand and can be manipulated more easily.
  • the suction of the liquid is carried out by means of a vacuum, which is created when the piston housed inside the pipette, pressed through the metering knob, goes up inside the body of the the pipette to its high stop position.
  • a gasket is generally used, which forms a seal between the inner wall of the pipette cylinder and the piston.
  • the seal is arranged to exert a normal bearing force N to the piston, or, if it is housed on the piston, on the inner wall of the cylinder.
  • the spring which is used to push the piston back to its original high stop position, must be strong enough to overcome the friction exerted by the seal on the piston.
  • an annular rubber or elastomer seal called O-ring or o-ring is often used to seal the piston. and the wall of the cylinder.
  • US 6926867 may be cited as an example.
  • O-ring seal With a full-section O-ring seal, the resulting friction is relatively high on plastics, even in the presence of lubrication.
  • the seal tolerances are proportionately larger as the dimensions are smaller. This is manifested by a variable and sometimes high compression ratio and contact pressure to guarantee watertightness. Reduced tolerances on the O-ring seal and its housing are possible, but lead to increases in manufacturing and control costs.
  • control of the resulting friction force F is difficult. A minimum and constant value, by reducing the contact pressure remains difficult to achieve without increasing the probability of leakage.
  • the present invention aims to reduce the friction force exerted by a seal for sealing between the piston and the inner wall of the cylinder of the device.
  • the present invention also aims a seal that maintains a seal comparable to that of the devices of the prior art while decreasing the friction force.
  • the invention aims to reduce the fatigue experienced by the user during the repetitive dosing of liquids.
  • the invention also aims to implement a solution that can be performed on devices of different sizes.
  • the present invention aims to implement a sealing system for small dosing devices, adapted to small diameter pistons, decreasing the friction force while maintaining a good seal.
  • the state of the art often proposes seals housed on the piston. These seals have the disadvantage of being difficult to produce and mount in the device when the piston has a small diameter, which is the case of small volume pipettes, for example pipettes for dosing volumes of the order of one to 200 microliters.
  • the present invention also aims to implement a solution that is used not only in the field of manual dosing devices, but also in the field of electronic devices.
  • a reduced friction force would allow to use a lower power engine and therefore more economical and therefore to increase the battery life as the total number of pipetting.
  • the present invention also aims to implement a solution that can be used with pipettes single-channel or advantageously multi-channel to reduce the resulting total activation force.
  • the present invention relates to a manual dosing device for liquids, comprising a cylinder and a piston housed inside the cylinder, the device being arranged so that, during dosing, the piston moves along its axis to perform suction or ejection of the liquid, the device further comprising a seal housed in the cylinder and arranged to provide a seal between the cylinder and the piston.
  • the seal remains fixed with respect to the displacement of the piston and comprises at least two parts formed of material portions specifically shaped to locally optimize the sliding and sealing functions. on the piston, as sealing against the cylinder.
  • the seal comprises a first portion which cooperates with the inner wall of the cylinder and performs the sealing functions against the inner surface of the cylinder and fixing to the latter, and a second part which is in contact with the piston, and which ensures the sealing functions between the seal and the piston and sliding between these two parts.
  • the invention relates to a manual dosing device for liquids, comprising a cylinder, a piston sliding in the cylinder to meet and under the effect of the force of a spring, and a seal housed between an inner wall of the cylinder and an outer wall of the piston, characterized in that the seal is an annular piece shaped with respective peripheral and inner annular portions.
  • peripheral portion is arranged for a fixed attachment to said inner wall of the cylinder and said inner portion is arranged for continuous sliding and sealed against the outer wall of the piston, the latter being cylindrical.
  • FIG. 1 represents a seal for the metering device according to a first embodiment of the invention, this seal being shown in perspective.
  • Figure 2 shows the seal of Figure 1 in axial section.
  • Figure 3 shows a seal of Figure 1 in vertical elevation.
  • Figure 4 shows in axial section a cylinder, a piston and a seal of a device according to the invention.
  • FIG. 5 is an enlarged view of detail C of FIG. 4.
  • Figure 6 shows schematically, on a larger scale and in axial section a detail of the joint shown in Figures 4 and 5.
  • Figure 7 is a perspective view of a seal according to a second embodiment of the invention.
  • FIG. 8 is a view in axial section of the seal of FIG. 7.
  • Figure 9 is a vertical elevational view of the seal of Figure 7.
  • FIG. 10 is an enlarged view of detail C of FIG. 8.
  • Figure 11 is a partial axial section of a third embodiment of the device of the invention.
  • Figure 12 is an enlarged view of detail C of the device shown in Figure 11.
  • Figure 13 is an axial section of a fourth embodiment of the device of the invention.
  • FIG. 14 is an enlarged view of detail C of the device of FIG. 13.
  • Figure 15 is an axial section of a fourth embodiment of the device of the invention.
  • FIG. 16 is an enlarged view of the detail C of the device of FIG. 15.
  • Figure 17 is an axial section of a fifth embodiment of the device of the invention.
  • FIG. 18 is an enlarged view of detail C of the device of FIG. 17.
  • Figure 19 is an axial section of a sixth embodiment of the device of the invention.
  • FIG. 20 is an enlarged view of the detail C of the device of FIG. 19.
  • Figure 21 is an axial section of a seventh embodiment of the device of the invention.
  • FIG. 22 is an enlarged view of the detail C of the device of FIG. 21.
  • Figure 23 is an axial section of a first embodiment of a second embodiment of the device of the invention.
  • FIG. 24 is an enlarged view of the detail C of the device of FIG. 23.
  • Figure 25 is an axial section of a second embodiment of the second embodiment of the device of the invention.
  • FIG. 26 is an enlarged view of detail C of the device of FIG. 25.
  • Figure 27 is an axial section of a third embodiment of the second embodiment of the device of the invention.
  • FIG. 28 is an enlarged view of the detail C of the device of FIG. 27.
  • Figure 29 is an axial section of a fourth embodiment of the second embodiment of the device of the invention.
  • FIG. 30 is an enlarged view of the detail C of the device of FIG. 29.
  • Figure 31 is an axial section of a fifth embodiment of the second embodiment of the device of the invention.
  • Figure 32 is an enlarged view of the detail C of the device of Figure 31.
  • Figure 33 is an axial section of a sixth embodiment of the second embodiment of the device of the invention.
  • Figure 34 is an enlarged view of detail C of the device of Figure 33.
  • Figures 1 -3 show a seal provided for a pipette according to a first embodiment of the device of the invention, this seal being respectively shown in perspective, in axial section and in vertical elevation in FIGS. 1, 2 and 3.
  • the seal 1 comprises several parts 2, 3, 4, 5, 6, 7, of different shapes each fulfilling a specific function as explained below.
  • Part 2 the largest, forms a rigid annular body profile and constant around its periphery. It functions as a support for the other parts and allows the seal 1 to be firmly anchored inside the cylinder of a pipette. It includes a slightly enlarged lip 5 towards the bottom and the outside of its periphery, intended to create a sealed contact with the inner wall of the pipette cylinder, as will be described in connection with the second embodiment.
  • the parts 3, 4, 7 are surrounded by the body 2.
  • the part 4 forms a horizontal annular connection between the inner edge 9 of the body 2 and two lips 3 and 7 of reduced thickness intended to slide in contact with the outer cylindrical face a piston forming the active element of the pipette.
  • the upper lip 3 is angled upward, while the lower lip 7 is angled downwardly.
  • the extreme edges of the two annular lips 3 and 7 define the size of an opening 8 in the center of the seal 1, this opening having a circular shape if we look at the seal from above.
  • the seal 1 of FIGS. 1 to 3 is intended to be housed and engaged inside the cylinder and a piston passing through the seal will also be housed in the cylinder of a pipette.
  • the profile of this seal in diametral section according to FIG. 2, has an axis of symmetry 15 which will coincide with the axis of symmetry of the pipette and comprises two symmetrical halves a and b each with a solid zone 2.5 fixed to the cylinder and a flexible zone 4, 3, 7 shaped for a sliding contact with the outer face of the pipette piston.
  • a suitable elastomer will preferably be chosen which allows precise shaping by molding.
  • Figure 4 shows in axial section the elements of a pipette to be operated by hand.
  • This pipette comprises a piston 23 which is slidably housed in a cylinder 20 consisting of a lower portion 22 separated by a seal 21 of an upper portion 24.
  • the seal 21 creates a seal between the lower portion 22 and the upper portion 24 of the cylinder 20.
  • Figure 4 shows the piston 23 in one piece, as one
  • the cylinder 20 may be made of two different pieces 22, 24 which can be connected by means of a thread.
  • the purpose of the free space at the base of the cylinder 20 is to allow air to be drawn through the opening 25 of the liquid in which a nozzle attached to the base of the cylinder 20 is immersed when the piston 23 rises back into the cylinder.
  • the suction force is maintained through the seal provided by the seal 21, as explained at the beginning.
  • Fig. 5 shows on an enlarged scale and in axial section similar to FIG. 4 the arrangement of the seal 21 between the two upper and lower parts 22 and 24 of the cylinder 20.
  • the seal 21 is housed inside the cylinder 20, just at the passage between the lower portion 22 and upper 24. If these two parts are made in two separate parts, the seal could be housed in the lower part 22 or in the upper part 24, the condition for the latter possibility being that the connection (possibly by threading) between the two parts 22, 24 is itself waterproof .
  • FIG. 4 illustrates the housing of the seal 21 in the cylinder 20.
  • the axial sectional view shows, as in FIG. 2, the profiles of the two symmetrical sections (a) and (b). of the annular seal, and we can see a certain relationship with the seal 1 of Figures 1 -3, the corresponding parts bearing the same reference signs.
  • the seal 21 of FIGS. 4 and 5 thus comprises the body 2, the plane connection 4 and the circular lips 3 and 7, in which the smooth cylindrical face of the piston 23 slides by deforming them elastically.
  • the flat annular part 4 is here, unlike FIGS. 1 -3, provided with a cylindrical rib 11 extending in the lower part of the body 2 of the seal. It accommodates recesses and improves the functional separation between the fixing of the gasket to the cylinder 20 and the flexible sealing zone against the piston 23.
  • a recess (or air pocket) is a recess and / or a bulge, which creates areas of reduced thickness, these areas defining the transitions between different parts, especially between the parts fulfilling different functions.
  • the lower portion 22 of the cylinder 20 has at its upper end a flat-bottomed housing 26 which receives the seal 21 and prevents any vertical displacement of the latter towards the bottom of the cylinder 20.
  • a vertical upward movement is prevented mainly by the fins 6, 6 'in the form of ring sections projecting from the body 2. These fins are engaged in openings 27, 27' which through the walls of the cylinder 20.
  • the body 2 is rigid enough to prevent movement of the seal 21 when a vertically oriented force upward is applied thereto.
  • the flange 5 of the seal defining a perimeter slightly greater than that of the body 2 exerts a pressure on the inner wall of the cylinder 20.
  • the force at the origin of this pressure can be relatively high, because no relative displacement between the seal and the cylinder is provided during operation of the metering device.
  • the force exerted by it on the inner wall of the cylinder 20 is decoupled from the bearing force exerted by the same seal on the piston 23. The latter is much lower.
  • Figure 5 also shows that the lips 3 and 7 surround the piston 23 and thus create a sealing contact with the piston. Thanks to the reduced thickness of the lips 3 and 7 with respect to the rigid part 2 of the seal, and thanks to the orientation of the lips, which has a vertical part, the skilled person will appreciate that the pressure exerted on the piston is lower, even substantially less than the pressure and force exerted by the seal 21 on the inner wall of the cylinder 20.
  • the seal 21 has a plurality of recesses 31, 32, which decouple its different parts and thus make it possible to obtain the advantages of the invention. In particular, it is possible to reduce the friction force exerted by the seal on the piston 23.
  • the lips 3 and 7 of the seal shown in Figure 5 form a closed space 30, which can serve as a reservoir for a lubricant.
  • a lubricant at this point makes it possible to reduce the friction force at startup by breaking the adhesion between the seal 21 and the piston 23 following a prolonged rest period, in which the device would not have been used.
  • the flexibility of the lips to the areas of contact with the piston generates micro-deformations which also make it possible to quickly recreate the interlayer lubricant film.
  • the closed space 30 is shown on a larger scale in Figure 6, where the presence of a lubricant 33 is visible.
  • the lubricant 33 is in particular in the area of contact between a lip 3 and 7 of the seal 21 and the piston 23.
  • the lubricating film prevents / reports over time the creation of the adhesion forces and decreases the friction between the seal and the piston 23 which results in the necessary force to move the piston 23 in a vertical direction is comparatively smaller.
  • the thicknesses c, c 'of the lips 3, 7 of the joint 21 are indicated. Each of these thicknesses is measured at a point of contact between the lip and the piston in a direction perpendicular to the axis of the piston. .
  • This thickness (or distance) is small compared to the dimensions of the seal or the body 2 of the seal (visible in Figures 1, 2, 5).
  • the distance c (and / or c ') is less than 1 mm, preferably less than 0.7 mm, less than 0.5 mm and / or even 0.5 mm. This thickness preferably applies to all or a major portion of the surface of the contact area between the seal and the piston.
  • it is a connection zone between the part filling the function of anchoring the seal in its seat and / or sealing against the wall of the cylinder and the part which fulfills the sealing function with the piston which has a reduced thickness as indicated above.
  • it is not necessarily the same lip that realizes the decoupling functions, but the structure that connects the parts that perform the different functions.
  • this may be the annular connection 4 which is characterized by a thickness as defined in relation to the letter c and / or c 'above. It should be noted that in this case the measured thickness is the minimum thickness between two parts, in particular between the anchoring part and sealing against the cylinder (for example, part 2 of FIG.
  • Figures 7 to 9 show, in perspective, in axial section and in vertical elevation and in enlarged partial section in Figure 10, a seal 40 which differs from the seal 1 shown in Figures 1 -3, in that it further comprises two transverse and parallel incisions 35, 35 'which pass through the joint in vertical directions from above to approximately the middle of the seal 40, stopping at the level of the internal connection 4 between the body 2 and the lips 3 and 7.
  • the incisions 35, 35 ' are vertical slots which pass at equal distances from the central axis of symmetry 15 of the seal 40.
  • the seal must be inserted through an upper opening of the cylinder 20 and through a passage having a diameter. inside which is almost identical to the diameter of the seal 40, in particular to the diameter defined by the upper edge of the body 2.
  • the internal plane connection 4 and n therefore do not arrive at the rim 5, the incisions 35, 35 'do not interfere with the sealing function against the inner wall of the cylinder 20.
  • the part of the seal 40 which is higher than the internal connection 4 then fulfills, in addition to the function of anchoring the seal in its housing with the fins 6, 6 ', a function of flexibility or flexibility facilitating the insertion of the seal during assembly of the pipette.
  • Fig. 10 is an enlarged partial sectional view of Fig. 8, indicated therewith with a circle. The features highlighted in the figure
  • a contact zone 41 formed by a portion of the upper lip 3, whose surface, of low height is in the form of a hollow cylinder, is then recognized in FIG.
  • this contact surface 41 means that the whole of this contact surface is reduced.
  • the reduction of the contact surface between the seal 40 and the piston 23 is equivalent to a reduction in the friction force by adhesion at rest and during a relative displacement between these two elements.
  • an asymmetric profile segment 43 of the lip 3, which is curved so as both to determine and to minimize the contact surface 41, is particularly recognizable.
  • Figure 10 also shows a contact zone 42 of the lower lip 7 with the piston 23 (not shown).
  • the profile of this lip 7 does not have the asymmetrical concave shape 43 of the upper lip 3, but the contact zone 42 is nevertheless clearly defined and delimited with respect to the remainder of the lip 7.
  • Figures 11 and 12 show in general axial section and in partial and enlarged axial section an embodiment of the invention comprising a seal 50.
  • the seal 50 is simpler than the joints 1, 40, discussed above, but includes also two lips which are in contact with the piston 23. If we consider (fig.12) the profile of the seal in an axial section limited to one half of the assembly relative to the axis of the piston we realize because the seal 50 is less asymmetrical than the previous joints 1, 40. It is obvious that the seal 50 has in fact a plane of symmetry perpendicular to the axis of the pipette and in the plane of FIG. 12 is reduced to an axis of symmetry d particular to the profile shown in this figure.
  • the seal 50 comprises two body segments 56 and 57.
  • the two segments are not symmetrical with respect to the axis d because of the presence of the rim 5 on the segment of body 53 and a slightly deviating structure on the opposite body segment 57.
  • the cylindrical outer face of the body segments 56 and 57 is in contact with the cylinder 20.
  • the seal Internally, that is to say in contact with the piston 23, the seal has two lips that are equally symmetrical with respect to the axis d. Between the support elements 56 and 57 extends a recess 53 which delimits two junctions or flexible connections 58 and 59. If we ignore the few small differences in the parts 56 and 57, responsible for anchoring the seal in its housing, we identify a single axis of symmetry d.
  • the hollow support 2, present in the joints 1 and 40, is transformed into two support portions 56 and 57, arranged one vertically above the other and separated by a recess 53.
  • This recess 53 creates two junctions 58 Approximately 59, which join the support portions 56 and 57 to the lips.
  • the fineness of the junctions 58, 59 determines the mechanical decoupling between the stiffness of support portions 56 and 57 at relatively large volume and flexible lips.
  • seals 1, 40 and 50 are made in one piece and made of a single material, usually an elastomer.
  • the differences in stiffness and / or flexibility of the different parts of the joints are due to the different thicknesses of these parts or to the volume occupied by the material by and in these parts.
  • the seal 50 is retained in its housing by means of a retaining ring 55, which is placed in a notch 54 of the pipette body 20.
  • the seal 50 is inserted through an upper opening in the cylinder 20 and engaged to the inner flange 26. Then, the retaining ring 55 is inserted and stopped at the notch 54.
  • the relatively rigid support members 56 and 57 realize the fixed and stationary placement of the seal 50 inside its housing in the cylinder 20.
  • FIGS. 13 and 14 also respectively show, in enlarged general and partial axial section respectively, an embodiment of the invention comprising a single lip seal 7 produced in the image of a lower lip of the preceding embodiments (FIG. joints 1, 40 and 50).
  • the general structure of this seal 60 has several parts in common with the embodiment shown in FIGS. 11 and 12, and the corresponding parts are indicated with the same reference numerals.
  • the half-section of the seal 60 shown in FIG. 14 has no axis of symmetry.
  • the seal comprises a single lip, similar to the situation shown in FIGS. 13 and 14, with the difference that the single lip is oriented upwards, in correspondence with an upper lip of one of the embodiments described above.
  • This embodiment also has its advantages, since the upwardly facing single lip has a high sealing function when returning the piston, which is important. During the aspiration of the liquid, the reduction of the friction obtained by eliminating the upper lip is an advantage.
  • FIGS. 15 and 16 show an embodiment according to the invention, comprising a seal 70 whose supporting portion 72 in the form of a hollow cylinder comprises and largely surrounds a rigid stabilizing element 78 made of a different and stiffer material than the rest of the seal 70, for example a metal core.
  • the latter is therefore made of two different materials.
  • the lower lip 77 and the upper lip 73 of the gasket 70 are symmetrical ( Figure 16: half section of an axial section).
  • the outer portion of the solid half-section 72 has a sealing flange 5, operating as discussed above, and contains the stabilizing element 78 of asymmetrical shape.
  • This element comprises several parts which, in the radial sectional view of FIG. 16, appear in the form of arms 79, 71, 78, but which, in consideration of the three-dimensional shape of this element 75, constitute a short tubular element 79, and two extensions in the form of flat rings 71, 78 of different diameters, respectively connected to the center and the upper end of the tube 79, and oriented one towards the inside and the other towards the outside of the cylinder.
  • the outer ring 78 passes through the body of less rigid material of the seal 70 to engage a groove 74 in the inner wall of the cylinder 20, thereby anchoring the seal 70 in the hollow cylinder 20.
  • the extension upper 78 operates in a similar manner to the holding washer 55 of FIG. 12.
  • this "holding washer 55" constituted by the extension 78 is an integral part of the seal 70.
  • the use of an element 78 in a second material, more rigid than the base material in which the lips are formed allows both (a) to obtain a more rigid support function, performed by the support cylinder. 72, and (b), at least in part, anchoring the seal 70 within the cylinder using the interaction between the elements 78 of the seal and 74 of the wall of the cylinder 20
  • the present invention also relates to seals made in one piece of several materials of different stiffnesses. These different rigidities allow the formation of parts of the seal which reinforce its anchoring in the cylinder, for example by their interaction with stop points, such as a groove or openings, present in the cylinder 20.
  • FIGS. 17 and 18 show another embodiment of the subject of the invention, according to which, as for the embodiment shown in FIGS. 15 and 16, the seal 80 is constituted of a single piece but includes parts made of different materials. As in Figures 15 and 16, one of the materials is stiffer than the other. In FIGS. 17 and 18 is the tube 85, which is surrounded or largely embedded and supports an elastic material providing the sealing functions against the piston 23 and the cylinder 20.
  • the rigid element 85 comprises an upper bulge 88, which projects beyond the less rigid material of which the lips are constituted.
  • This upper bulge 85 is formed so as to engage in a groove
  • seals shown in Figures 15 and 16 or 17 and 18 may be manufactured, for example by overmolding, bi-injection or other composite process.
  • the two elements may be manufactured separately, and the less rigid portion may be engaged on the rigid portion, for example.
  • other manufacturing possibilities exist and can be chosen by those skilled in the art.
  • Figures 19 and 20 show another embodiment of the present invention.
  • the seal 90 has a tubular support piece 92 with a more elongated shape than the previous embodiments.
  • the connecting element 4 starts from a region close to the base of the support tube 92 and opens into the two lips 93 and 97, which, in the embodiment shown in FIGS. 19 and 20, are shaped differently, the lip lower 97 being a little more elongated than the lip 93.
  • the support tube 92 is thinner than in the previous embodiments. This type of embodiment allows attachment without openings in the cylinder wall. It is advantageous, for example, for small seals placed in "deep" seats of cylinders, for example for multichannel pipettes.
  • the support cylinder 92 Towards its upper end, the support cylinder 92 has an outer rim 98, which cooperates with a groove 94 in the cylinder so as to reinforce the anchoring of the gasket 90 in the cylinder 20 of the metering device.
  • connection area 4 in the form of an internal flange starts from the support tube 92, firstly describes a downward curve and relies on the internal flange 26 of the cylinder 20. Then the flange 4 is divided into two lips 93 and 97, as described above. Thus, a recess 95 is formed between the flange 4 and the lower end of the support tube 92, ideally separating the support and sealing functions with the wall of the cylinder 20 from the seal on the rim 5 with the piston 23.
  • Figures 21 and 22 show an embodiment with a seal 100 similar to that of Figures 19 and 20, but differing in that the inner flange 4 of the seal 100 from the lower end of the support tube 102.
  • the seal 100 has a plurality of sealing ribs 103, 104 and 105 on the outer surface of the support tube 102. These compressive sealing ribs replace the widened flange 5 of the previous embodiments and assume the function of sealing against the inner wall of the cylinder 20.
  • Figures 23 and 24, as well as the following figures, relate to embodiments which differ from the previous embodiments by the absence of lips such as the lips 93 and 97, for example.
  • the sealing function against the piston 23 is accomplished by a part which, according to the half-profile shown in FIG. 24, for example, has the shape of a curved line 112, 114 oriented towards the axis of the piston and whose the enlarged proximal zone 114 is in contact with the piston. Seen in three dimensions, this type of seals is a tubular element whose central part has a sinuous shape similar to a bellows.
  • the shape and arrangement of the seal 110 in its housing of the cylinder 20 are such that a large air pocket 115 is present, filling a very large part of the annular volume between the cylinder and the seal opposite the piston .
  • the skilled person will appreciate that with this recess, the pressure and therefore the friction force exerted on the piston is greatly reduced compared to a rigid body of polymer material, as with O-rings, while keeping good seal.
  • FIGS. 23 and 24 shows a seal 110, whose central portion 112, 114 is curved towards the center, and the middle 114 of the curve slightly touches the piston 23 thus making a tight connection with low friction force. or at low pressure.
  • the lower part and the upper part 13 and 111 of the tubular element are arranged to fulfill the other functions of the joint as described below.
  • the lower part of the seal 110 is arranged to form a sealed connection with the inner wall of the cylinder 20.
  • a rigid ring 116 of rigid metal or polymer for example, pushes the lower part 113 towards the cylinder wall 20.
  • a groove or recess 117 is in the wall of the cylinder 20, stopping or blocking the rigid ring 116. In this way, the seal 110, and in particular its lower portion 113, are immobilized in the cylinder.
  • the upper end 111 of the seal 110 is straightened to a cylindrical shape and is stopped by a retaining ring 119, locked like the retaining washers described above.
  • the profile of the inner face of the cylinder 20 has a narrowing 118 decreasing its internal diameter at the seal housing.
  • the extent of this rim 118 makes it possible to control, for example to bring closer, the position of the lower part 113 and the ring 116 relative to the piston 23. In this way, the friction force and the sliding exerted by the seal on the piston can be better adjusted.
  • Figures 25 and 26 show a seal 120 based on the same concept as that of Figures 23 and 24, with, however, some differences in embodiment.
  • the holding washer 119 intended to block the upward vertical movement of the seal 110 of FIGS. 23 and 24 is not present in FIGS. 25 and 26.
  • an enlarged structure 121 of the upper end of the seal 120 characterizes this embodiment giving it a high rigidity so that it can then assume the function of anchoring the seal 120 upwards.
  • the enlarged structure 121 is engaged in a groove 123 of the inner wall of the cylinder 20, blocking any vertical displacement of the upper part of the gasket 120.
  • the lower portion 112 of the seal also includes a widening 122, which cooperates with a groove 117, as described in the previous paragraph for the upper end of the seal 120.
  • a rigid ring 116 is provided for pressing the lower part 122 of the seal towards the inner face of the cylinder 20.
  • Figures 27 and 28 show other variants of the seal according to the concept described with respect to Figures 23-26.
  • the sealing of the seal 130 against the piston 23 is carried out according to FIGS. 23-26, but the anchoring in the housing of the cylinder 20 is modified, by modifying the ends of the seal 130.
  • Figures 31 and 32 show a variant of the concepts of Figures 23-30, in that the curved shape oriented towards the axis of the piston and whose proximal zone is in contact with the piston, in the view of the half profile of FIG. 32, two vertices forming contact points 153 and 157 rounded and creating a closed space 154 limited by the seal 150 and the piston 23.
  • the contact points 153 and 157 are indeed rings or hollow contact cylinders, coaxial with the piston 23 and located in planes parallel to one another.
  • the closed space 154 has the three-dimensional shape of a ring.
  • the closed space 154 of the seal 150 has the same function as the closed space 30 shown, for example, in Figure 5 or in more detail in Figure 6. This space therefore serves as a lubricant reservoir and thus contributes good sliding during the vertical displacement of the piston 23 along its axis during dosing.
  • Figures 33 and 34 show an extension of the principle shown in Figures 31 and 32, with a seal 160 comprising, in the half-profile of Figure 34, three contact points 161, 162, 163 rounded with the piston 23 enclosing two spaces 164 and 165.
  • the contact points are in a central zone of the seal limited upwards and downwards by portions of the seal 160 in the form of conical walls 155 and 156 inverted.
  • the whole of the seal 160 is relatively rigid, including in the curved zone, but that this fact is partly compensated by the rounded contact areas 161, 162, 163 which are small and easily deformable at the start of the piston, which allows regeneration of the lubricating interface film and reduces the friction force by contact zone.
  • molded elastomers of the FPM type preferably for temperature resistance of 15 to 150 ° C., which constitutes the usual range of use / sterilization for laboratory instruments.
  • elastomers are silicone, "butyl rubber", copolymers of ethylene and propylene, vinylidene fluoride and hexachloropropylene copolymer, among others.
  • complementary processes are envisaged to further reduce the frictional forces of an elastomer, in particular those of adhesion at rest (surface creation of reactive repulsion groups).
  • Peripheral treatment of the seal and / or the addition of internal lubricants are techniques according to the invention. These include the creation of micro-reservoirs of lubricant by "sandblasting / cryogenization", halogenation or surface molecular structural transformation by plasma spraying as well as the incorporation of "alloy” elements in the matrix, these elements being chosen, for example, from fluorinated powders and / or lubricants. If a lubricant is used, it can intervene in simple addition or be grafted.
  • the seal comprises an elastomer including, in its matrix, an alloying element
  • the volume proportion of said alloying element will be chosen less than or equal to 30%, preferably less than or equal to 25%, of the volume. total elastomer.
  • At least a portion of the seal is made of a material having a hardness of less than 75 Shore A.
  • the Shore A hardness of the material will be between 30-75, or else 40 to 70.
  • any portion in sealing contact with the piston will be characterized by the Shore hardness values indicated above.
  • the lips shown in Figures 2, 4-6, 8, 10 and 11 -22, or the contact areas 114 of Figures 23-30, and 153, 157, 161, 162, 163 of Figures 31 -34 shall be made of a material having the characteristics of Shore indicated above.
  • the device according to the invention is characterized by the use of a seal comprising parts with different geometric characteristics and / or different volumes. Due to the characteristics of the seal it is possible to reduce the frictional force exerted by the seal on the piston.
  • the friction force must be "Fressort, which pushes the piston and whose level is adjusted to ensure accuracy of contact against the mechanical stops determining good volumetric performance.
  • the friction force can be reduced to about 1 N.
  • the friction force is ⁇ 0.6 N preferably ⁇ 0.5 N, ⁇ 0.4 N and even ⁇ 0.35 N.
  • the devices of the invention make it possible to dose volumes between 1 .mu.l to 200 ml.
  • the device of the invention may be a pipette or a doser for the assay of volumes of 1 to 1000 .mu.l, 0.1 or 0.2 to 2 ml, 0.1 or 0.5 to 5 ml, and / or 1 to 10 ml.
  • the device of the invention may be an adjustable micropipette covering a volume chosen in the ranges of 50-1000 .mu.l, 10-200 .mu.l, 1-100 .mu.l, 1-50 .mu.l, and 0.5-10 .mu.l.
  • the material is sterilizable at temperatures of about 121 to about 134 ° C.
  • the diameter of the piston of the device may be, for example, 1.5 to 10 mm.
  • the piston of the device has a diameter of less than 6 mm, preferably ⁇ 5 mm, even ⁇ 4 mm, even ⁇ 3.5 mm, or even ⁇ 3 mm.
  • the pressure variations around the working pressure do not generally exceed about ⁇ 0.2 bar, preferably 0.1 bar, or even 0.05 bar, depending on the volume.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

La présente invention concerne un dispositif de dosage manuel de liquides, par exemple une pipette ou un bouton doseur. Le dispositif comporte un joint formant une étanchéité entre un cylindre creux et un piston logé à l'intérieur du cylindre, le piston étant déplacé verticalement pour effectuer l'aspiration ou l'éjection du liquide. Lors du dosage, le joint reste fixe par rapport au déplacement du piston et comprend des parties formées de portions à caractéristiques géométriques et mécaniques dédiées permettant d'optimiser localement les fonctions de glissement, étanchéité et de fixation dans le cylindre.

Description

Dispositif de dosage de liquides
Domaine de l'invention
La présente invention concerne un dispositif de dosage de liquides, en particulier dans un laboratoire. Elle concerne donc plus particulièrement le dosage de liquides en quantités relativement petites mais exactes, par exemple de l'ordre du μl jusqu'à 100 ml. Plus particulièrement, l'invention concerne une pipette, un doseur pour bouteille ou une seringue.
Etat de la technique et problèmes à l'origine de l'invention
Le document US 2002/0012613 décrit, dans son introduction, les problèmes liés au dosage de liquides à l'aide d'un appareil de laboratoire, par exemple une pipette. Lors du travail en laboratoire de recherche ou lors de dosages de routine en milieu biomédical ou industriel, l'utilisateur d'une pipette peut être amené à exécuter un très grand nombre de manipulations d'aspiration et d'éjection de liquide. Le travail de pipetage étant répétitif, il engendre, chez l'utilisateur, de la fatigue, puis des crispations et, selon le document US 2002/0012613, même des lésions. Des exemples de lésions sont le dysfonctionnement de certains membres supérieurs (Upper Limb Disorder ULD), des traumatismes liés à des tensions répétitives (Répétitive Strain Injury RSI), le dysfonctionnement des muscles et du squelette de la main et du poignet (musculo-skeletal disorders of the hand and wrist), la tendinite de certains muscles (tendonitis of the flexor and extensor muscles), l'arthrose (osteoarthritis of the basai joint of thumb), et le syndrome du tunnel carpien.
Des nombreux efforts ont été entrepris pour diminuer la fatigue lors du dosage répétitif. Le document US 2002/0012613 peut être cité comme exemple pour une approche qui concerne l'ergonomie de l'instrument de dosage constitué d'une pipette. Cette approche vise à adapter la forme de la pipette à la main de l'utilisateur, pour qu'elle se tienne plus aisément dans la main et puisse être manipulée plus facilement.
D'autres approches pour réduire la fatigue et les problèmes associés visent à diminuer la force nécessaire pour effectuer l'aspiration et l'éjection du liquide.
Lors du dosage avec une pipette manuelle comportant un embout jetable, placé sur la pointe inférieure de la pipette, l'utilisateur enfonce d'abord un piston en appuyant avec son pouce sur un bouton doseur contre la force d'un ressort qui se trouve à l'intérieur du corps de la pipette, et plonge l'embout dans un liquide. Ensuite, l'utilisateur lâche lentement la pression exercée sur le bouton doseur, qui, poussé par l'action du ressort, retourne à sa position initiale en aspirant le liquide à l'intérieur de l'embout jetable.
L'aspiration du liquide est réalisée à l'aide d'un vide, qui est créé au moment où le piston logé à l'intérieur de la pipette, enfoncé par l'intermédiaire du bouton doseur, remonte à l'intérieur du corps de la pipette vers sa position de butée haute. Pour qu'un vide soit créé, on utilise généralement un joint, qui forme une étanchéité entre la paroi intérieure du cylindre de la pipette et le piston.
Le fonctionnement de l'aspiration et de l'éjection du liquide au moyen d'un piston logé de manière étanche à l'intérieur d'un cylindre est à l'origine des forces nécessaires pour effectuer le dosage de liquides. Premièrement, le joint est agencé de façon à exercer une force d'appui normale N au piston, ou, s'il est logé sur le piston, sur la paroi intérieure du cylindre. De cette manière cette force d'appui génère une force de frottement (F = μ.N, μ étant le coefficient de frottement et N la force normale d'appui) créée entre le joint et le piston, cette friction étant la résultante de N nécessaire au maintien de l'étanchéité. Elle dépend des caractéristiques mécano-géométriques du joint.
On comprend que le ressort, qui est employé pour repousser le piston à sa position originale de butée haute, doit être suffisamment fort pour surmonter le frottement exercé par le joint sur le piston. La force de frottement parallèle à la surface du piston et résultante de la force d'appui nécessaire à l'étanchéité, de son côté, s'oppose à tout déplacement du piston. Plus le ressort est fort, plus un utilisateur emploie sa force pour actionner le bouton doseur, donc plus vite il se fatigue.
Des efforts ont été entrepris pour diminuer la force du ressort, pour que le bouton doseur puisse être enfoncé plus aisément par un utilisateur. Cependant, pour pouvoir utiliser un ressort moins fort, il faudrait diminuer la force d'appui N et donc le frottement exercé par le joint, ce qui, par conséquent tend à augmenter le risque de fuite, c'est-à-dire, par exemple, le risque que le vide ne soit pas maintenu lors de l'aspiration de liquide.
Dans l'état de la technique on utilise souvent un joint annulaire en caoutchouc ou en élastomère nommé O-ring ou joint torique pour réaliser une étanchéité entre le piston et la paroi du cylindre. On peut citer le document US 6926867 comme exemple. Avec un joint O-ring à section pleine, le frottement résultant est relativement élevé sur les matières plastiques, même en présence de lubrification. En outre, les tolérances de joint sont proportionnellement d'autant plus importantes que les dimensions sont plus petites. Ceci se manifeste par un taux de compression et une pression de contact variables et parfois élevées pour garantir l'étanchéité. La réduction des tolérances sur le joint O-ring et son logement sont possibles, mais engendrent des augmentations des coûts de fabrication et de contrôle. Enfin, avec les joints O-ring, le contrôle de la force de frottement F résultante est difficile. Une valeur minimale et constante, par diminution de la pression de contact reste difficilement atteignable sans augmentation de la probabilité de fuite.
Au vu de ce qui précède, la présente invention a pour but la réduction de la force de frottement exercée par un joint destiné à réaliser l'étanchéité entre le piston et la paroi intérieure du cylindre du dispositif. La présente invention a également pour but un joint qui maintient une étanchéité comparable à celle des dispositifs de l'état de la technique tout en diminuant la force de frottement.
De manière plus générale, l'invention a pour but la réduction de la fatigue subie par l'utilisateur lors du dosage répétitif de liquides.
L'invention a également pour but la mise en œuvre d'une solution qui puisse être réalisée sur des dispositifs de différentes tailles. En particulier, la présente invention a pour but la mise en œuvre d'un système d'étanchéité pour dispositifs de dosage de petite taille, adaptés à des pistons de faible diamètre, en diminuant la force de frottement tout en maintenant une bonne étanchéité. Dans ce contexte l'état de la technique propose souvent des joints logés sur le piston. Ces joints ont le désavantage d'être difficiles à produire et à monter dans le dispositif lorsque le piston a un petit diamètre, ce qui est le cas des pipettes à petit volume, par exemple des pipettes pour le dosage de volumes de l'ordre de un à 200 microlitres.
La présente invention a également pour but la mise en œuvre d'une solution qui soit utilisable non seulement dans le domaine des dispositifs de dosage manuel, mais également dans celui des dispositifs électroniques. Avec les pipettes électroniques, par exemple, une force de frottement réduite permettrait d'utiliser un moteur de puissance inférieure et donc plus économique et donc d'augmenter l'autonomie des batteries comme le nombre total de pipetages. La présente invention a encore pour but la mise en œuvre d'une solution qui puisse être utilisée avec des pipettes monocanal ou avantageusement à plusieurs canaux pour réduire la force d'activation totale résultante.
Résumé de l'invention
La présente invention concerne un dispositif de dosage manuel de liquides, comprenant un cylindre et un piston logé à l'intérieur du cylindre, le dispositif étant agencé de façon que, lors du dosage, le piston se déplace le long de son axe pour effectuer l'aspiration ou l'éjection du liquide, le dispositif comprenant en outre un joint logé dans le cylindre et agencé de façon à réaliser une étanchéité entre le cylindre et le piston.
Selon un mode de réalisation préféré du dispositif selon l'invention, lors du dosage, le joint reste fixe par rapport au déplacement du piston et comprend au moins deux parties formées de portions matérielles spécifiquement conformées pour optimiser localement les fonctions de glissement et d'étanchéité sur le piston, comme de fixation étanche contre le cylindre.
Selon un mode de réalisation du dispositif selon l'invention, le joint comprend une première partie qui coopère avec la paroi intérieure du cylindre et assure les fonctions d'étanchéité contre la surface intérieure du cylindre et de fixation à ce dernier, et une deuxième partie qui est en contact avec le piston, et qui assure les fonctions d'étanchéité entre le joint et le piston et de glissement entre ces deux pièces. Ces deux parties, remplissant des fonctions différentes, ont des formes et/ou dimensions différentes.
Selon un autre aspect, l'invention concerne un dispositif de dosage manuel de liquides, comprenant un cylindre, un piston coulissant dans le cylindre à rencontre et sous l'effet de la force d'un ressort, et un joint logé entre une paroi intérieure du cylindre et une paroi extérieure du piston, caractérisé en ce que le joint est une pièce annulaire conformée avec des parties annulaires respectivement périphériques et intérieures distinctes.
De préférence la partie périphérique est agencée pour un accrochage fixe à la dite paroi intérieure du cylindre et la dite partie intérieure est agencée pour un glissement continu et étanche contre la paroi extérieure du piston, cette dernière étant cylindrique. Description des figures
La figure 1 représente un joint pour le dispositif de dosage selon un premier mode de réalisation de l'invention, ce joint étant représenté en perspective.
La figure 2 représente le joint de la figure 1 en coupe axiale.
La figure 3 représente un joint de la figure 1 en élévation verticale.
La figure 4 montre en coupe axiale un cylindre, un piston et un joint d'un dispositif selon l'invention.
La figure 5 est une vue à échelle agrandie du détail C de la figure 4.
La figure 6 montre schématiquement, à plus grande échelle et en coupe axiale un détail du joint montré aux figures 4 et 5.
La figure 7 est une vue en perspective d'un joint selon un deuxième mode de réalisation de l'invention.
La figure 8 est une vue en coupe axiale du joint de la figure 7.
la figure 9 est une vue en élévation verticale du joint de la figure 7.
La figure 10 est une vue à échelle agrandie du détail C de la figure 8.
La figure 11 est une coupe axiale partielle d'un troisième mode de réalisation du dispositif de l'invention.
La figure 12 est une vue agrandie du détail C du dispositif représenté à la figure 11.
La figure 13 est une coupe axiale d'un quatrième mode de réalisation du dispositif de l'invention.
La figure 14 est une vue agrandie du détail C du dispositif de la figure 13.
La figure 15 est une coupe axiale d'un quatrième mode de réalisation du dispositif de l'invention. La figure 16 est une vue agrandie du détail C du dispositif de la figure 15.
La figure 17 est une coupe axiale d'un cinquième mode de réalisation du dispositif de l'invention.
La figure 18 est une vue agrandie du détail C du dispositif de la figure 17.
La figure 19 est une coupe axiale d'un sixième mode de réalisation du dispositif de l'invention.
La figure 20 est une vue agrandie du détail C du dispositif de la figure 19.
La figure 21 est une coupe axiale d'un septième mode de réalisation du dispositif de l'invention.
La figure 22 est une vue agrandie du détail C du dispositif de la figure 21.
La figure 23 est une coupe axiale d'un premier mode de réalisation d'une deuxième forme d'exécution du dispositif de l'invention.
La figure 24 est une vue agrandie du détail C du dispositif de la figure 23.
La figure 25 est une coupe axiale d'un deuxième mode de réalisation de la deuxième forme d'exécution du dispositif de l'invention.
La figure 26 est une vue agrandie du détail C du dispositif de la figure 25.
La figure 27 est une coupe axiale d'un troisième mode de réalisation de la deuxième forme d'exécution du dispositif de l'invention.
La figure 28 est une vue agrandie du détail C du dispositif de la figure 27.
La figure 29 est une coupe axiale d'un quatrième mode de réalisation de la deuxième forme d'exécution du dispositif de l'invention.
La figure 30 est une vue agrandie du détail C du dispositif de la figure 29. La figure 31 est une coupe axiale d'un cinquième mode de réalisation de la deuxième forme d'exécution du dispositif de l'invention.
La figure 32 est une vue agrandie du détail C du dispositif de la figure 31.
La figure 33 est une coupe axiale d'un sixième mode de réalisation de la deuxième forme d'exécution du dispositif de l'invention.
La figure 34 est une vue agrandie du détail C du dispositif de la figure 33.
Description détaillée des différentes modes de réalisation de l'invention
La description qui suit est donnée à titre illustratif et non-limitatif et se réfère aux figures annexées qui représentent à titres d'exemples plusieurs formes d'exécution du dispositif de dosage selon l'invention.
Dans le contexte de cette description, les indications de lieu "haut", "bas", "inférieur", "supérieur", "extérieur", "intérieur", "horizontal", et "vertical" se comprennent directement par rapport au dessin tel que montré dans une figure mise en page. Dans les figures les objets sont montrés dans leur orientation naturelle, c'est-à-dire dans l'orientation qu'ils assument si on tient le dispositif de dosage dont il font partie dans une position d'utilisation. Par exemple, une pipette monocanal comprenant un axe principal est orientée de manière que cet axe soit vertical. C'est également le cas d'un doseur pour bouteille placé sur une bouteille, ou une pipette manuelle dans son porte-pipette.
Les figures 1 -3 représentent un joint prévu pour une pipette selon une première forme d'exécution du dispositif de l'invention, ce joint étant représenté respectivement en perspective, en coupe axiale et en élévation verticale aux fig. 1 , 2 et 3. Le joint 1 comprend plusieurs parties 2, 3, 4, 5, 6, 7, de formes différentes remplissant chacune une fonction spécifique comme expliqué ci-après.
La partie 2, la plus volumineuse, forme un corps annulaire rigide de profil et constant sur tout son pourtour. Elle fonctionne comme support pour les autres parties et permet l'ancrage ferme du joint 1 à l'intérieur du cylindre d'une pipette. Elle comprend vers le bas et l'extérieur de son pourtour un rebord légèrement élargi 5, destiné à créer un contact étanche avec la paroi intérieure du cylindre de la pipette, comme il sera décrit en relation avec la deuxième forme d'exécution. Deux ailettes saillantes 6, 6' diamétralennent opposées, s'étendent en saillie de la surface extérieure cylindrique du corps 2 du joint 1 , vers le bord supérieur de celui-ci. Ces ailettes contribueront à l'ancrage du joint dans le cylindre de la pipette.
Les parties 3, 4, 7 sont entourées par le corps 2. La partie 4 forme une connexion annulaire horizontale entre le bord intérieur 9 du corps 2 et deux lèvres 3 et 7 d'épaisseur réduite destinées à glisser en contact avec la face cylindrique extérieure d'un piston formant l'élément actif de la pipette. La lèvre supérieure 3 est orienté en biais vers le haut, tandis que la lèvre inférieure 7 est orientée en biais vers le bas.
Les bords extrêmes des deux lèvres annulaires 3 et 7 définissent la dimension d'une ouverture 8 au centre du joint 1 , cette ouverture ayant une forme circulaire si l'on regarde le joint d'en haut. On comprend que le joint 1 des fig. 1 à 3 est destiné à être logé et engagé à l'intérieur du cylindre et qu'un piston traversant le joint sera également logé dans le cylindre d'une pipette. Le profil de ce joint, en coupe diamétrale selon la fig. 2, possède un axe de symétrie 15 qui coïncidera avec l'axe de symétrie de la pipette et comporte deux moitiés symétriques a et b avec chacune une zone massive 2,5 fixée au cylindre et une zone flexible 4, 3, 7 conformée pour un contact glissant avec la face externe du piston de la pipette. Il importe que le contact entre les lèvres 3, 7 et le piston soit étanche mais avec une résistance de frottement aussi faible que possible alors que le corps 2 doit être rigidement fixé au cylindre. Pour la matière du joint 1 , on choisira de préférence un élastomère convenable permettant une mise en forme précise par moulage.
Les différences de fonctions attribuées aux différentes parties du joint explique la forme dissymétrique de chacune des parties a et b de part et d'autre de l'axe de symétrie et distingue le dispositif selon l'invention des joints pour pipettes du type O- ring ou X-ring de l'état de la technique.
On considère maintenant les fig. 4 à 10 qui représentent un dispositif de dosage selon une deuxième forme d'exécution de l'invention.
La figure 4 montre en coupe axiale les éléments d'une pipette destinée à être actionnée à la main. Cette pipette comporte un piston 23 qui est logé de façon à pouvoir coulisser dans un cylindre 20 constitué d'une partie inférieure 22 séparée par un joint 21 d'une partie supérieure 24. Pour que la pipette soit fonctionnelle, le joint 21 crée une étanchéité entre la partie inférieure 22 et la partie supérieure 24 du cylindre 20. Tandis que la figure 4 montre le piston 23 en une seule pièce, comme on l'obtient, par exemple, dans un procédé de moulage, le cylindre 20 peut être fait de deux pièces 22, 24 différentes, susceptibles d'être liées à l'aide d'un filetage. L'espace libre à la base du cylindre 20 a pour fonction de permettre l'aspiration d'air par l'ouverture 25 du liquide dans lequel un embout fixé sur la base du cylindre 20 est plongée lorsque le piston 23 remonte dans le cylindre. L'effort d'aspiration est maintenu grâce à l'étanchéité offerte par le joint 21 , comme expliqué au début.
La fig. 5 montre à échelle agrandie et en coupe axiale semblable à la fig. 4 la disposition du joint 21 entre les deux parties supérieure et inférieure 22 et 24 du cylindre 20. Le joint 21 est logé à l'intérieur du cylindre 20, juste au passage entre les parties inférieure 22 et supérieure 24. Si ces deux parties sont réalisées en deux pièces séparées, le joint pourrait être logé dans la partie inférieure 22 ou dans la partie supérieure 24, la condition pour cette dernière possibilité étant que la connexion (éventuellement par filetage) entre les deux pièces 22, 24 soit elle-même étanche.
A la fig. 5 l'extrait indiqué avec la lettre C de la figure 4 illustre le logement du joint 21 dans le cylindre 20. La vue en coupe axiale montre, comme à la figure 2, les profils des deux sections (a) et (b) symétriques du joint annulaire, et on peut donc constater une certaine parenté avec le joint 1 des figures 1 -3, les parties correspondantes portant les mêmes signes de référence. Le joint 21 des figures 4 et 5 comporte ainsi le corps 2, la liaison plane 4 et les lèvres 3 et 7 circulaires, dans lesquelles la face cylindrique lisse du piston 23 glisse en les déformant élastiquement. La partie annulaire plane 4 est ici, à la différence des figures 1 -3, pourvue d'une nervure cylindrique 11 s'étendant dans la partie inférieure du corps 2 du joint. Elle ménage des évidements et améliore la séparation fonctionnelle entre la fixation du joint au cylindre 20 et la zone flexible d'étanchéité contre le piston 23.
Un évidemment (ou une poche d'air) est une échancrure et/ou un bombement, qui crée des zones d'épaisseur réduites, ces zones définissant les transitions entre les parties différentes, en particulier entre les parties remplissant des fonctions différentes.
La partie inférieure 22 du cylindre 20, présente à son extrémité supérieure un logement à fond plat 26 qui reçoit le joint 21 et empêche tout déplacement vertical de ce dernier vers le bas du cylindre 20. Un déplacement vertical vers le haut est empêché principalement par les ailettes 6, 6' en forme de sections d'anneau faisant saillie du corps 2. Ces ailettes sont engagées dans des ouvertures 27, 27' qui traversent les parois du cylindre 20. Le corps 2 est suffisamment rigide pour empêcher un déplacement du joint 21 lorsqu'une force orientée verticalement vers le haut est appliquée sur ce dernier.
Pour augmenter l'étanchéité entre le joint 21 et la paroi intérieure du cylindre 20 le rebord 5 du joint, définissant un périmètre légèrement supérieur à celui du corps 2 exerce une pression sur la paroi intérieure du cylindre 20. La force à l'origine de cette pression peut être relativement élevée, car aucun déplacement relatif entre le joint et le cylindre n'est prévu lors du fonctionnement du dispositif de dosage. Selon l'invention grâce à la conformation du joint la force exercée par celui-ci sur la paroi intérieure du cylindre 20 est découplée de la force d'appui exercée par le même joint sur le piston 23. Cette dernière lui est largement inférieure.
La figure 5 montre également que les lèvres 3 et 7 entourent le piston 23 et créent ainsi un contact étanche avec le piston. Grâce à l'épaisseur réduite des lèvres 3 et 7 par rapport à la partie rigide 2 du joint, et grâce à l'orientation des lèvres, qui comporte une partie verticale, l'homme de métier appréciera que la pression exercée sur le piston est inférieure, même sensiblement inférieure à la pression et force exercées par le joint 21 sur la paroi intérieure du cylindre 20. L'homme du métier notera plus particulièrement que, en comparaison avec un joint torique, le joint 21 comporte plusieurs évidements 31 , 32, qui découplent ses différentes parties et permettent ainsi d'obtenir les avantages de l'invention. En particulier, il est possible de diminuer la force de frottement exercé par le joint sur le piston 23.
Les lèvres 3 et 7 du joint montré à la figure 5 forment un espace fermé 30, qui peut servir comme réservoir pour un lubrifiant. L'utilisation d'un lubrifiant à cet endroit permet de diminuer la force de frottement au démarrage par rupture d'adhésion entre le joint 21 et le piston 23 suite à une période de repos prolongée, où le dispositif n'aurait pas été utilisé. La flexibilité des lèvres aux zones de contact avec le piston engendre des microdéformations qui permettent également de recréer rapidement le film intercalaire lubrifiant.
L'espace fermé 30 est montré à plus grande échelle à la figure 6, où la présence d'un lubrifiant 33 est visible. Le lubrifiant 33 se trouve en particulier dans la zone de contact entre une lèvre 3 et 7 du joint 21 et le piston 23. Le film lubrifiant empêche/ reporte dans le temps la création des forces d'adhésion et diminue le frottement entre le joint et le piston 23 ce qui a comme conséquence que la force nécessaire pour déplacer le piston 23 dans une direction verticale est comparativement plus petite.
On a indiqué à la figure 6, les épaisseurs c, c' des lèvres 3, 7 du joint 21. Chacune de ces épaisseurs est mesurée à un endroit de contact entre la lèvre et le piston dans une direction perpendiculaire à l'axe du piston. Cette épaisseur (ou distance) est petite en comparaison des dimensions du joint ou du corps 2 du joint (visible aux figures 1 , 2, 5). Selon un mode de réalisation du joint de l'invention, la distance c (et/ou c') est inférieure à 1 mm, de préférence inférieure à 0.7 mm, inférieure à 0.5 mm et/ou même à 0.5 mm. Cette épaisseur s'applique de préférence, à l'ensemble ou à une partie majeure de la surface de la zone de contact entre le joint et le piston. C'est le découplage des différentes parties du joint comme détaillé ci- dessus qui permet une si faible "épaisseur de contact" entre le joint et le piston 23 et qui permet ainsi de diminuer la force d'appui et de frottement imposée par le contact étanche entre le joint 21 et le piston 23. En conséquence, les forces de ressort nécessaires au pipetage peuvent être diminuées, la manipulation répétitive du dispositif de dosage selon l'invention devient moins fatigante, le risque de crispation, de tensions musculaires, tendinites et/ou de douleurs musculaires en général réduit.
Selon un mode de réalisation, c'est une zone de liaison entre la partie remplissant la fonction d'ancrage du joint dans son siège et/ou d'étanchéité contre la paroi du cylindre et la partie qui remplit la fonction d'étanchéité avec le piston qui comporte une épaisseur diminuée comme indiqué ci-dessus. Dans ce cas, ce n'est pas nécessairement la lèvre même qui réalise le découplage les fonctions, mais la structure qui relie les parties qui remplissent les différents fonctions. Prenant l'exemple du joint 1 illustré à la figure 2, cela peut être la connexion annulaire 4 qui est caractérisée par une épaisseur telle que définie en rapport avec la lettre c et/ou c' ci-dessus. Il convient de constater, que dans ce cas, l'épaisseur mesurée est l'épaisseur minimale entre deux parties, notamment entre la partie d'ancrage et étanchéité contre le cylindre (par exemple, la partie 2 de la figure 2) et la partie d'étanchéité contre le piston (par exemple, les lèvres 3 et 7 des figures 2 ou 5). Un exemple avec une connexion à petite épaisseur est montrée à la figure 12, ou des connexions 58 et 59 sont plus fines que les lèvres formant le contact avec le piston. A la figure 12, c'est grâce à un évidement 53, que l'épaisseur de la connexion entre les fonctions est diminuée. Les modes de réalisation illustrés dans les figures suivantes permettent également de bénéficier des avantages susmentionnés, qui ne seront donc pas systématiquement répétés.
Les figures 7 à 9 montrent, en perspective, en coupe axiale et en élévation verticale ainsi qu'en coupe partielle agrandie à la fig.1 O, un joint 40 qui diffère du joint 1 montré aux figures 1 -3, par le fait qu'il comprend en plus deux incisions transversales et parallèles 35, 35' qui traversent le joint dans des directions verticales d'en haut jusqu'à peu près au milieu du joint 40, s'arrêtant au niveau de la connexion interne 4 entre le corps 2 et les lèvres 3 et 7. Les incisions 35, 35' affectent la partie supérieure du corps massif 2 et sont effectuées de façon à creuser quatre évidements dans la paroi de ce corps 2, en dehors mais au voisinage des extrémités des ailettes 6, 6'. Les incisions 35,35' sont des fentes verticales qui passent à égales distances de l'axe de symétrie central 15 du joint 40.
Les quatre évidements créés par les incisions 35, 35' facilitent l'insertion du joint 1 dans son logement en permettant le déport des ailettes 6, 6' et de la partie haute du corps 2 associé vers l'intérieur du joint. De cette façon, les ailettes 6, 6' facilitent l'insertion du joint dans son logement à l'intérieur du cylindre 20. En effet le joint doit être inséré par une ouverture supérieure de ce cylindre 20 et à travers un passage ayant un diamètre intérieur qui est presque identique au diamètre du joint 40, en particulier au diamètre défini par le bord supérieur du corps 2. Comme les incisions 35, 35' ne dépassent pas, vers le bas dans le joint 40, la connexion plane interne 4 et n'arrivent donc pas non plus au niveau du rebord 5, les incisions 35, 35' n'interfèrent pas avec la fonction d'étanchéité contre la paroi intérieure du cylindre 20. La partie du joint 40 qui est plus haute que la connexion interne 4 remplit alors, en plus de la fonction d'ancrage du joint dans son logement à l'aide des ailettes 6, 6', une fonction de flexibilité ou de souplesse facilitant l'insertion du joint lors de l'assemblage de la pipette.
La figure 10 est une vue en coupe partielle agrandie de la figure 8, indiquée dans cette dernière avec un cercle. Les caractéristiques mises en évidence dans la figure
10 sont également présentes sur le joint 1 des figures 1 -3, mais ne sont pas indiqués dans ces figures en considération de la petite taille de ces caractéristiques.
On reconnaît alors à la figure 10 une zone de contact 41 , formée par une partie de la lèvre supérieure 3, dont la surface, de faible hauteur est en forme de cylindre creux.
11 convient de noter que la faible hauteur de cette surface de contact 41 signifie que l'ensemble de cette surface de contact est réduite. L'homme du métier apprécie en particulier que la réduction de la surface de contact entre le joint 40 et le piston 23 équivaut à une diminution de la force de frottement par adhésion au repos et lors d'un déplacement relatif entre ces deux éléments. A la figure 10, on reconnaît en particulier un segment de profil asymétrique 43 de la lèvre 3, incurvé de façon à la fois à déterminer et à minimiser la surface de contact 41.
La figure 10 montre encore une zone de contact 42 de la lèvre inférieure 7 avec le piston 23 (non représenté). Le profil de cette lèvre 7 ne présente pas l'allure concave asymétrique 43 de la lèvre supérieure 3, mais la zone de contact 42 est néanmoins clairement définie et délimitée par rapport au reste de la lèvre 7.
Les figures 11 et 12 montrent en coupe axiale générale et en coupe axiale partielle et agrandie un mode de réalisation de l'invention comprenant un joint 50. Le joint 50 est plus simple que les joints 1 , 40, discuté ci-dessus, mais comprend également deux lèvres qui sont en contact avec le piston 23. Si l'on considère (fig.12) le profil du joint dans une coupe axiale limitée à une moitié de l'ensemble par rapport à l'axe du piston on s'aperçoit du fait que le joint 50 est moins asymétrique que les joints précédents 1 , 40. Il saute aux yeux que le joint 50 présente en fait un plan de symétrie perpendiculaire à l'axe de la pipette et qui dans le plan de la fig. 12 se réduit à un axe de symétrie d particulier au profil représenté à cette figure. Extérieurement et au contact avec le cylindre 20 de la pipette, le joint 50 comporte deux segments de corps 56 et 57. Les deux segments ne sont pas symétriques par rapport à l'axe d à cause de la présence du rebord 5 sur le segment de corps 53 et d'une structure légèrement déviante sur le segment de corps 57 opposé. La face extérieure cylindrique des segments de corps 56 et 57 est en contact avec le cylindre 20. Intérieurement c'est - à- dire en contact avec le piston 23 le joint possède deux lèvres également symétriques par rapport à l'axe d. Entre les éléments de support 56 et 57 s'étend un évidemment 53 qui délimite deux jonctions ou connexions flexibles 58 et 59. Si on ignore les quelques petites différences dans les parties 56 et 57, responsables pour l'ancrage du joint dans son logement, on identifie un seul axe de symétrie d.
Le support creux 2, présent dans les joints 1 et 40, est transformé en deux parties de support 56 et 57, agencées l'une verticalement au-dessus de l'autre et séparées par un évidemment 53. Cet évidemment 53 crée deux jonctions 58, 59 approximativement horizontales, qui joignent les parties de support 56 et 57 aux lèvres. La finesse des jonctions 58, 59 détermine le découplage mécanique entre la rigidité des parties de support 56 et 57 à volume relativement grand et les lèvres souples.
A ce stade il convient de préciser que les joints 1 , 40 et 50 sont constitués en une seule pièce et fabriqués en un seul matériau, généralement un élastomère. Les différences en rigidité et/ou souplesse des différents parties des joints sont dues aux épaisseurs différentes de ces parties ou encore au volume occupé par le matériau par et dans ces parties.
On trouvera plus loin des modes de réalisation où les différences de rigidité qui permettent de remplir des fonctions différentes sont obtenues par des matériaux différents placés dans différentes parties d'un même joint.
Vers le haut, le joint 50 est retenu dans son logement à l'aide d'un anneau de maintien 55, qui est placé dans une encoche 54 du corps de pipette 20. Lors de l'assemblage du dispositif de dosage, le joint 50 est inséré par une ouverture supérieure dans le cylindre 20 et engagé jusque sur le rebord intérieur 26. Ensuite, l'anneau de maintien 55 est inséré et arrêtée à l'encoche 54. Ainsi, les éléments de support 56 et 57 relativement rigides réalisent le placement fixe et immobile du joint 50 à l'intérieur de son logement dans le cylindre 20.
Les figures 13 et 14 montrent également respectivement en coupe axiale générale et partielle agrandie un mode de réalisation de l'invention comprenant un joint 60 à une seule lèvre 7, réalisée à l'image d'une lèvre inférieure des modes de réalisation précédents (les joints 1 , 40 et 50). La structure générale de ce joint 60 a plusieurs parties en commun avec le mode de réalisation montré dans les figures 11 et 12, et les parties correspondantes sont indiqués avec les mêmes numéraux de référence.
Contrairement aux réflexions faites ci-dessus par rapport à la symétrie du joint montré dans les figures 11 et 12, la demi-section du joint 60 montré à la figure 14 ne présente aucun axe de symétrie. La lèvre 7 unique a une fonction d'étanchéité moindre lors du retour du piston (aspiration = vide partiel, coussin d'air en extension ΔP-) alors que lors du dosage (piston déplacé vers le bas), elle tend à être renforcée par création d'une surpression ΔP+ en assurant une expulsion complète.
Selon un mode de réalisation alternatif de l'invention (non-représenté sur les dessins), le joint comprend une seule lèvre, similaire à la situation montrée aux figures 13 et 14, avec la différence que la lèvre unique est orientée vers le haut, en correspondance avec une lèvre supérieure d'un des modes de réalisation décrit ci- dessus. Ce mode de réalisation a également ses avantages, puisque la lèvre unique orientée vers le haut a une fonction d'étanchéité élevée lors du retour du piston, ce qui est important. Lors de l'aspiration du liquide, la réduction du frottement obtenue par élimination de la lèvre supérieure est un avantage.
Il est clair que chez un joint à deux lèvres, dont une lèvre supérieure et une inférieure, comme montré aux figures 1 -12, on obtient les deux avantages détaillés ci-dessus.
Les figures 15 et 16 montrent un mode de réalisation selon l'invention, comprenant un joint 70 dont la partie support 72 en forme de cylindre creux comporte et entoure en grande partie un élément de stabilisation 78, rigide constitué en un matériau différent et plus rigide que le reste du joint 70, par exemple une âme métallique. Ce dernier est donc constitué en deux matériaux différents. Le matériau 78 plus rigide noyé dans une partie du joint 70 qui joue le rôle de support de l'ensemble des éléments, assure leur ancrage et leur placement stable dans le logement.
La lèvre inférieure 77 et la lèvre supérieure 73 du joint 70 sont symétriques ( fig. 16 : demi section d'une coupe axiale). Au contraire la partie extérieure de la demi-section 72, massive, présente un rebord d'étanchéité 5, fonctionnant comme discuté ci- dessus, et contient l'élément de stabilisation 78 de forme dissymétrique. Cet élément comprend plusieurs parties qui, dans la vue en coupe radiale de la figure 16 apparaissent en forme de bras 79, 71 , 78, mais qui constituent, en considération de la forme tridimensionnelle de cet élément 75, un court élément tubulaire 79, et deux extensions en forme de d'anneaux plats 71 , 78 de diamètres différents, respectivement liées au centre et à l'extrémité supérieure du tube 79, et orientées l'une vers l'intérieur et l'autre vers l'extérieur du cylindre. L'anneau extérieur 78 traverse le corps en matériau moins rigide du joint 70 pour s'engager dans une rainure 74 dans la paroi intérieure du cylindre 20, pour ainsi ancrer le joint 70 dans le cylindre creux 20. De cette façon, l'extension supérieure 78 fonctionne de manière analogue à la rondelle de maintien 55 de la figure 12. Dans le mode de réalisation selon les figures 15 et 16 cette "rondelle de maintien 55" constituée par l'extension 78 est partie intégrante du joint 70. De cette façon, l'utilisation d'un élément 78 en un deuxième matériau, plus rigide que le matériau de base dans lequel les lèvres sont formées, permet à la fois (a) d'obtenir une fonction support plus rigide, accomplie par le cylindre support 72, et (b), au moins en partie, l'ancrage du joint 70 à l'intérieur du cylindre à l'aide de l'interaction entre les éléments 78 du joint et 74 de la paroi du cylindre 20
En d'autres termes, contrairement aux joints de l'état de la technique, la présente invention concerne également des joints fabriqués en une pièce en plusieurs matériaux de rigidités différentes. Ces rigidités différentes permettent la formation de parties du joint qui renforcent son ancrage dans le cylindre, par exemple par leur interaction avec des points d'arrêts, tels qu'une rainure ou des ouvertures, présents dans le cylindre 20.
Les figures 17 et 18 montrent un autre mode de réalisation de l'objet de l'invention, selon lequel, comme pour le mode de réalisation montré dans les figures 15 et 16, le joint 80 est constitué d'une seule pièce mais comprend des parties fabriquées en matériaux différents. Comme aux figures 15 et 16, un des matériaux est plus rigide que l'autre. Dans les figures 17 et 18 c'est le tube 85, qui est entouré ou noyé en grande partie et supporte un matériau élastique assurant les fonctions d'étanchéité contre le piston 23 et le cylindre 20.
Comme on peut voir à la figure 18, l'élément rigide 85 comporte un renflement supérieur 88, qui dépasse le matériau moins rigide dont sont constituées les lèvres
83 et 87 ainsi que d'autres parties du joint caractérisées par leur élasticité. Ce renflement supérieur 85 est formé de manière à pouvoir s'engager dans une rainure
84 de la paroi du cylindre 20 afin de bloquer ou arrêter le joint dans le cylindre.
Les joints montrés par les figures 15 et 16 ou 17 et 18 peuvent être fabriqués, par exemple par surmoulage, bi-injection ou autre procédé composite. En variante, les deux éléments peuvent être fabriqués séparément, et la partie moins rigide peut être engagée sur la partie rigide, par exemple. Bien entendu, d'autres possibilités de fabrication existent et peuvent être choisie par l'homme du métier.
Les figures 19 et 20 montrent un autre mode de réalisation de la présente invention. Le joint 90 comporte une pièce tubulaire de support 92 avec une forme plus allongée que les réalisations précédentes. L'élément de connexion 4 part d'une région voisine de la base du tube de support 92 et débouche dans les deux lèvres 93 et 97, qui, dans le mode de réalisation montré aux figures 19 et 20, sont façonnées différemment, la lèvre inférieure 97 étant un peu plus allongée que la lèvre 93. Dans la vue des figures 19 et 20, le tube de support 92 est plus mince que dans les modes de réalisation précédents. Ce type de réalisation permet une fixation sans ouvertures en paroi de cylindre. Il est avantageux, par exemple, pour les joints de petites taille mis en place dans des sièges « profonds » de cylindres, par exemple pour des pipettes multicanaux. Pour des raisons de contraintes de démoulage, une rainure de fixation en partie supérieure et proche de l'entrée du cylindre est privilégiée. La stabilité et la fonction de support sont réalisées en partie par la longueur de la partie tubulaire 92 dont les zones d'appui périphérique en 5 et 94 sont en compression. Le même principe s'applique au mode de réalisation montré aux figures 21 -22, décrit ci-dessus.
Vers son extrémité supérieure, le cylindre de support 92 comporte un rebord extérieur 98, qui coopère avec une rainure 94 dans le cylindre de façon à renforcer l'ancrage du joint 90 dans le cylindre 20 du dispositif du dosage.
Le mode de réalisation selon les figures 19 et 20 est en outre caractérisé par le fait que la zone de connexion 4 en forme de collerette interne part du tube de support 92, décrit d'abord une courbe vers le bas et s'appuie sur le rebord interne 26 du cylindre 20. Ensuite la collerette 4 se partage en deux lèvres 93 et 97, comme décrit ci-dessus. Ainsi, un évidement 95 est formée entre la collerette 4 et l'extrémité inférieure du tube support 92, séparant idéalement les fonctions support et étanchéité avec la paroi du cylindre 20 de celle d'étanchéité sur le liseré 5 avec le piston 23.
Les figures 21 et 22 montrent un mode de réalisation avec un joint 100 similaire à celui des figures 19 et 20, mais en différant par le fait que la collerette interne 4 du joint 100 part de l'extrémité inférieure du tube de support 102. En plus, le joint 100 comporte une pluralité de nervures d'étanchéité 103, 104 et 105 sur la surface extérieure du tube de support 102. Ces nervures d'étanchéité en compression remplacent le rebord élargi 5 des modes de réalisation précédents et assument la fonction d'étanchéité contre la paroi intérieure du cylindre 20.
Les figures 23 et 24, ainsi que les figures suivantes, concernent des modes de réalisation qui diffèrent des modes de réalisation précédents par l'absence de lèvres telles que les lèvres 93 et 97, par exemple. La fonction d'étanchéité contre le piston 23 est accomplie par une partie qui, selon le demi-profil montré à la figure 24, par exemple, a la forme d'une ligne incurvée 112, 114 orientée vers l'axe du piston et dont la zone proximale renflée 114 est en contact avec le piston. Vu en trois dimensions, ce type de joints est un élément tubulaire dont la partie centrale a une forme sinueuse similaire à un soufflet.
La forme et l'agencement du joint 110 dans son logement du cylindre 20 sont tels qu'une grande poche d'air 115 est présente, remplissant une très grande partie du volume annulaire compris entre le cylindre et le joint à l'opposé du piston. L'homme du métier appréciera que grâce à cet évidement, la pression et par conséquent la force de frottement exercée sur le piston est fortement réduite par rapport à un corps rigide en matériau polymère, comme avec les O-rings, tout en gardant une bonne étanchéité.
Le mode de réalisation des figures 23 et 24 montre un joint 110, dont la partie centrale 112, 114 est incurvée vers le centre, et le milieu 114 de la courbe touche légèrement le piston 23 en réalisant ainsi une connexion étanche à faible force de frottement ou à faible pression d'appui. La partie inférieure et la partie supérieurel 13 et 111 de l'élément tubulaire sont agencées de façon à remplir les autres fonctions du joint comme décrit ci-après.
La partie inférieure du joint 110 est agencée de façon à former une connexion étanche avec la paroi intérieure du cylindre 20. A cet effet, un anneau rigide 116 en métal ou polymère rigide, par exemple, pousse la partie inférieure 113 vers la paroi du cylindre 20. Une rainure ou creusure 117 se trouve dans la paroi du cylindre 20, arrêtant ou bloquant l'anneau rigide 116. De cette manière, le joint 110, et en particulier sa partie inférieure 113, sont immobilisés dans le cylindre.
L'extrémité supérieure 111 du joint 110 est redressée à une forme cylindrique et est arrêtée par un anneau de maintien 119, bloquée comme les rondelles de maintien décrites ci-dessus.
On notera encore que, selon le mode de réalisation montré aux figures 23 et 24, le profil de la face intérieure du cylindre 20, comporte un rétrécissement 118 diminuant son diamètre intérieur au niveau du logement du joint. L'étendue de ce rebord 118 permet de contrôler, par exemple de rapprocher, la position de la partie inférieure 113 et de l'anneau 116 par rapport au piston 23. De cette manière, la force de frottement et le glissement exercé par le joint sur le piston peuvent être mieux ajustés. Les figures 25 et 26 montrent un joint 120 fondé sur le même concept que celui des figures 23 et 24, avec, cependant, quelques différences de réalisation. En particulier, la rondelle de maintien 119 destinée à bloquer le mouvement vertical vers le haut du joint 110 des figures 23 et 24 est absente aux figures 25 et 26. A sa place une structure élargie 121 de l'extrémité supérieure du joint 120, caractérise cette réalisation en lui donnant une rigidité élevée de sorte qu'elle peut alors assumer la fonction d'ancrage du joint 120 vers le haut. A cet effet, la structure élargie 121 est engagée dans une rainure 123 de la paroi intérieure du cylindre 20, bloquant tout déplacement vertical de la partie supérieure du joint 120.
La partie inférieure 112 du joint comporte également un élargissement 122, qui coopère avec une rainure 117, comme décrit dans le paragraphe précédent pour l'extrémité supérieure du joint 120. Cependant, pour assurer une connexion étanche entre le joint 120 et la paroi intérieure du cylindre 20, une bague rigide 116 est prévue pour presser la partie inférieure 122 du joint vers la face intérieure du cylindre 20.
Les figures 27 et 28 montrent d'autres variantes du joint selon le concept décrit par rapport aux figures 23-26. En principe, l'étanchéité du joint 130 contre le piston 23 est réalisée selon les figures 23-26, mais l'ancrage dans le logement du cylindre 20 est modifié, par modification des extrémités du joint 130.
Tel est également la cas dans le mode de réalisation des figures 29 et 30, qui montrent un joint 140 avec une extrémité inférieure 141 suffisamment volumineuse et donc rigide pour assurer à la fois l'ancrage du joint dans son logement et l'étanchéité contre la paroi intérieure du cylindre 20. Un anneau ou une bague rigide comme aux figures 23-26 n'est plus nécessaire.
Les figures 31 et 32 montrent une variante des concepts des figures 23-30, en ce que la forme incurvée orientée vers l'axe du piston et dont la zone proximale est en contact avec le piston comporte, dans la vue du demi- profil de la figure 32, deux sommets, formant points de contact 153 et 157 arrondis et créant un espace fermé 154 limité par le joint 150 et le piston 23. En considérant l'ensemble joint 150, cylindre 20 et piston 23 en trois dimensions, il est clair que les points de contact 153 et 157 sont en effet des anneaux ou cylindres creux de contact, coaxiaux au piston 23 et situés dans des plans parallèles l'un à l'autre. De même, l'espace fermé 154 a la forme tridimensionnelle d'un anneau. L'espace fermé 154 du joint 150 a la même fonction que l'espace fermé 30 montré, par exemple, à la figure 5 ou en plus de détails à la figure 6. Cet espace sert donc en tant que réservoir de lubrifiant et contribue ainsi au bon glissement lors du déplacement vertical du piston 23 le long de son axe lors du dosage.
Les figures 33 et 34 montrent une extension du principe montré aux figures 31 et 32, avec un joint 160 comprenant, selon le demi-profil de la figure 34, trois points de contact 161 , 162, 163 arrondis avec le piston 23 enfermant deux espaces fermés 164 et 165. Comme dans les deux exemples précédents, les points de contact se trouvent dans une zone centrale du joint limitée vers le haut et vers le bas par des portions du joint 160 en forme de parois coniques 155 et 156 inversées.
On notera que l'ensemble du joint 160 est relativement rigide, y compris dans la zone incurvée, mais que ce fait est compensé en partie par les zones de contacts arrondies 161 , 162, 163 qui sont petites et facilement déformables au démarrage du piston, ce qui permet la régénération du film d'interface lubrifiant et réduit la force de frottement par zone de contact.
Pour la réalisation des joints selon l'invention, on peut utiliser, par exemple, des élastomères moulé du type FPM, de préférence pour tenue en température de 15 à 1500C, ce qui constitue la plage d'utilisation/stérilisation usuelle pour les instruments de laboratoire. Des exemple parmi ces élastomères sont le silicone, le "butyl rubber", les copolymères de éthylène et propylène, vinylidène fluoride et le copolymère de hexachloropropylène, entre autres.
Selon l'invention, des procédés complémentaires sont envisagés pour encore réduire les forces de frottement d'un élastomère, en particulier celles d'adhésion au repos (création en surface de groupes réactifs de répulsion). Un traitement périphérique du joint et/ou l'adjonction de lubrifiants internes (solides ou liquides) sont des techniques selon l'invention. On peut citer, entre autres, la création de microréservoirs de lubrifiant par « sablage/cryogénisation », l'halogénisation ou la transformation structurelle moléculaire de surface par projection plasma ainsi que l'incorporation d'éléments « d'alliage » dans la matrice, ces éléments étant choisis, par exemple, parmi les poudres fluorées et/ou les lubrifiants. Si un lubrifiant est utilisé, il peut intervenir en simple addition ou être greffé. On le choisit de préférence avec un haut poids moléculaire. Dans le cas où le joint comprend un élastomère incluant, dans sa matrice, un élément d'alliage, la proportion en volume dudit élément d'alliage sera choisie inférieure ou égale à 30%, de préférence inférieure ou égale à 25%, du volume total de l'élastomère.
Selon un mode de réalisation du dispositif selon l'invention, au moins une partie du joint est réalisée en un matériau ayant une dureté inférieure à 75 Shore A. De préférence, la dureté Shore A du matériau sera entre 30-75, ou encore de 40 à 70. De préférence, toute partie en contact étanche avec le piston sera caractérisée par les valeurs de dureté Shore indiquées ci-dessus. Par exemple, les lèvres montrées aux figures 2, 4-6, 8, 10 et 11 -22, ou les zones de contacts 114 des figures 23-30, et 153, 157, 161 , 162, 163 des figures 31 -34, seront constituées d'un matériau ayant les caractéristiques de Shore indiquées si-dessus.
Comme indiqué ci-dessus, le dispositif selon l'invention est caractérisé par l'utilisation d'un joint comprenant des parties à caractéristiques géométriques différentes et/ou à volumes différents. Grâce aux caractéristiques du joint il est possible de réduire la force de frottement exercée par le joint sur le piston. La force de frottement doit être « Fressort, qui repousse le piston et dont le niveau est ajusté pour garantir la précision de contact contre les butées mécaniques déterminant les bonnes performances volumétriques. La force de frottement dépend en général également de la taille du piston et/ou du volume pipette. Selon la présente invention, on obtient alors des forces de frottement (Fstat = μstat x N et/ou Fdyn = μdyn x N) de l'ordre de 2-5 N pour des volumes maximaux allant jusqu'à 100 ml. Pour des volumes plus petits, en particulier des volumes maximaux de environ 10 à 20 ml, la force de frottement peut être réduite jusqu'à environ 1 N. Enfin, pour les volumes maximaux de < 1000μl, la force de frottement est < 0.6 N, de préférence < 0.5 N, < 0.4 N et même < 0.35 N. Ces forces de frottement réduites permettent l'utilisation d'un ressort ayant des forces plus faibles.
Les dispositifs de l'invention permettent de doser des volumes entre 1 μl à 200 ml. Par exemple, le dispositif de l'invention peut être une pipette ou un doseur pour le dosage de volumes de 1 à 1000 μl, 0.1 ou 0.2 à 2 ml, 0.1 ou 0.5 à 5 ml, et/ou de 1 à 10 ml.
Selon un autre exemple, le dispositif de l'invention peut être une micropipette réglable couvrant un volume choisi dans les plages de 50-1000 μl, 10-200 μl, 1 - 100 μl, 1 -50 μl, et 0.5-10 μl. De préférence, le matériau est stérilisable à des températures d'environ 121 à environ 134°C.
Le diamètre du piston du dispositif peut être, par exemple, de 1.5 à 10 mm. De préférence, le piston du dispositif a un diamètre inférieur à 6 mm, de préférence < 5 mm, voire < 4 mm, voire < 3.5 mm, voire < 3 mm.
Les variations de pression autour de la pression de travail (pression atmosphérique de environ 1 bar) ne dépassent en général pas les environ ± 0.2 bar, de préférence 0.1 bar, voire 0.05 bar, selon le volume.

Claims

Revendications
1. Dispositif de dosage manuel de liquides, comprenant un cylindre et un piston logé à l'intérieur du cylindre, le dispositif étant agencé de façon que, lors du dosage, le piston se déplace le long de son axe pour effectuer l'aspiration ou l'éjection du liquide, le dispositif comprenant en outre un joint logé dans le cylindre et agencé de façon à réaliser une étanchéité entre le cylindre et le piston, caractérisé en ce que lors du dosage, le joint reste fixe par rapport au déplacement du piston; et, le joint comprend au moins deux parties formées de portions à caractéristiques géométriques et/ou mécaniques dédiées permettant d'optimiser localement les fonctions de glissement, étanchéité et de fixation dans le cylindre.
2. Dispositif selon la revendication 1 , le joint comprenant une première partie qui coopère avec la paroi intérieure du cylindre et qui remplit les fonctions d'étanchéité du joint directement contre la surface intérieure du cylindre au niveau d'un siège du joint et de la fixation du joint dans le cylindre, et une deuxième partie qui est en contact avec le piston, qui remplit les fonctions d'étanchéité du joint contre le piston et de glissement entre le joint et le piston.
3. Dispositif selon l'une quelconque des revendications 1 et 2, caractérisé en ce que l'épaisseur de la deuxième partie du joint, mesurée à un endroit de contact avec le piston, dans une direction perpendiculaire au piston à partir d'un point de contact, est inférieure ou égale à 1 mm.
4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le joint comprend au moins un évidement permettant de découpler les fonctions.
5. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'au moins une partie du joint est réalisé en un matériau ayant une dureté en Shore A inférieure à 75.
6. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le joint a une forme annulaire comprenant une partie extérieure et une partie intérieure, la partie extérieure étant plus rigide que la partie intérieure.
7. Dispositif selon la revendication 1 , caractérisé en ce que le profil du joint en coupe radiale par rapport à l'axe du piston comporte au plus un axe de symétrie.
8. Dispositif selon l'une des revendications 1 ou 2, constituant une pipette, un doseur pour bouteille et/ou une seringue.
9. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le joint est réalisé d'une seule pièce, éventuellement composée de plusieurs matériaux différents.
10. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le joint est agencé de façon à constituer au moins une, de préférence au moins deux zones distinctes de contact avec le piston.
11. Dispositif selon la revendication 5, caractérisé en ce que le joint est agencé de façon à former un espace fermé entre les deux zones de contact et en ce que cet espace fermé contient un lubrifiant destiné à réduire les forces d'adhérence et de frottement entre le piston et le joint lors d'un déplacement du piston par rapport au cylindre.
12. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le joint est un X-ring asymétrique.
13. Dispositif selon la revendication 7, caractérisé en ce que la dite première partie du joint est plus volumineuse et/ou plus rigide que la dite deuxième partie du joint.
14. Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le joint présente en coupe radiale par rapport à l'axe du piston au moins une partie de forme incurvée orientée vers l'axe du piston et dont la zone proximale est en contact avec le piston.
15. Dispositif selon la revendication 9, caractérisé en ce que le joint présente en coupe radiale par rapport à l'axe du piston une suite de plusieurs parties de forme incurvées orientées vers l'axe du piston et dont les parties proximales sont en contact avec le piston.
16. Dispositif selon l'une des revendications 9 ou 10, caractérisé en ce que le joint est retenu dans l'espace entre la paroi intérieure du cylindre et le piston à l'aide d'au moins un anneau de maintien (55), des ouvertures (27, 27'), et/ou des rainures (74).
17. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la force de frottement (Fstat = μstat x N et/ou Fdyn = μdyn x N) imposée par le joint appuyant contre la surface du piston et nécessaire pour déplacer le piston relatif au joint, est inférieure à Fdyn et/ou Fstat ≤ 2N.
18. Dispositif de dosage manuel de liquides, comprenant un cylindre, un piston coulissant dans le cylindre à rencontre et sous l'effet de la force d'un ressort, et un joint logé entre une paroi intérieure du cylindre et une paroi extérieure du piston, caractérisé en ce que le joint est une pièce annulaire conformée avec des parties annulaires respectivement périphérique et intérieure distinctes, la partie périphérique étant agencée pour un accrochage fixe à la dite paroi intérieure du cylindre et la dite partie intérieure étant agencée pour un glissement continu et étanche contre la paroi extérieure du piston, cette dernière étant cylindrique.
EP09729290A 2008-04-08 2009-04-07 Joint pour dispositif de dosage de liquides Pending EP2291245A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09729290A EP2291245A1 (fr) 2008-04-08 2009-04-07 Joint pour dispositif de dosage de liquides

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP08154213 2008-04-08
EP08154368A EP2108450A1 (fr) 2008-04-11 2008-04-11 Joint pour dispositif de dosage de liquides
PCT/IB2009/051451 WO2009125337A1 (fr) 2008-04-08 2009-04-07 Joint pour dispositif de dosage de liquides
EP09729290A EP2291245A1 (fr) 2008-04-08 2009-04-07 Joint pour dispositif de dosage de liquides

Publications (1)

Publication Number Publication Date
EP2291245A1 true EP2291245A1 (fr) 2011-03-09

Family

ID=40872273

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09729290A Pending EP2291245A1 (fr) 2008-04-08 2009-04-07 Joint pour dispositif de dosage de liquides

Country Status (3)

Country Link
US (2) US8900526B2 (fr)
EP (1) EP2291245A1 (fr)
WO (1) WO2009125337A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2852250B1 (fr) * 2003-03-11 2009-07-24 Jean Luc Jouvin Fourreau de protection pour canule, un ensemble d'injection comportant un tel fourreau et aiguille equipee d'un tel fourreau
WO2009125337A1 (fr) * 2008-04-08 2009-10-15 Socorex Isba S.A. Joint pour dispositif de dosage de liquides
US8557197B2 (en) * 2008-11-05 2013-10-15 Hamilton Bonaduz Ag Radial sliding seal component for metering devices and metering device having such a radial sliding seal component
JP5194146B2 (ja) * 2010-12-28 2013-05-08 ジルトロニック アクチエンゲゼルシャフト シリコン単結晶の製造方法、シリコン単結晶、およびウエハ
WO2014089082A1 (fr) * 2012-12-04 2014-06-12 Aptargroup, Inc. Emballage distributeur de produit fluide et pompe à membrane destinée à être utilisée dans ledit emballage
CA2906001C (fr) * 2013-03-15 2020-06-30 Douglas Scientific, LLC Lavage par pipettes
US10416046B2 (en) 2013-04-11 2019-09-17 Rarecyte, Inc. Device, system, and method for selecting a target analyte
US9044750B2 (en) * 2013-08-01 2015-06-02 Ome Technology Co., Ltd. Pipette and a nucleic acid purification apparatus
EP3202447A4 (fr) * 2014-10-02 2018-06-13 Terumo Kabushiki Kaisha Ensemble de seringue, seringue préremplie, capuchon d'étanchéité pour gaine avec aiguille de ponction, et emballage d'ensemble de seringue
US10016755B2 (en) 2015-01-08 2018-07-10 Integra Biosciences Ag Manual pipette with selectable plunger force
US9625936B2 (en) * 2015-03-05 2017-04-18 Snap-On Incorporated Integrated seal for control button
KR101874278B1 (ko) 2015-04-16 2018-07-03 인테그라 바이오사이언시즈 아게 수동 피펫을 위한 체적 조정
GB201611185D0 (en) 2016-06-28 2016-08-10 Provensis Ltd Reduced sputtering syringe
DE102020113090B4 (de) * 2020-05-14 2022-02-03 Carl Freudenberg Kg Dichtring und Dichtungsanordnung, die den Dichtring umfasst
DE102021005172A1 (de) * 2020-10-29 2022-05-05 Carl Freudenberg Kg Wellendichtring mit Lippen, Getriebe mit Wellendichtring und Verfahren zur Schmierung eines Wellendichtrings
EP4296546A1 (fr) * 2022-06-22 2023-12-27 Wagner International Ag Joint d'étanchéité permettant de rendre 'étanche une plaque suiveuse par rapport à un récipient, ainsi que plaque suiveuse et dispositif de transport doté du joint d'étanchéité

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3732735A (en) * 1971-06-17 1973-05-15 Medical Laboratory Automation Pipettes
US3831816A (en) * 1973-06-29 1974-08-27 R Pauliukonis Chemical syringe
US3933048A (en) * 1974-02-12 1976-01-20 Medical Laboratory Automation, Inc. Pipettes
DE2506844A1 (de) * 1975-02-18 1976-08-19 Risch Gerhard M Geraet zur stufenweisen entnahme von fluessigkeiten, insbesondere zum verduennen fluessiger proben
US3935734A (en) * 1975-02-26 1976-02-03 Keegan William P Pipettes
US4046291A (en) * 1976-01-07 1977-09-06 George Goda Device for pipetting and/or diluting
FR2351402A1 (fr) * 1976-05-10 1977-12-09 Marteau Dautry Eric Diluteur reglable
US4061037A (en) * 1976-09-20 1977-12-06 Keegan William P Pipettes
DE2651333C3 (de) * 1976-11-10 1980-10-16 Walter Sarstedt Kunststoff-Spritzgusswerk, 5223 Nuembrecht Saugpipette
FI76710B (fi) 1978-09-08 1988-08-31 Osmo Antero Suovaniemi Pipett.
FI59343C (fi) * 1979-01-23 1981-08-10 Suovaniemi Finnpipette Flerdospipett
DE3212378A1 (de) * 1982-04-02 1983-10-13 ESPE Fabrik pharmazeutischer Präparate GmbH, 8031 Seefeld Vorrichtung zum beruehrungslosen dosieren von fluessigkeiten
FI86970C (fi) 1991-03-19 1992-11-10 Biohit Oy Taetningsring
FI951766A0 (fi) * 1995-04-12 1995-04-12 Labsystems Oy Faspipett
JP3699749B2 (ja) * 1995-06-09 2005-09-28 セーラー万年筆株式会社 ピペット
US5792424A (en) * 1996-03-05 1998-08-11 Rainin Instrument Co., Inc. Manual pipette with delayed-action home position latch
WO1999032870A1 (fr) 1997-12-23 1999-07-01 Rainin Instrument Co., Inc. Pipette manuelle comprenant une assistance par aimant
US5958343A (en) * 1997-12-29 1999-09-28 Astle; Thomas W. Small volume pipettor
US6299841B1 (en) * 1999-03-05 2001-10-09 Rainin Instrument Co., Inc. Bilaterally symmetrical battery powered microprocessor controlled lightweight hand-holdable electronic pipette
US6352673B1 (en) * 2000-03-09 2002-03-05 Rainin Instrument Ergonomic return springless manual air displacement pipette
US7416704B2 (en) 2000-06-26 2008-08-26 Vistalab Technologies, Inc. Handheld pipette
DE20109678U1 (de) 2001-06-12 2001-10-04 Tecan Trading Ag Baar Dichtung
DE60237627D1 (de) * 2001-10-16 2010-10-21 Matrix Technologies Corp Hand-pipettiervorrichtung
US6926867B1 (en) * 2001-10-30 2005-08-09 World Precision Instruments, Inc. Pipette piston seal assembly
DE102005033378B4 (de) * 2005-07-16 2012-05-31 Eppendorf Ag Kolbenhubpipette
WO2008076817A1 (fr) 2006-12-18 2008-06-26 Parker-Hannifin Corporation Joint de pipette
WO2009125337A1 (fr) * 2008-04-08 2009-10-15 Socorex Isba S.A. Joint pour dispositif de dosage de liquides

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2009125337A1 *

Also Published As

Publication number Publication date
US8900526B2 (en) 2014-12-02
WO2009125337A1 (fr) 2009-10-15
US20150086448A1 (en) 2015-03-26
US20110027149A1 (en) 2011-02-03

Similar Documents

Publication Publication Date Title
EP2291245A1 (fr) Joint pour dispositif de dosage de liquides
CA2837816C (fr) Dispositif de connexion entre un recipient et un contenant, procede d&#39;assemblage et d&#39;utilisation d&#39;un tel dispositif
EP2822619B1 (fr) Seringue pour application médicale
JP5016675B2 (ja) 少なくとも3つのシーリング要素を有するシリンダ/ピストン・ユニット
FR2969241A1 (fr) Ressort et dispositif de distribution comprenant un tel ressort.
EP3606583B1 (fr) Seringue à centre de gravité optimisé
FR2885294A1 (fr) Prothese de disque intervertebral
WO1993013873A1 (fr) Pompe a precompression perfectionnee
FR2956463A1 (fr) Dispositif a clapet, mono-corps, moule par injection de materiau elastique
FR3026726A1 (fr) Dispositif de conditionnement et d&#39;application au moyen d&#39;une pipette
EP2108450A1 (fr) Joint pour dispositif de dosage de liquides
EP3319667B1 (fr) Seringue et son procédé d&#39;assemblage
EP1268066B1 (fr) Pipette de prelevement a demontage simplifie
WO2007138220A1 (fr) Dispositif applicateur pour produit liquide et utilisation d&#39;un tel dispositif
FR2921050A1 (fr) Pompe distributrice pour recipient de stockage et de distribution de produit et recipient pourvu d&#39;une telle pompe
FR2817244A1 (fr) Dispositif ameliore pour le conditionnement et la distribution dosee d&#39;un produit liquide
EP1796917A1 (fr) Instrument d ecriture
WO2007006929A1 (fr) Dispositif d&#39;injection d&#39;additif liquide dans le circuit d&#39;alimentation en carburant d&#39;un moteur a combustion interne de vehicule automobile.
FR2948349A1 (fr) Dispositif de prehension a ventouse equipee d&#39;un palpeur
EP2732979B1 (fr) Stylo-plume
FR2622804A1 (fr) Seringue non reutilisable
FR2865198A1 (fr) Dispositif de distribution de produit fluide
FR2964953A1 (fr) Dispositif de conditionnement et d&#39;application au moyen d&#39;une pipette
EP3171984A1 (fr) Organe de distribution de produit fluide.
WO2008043895A2 (fr) Dispositif d&#39;injection a aiguille, pourvu d&#39;un dispositif de condamnation automatique d&#39;aiguille

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20121102

18W Application withdrawn

Effective date: 20191128

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

D18W Application withdrawn (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20200209